Skip to main content

Wild Beans (Phaseolus L.) of North America

  • Chapter
  • First Online:
North American Crop Wild Relatives, Volume 2

Abstract

The wild relatives of the five domesticated species of bean (Phaseolus L.) are widely distributed across the tropics and subtropics of the New World, with taxa extending from the Canadian border to Argentina, and on the Caribbean Islands, Bermuda, and the Galapagos Islands. Mesoamerica holds the largest concentration of species, particularly in the highlands of central Mexico, northward along the Sierra Madre Occidental, and south to Chiapas. The progenitors and close relatives of all five domesticates are also concentrated in this region. Plant breeding involving the use of wild relatives has almost entirely been directed toward the improvement of common bean (Phaseolus vulgaris L.), the most widely cultivated species, and successful contributions have mostly come from its progenitor (Phaseolus vulgaris L.) and a few other taxa. Wild relatives are considered to possess novel useful genetic variation that has not yet been fully explored. A number of wild Phaseolus are rare endemics that are threatened in their natural habitats and are insufficiently protected in situ. Significant ex situ collections of wild Phaseolus are maintained at the International Center for Tropical Agriculture (CIAT), the USDA-ARS National Plant Germplasm System, within the Sistema Nacional de Recursos Fitogenéticos para la Alimentación y la Agricultura (SINAREFI) Conservation Centers Network in Mexico, and at the Botanic Garden Meise, Belgium. Unfortunately, over 26% of Phaseolus taxa are not represented at all in these ex situ conservation facilities, and another 29% are represented by less than ten accessions, making over half of the species highly underrepresented in genebanks. Further efforts to enhance the protection of vulnerable species in their natural habitats, and further collecting to fill critical gaps in germplasm collections, are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acevedo M, Steadman JR, Rosas JC, Venegas J (2006) New sources of resistance to bean rust and implications for host-pathogen coevolution. Annu Rep Bean Improv Coop (USA) 49:77–78

    Google Scholar 

  • Acosta-Gallegos JA, Kelly JD, Gepts P (2007) Prebreeding in common bean and use of genetic diversity from wild germplasm. Crop Sci 47(Supplement_3):S-44

    Article  Google Scholar 

  • Adams MW (1977) An estimation of homogeneity in crop plants with special reference to genetic vulnerability in the dry bean, Phaseolus vulgaris L. Euphytica 26:665–679

    Article  Google Scholar 

  • Allard HA (1947) The ecology of the wild kidney bean Phaseolus polystachios (L.) BSP. J Wash Acad Sci 37(9):306–309

    CAS  PubMed  Google Scholar 

  • Al-Yasiri SA, Coyne DB (1966) Interspecific hybridization in the genus Phaseolus. Crop Sci 6(1):59–60

    Article  Google Scholar 

  • Anderson NO, Ascher PD, Haghighi K (1996) Congruity backcrossing as a means of creating genetic variability in self pollinated crops: seed morphology of Phaseolus vulgaris L. and P. acutifolius A. Gray hybrids. Euphytica 87(3):211–224

    Article  Google Scholar 

  • Ariani A, Berny Mier y Teran JC, Gepts P (2017) Spatial and temporal scales of range expansion in wild Phaseolus vulgaris. Mol Biol Evol msx273

    Google Scholar 

  • Balasubramanian P, Vandenberg A, Hucl P, Gusta L (2004) Resistance of Phaseolus species to ice crystallization at subzero temperature. Physiol Plant 120(3):451–457

    Article  CAS  PubMed  Google Scholar 

  • Baudoin JP (1988) Genetic resources, domestication and evolution of lima bean, Phaseolus lunatus. In: Genetic resources of Phaseolus beans. Springer Netherlands, Dordrecht, pp 393–407

    Chapter  Google Scholar 

  • Beaver JS, Zapata M, Alameda M, Porch TG, Rosas JC (2012) Registration of PR0401-259 and PR0650-31 dry bean germplasm lines. J Plant Regist 6(1):81–84

    Article  Google Scholar 

  • Beebe S (2012) Common bean breeding in the tropics. Plant Breed Rev 36:357–426

    Article  Google Scholar 

  • Beebe SE, Ochoa I, Skroch P, Nienhuisl J, Tivang J (1995) Genetic diversity among common bean breeding lines developed for Central America. Crop Sci 35:1178–1183

    Article  Google Scholar 

  • Beebe S, Ramirez J, Jarvis A, Rao IM, Mosquera G, Bueno JM, Blair MW (2011) Genetic improvement of common beans and the challenges of climate change. In: Crop adaptation to climate change, vol 26. Wiley, Blackwell Publishing Ltd, Richmond, pp 356–369

    Chapter  Google Scholar 

  • Bitocchi E, Bellucci E, Giardini A, Rau D, Rodriguez M, Biagetti E, Santilocchi R, Spagnoletti Zeuli P, Gioia T, Logozzo G, Attene G (2013) Molecular analysis of the parallel domestication of the common bean (Phaseolus vulgaris) in Mesoamerica and the Andes. New Phytol 197(1):300–313

    Article  CAS  PubMed  Google Scholar 

  • Bitocchi E, Rau D, Bellucci E, Rodriguez M, Murgia ML, Gioia T, Santo D, Nanni L, Attene G, Papa R (2017) Beans (Phaseolus ssp.) as a model for understanding crop evolution. Front Plant Sci 8:722

    Article  PubMed  PubMed Central  Google Scholar 

  • Blair MW (2013) Mineral biofortification strategies for food staples: the example of common bean. J Agric Food Chem 61(35):8287–8294

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Iriarte G, Beebe S (2006) QTL analysis of yield traits in an advanced backcross population derived from a cultivated Andean × wild common bean (Phaseolus vulgaris L.) cross. Theor Appl Genet 112(6):1149–1163

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Cortés AJ, This D (2016) Identification of an ERECTA gene and its drought adaptation associations with wild and cultivated common bean. Plant Sci 242:250–259

    Article  CAS  PubMed  Google Scholar 

  • Boland GJ, Hall R (1994) Index of plant hosts of Sclerotinia sclerotiorum. Can J Plant Pathol 16(2):93–108

    Article  Google Scholar 

  • Botanic Garden Meise (2017) Seedbank. http://www.plantentuinmeise.be/CONSERVATION/seedbank.php. [Verified Nov 11 2017]

  • Botanic Gardens Conservation International (BGCI) (2017) Plant Search database. BGCI US, San Marino, CA. https://www.bgci.org/plant_search.php. [Verified 18 Jan 2017]

  • Broughton WJ, Hernández G, Blair M, Beebe S, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp.)–model food legumes. Plant Soil 252(1):55–128

    Article  CAS  Google Scholar 

  • Castañeda-Álvarez NP, Khoury CK, Achicanoy HA, Bernau V, Dempewolf H, Eastwood RJ, Guarino L, Harker RH, Jarvis A, Maxted N, Müller JV, Ramirez-Villegas J, Sosa CC, Struik PC, Vincent H, Toll J (2016) Global conservation priorities for crop wild relatives. Nat Plants 2:16022

    Article  PubMed  Google Scholar 

  • CGIAR (2017) Grain legumes – A CGIAR research program. http://grainlegumes.cgiar.org/crops/common-bean/. [Verified 6 Nov 2017]

  • CIAT (2017) Bean collection. http://genebank.ciat.cgiar.org/genebank/language.do?collection=bean. [Verified Nov 11 2017]

  • Connecticut Department of Energy and Environmental Protection (CT DEEP) (2015) Connecticut’s Endangered, Threatened, and Special Concern Species 2015. http://www.ct.gov/deep/lib/deep/wildlife/pdf_files/nongame/ets15.pdf. Bureau of Natural Resources. [Verified 20 November 2017]

  • Contu S (2012) Phaseolus polystachios. The International Union for Conservation of Nature IUCN red list of threatened species 2012: e.T19892040A20127299. https://doi.org/10.2305/IUCN.UK.2012.RLTS.T19892040A20127299.en. [Verified 10 November 2017]

  • Copeland A, Malcolm P, Bárrios S (2014) Phaseolus lignosus. The International Union for Conservation of Nature IUCN red list of threatened species 2014: e.T56960811A56960839. https://doi.org/10.2305/IUCN.UK.2014-3.RLTS.T56960811A56960839.en. [Verified 10 November 2017]

  • Cortés AJ, Monserrate FA, Ramírez-Villegas J, Madriñán S, Blair MW (2013) Drought tolerance in wild plant populations: the case of common beans (Phaseolus vulgaris L.). PLoS One 8(5):e62898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Data Providers and Crop Trust (2017) Genesys. https://www.genesys-pgr.org/welcome. [Verified Nov 11 2017]

  • De Ron AM, Papa R, Bitocchi E, González AM, Debouck DG, Brick MA, Fourie D, Marsolais F, Beaver J, Geffroy V, McClean P (2015) Common bean. In: De Ron A (ed) Grain legumes. Handbook of plant breeding, vol 10. Springer, New York, pp 1–36

    Google Scholar 

  • Debouck DG (1999) Diversity in Phaseolus species in relation to the common bean. Chapter 2. In: Singh SP (ed) Common bean improvement in the twenty-first century. Springer, New York, pp 25–52

    Chapter  Google Scholar 

  • Debouck DG (2000) Biodiversity, ecology, and genetic resources of Phaseolus beans Seven answered and unanswered questions. In: K. Oono (ed.). Wild Legumes. MAFF International Workshop on Genetic Resources, Ministry of Agriculture, Forestry and Fisheries Research Council Secretariat and National Institute of Agrobiological Resources (NIAR), Tsukuba, Japan. p. 95–123. (see https://cgspace.cgiar.org/handle/10568/88971, https://www.gene.affrc.go.jp/pdf/misc/international-WS_07.pdf#page=95

  • Debouck DG (2015) Observations about Phaseolus lignosus (Leguminosae: Papilionoideae: Phaseoleae), a bean species from the Bermuda Islands. J Bot Res Inst 9(1):107–119

    Google Scholar 

  • Debouck DG (2017) Cahiers de Phaséologie. http://ciat.cgiar.org/genetic-resources-publications/?type=herbaria&titlepublication=Phaseolus%20in%20the%20Herbaria

  • Debouck DG, Smartt J (1995) Beans. In: Smartt J, Simmonds NW (eds) Evolution of crop plants. Longman Scientific and Technical, Singapore, pp 287–294

    Google Scholar 

  • Delgado-Salinas A, Carr WR (2007) Phaseolus texensis (Leguminosae: Phaseolinae): a new species from the Edwards Plateau of central Texas. Lundellia 10:11–17

    Article  Google Scholar 

  • Delgado-Salinas A, Turley T, Richman A, Lavin M (1999) Phylogenetic analysis of the cultivated and wild species of Phaseolus (Fabaceae). Syst Bot 24:438–460

    Article  Google Scholar 

  • Delgado-Salinas A, Bibler R, Lavin M (2006) Phylogeny of the genus Phaseolus (Leguminosae): a recent diversification in an ancient landscape. Syst Bot 31:779–791

    Article  Google Scholar 

  • Dhaliwal AS, Pollard LH (1962) Cytological behavior of an F1 species cross (Phaseolus lunatus L. var. Ford hook × Phaseolus polystachyus L.). Cytologia 27(4):369–374

    Article  Google Scholar 

  • Freytag GF, Debouck DG (2002) Taxonomy, distribution, and ecology of the genus Phaseolus (Leguminosae-Papiliodoideae) in North America, Mexico and Central America. Sida, Botanical Miscellany Botanical Researh Institute of Texas, USA

    Google Scholar 

  • Freytag GF, Bassett MJ, Zapata M (1982) Registration of XR-235-1-1 bean germplasm. Crop Sci 22:1268–1269

    Article  Google Scholar 

  • Garvin FD, Weeden N (1994) Isozyme evidence supporting a simple geographic origin for domesticated tepary bean. Crop Sci 34:1390–1395

    Article  Google Scholar 

  • Gentry HS (1969) Origin of the common bean, Phaseolus vulgaris. Econ Bot 23(1):55–69

    Article  Google Scholar 

  • Gepts P (1998) Origin and evolution of common bean: past events and recent trends. Hortscience 33(7):1124–1130

    Article  Google Scholar 

  • Gepts P (2001) Phaseolus vulgaris (beans). In: Encyclopedia of genetics. Academic Press, pp 1444–1445 https://www.plantsciences.ucdavis.edu/gepts/a1749.pdf

  • Groom A (2012) Phaseolus xanthotrichus. The International Union for Conservation of Nature IUCN red list of threatened species 2012: e.T19892311A20127655. https://doi.org/10.2305/IUCN.UK.2012.RLTS.T19892311A20127655.en. [Verified 10 November 2017

  • Harlan JR, De Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517

    Article  Google Scholar 

  • Hart JP, Reber EA, Thompson RG, Lusteck R (2008) Taking variation seriously: testing the steatite mast-processing hypothesis with microbotanical data from the hunter’s home site, New York. Am Antiq 73(4):729–741

    Article  Google Scholar 

  • Hunter JE, Dickson MH, Boettger MA, Cigna JA (1982) Evaluation of plant introductions of Phaseolus spp. for resistance to white mold. Plant Dis 66(4):320–322

    Article  Google Scholar 

  • Jarvis A, Ramirez-Villegas J, Campo BV, Navarro-Racines C (2012) Is cassava the answer to African climate change adaptation? Trop Plant Biol 5(1):9–29

    Article  Google Scholar 

  • Kaplan L (1965) Archeology and domestication in American Phaseolus (beans). Econ Bot 19(4):358–368

    Article  Google Scholar 

  • Kelly JD, Kolkman JM, Schneider K (1998) Breeding for yield in dry bean (Phaseolus vulgaris L.). Euphytica 102(3):343–356

    Article  Google Scholar 

  • Kelly JD, Schneider KA, Kolkman JM (1999) Breeding to improve yield. In: Singh SP (ed) Common bean improvement in the twenty-first century. Developments in plant breeding. Springer, Dordrecht, pp 185–222

    Chapter  Google Scholar 

  • Kipe-Nolt JA, Montealegre CM, Tohme J (1992) Restriction of nodulation by the broad host range Rhizobium tropici strain CIAT899 in wild accessions of Phaseolus vulgaris L. New Phytol 120:489–494

    Article  Google Scholar 

  • Koinange EMK, Singh SP, Gepts P (1996) Genetic control of the domestication syndrome in common bean. Crop Sci 36(4):1037–1045

    Article  Google Scholar 

  • Kornegay J, Cardona C (1991) Breeding for insect resistance. In: van Schoonhoven A, Voysest O (eds) Common beans: research for crop improvement. CAB International, Wallingford, pp 619–641

    Google Scholar 

  • Kornegay J, Cardona C, Posso CE (1993) Inheritance of resistance to Mexican bean weevil in common bean, determined by bioassay and biochemical tests. Crop Sci 33(3):589–594

    Article  CAS  Google Scholar 

  • Kusolwa PM, Myers JR, Porch TG, Trukhina Y, González-Vélez A, Beaver JS (2016) Registration of AO-1012-29-3-3A red kidney bean germplasm line with bean weevil, BCMV, and BCMNV resistance. J. Plant Regist 10:149–153

    Article  Google Scholar 

  • Liogier AH (1988) Description of the flora Puerto Rico & adjacent islands. Spermatophyta vol II

    Google Scholar 

  • Mahuku GS, Jara CE, Cajiao C, Beebe S (2002) Sources of resistance to Colletotrichum lindemuthianum in the secondary gene pool of Phaseolus vulgaris and in crosses of primary and secondary gene pools. Plant Dis 86(12):1383–1387

    Article  CAS  PubMed  Google Scholar 

  • McClean PE, Lee RK, Otto C, Gepts P, Bassett MJ (2002) Molecular and phenotypic mapping of genes controlling seed coat pattern and color in common bean (Phaseolus vulgaris L.). J Hered 93(2):148–152

    Article  CAS  PubMed  Google Scholar 

  • McClean PE, Gepts P, Kami J (2004) Genomics and genetic diversity in common bean. In: Wilson R, Stalker HT, Brummer EC (eds) Legume crop genomics. AOCS, Champaign, pp 60–82

    Google Scholar 

  • Mejía-Jiménez A, Muñoz C, Jacobsen HJ, Roca WM, Singh SP (1994) Interspecific hybridization between common and tepary beans: increased hybrid embryo growth, fertility, and efficiency of hybridization through recurrent and congruity backcrossing. Theor Appl Genet 88(3–4):324–331

    Article  PubMed  Google Scholar 

  • Métais I, Hamon B, Jalouzot R, Peltier D (2002) Structure and level of genetic diversity in various bean types evidenced with microsatellite markers isolated from a genomic enriched library. Theor Appl Genet 104:1346–1352

    Article  PubMed  CAS  Google Scholar 

  • Michigan Department of Natural Resources (MI DNR) (2017) MICHIGAN’S SPECIAL PLANTS: Endangered, Threatened, Special Concern, and Probably Extirpated. https://mnfi.anr.msu.edu/data/special_plants_list.pdf [Verified 20 November 2017]

  • Miklas PN, Zapata M, Beaver JS, Grafton KF (1999) Registration of four dry bean germplasms resistant to common bacterial blight: ICB-3, ICB-6, ICB-8, and ICB-10. Crop Sci 39(2):594

    Article  Google Scholar 

  • Miller RE, Khoury CK (2018) The gene pool concept applied to crop wild relatives: an evolutionary perspective. In: Greene SL, Williams KA, Khoury CK, Kantar M, Marek L (eds) North American crop wild relatives: conservation and use. Springer (this book)

    Google Scholar 

  • Mina-Vargas AM, McKeown PC, Flanagan NS, Debouck DG, Kilian A, Hodkinson TR, Spillane C (2016) Origin of year-long bean (Phaseolus dumosus Macfady, Fabaceae) from reticulated hybridization events between multiple Phaseolus species. An Bot 118(5):957–969

    Article  CAS  Google Scholar 

  • Mkwaila W, Terpstra KA, Ender M, Kelly JD (2011) Identification of QTL for agronomic traits and resistance to white mold in wild and landrace germplasm of common bean. Plant Breed 130(6):665–672

    Article  Google Scholar 

  • Moghaddam SM, Mamidi S, Osorno JM, Lee R, Brick M, Kelly J, Miklas P, Urrea C, Song Q, Cregan P, Grimwood J (2016) Genome-wide association study identifies candidate loci underlying agronomic traits in a Middle American diversity panel of common bean. The Plant Genome 9(3):1–21

    Google Scholar 

  • Mok DW, Mok MC, Rabakoarihanta A (1978) Interspecific hybridization of Phaseolus vulgaris with P. lunatus and P. acutifolius. Theor Appl Genet 52(5):209–215

    Article  CAS  PubMed  Google Scholar 

  • Motta-Aldana JR, Serrano-Serrano ML, Hernández-Torres J, Castillo-Villamizar G, Debouck DG (2010) Multiple origins of lima bean landraces in the Americas: evidence from chloroplast and nuclear DNA polymorphisms. Crop Sci 50(5):1773–1787

    Article  CAS  Google Scholar 

  • Muñoz LC, Duque MC, Debouck DG, Blair MW (2006) Taxonomy of tepary bean and wild relatives as determined by amplified fragment length polymorphism (AFLP) markers. Crop Sci 46:1744–1754

    Article  CAS  Google Scholar 

  • Nabhan GP (1985) Native crop diversity in Aridoamerica: conservation of regional genepools. Econ Bot 39(4):387–399

    Article  Google Scholar 

  • Nabhan GP (1990) Wild Phaseolus Ecogeography in the Sierra Madre Occidental, Mexico: Areographic techniques for targeting and conserving species diversity. Systematic and Ecogeographic Studies on Crop Genepools 5. International Board of Plant Genetic Resources (IBPGR)

    Google Scholar 

  • NatureServe (2017) NatureServe Explorer: an online encyclopedia of life [web application]. Version 7.1. NatureServe, Arlington, Virginia. Available http://explorer.natureserve.org. [Verified 9 Nov 2017]

  • Osborn TC, Alexander DC, Sun SS, Cardona C, Bliss FA (1988) Insecticidal activity and lectin homology of arcelin seed protein. Science 240(4849):207

    Article  CAS  Google Scholar 

  • Osborn TC, Hartweck LM, Harmsen RH, Vogelzang RD, Kmiecik KA, Bliss FA (2003) Registration of Phaseolus vulgaris genetic stocks with altered seed protein compositions. (Registrations of genetic stocks). Crop Sci 43(4):1570–1572

    Article  Google Scholar 

  • Osorno JM, Muñoz CG, Beaver JS, Ferwerda FH, Bassett MJ, Miklas PN, Olczyk T, Bussey B (2007) Two genes from Phaseolus coccineus confer resistance to bean golden yellow mosaic virus in common bean. J Am Soc Hortic Sci 132(4):530–533

    Article  Google Scholar 

  • Papa R, Gepts P (2003) Asymmetry of gene flow and differential geographical structure of molecular diversity in wild and domesticated common bean (Phaseolus vulgaris L.) from Mesoamerica. Theor Appl Genet 106(2):239–250

    Article  CAS  PubMed  Google Scholar 

  • Pennsylvania Natural Heritage Program Species Lists (PA Natural Heritage Program Species Lists) (2014) Endangered, threatened, special concern species & rare and significant ecological features. http://www.naturalheritage.state.pa.us/docs/PNDI_SpeciesList_Jan2014.pdf. [Verified 20 November 2017]

  • Piper CV (1926) Studies of American Phaseolineae. Bull Appl Bot Leningrad 14:143–148

    Google Scholar 

  • Porch TG, Beaver JS, Brick MA (2013a) Registration of tepary germplasm with multiple-stress tolerance, TARS-Tep 22 and TARS-Tep 32. J Plant Regist 7(3):358–364

    Article  Google Scholar 

  • Porch TG, Beaver JS, Debouck DG, Jackson SA, Kelly JD, Dempewolf H (2013b) Use of wild relatives and closely related species to adapt common bean to climate change. Agronomy 3(2):433–461

    Article  Google Scholar 

  • Pratt RC, Nabhan GP (1988) Evolution and diversity of Phaseolus acutifolius genetic resources. In: Gepts P (ed) Genetic resources of Phaseolus beans. Springer, Dordrecht, pp 409–440

    Chapter  Google Scholar 

  • Prohens J, Gramazio P, Plazas M, Dempewolf H, Kilian B, Díez MJ, Fita A, Herraiz FJ, Rodríguez-Burruezo A, Soler S, Knapp S, Vilanova S (2017) Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica 213(7):158

    Article  Google Scholar 

  • Ramírez-Delgadillo R, Delgado-Salinas A (1999) A new species of Phaseolus (Fabaceae) from West-Central Mexico. SIDA 18:637–646

    Google Scholar 

  • Ramírez-Villegas J, Khoury C, Jarvis A, Debouck DG, Luigi G (2010) A gap analysis methodology for collecting crop genepools: a case study with Phaseolus beans. PLoS One 5(10):e13497

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rao I, Beebe S, Polania J, Ricaurte J, Cajiao C, Garcia R, Rivera M (2013) Can tepary bean be a model for improvement of drought resistance in common bean? Afr Crop Sci J 21(4):265–281

    Google Scholar 

  • Rendón-Anaya M, Herrera-Estrella A, Gepts P, Delgado-Salinas A (2017a) A new species of Phaseolus (Leguminosae, Papilionoideae) sister to Phaseolus vulgaris, the common bean. Phytotaxa 313(3):259–266

    Article  Google Scholar 

  • Rendón-Anaya M, Montero-Vargas JM, Saburido-Álvarez S, Vlasova A, Capella-Gutierrez S, Ordaz-Ortiz JJ, Aguilar OM, Vianello-Brondani RP, Santalla M, Delaye L, Gabaldón T (2017b) Genomic history of the origin and domestication of common bean unveils its closest sister species. Genome Biol 18(1):60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodiño AP, Lema M, Pérez-Barbeito M, Santalla M, De Ron AM (2007) Assessment of runner bean (Phaseolus coccineus L.) germplasm for tolerance to low temperature during early seedling growth. Euphytica 155(1–2):63–70

    Article  Google Scholar 

  • Rodriguez M, Rau D, Bitocchi E, Bellucci E, Biagetti E, Carboni A, Gepts P, Nanni L, Papa R, Attene G (2016) Landscape genetics, adaptive diversity and population structure in Phaseolus vulgaris. New Phytol 209(4):1781–1794

    Article  CAS  PubMed  Google Scholar 

  • Rosales-Serna R, Kohashi-Shibata J, Acosta-Gallegos JA, Trejo-Lopez C, Ortiz-Cereceres J, Kelly JD (2004) Biomass distribution, maturity acceleration and yield in drought-stressed common bean cultivars. Field Crop Res 85:203–211

    Article  Google Scholar 

  • Rubiales D, Mikic A (2015) Introduction: legumes in sustainable agriculture. Crit Rev Plant Sci 34(1–3):2

    Article  Google Scholar 

  • Scarry CM, Reitz EJ (2005) Changes in foodways at the Parkin site, Arkansas. Southeast Archaeol 24:107

    Google Scholar 

  • Schinkel C, Gepts P (1988) Phaseolin diversity in the tepary bean Phaseolus acutifolius A Gray. Plant Breed 101(4):292–301

    Article  Google Scholar 

  • Schmit V, Baudoin JP (1992) Screening for resistance to Ascochyta blight in populations of Phaseolus coccineus L. and P. polyanthus Greenman. F Crop Res 30(1–2):155–165

    Article  Google Scholar 

  • Schwartz HF, Singh SP (2013) Breeding common bean for resistance to white mold: a review. Crop Sci 53(5):1832–1844

    Article  Google Scholar 

  • Schwartz HF, Otto K, Terán H, Lema M, Singh SP (2006) Inheritance of white mold resistance in Phaseolus vulgaris × P. coccineus crosses. Plant Dis 90(9):1167–1170

    Article  PubMed  Google Scholar 

  • Serrano-Serrano ML, Andueza-Noh RH, Martínez-Castillo J, Debouck DG, Chacón S, María I (2012) Evolution and domestication of lima bean in Mexico: evidence from ribosomal DNA. Crop Sci 52(4):1698–1712

    Article  Google Scholar 

  • Shellie-Dessert KC, Bliss FA (1991) Genetic improvements of food quality factors. In: van Schoonhoven A, Voysest O (eds) Common beans: research for crop improvement. CIAT Redwood Press Ltd, Melksham, pp 649–671

    Google Scholar 

  • Singh SP (1992) Common bean improvement in the tropics. Plant Breed Rev 10:199–269

    Google Scholar 

  • Singh SP (1999) Integrated genetic improvement. In: Singh SP (ed) Common bean improvement in the twenty-first century. (Developments in plant breeding, vol 7). Kluwer Academic Publishers, Dordrecht, pp 133–165

    Google Scholar 

  • Singh SP (2001) Broadening the genetic base of common bean cultivars: a review. Crop Sci 41:1659–1675

    Article  Google Scholar 

  • Singh RJ, Jauhar P (2005) Genetic resources, chromosome engineering, and crop improvement: grain legumes, vol 1. CRC Press, p 390 https://www.crcpress.com/Genetic-Resources-Chromosome-Engineering-and-Crop-Improvement-Grain/Singh-Jauhar/p/book/9780849314308

  • Singh SP, Debouck DG, Roca WM (1998) Interspecific hybridization between Phaseolus vulgaris L. and Freytag. Bean Improvement Cooperative (USA)

    Google Scholar 

  • Singh SP, Terán H, Schwartz HF, Otto K, Lema M (2009) Introgressing white mold resistance from species of the secondary gene pool into common bean. Crop Sci 49(5):1629–1637

    Article  Google Scholar 

  • Small E (2014) Tepary bean – an ideal arid zone crop. Biodiversity 15(2–3):220–228

    Article  Google Scholar 

  • Smartt J (1970) Interspecific hybridization between cultivated American species of the genus Phaseolus. Euphytica 19(4):480–489

    Article  Google Scholar 

  • Smartt J (1981) Gene pools in Phaseolus and Vigna cultigens. Euphytica 30:445–449

    Article  Google Scholar 

  • Sonnante G, Stockton T, Nodari RO, Becerra Velásquez VL, Gepts P (1994) Evolution of genetic diversity during the domestication of common-bean (Phaseolus Vulgaris L.). Theor Appl Genet 89(5):629–635

    Article  CAS  PubMed  Google Scholar 

  • Sousa M, Delgado-Salinas A (1993) Mexican Leguminosae: phytogeography, endemism, and origins. In: Ramamoorthy TP, Bye R, Lot A, Fa JA (eds) Biological diversity of Mexico, origins and distribution. Oxford University Press, New York, pp 459–512

    Google Scholar 

  • Souter JR, Gurusamy V, Porch TG, Bett KE (2017) Successful introgression of abiotic stress tolerance from wild tepary bean to common bean. Crop Sci 57:1160–1171

    Article  Google Scholar 

  • The Harlan and de Wet Crop Wild Relative Inventory (2017). http://www.cwrdiversity.org/checklist/. [Verified 19 September 2017]

  • U.S. Fish and Wildlife Service Environmental Conservation Online System (2017) Threatened and endangered species. https://ecos.fws.gov [Verified 10 November 2017]

  • USDA-ARS, National Plant Germplasm System (2017a) Germplasm Resources Information Network (GRIN Global) database. National Germplasm Resources Laboratory, Beltsville, MD. http://www.ars-grin.gov/npgs/acc/acc_queries.html.[Verified 18 Jan 2017]

  • USDA-ARS, National Plant Germplasm System (2017b) Germplasm Resources Information Network (GRIN Global) Taxonomy. National Germplasm Resources Laboratory, Beltsville, MD. https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysearch.aspx. [Verified 10 October 2017]

  • van der Maesen LJG, Somaatmadja SH (1992) Plant resources of south-east asia no. 1 pulses. Prosea Fondation, Bogor, Indonesia, Pudoc-DLO, Wageningen, The Netherlands, pp 1–59

    Google Scholar 

  • Vasconcellos RC, Oraguzie OB, Soler A, Arkwazee H, Myers JR, Ferreira JJ, Song Q, McClean P, Miklas PN (2017) Meta-QTL for resistance to white mold in common bean. PLoS One 12(2):e0171685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vázquez-García (1995) Flora de Manantlán: plantas vasculares de la Reserva de la Biosfera Sierra de Manantlán, Jalisco-Colima, México. Botanical Research Institute of Texas, Fort Worth

    Google Scholar 

  • Waines JG, Manshardt RM, Wells WC (1988) Interspecific hybridization between Phaseolus vulgaris and P. acutifolius. In: Gepts P (ed) Genetic resources of Phaseolus beans. Curren plant science and biotechnology in agriculture, vol 6. Springer, Dordrecht, pp 485–502

    Chapter  Google Scholar 

  • Wright EM, Kelly JD (2011) Mapping QTL for seed yield and canning quality following processing of black bean (Phaseolus vulgaris L.). Euphytica 179(3):471–484

    Article  Google Scholar 

  • Zhang F, Wen Y, Guo X (2014) CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet 23(R1):R40–R46

    Article  CAS  PubMed  Google Scholar 

  • Zizumbo-Villarreal D, Flores-Silva A, Marín PC (2012) The archaic diet in Mesoamerica: incentive for milpa development and species domestication. Econ Bot 66(4):328–343

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin K. Khoury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 This is a U.S. Government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dohle, S., Berny Mier y Teran, J.C., Egan, A., Kisha, T., Khoury, C.K. (2019). Wild Beans (Phaseolus L.) of North America. In: Greene, S., Williams, K., Khoury, C., Kantar, M., Marek, L. (eds) North American Crop Wild Relatives, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-97121-6_4

Download citation

Publish with us

Policies and ethics