Skip to main content

Disorders of Head Shape and Size

  • Chapter
  • First Online:
Clinical Child Neurology

Abstract

The oval shape of the newborn’s skull, resulting from the molding needed during passage through the tight birth canal, usually returns to normal after a short period of time. This is followed by rapid expansion of the skull due to its inherent plasticity. Nevertheless, significant distortions can occur as a result of change in the intracranial volume or the presence of constrictive or restrictive forces affecting the infant’s head. These distortions may be mild and reversible deformations or evolve into cranial malformations which are rapidly progressive and irreversible [1–6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pu F, Xu L, Li D, Li S, Sun L, Wang L, Fan Y. Effect of different labor forces on fetal skull molding. Med Eng Phys. 2011;33:620–5.

    PubMed  Google Scholar 

  2. Idriz S, Patel JH, Ameli Renani S, Allan R, Vlahos I. CT of normal developmental and variant anatomy of the pediatric skull: distinguishing trauma from normality. Radiographics. 2015;35:1585–601.

    PubMed  Google Scholar 

  3. Papanagiotou P, Rohrer T, Roth C, Politi M, Zimmer A, Reith W. Cranial birth trauma. Radiologe. 2009;49:913–7.

    CAS  PubMed  Google Scholar 

  4. Ridgway EB, Weiner HL. Skull deformities. Pediatr Clin N Am. 2004;51:359–88.

    Google Scholar 

  5. Cunningham ML, Heike CL. Evaluation of the infant with an abnormal skull shape. Curr Opin Pediatr. 2007;19:645–51.

    PubMed  Google Scholar 

  6. Glass RB, Fernbach SK, Norton KI, Choi PS, Naidich TP. The infant skull: a vault of information. Radiographics. 2004;24:507–22.

    PubMed  Google Scholar 

  7. Passemard S, Kaindl AM, Verloes A. Microcephaly. Handb Clin Neurol. 2013;111:129–41.

    PubMed  Google Scholar 

  8. Wright CM, Emond A. Head growth and neurocognitive outcomes. Pediatrics. 2015;135:e1393–8.

    PubMed  Google Scholar 

  9. Bronfin DR. Misshapen heads in babies: position or pathology? Ochsner J. 2001;3(4):191–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Seal A. Fifteen-minute consultation on the infant with a large head. ADC Edu Pract. 2013;98(4):122–5.

    Google Scholar 

  11. Williams CA, Dagli A, Battaglia A. Genetic disorders associated with macrocephaly. Am J Med Genet A. 2008;146(15):2023–37.

    Google Scholar 

  12. Díaz-Rodríguez M, Becerra-Solano LE, Toscano-Flores JJ, Bañuelos-Robles O, Durán-González J, Ramírez Dueñas ML. Benign familial macrocephaly in a mother-son pair. Genet Couns. 2010;21(1):85.

    PubMed  Google Scholar 

  13. Nguyen K, Thomson A. The child with the large head. Paediatr Child Health. 2015;25(5):239–42.

    Google Scholar 

  14. Fisher PG. Does macrocephaly require MRI, CT, ultrasound, or a tape measure? J Pediatr. 2017;182:5.

    PubMed  Google Scholar 

  15. Bosley TM, Salih MA, Alorainy IA, Islam MZ, Oystreck DT, Suliman OS, al Malki S, Suhaibani AH, Khiari H, Beckers S, van Wesenbeeck L. The neurology of carbonic anhydrase type II deficiency syndrome. Brain. 2011;134(Pt 12):3502–15.

    PubMed  Google Scholar 

  16. van der Knaap MS, Lai V, Köhler W, Salih MA, Fonseca MJ, Benke TA, Wilson C, Jayakar P, Aine MR, Dom L, Lynch B. Megalencephalic leukoencephalopathy with cysts without MLC1 defect. Ann Neurol. 2010;67(6):834–7.

    PubMed  Google Scholar 

  17. Kahle KT, Kulkarni AV, Limbrick DD Jr, Warf BC. Hydrocephalus in children. Lancet. 2016;20(387):788–99.

    Google Scholar 

  18. Nielsen N, Breedt A. Hydrocephalus. In: Nursing care of the pediatric neurosurgery patient. Berlin Heidelberg: Springer; 2013. p. 37–84.

    Google Scholar 

  19. Elgamal EA, El-Dawlatly AA, Murshid WR, El-Watidy SM, Jamjoom ZA. Endoscopic third ventriculostomy for hydrocephalus in children younger than 1 year of age. Childs Nerv Syst. 2011;27(1):111–6.

    PubMed  Google Scholar 

  20. Pant S, Kaur G, De JK. Hydranencephaly. Kathmandu Univ Med J. 2010;8(29):83–6.

    CAS  Google Scholar 

  21. Pokhari PS, Ligar JP, Chetan M, Narottam AP. Congenital porencephaly in a new born child. J Clin Diag Res. 2014;8:RJ01–2.

    Google Scholar 

  22. Bokhari I, Rehman L, Hassan S, Hashim MS. Dandy-Walker malformation: a clinical and surgical analysis. J Coll Physicians Surg Pak. 2015;25:431–3.

    PubMed  Google Scholar 

  23. Manzini MC, Gleason D, Chang BS, Hill RS, Barry BJ, Partlow JN, et al. Ethnically diverse causes of Walker-Warburg syndrome (WWS): FCMD mutations are a more common cause of WWS outside of the Middle East. Hum Mutat. 2008;29(11):E231–41.

    PubMed  PubMed Central  Google Scholar 

  24. Bedri H, Mustafa B, Jadallah Y. Walker-Warburg syndrome: a case with multiple uncommon features. Sudan J Paediatr. 2011;11(2):59–63.

    PubMed  PubMed Central  Google Scholar 

  25. Manzini MC, Tambunan DE, Hill RS, Yu TW, Maynard TM, Heinzen EL, et al. Exome sequencing and functional validation in zebrafish identify GTDC2 mutations as a cause of Walker-Warburg syndrome. Am J Hum Genet. 2012;91(3):541–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mochida GH. Genetics and biology of microcephaly and lissencephaly. Semin Pediatr Neurol. 2009;16(3):120.

    PubMed  PubMed Central  Google Scholar 

  27. Ashwal S, Michelson D, Plawner L, Dobyns WB. Practice parameter: evaluation of the child with microcephaly (an evidence-based review) report of the quality standards Subcommittee of the American Academy of neurology and the practice Committee of the Child Neurology Society. Neurology. 2009;73(11):887–97.

    PubMed  PubMed Central  Google Scholar 

  28. Morris JK, Rankin J, Garne E, Loane M, Greenlees R, Addor MC, et al. Prevalence of microcephaly in Europe: population based study. BMJ. 2015;354:i4721.

    Google Scholar 

  29. Guideline, Rapid Advice. Screening, assessment and management of neonates and infants with complications associated with Zika virus exposure in utero. (2016). WHO/ZIKV/MOC/16.3/Rev3.

    Google Scholar 

  30. Moore CA, Staples JE, Dobyns WB, Pessoa A, Ventura CV, Da Fonseca EB, et al. Characterizing the pattern of anomalies in congenital Zika syndrome for pediatric clinicians. JAMA Pediatr. 2017;171(3):288–95.

    PubMed  PubMed Central  Google Scholar 

  31. Hanprasertpong T. Microcephaly: significance and how to approach during the zika era. Thai J Obstetr Gynaecol. 2017;25(1):2–5.

    Google Scholar 

  32. Seidahmed MZ, Salih MA, Abdulbasit OB, Shaheed M, Al Hussein K, Miqdad AM, et al. A novel syndrome of lethal familial hyperekplexia associated with brain malformation. BMC Neurol. 2012;12:125. https://doi.org/10.1186/1471-2377-12-125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Seidahmed MZ, Salih MA, Abdulbasit OB, Samadi A, Al Hussien K, Miqdad AM, et al. Hyperekplexia, microcephaly and simplified gyral pattern caused by novel ASNS mutations, case report. BMC Neurol. 2016;16:105.

    PubMed  PubMed Central  Google Scholar 

  34. Salih MA, Bosley TM, Alorainy IA, Sabry MA, Rashed MS, Al-Yamani EA, et al. Preimplantation genetic diagnosis in isolated sulfite oxidase deficiency. Can J Neurol Sci. 2013;40(1):109–12.

    PubMed  Google Scholar 

  35. Bosley TM, Alorainy IA, Oystreck DT, Hellani AM, Seidahmed MZ, Osman Mel F, et al. Neurologic injury in isolated sulfite oxidase deficiency. Can J Neurol Sci. 2014;41(1):42–8.

    PubMed  Google Scholar 

  36. Al-Qattan SM, Wakil SM, Anazi S, Alazami AM, Patel N, Shaheen R, et al. The clinical utility of molecular karyotyping for neurocognitive phenotypes in a consanguineous population. Genet Med. 2015;17(9):719–25.

    PubMed  Google Scholar 

  37. Morris-Rosendahl DJ, Kaindl AM. What next-generation sequencing (NGS) technology has enabled us to learn about primary autosomal recessive microcephaly (MCPH). Mol Cell Probes. 2015;29(5):271–81.

    CAS  PubMed  Google Scholar 

  38. Alazami AM, Patel N, Shamseldin HE, Anazi S, Al-Dosari MS, Alzahrani F, et al. Accelerating novel candidate gene discovery in neurogenetic disorders via whole-exome sequencing of prescreened multiplex consanguineous families. Cell Rep. 2015;10(2):148.

    CAS  PubMed  Google Scholar 

  39. Shaheen R, Patel N, Shamseldin H, Alzahrani F, Al-Yamany R, ALMoisheer A, et al. Accelerating matchmaking of novel dysmorphology syndromes through clinical and genomic characterization of a large cohort. Genet Med. 2016;18(7):686.

    PubMed  Google Scholar 

  40. Moammar H, Cheriyan G, Mathew R, Al-Sannaa N. Incidence and patterns of inborn errors of metabolism in the Eastern Province of Saudi Arabia, 1983-2008. Ann Saudi Med. 2010;30:271–7.

    PubMed  PubMed Central  Google Scholar 

  41. Salih MAM. Genetic disorders in Sudan. In: Teebi AS, editor. Genetic disorders among Arab populations. Berlin Heidelberg: Springer; 2010. p. 575–612.

    Google Scholar 

  42. Alfadhel M, Benmeakel M, Hossain MA, Al Mutairi F, Al Othaim A, Alfares AA, et al. Thirteen year retrospective review of the spectrum of inborn errors of metabolism presenting in a tertiary center in Saudi Arabia. Orphanet J Rare Dis. 2016;11:126.

    PubMed  PubMed Central  Google Scholar 

  43. Mohamed S. Treatment strategies for acute metabolic disorders in neonates. Sudan J Paediatr. 2011;11:6–13.

    PubMed  PubMed Central  Google Scholar 

  44. Alfadhel M, Al-Thihli K, Moubayed H, Eyaid W, Al-Jeraisy M. Drug treatment of inborn errors of metabolism: a systematic review. Arch Dis Child. 2013;98:454–61.

    PubMed  Google Scholar 

  45. Tarailo-Graovac M, Shyr C, Ross CJ, Horvath GA, Salvarinova R, Ye XC, et al. Exome sequencing and the management of neurometabolic disorders. N Engl J Med. 2016;374(23):2246.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Martínez-Lage JF, Ruíz-Espejo AM, Gilabert A, Pérez-Espejo MA, Guillén-Navarro E. Positional skull deformities in children: skull deformation without synostosis. Childs Nerv Syst. 2006;22:368–74.

    PubMed  Google Scholar 

  47. Governale LS. Craniosynostosis. Pediatr Neurol. 2015;53:394–401.

    PubMed  Google Scholar 

  48. Flores-Sarnat L. New insights into craniosynostosis. Semin Pediatr Neurol. 2002;9:274–91.

    PubMed  Google Scholar 

  49. Gerscovich EO, McGahan JP, Jain KA, Gillen MA. Caput succedaneum mimicking a cephalocele. J Clin Ultrasound. 2003;31:98–102.

    PubMed  Google Scholar 

  50. Parker LA. Part 1: early recognition and treatment of birth trauma: injuries to the head and face. Adv Neonatal Care. 2005;5(6):288–97.

    PubMed  Google Scholar 

  51. Roby BB, Finkelstein M, Tibesar RJ, Sidman JD. Prevalence of positional plagiocephaly in teens born after the back to sleep campaign. Otolaryngol Head Neck Surg. 2012;146:823–8.

    PubMed  Google Scholar 

  52. Rogers GF. Deformational plagiocephaly, brachycephaly, and scaphocephaly. Part I: terminology, diagnosis, and etiopathogenesis. J Craniofac Surg. 2011;22:9–16.

    PubMed  Google Scholar 

  53. Rogers GF. Deformational plagiocephaly, brachycephaly, and scaphocephaly. Part II: prevention and treatment. J Craniofac Surg. 2011;22:17–23.

    PubMed  Google Scholar 

  54. Persing JA, Jane JA, Shaffrey M. Virchow and the pathogenesis of craniosynostosis: a translation of his original work. Plast Reconstr Surg. 1989;83(4):738–42.

    CAS  PubMed  Google Scholar 

  55. Di Rocco F, Arnaud E, Renier D. Evolution in the frequency of nonsyndromic craniosynostosis. J Neurosurg Pediatr. 2009;4:21–5.

    PubMed  Google Scholar 

  56. Balasubramaniam C, Rao SM, Subramaniam K. Craniostenosis: a neurosurgeon’s perspective. J Craniofac Surg. 2014;25:1632–5.

    PubMed  Google Scholar 

  57. Kirmi O, Lo SJ, Johnson D, Anslow P. Craniosynostosis: a radiological and surgical perspective. Semin Ultrasound CT MR. 2009;30:492–512.

    PubMed  Google Scholar 

  58. Massimi L, Caldarelli M, Tamburrini G, Paternoster G, Di Rocco C. Isolated sagittal craniosynostosis: definition, classification, and surgical indications. Childs Nerv Syst. 2012;28:1311–7.

    PubMed  Google Scholar 

  59. Kadom N, Sze RW. Radiological reasoning: a child with posterior plagiocephaly. AJR Am J Roentgenol. 2010;194:5–9.

    Google Scholar 

  60. van der Meulen J. Metopic synostosis. Childs Nerv Syst. 2012;28:1359–67.

    PubMed  PubMed Central  Google Scholar 

  61. Aryan HE, Jandial R, Ozgur BM, Hughes SA, Meltzer HS, Park MS, Levy ML. Surgical correction of metopic synostosis. Childs Nerv Syst. 2005;21:392–8.

    PubMed  Google Scholar 

  62. Kheir AEM, Hamed AA, Maki WM, Hasan LHM. Apert syndrome: late presentation and treatment challenges. Sudan J Paediatr. 2014;14(2):71–5.

    PubMed  PubMed Central  Google Scholar 

  63. Shen W, Cui J, Chen J, Weiping S. Molding of top skull in the treatment of Apert syndrome. J Craniofac Surg. 2015;26:516–7.

    PubMed  Google Scholar 

  64. Benmiloud S, Chaouki S, Atmani S, Hida M. Apert syndrome. Pan Afr Med J. 2013;14:66.

    PubMed  PubMed Central  Google Scholar 

  65. Alsaadi MM, Iqbal SM, Elgamal EA, Salih MA, Gozal D. Sleep-disordered breathing in children with craniosynostosis. Sleep Breath. 2013;17:389–93.

    PubMed  Google Scholar 

  66. Mohan RS, Vemanna NS, Verma S, Agarwal N. Crouzon syndrome: clinico-radiological illustration of a case. J Clin Imaging Sci. 2012;2:70.

    PubMed  PubMed Central  Google Scholar 

  67. Al-Qattan MM, Shamseldin HE, Salih MA, Alkuraya FS. GLI3-related polydactyly: a review. Clin Genet 2017.

    Google Scholar 

  68. Dicus Brookes C, Golden BA, Turvey TA. Craniosynostosis syndromes. Atlas Oral Maxillofac Surg Clin North Am. 2014;22:103–10.

    PubMed  Google Scholar 

  69. de Jong T, Maliepaard M, Bannink N, Raat H, Mathijssen IM. Health-related problems and quality of life in patients with syndromic and complex craniostenosis. Childs Nerv Syst. 2012;28:879–82.

    PubMed  PubMed Central  Google Scholar 

  70. Nicholson L. Caput succedaneum and cephalhematoma: the cs that leave bumps on the head. Neonatal Netw. 2007;26:277–81.

    PubMed  Google Scholar 

  71. Prasad GL, Gupta DK, Mahapatra AK, Borkar SA, Sharma BS. Surgical results of growing skull fractures in children: a single Centre study of 43 cases. Childs Nerv Syst. 2015;31:269–77.

    PubMed  Google Scholar 

  72. Yoon SH, Park SH. A study of 77 cases of surgically excised scalp and skull masses in pediatric patients. Childs Nerv Syst. 2008;24:459–65.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa A. M. Salih .

Editor information

Editors and Affiliations

33.1 Electronic Supplementary Material

Macrocephaly and hyperacusis (exaggerated responses to sound) in a child with Sandhoff disease (GM2-gangliosidosis, type II) (MOV 19155 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elgamal, E.A., Salih, M.A.M. (2020). Disorders of Head Shape and Size. In: Salih, M.A. (eds) Clinical Child Neurology. Springer, Cham. https://doi.org/10.1007/978-3-319-43153-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43153-6_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43152-9

  • Online ISBN: 978-3-319-43153-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics