Skip to main content

Microbial Euendolithic Assemblages and Microborings in Intertidal and Shallow Marine Habitats: Insight in Cyanobacterial Speciation

  • Chapter
  • First Online:
Advances in Stromatolite Geobiology

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 131))

Abstract

The term “stromatolite” was coined by Kalkowsky (1908) while describing coastal paleoenvironments of a Lower Triassic (Buntsandstein) epicontinental sea. Stable, finely laminated structures appeared together with massive deposits of shoaling ooid sands, and later consolidated into rocks (“Stromatolith und Oolith”).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Thukair AA (2002) Effect of oil pollution on euendolithic cyanobacteria of the Arabian Gulf. Environmental Microbiology 4:125–129

    Article  Google Scholar 

  • Al-Thukair AA, Golubic S (1991a) Five new Hyella species from the Arabian Gulf. Algological Studies 64:167–197

    Google Scholar 

  • Al-Thukair AA, Golubic S (1991b) New endolithic cyanobacteria from the Arabian Gulf. I. Hyella immanis sp. nov. Journal of Phycology 27:766–780

    Article  Google Scholar 

  • Al-Thukair AA, Golubic S (1996) Characterization of Hyella caespitosa var. arbuscula var. nov. (Cyanophyta, Cyanobacteria) from shoaling ooid sand grains, Arabian Gulf. Nova Hedwigia Beihefte 112:83–91

    Google Scholar 

  • Al-Thukair AA, Green J (1988) New endolithic taxa in modern and ancient (late Proterozoic) shallow water marine environments. Journal of Phycology 24:12

    Google Scholar 

  • Al-Thukair AA, Golubic S, Rosen G (1994) New euendolithic cyanobacteria from the Bahama Bank and the Arabian Gulf: Hyella racemus sp. nov. Journal of Phycology 30:764–769

    Article  Google Scholar 

  • Balog S-J (1996) Boring thallophytes in some Permian and Triassic reefs: bathymetry and bioerosion. Gättinger Arbeiten für Geologie und Paläontologie Sb 2:305–308

    Google Scholar 

  • Balog S-J (1997) Mikroendolithen im Capitan Riff Komplex (New Mexico, USA). Courier, Forschungsinstitut Senckenberg 201:47–55

    Google Scholar 

  • Bertling M (2007) What’s in a Name? Nomenclature, Systematics, Ichnotaxonomy. In: Miller W (ed) Trace Fossils: Concepts, Problems, Prospects. Elsevier, Amsterdam, pp 81–91

    Chapter  Google Scholar 

  • Bornet ME, Flahault C (1889) Sur quelques plantes vivant dans le test calcaire des mollusques. Bulletin de la Société Botanique de France 36:147–176

    Google Scholar 

  • Bromley RG (1990) Trace Fossils: Biology and Taphonomy. Unwin Hyman, London, pp 280

    Google Scholar 

  • Bundschuh M (2000) Silurische Mikrobohrspuren – ihre Beschreibung und Verteilung in verschiedenen Faziesräumen (Schweden, Litauen, Großbritannien und U.S.A.). Ph.D. Thesis, FB Geowissenschaften, Johann Wolfgang Goethe Universitðt, Frankfurt am Main, Germany, pp 1–129

    Google Scholar 

  • Bundschuh M, Balog S (2000) Fasciculus rogus nov. isp., an endolithic trace fossil. Ichnos 7:149–152

    Article  Google Scholar 

  • Campbell SE (1980) Palaeoconchocelis starmachii, a carbonate boring microfossil from the Upper Silurian of Poland (425 million years old): implications for the evolution of the Bangiaceae (Rhodophyta). Phycologia 19:25–36

    Article  Google Scholar 

  • Campbell SE (1982) Precambrian endoliths discovered. Nature 299:429–431

    Article  Google Scholar 

  • Campbell SE, Kazmierczak J, Golubic S (1979) Palaeoconchocelis starmachii n. gen., n. sp., a Silurian endolithic rhodophyte (Bangiaceae). Acta Paleontologica Polonica 24:405–408

    Google Scholar 

  • Castenholz RW, Garcia-Pichel F (2000) Cyanobacterial responses to UV-radiation. In: Whitton BA, Potts M (eds) Ecology of Cyanobacteria: Their Diversity in Time and Space. Kluwer Acad Publ, Dordrecht, pp 591–611

    Google Scholar 

  • Cohan FM (2002) What are bacterial species? Annual Review of Microbiology 56:457–487

    Article  Google Scholar 

  • De Queiros K (2005) Ernst Mayr and the modern concept of species. Proceedings of the National Academy of Sciences of the United States of America 102:6600–6607

    Article  Google Scholar 

  • Decho AW, Visscher PT, Reid RP (2005) Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite. Palaeogeography, Palaeoclimatology 219:71–86

    Article  Google Scholar 

  • Dill RF, Shinn EA, Jones AT, Kelly K, Steinen RP (1986) Giant subtidal stromatolites forming in normal salinity waters. Nature 324:55–58

    Article  Google Scholar 

  • Dravis JJ (1983) Hardened subtidal stromatolites, Bahamas. Science 219:385–386

    Article  Google Scholar 

  • Ehling-Schulz M, Scherer S (1999) UV protection in cyanobacteria. European Journal of Phycology 34:329–338

    Article  Google Scholar 

  • Ercegović A (1927) Trois noveaux genres des Cyanophycées lithophytes de la côte adriatique. Acta Botanica 2:78–84

    Google Scholar 

  • Ercegović A (1929) Sur quelques nouveaux types de Cyanophycées lithophytes de la côte adriatique. Archiv für Protistenkunde 66:164–174

    Google Scholar 

  • Ercegović A (1932) Études écologique et sociologique des Cyanophycées lithophytes de la côte Yugoslave de l’Adriatique. Bulletin International de l'Académie Yougoslave de la Sciences des Arts, Classe Mathematic et Naturelles 26:33–56

    Google Scholar 

  • Feldmann M, McKenzie JA (1998) Stromatolite-thrombolite associations in a modern environment, Lee Stocking Island, Bahamas. Palaios 13:201–212

    Article  Google Scholar 

  • Foster JS, Green SJ, Ahrendt SR, Golubic S, Reid RP, Hetherington KL, Bebout L (2009) Molecular and morphological characterization of cyanobacterial diversity in the stromatolites of Highborne Cay, Bahamas. The ISME Journal 3(5):573–587

    Article  Google Scholar 

  • Geitler L (1932) Cyanophyceae. In: Rabenhorst L (ed) Kryptogamen-Flora von Deutschland, Österreich und der Schweiz. Akademische Verlagsgesellschaft, Leipzig, pp 1196

    Google Scholar 

  • Gektidis M, Golubic S (1996) A new endolithic cyanophyte/cyanobacterium: Hyella vacans sp. nov. from Lee Stocking Island, Bahamas. Nova Hedwigia Beihefte 112:91–98

    Google Scholar 

  • Gektidis M, Dubinsky ZNE, Goffredo S (2007) Microendoliths of the Shallow Euphotic Zone in open and shaded habitats at 30°N – Eilat, Israel – paleoecological implications. Facies 53:43–55

    Article  Google Scholar 

  • Glaub I (1994) Mikrobohrspuren in ausgewðhlten Ablagerungsräumen des europðischen Jura und der Unterkreide (Klassifikation und Palökologie). Courier Forschungsinstitut Senckenberg 174:1–324

    Google Scholar 

  • Glaub I, Golubic S, Gektidis M, Radtke G, Vogel K (2007) Microborings and microbial endoliths: Geological implications. In: Miller W (ed) Trace Fossils: Concepts, Problems, Prospects. Elsevier, Amsterdam, pp 368–381

    Chapter  Google Scholar 

  • Golubic S (1965) Zur Revision der Gattung Gloeocapsa Kützing (Cyanophyta). Schweizerische Zeitschrift für Hydrologie 27:218–232

    Google Scholar 

  • Golubic S (1966) Über den Aufbau des Taxons bei den Cyanophyten anhand der Beispiele Tolypothrix, Oscillatoria und Gloeocapsa. Verhandlungen, Internationaler Verein für Limnologie 16:1577–1581

    Google Scholar 

  • Golubic S (1969) Distribution, taxonomy, and boring patterns of marine endolithic algae. American Zoologist 9:747–751

    Google Scholar 

  • Golubic S (1990) Shell boring microorganisms. In: Boucot A (ed) The Evolutionary Paleobiology of Behavior and Coevolution. Elsevier, Amsterdam, pp 347–352

    Google Scholar 

  • Golubic S, Browne KM (1996) Schizothrix gebeleinii sp. nov. builds subtidal stromatolites, Lee Stocking Island, Bahamas. Algological Studies 83:273–290

    Google Scholar 

  • Golubic S, Marčenko E (1965) Über Konvergenzerscheinungen bei Standortsformen der Blaualgen unter extremen Lebensbedingungen. Schweizerische Zeitschrift für Hydrologie 27:207–217

    Google Scholar 

  • Golubic S, Radtke G (2008) The trace Rhopalia clavigera isp. n. reflects the development of its maker Eugomontia sacculata Kornmann, 1960. In: Wisshak M, Tapanila L (eds) Current Developments in Bioerosion. Springer, Berlin, pp 95–108

    Chapter  Google Scholar 

  • Golubic S, Seong-Joo Lee (1999) Early cyanobacterial fossil record: preservation, palaeoenvironments and identification. European Journal of Phycology 34:339–348

    Article  Google Scholar 

  • Golubic S, Brent G, Le Campion-Alsumard T (1970) Scanning electron microscopy of endolithic algae and fungi using a multipurpose casting-embedding technique. Lethaia 3:203–209

    Article  Google Scholar 

  • Golubic S, Perkins RD, Lukas KJ (1975) Boring microorganisms and microborings in carbonate substrates. In: Frey RW (ed) The Study of Trace Fossils. Springer, Heidelberg, pp 229–259

    Chapter  Google Scholar 

  • Golubic S, Friedmann I, Schneider J (1981) The lithobiontic ecological niche, with special reference to microorganisms. Journal of Sedimentary Petrology 51:475–478

    Google Scholar 

  • Golubic S, Campbell SE, Spaeth C (1983) Kunstharzausgüsse fossiler Mikroben-Bohrgänge. Der Präparator 29:197–200

    Google Scholar 

  • Golubic S, Campbell SE, Drobne K, Cameron B, Balsam WL, Cimerman F, Dubois L (1984) Microbial endoliths: a benthic overprint in the sedimentary record, and a paleobathymetric cross-reference with foraminifera. Journal of Paleontology 58:351–361

    Google Scholar 

  • Golubic S, Al-Thukair AA, Gektidis M (1996) New endolithic cyanobacteria from the Arabian Gulf and the Bahama Bank: Solentia sanguinea sp. nov. Algological Studies 83:291–301

    Google Scholar 

  • Günther A (1990) Distribution and bathymetric zonation of shell-boring endoliths in Recent reef and shelf environments: Cozumel, Yucatan (Mexico). Facies 22:233–262

    Article  Google Scholar 

  • Hofmann K (1996) Die mikroendolithischen Spurenfossilien der borealen Oberkreide Nordwest-Europas und ihre Faziesbeziehungen. Geologisches Jahrbuch A 136:3–153

    Google Scholar 

  • Jungblut A-D, Hawes I, Mountfort D, Dietrich D, Burns BP, Neilan BA (2005) Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environmental Microbiology 7:519–529

    Article  Google Scholar 

  • Kalkowsky E (1908) Oolith und Stromatolith im norddeutschen Buntsandstein. Zeitschrift der Deutschen geologischen Gesellschaft 60:68–125

    Google Scholar 

  • Kazmierczak J, Golubic S (1976) Oldest organic remains of boring algae from Polish Upper Silurian. Nature 261:404–406

    Article  Google Scholar 

  • Kiene W, Radtke G, Gektidis M, Golubic S, Vogel K (1995) Factors controlling the distribution of microborers in Bahamian reef environments. In: Schuhmacher H, Kiene W, Dullo W-C (eds) Factors Controlling Holocene Reef Growth: An Interdisciplinary Approach. Facies 32:174–188

    Google Scholar 

  • Knoll AH, Golubic S (1992) Proterozoic and living cyanobacteria. In: Schidlowski M, Golubic S, Kimberley MM, McKirdy DM, Trudinger PA (eds) Early Organic Evolution, Implications for Mineral and Energy Resources. Springer, Berlin, pp 450–462

    Chapter  Google Scholar 

  • Knoll AH, Golubic S, Green J, Swett K (1986) Organically preserved microbial endoliths from the Late Proterozoic of East Greenland. Nature 321:856–857

    Article  Google Scholar 

  • Komárek J, Anagnostidis K (1999) Cyanoprokaryota – 1: Chroococcales. In: Ettl H, Gärtner G, Heynig H, Mollenhauer D (eds) Süβwasserflora von Mitteleuropa. 19/1, G Fischer, Jena, pp 548

    Google Scholar 

  • Komárek J, Anagnostidis K (2005) Cyanoprokaryota – 2: Oscillatoriales. In: Ettl H, Gärtner G, Krienitz L, Schagerl M (eds) Süβwasserflora von Mitteleuropa. 19/2, Spectrum, Akademischer Verlag, Heidelberg, pp 759

    Google Scholar 

  • Le Campion-Alsumard T (1966) Contribution à l'étude des Cyanophycées lithophytes des étages supralittoral et medio-littoral (Région de Marseille). Téthys 1:119–172

    Google Scholar 

  • Le Campion-Alsumard T (1979) Les cyanophycées endolithes marines: Systématique, ultrastructure, écologie et biodestruction. Oceanologica Acta 2:143–156

    Google Scholar 

  • Le Campion-Alsumard T (1991) Three Hyella taxa (endolithic cyanophytes) from tropical enviroments (Lizard Island, Great Barrier Reef). Algological Studies 64:159–166

    Google Scholar 

  • Le Campion-Alsumard T, Golubic S (1985a) Ecological and taxonomic relationships between euendolithic cyanophytes Hormathonema and Solentia. In: Golubic S, Komárek J, Lhotsky O (eds) Cyanophyta (Cyanobacteria) Morphology, Taxonomy, Ecology. Algological Studies 38/39:115–118

    Google Scholar 

  • Le Campion-Alsumard T, Golubic S (1985b) Hyella caespitosa Bornet et Flahault and Hyella balani Lehman (Pleurocapsales, Cyanophyta): a comparative study. In: Golubic S, Komárek J, Lhotsky O (eds) Cyanophyta (Cyanobacteria) Morphology, Taxonomy, Ecology. Algological Studies 38/39:119–148

    Google Scholar 

  • Le Campion-Alsumard T, Golubic S, Hutchings P (1995) Microbial endoliths in skeleton of live and dead corals: Porites lobata (Moorea, French Polynesia). Marine Ecology Progress Series 117:149–157

    Article  Google Scholar 

  • Le Campion-Alsumard T, Golubic S, Pantazidou A (1996) On the euendolithic genus Solentia Ercegovic (Cyanophyta/Cyanobacteria). Algological Studies 83:108–127

    Google Scholar 

  • Lukas KJ, Golubic S (1981) New endolithic cyanophytes from the North Atlantic Ocean: I. Cyanosaccus piriformis gen. et sp. nov. Journal of Phycology 17:224–229

    Article  Google Scholar 

  • Lukas KJ, Golubic S (1983) New endolithic cyanophytes from the North Atlantic Ocean: II. Hyella gigas sp. nov. from the Florida continental margin. Journal of Phycology 19:129–136

    Article  Google Scholar 

  • Lukas KJ, Hoffman EJ (1984) New endolithic cyanophytes from the North Atlantic Ocean. III: Hyella pyxis Lukas & Hoffman sp. nov. Journal of Phycology 20:515–520

    Article  Google Scholar 

  • Macintyre IG, Prufert-Bebout L, Reid RP (2000) The role of endolithic cyanobacteria in the formation of lithified laminae in Bahamian stromatolites. Sedimentology 47:915–921

    Article  Google Scholar 

  • May JA, MacIntyre IG, Perkins RD (1982) Distribution of microborings within planted substrates along a barrier reef transect, Carrie Bow Cay, Belize. In: Rützler K, MacIntyre IG (eds) The Atlantic Barrier Reef Ecosystem at Carrie Bow Cay, Belize, I. Structure and Communities. Smithsonian Contribution of the Marine Sciences 12:93–107

    Google Scholar 

  • Mayr E (1982) The Growth of Biological Thought: Diversity, Evolution, and Inheritance. Harvard University Press, Cambridge MA, pp 974

    Google Scholar 

  • Moritz C, Schneider CJ, Wake DB (1992) Evolutionary relationships within the Ensatina eschscholtzii complex confirm the ring species interpretation. Systematic Biology 41:273–291

    Google Scholar 

  • Norris TB, Castenholz RW (2006) Endolithic photosynthetic communities within ancient and recent travertine deposits in Yellowstone National Park. FEMS Microbiological Ecology 57:470–483

    Article  Google Scholar 

  • Paterson DM, Aspden RJ, Visscher PT, Consalvey M, Andres MS, Decho AW, Stolz J, Reid P (2008) Light-dependant biostabilisation of sediments by stromatolite assemblages. PLoS ONE 3(9):3176

    Article  Google Scholar 

  • Perkins RD, Tsentas CI (1976) Microbial Infestation of Carbonate Substrates Planted on the St. Croix Shelf, West Indies. Geological Society of America, Bulletin 87:1615–1628

    Article  Google Scholar 

  • Perry CT, Macdonald IA (2002) Impacts of light penetration on the bathymetry of reef microboring communities: implications for the development of microendolithic trace assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology 186:101–113

    Article  Google Scholar 

  • Radtke G (1991) Die mikroendolithischen Spurenfossilien im Alt-Tertiär West-Europas und ihre palökologische Bedeutung. Courier Forschungsinstitut Senckenberg 138:1–185

    Google Scholar 

  • Radtke G (1993) The distribution of microborings in molluscan shells from Recent reef environments at Lee Stocking Island, Bahamas. Facies 29:81–92

    Article  Google Scholar 

  • Radtke G (2007) Mikroendolithen in Molluskenschalen aus den Mittleren Pechelbronn-Schichten (Mainzer Becken). In: Radtke G, Martini E (eds) Die Bohrungen Wallau im nord­stlichen Mainzer Becken (Rotliegend, Pechelbronn-Gruppe, Bodenheim-Formation). Geologische Abhandlungen Hessen 116:141–155

    Google Scholar 

  • Radtke G, Golubic S (2005) Microborings in mollusk shells, Bay of Safaga, Egypt: Morphometry and ichnology. Facies 51:125–141

    Article  Google Scholar 

  • Radtke G, Le Campion-Alsumard T, Golubic S (1996) Microbial assemblages of the bioerosional “notch” along tropical limestone coasts. Algological Studies 83:469–482

    Google Scholar 

  • Radtke G, Gektidis M, Golubic S, Hofmann K, Kiene WE, Le Campion-Alsumard T (1997) The identity of an endolithic alga: Ostreobium brabantium Weber-van Bosse is recognized as carbonate-penetrating rhizoids of Acetabularia (Chlorophyta, Dasycladales). Courier Forschungsinstitut Senckenberg 201:341–347

    Google Scholar 

  • Reid RP, Browne KM (1991) Intertidal stromatolites in a fringing Holocene reef complex, Bahamas. Geology 19:15–18

    Article  Google Scholar 

  • Reid RP, Macintyre IG (2000) Microboring versus recrystallization: Further insight into the micritization process. Journal of Sedimentary Research 70:24–28

    Article  Google Scholar 

  • Reid RP, Macintyre IG, Browne KM, Steneck RS, Miller T (1995) Stromatolites in the Exuma Cays, Bahamas: Uncommonly common. Facies 33:1–18

    Article  Google Scholar 

  • Reid RP, Visscher PT, Decho AW, Stolz JF, Bebout BM, Dupraz CP, Macintyre IG, Paerl HW, Pinckney JL, Prufert-Bebout L, Steppe TF, DesMarais DJ (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406:989–992

    Article  Google Scholar 

  • Reid RP, James NP, Macintyre IG, Dupraz CP, Burne RV (2003) Shark Bay stromatolites: Microfabrics and reinterpretation of origins. Facies 49:299–324

    Google Scholar 

  • Riding R, Braga JC, Martin JM (1991) Oolite stromatolites and thrombolites; Miocene, Spain: analogues of recent giant Bahamian examples. Sedimentary Geology 71:121–127

    Article  Google Scholar 

  • Rippka R, Waterbury JB, Herdman M, Castenholz RW (2001) Subsection II (Formerly Pleurocapsales Geitler 1925, emend Waterbury Stanier 1978). In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s Manual of Systematic Bacteriology, 2nd ed, vol. 1, Springer, Berlin, pp 514–539

    Google Scholar 

  • Schmidt H (1992) Mikrobohrspuren ausgewðhlter Faziesbereiche der tethyalen und germanischen Trias (Beschreibung, Vergleich, bathymetrische Interpretation). Frankfurter geowissenschaftliche Arbeiten A12:1–228

    Google Scholar 

  • Schneider J (1976) Biological and inorganic factors in the destruction of limestone coasts. Contribution Sedimentology 6:1–112

    Google Scholar 

  • Schneider J (1977) Carbonate construction and decomposition by epilithic and endolithic microorganisms in salt and freshwater. In: Flügel E (ed) Fossil Algae. Springer, Berlin, pp 248–260

    Chapter  Google Scholar 

  • Templeton AR (1989) The meaning of species and speciation: A genetic perspective. In: Otte D, Endler JA (eds) Speciation and its Consequences. Sinauer, Sunderland, MA, pp 3–27

    Google Scholar 

  • Tribollet A (2008) The boring microflora in modern coral reef ecosystems: a review of its roles. In: Wisshak M, Tapanila L (eds) Current Developments in Bioerosion. Springer, Berlin, pp 67–94

    Chapter  Google Scholar 

  • Tribollet A, Golubic S (2005) Cross-shelf differences in the pattern and pace of bioerosion of experimental carbonate substrates exposed for 3 years on the northern Great Barrier Reef, Australia. Coral Reefs 24:422–434

    Article  Google Scholar 

  • Tribollet A, Langdon C, Golubic S, Atkinson M (2006) Endolithic microflora are major primary producers in dead carbonate substrates of Hawaiian coral reefs. Journal of Phycology 42:292–303

    Article  Google Scholar 

  • Tribollet A, Golubic S, Radtke G, Reitner J (2010) On Microbiocorrosion. In: Reitner J, Queric N-V, Arp G (eds) Advances in Stromatolite Geobiology. Lecture Notes in Earth Sciences 131, Springer, Berlin, pp 243–253

    Google Scholar 

  • Vogel K, Brett CE (2009) Record of microendoliths in different facies of the Upper Ordovician in the Cincinnati Arch region USA: The early history of light-related microendolithic zonation. Palaeogeography, Palaeoclimatology, Palaeoecology 281:1–24

    Google Scholar 

  • Vogel K, Marincovich L Jr (2004) Paleobathymetric implications of microborings in Tertiary strata of Alaska, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 206:1–20

    Google Scholar 

  • Vogel K, Golubic S, Brett CE (1987) Endolith associations and their relation to facies distribution in the Middle Devonian of New York State, USA. Lethaia 20:263–290

    Article  Google Scholar 

  • Vogel K, Bundschuh M, Glaub I, Hofmann K, Radtke G, Schmidt H (1995) Hard substrate ichnocoenoses and their relation to light and marine bathymetry. Neues Jahrbuch für Geologie und Palðontologie, Abhandlungen 195:49–61

    Google Scholar 

  • Vogel K, Gektidis M, Golubic S, Kiene WE, Radtke G (2000) Experimental studies on microbial bioerosion at Lee Stocking Island, Bahamas and One Tree Island, Great Barrier Reef, Australia: implications for paleoecological reconstructions. Lethaia 33:190–204

    Article  Google Scholar 

  • Waterbury JB, Stanier RW (1978) Patterns of growth and development in Pleurocapsalean cyanobacteria. Microbiological Reviews 42:2–44

    Google Scholar 

  • Wisshak M (2006) High-latitude bioerosion: the Kosterfjord experiment. Lecture Notes in Earth Sciences 109:1–202

    Article  Google Scholar 

  • Wisshak M, Seuβ B, Nützel A (2008) Eolutionary implications of an exceptionally preserved Carboniferous microboring assemblage in the Buckhorn Asphalt lagerstätte (Oklahoma, USA). In: Wisshak M, Tapanila L (eds) Current Developments in Bioerosion. Springer, Berlin, pp 21–54

    Chapter  Google Scholar 

  • Zhang Y, Golubic S (1987) Endolithic microfossils (cyanophyta) from early Proterozoic stromatolites, Hebei, China. Acta Micropaleontologica Sinica 4:1–12

    Google Scholar 

Download references

Acknowledgments

The international and interdisciplinary cooperation has been supported by the Alexander-von-Humboldt Foundation and by the Hanse Institute for Advanced Research. We thank Prof. Dr. J. Reitner (Univ. Göttingen) for support during the International Kalkowsky Symposium in 2008 and Dr. R.P. Reid (Univ. Miami) for stimulating discussions regarding endoliths and stromatolites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gudrun Radtke .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Radtke, G., Golubic, S. (2011). Microbial Euendolithic Assemblages and Microborings in Intertidal and Shallow Marine Habitats: Insight in Cyanobacterial Speciation. In: Advances in Stromatolite Geobiology. Lecture Notes in Earth Sciences, vol 131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10415-2_16

Download citation

Publish with us

Policies and ethics