Skip to main content

Abstract

The polyphyletic mustard genus Sinapis, which probably originates from the Mediterranean region, belongs to the Brassicaceae family. In this genus, like in other crucifers, extensive synonymy and species subdivisions can be found. Recent publications suggest that Sinapis comprises four annual species: Sinapis alba L., S. arvensis L., S. flexuosa Poir., and S. pubescens L. Although S. alba for the most part should be regarded as a crop plant grown for condiments and oil, it is included in this chapter because of its wild populations. On the contrary to this, the other three representatives of the genus Sinapis are true wild species. Among the four Sinapis species, S. alba and S. arvensis, both of which are occurring cosmopolitically, are by far the most important genetic and breeding resources and in the special focus of this chapter. A huge amount of data on agronomic traits and interspecific trait transfer into crop species does exist. This is discussed here with a special focus on transfer of resistances to biotic stress, for example, Alternaria spp. and Leptosphaeria maculans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agerbirk N, Warwick SI, Hansen PR, Olsen CE (2008) Sinapis phylogeny and evolution of glucosinolates and specific nitrile degrading enzymes. Phytochemistry 69:2937–2949

    Article  CAS  PubMed  Google Scholar 

  • Ali A, McLaren RD, Souza-Machado V (1986) Chloroplastic resistance to triazine herbicides in Sinapis arvensis (wild mustard). Weed Res 26:39–44

    Article  CAS  Google Scholar 

  • Ali HBM, Lysak MA, Schubert I (2005) Chromosomal localization of rDNA in the Brassicaceae. Genome 48:341–346

    Article  CAS  PubMed  Google Scholar 

  • Al-Shehbaz IA, Warwick SI (1997) The generic disposition of Quidproquo confusum and Sinapis aucheri (Brassicaceae). Novon 7:219–220

    Article  Google Scholar 

  • Anonymous (2010) Biofuel efforts – biocrops research. http://www.sustainableunh.unh.edu/climate_ed/projects.html. Accessed 18 May 2010

  • Arnason T, Hebda RJ, Johns T (1981) Use of plants for food and medicine by native peoples of eastern Canada. Can J Bot 59:2189–2325

    Article  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    Article  CAS  Google Scholar 

  • Bang SW, Kaneko Y, Matsuzawa Y (1996) Production of intergeneric hybrids between Raphanus and Sinapis and the cytogenetics of their progenies. Breed Sci 46:45–51

    Google Scholar 

  • Bettach N, Massoui M, Delmas M (1996) Comparative study of cruciferae seeds in the genus Lepidium, Eruca, Diplotaxis and Sinapis. Ocl-Oleagineux Corps Gras Lipides 3:145–148

    CAS  Google Scholar 

  • Bing DJ, Downey RK, Rakow GFW (1991) Potential of gene transfer among oilseed Brassica and their weedy relatives. In: Proceedings of the 8th international rapeseed congress, Saskatoon, Canada, vol 4, pp 1022–1027

    Google Scholar 

  • Bing DJ, Downey RK, Rakow GFW (1995) An evaluation of the potential of intergeneric gene transfer between Brassica napus and Sinapis arvensis. Plant Breed 114:481–484

    Article  Google Scholar 

  • Bing DJ, Downey RK, Rakow GFW (1996) Hybridizations among Brassica napus, B. rapa and B. juncea and their two weedy relatives B. nigra and Sinapis arvensis under open pollination conditions in the field. Plant Breed 115:470–473

    Article  Google Scholar 

  • Bowers WS, Sener B, Evans PH, Bingol F, Erdogan I (1997) Activity of Turkish medicinal plants against mosquitoes Aedes aegypti and Anopheles gambiae. Insect Sci Appl 16:339–342

    Google Scholar 

  • Brown J, Brown AP, Davis JB, Erickson DA (1997) Intergeneric hybridization between Sinapis alba and Brassica napus. Euphytica 93:163–168

    Article  Google Scholar 

  • Brown J, Davis JB, Brown AP, Erickson DA, Seip L (1999) Developing canola-quality cultivars of yellow mustard (Sinapis alba L.). In: Wratten N, Salisbury P (eds) In: Proceedings of the 10th international rapeseed congress, 26–29 Sept 1999, Canberra/Australia, On CD and http://www.regional.org.au/au/gcirc/4/280.htm (Cited 18 May 2010)

  • Brun H, Plessis J, Renard M (1987) Resistance of some crucifers to Alternaria brassicae (Berk.) Sacc. In: Proceedings of the 7th international rapeseed conference, Poznan/Poland, vol 5, pp 1222–1227

    Google Scholar 

  • Carcamo H, Olfert O, Dosdall L, Herle C, Beres B, Soroka J (2007) Resistance to cabbage seedpod weevil among selected Brassicaceae germplasm. Can Entomol 139:658–669

    Article  Google Scholar 

  • Chèvre AM, Eber F, Margale E, Kerlan MC, Primard C, Vedel F, Delseny M, Pelletier G (1994) Comparison of somatic and sexual Brassica napus-Sinapis alba hybrids and their progeny by cytogenetic studies and molecular characterization. Genome 37:367–374

    Article  PubMed  Google Scholar 

  • Chèvre AM, Eber F, This P, Barret P, Tanguy X, Brun H, Delseny M, Renard M (1996) Interspecific gene flow as a component of risk assessment for transgenic Brassicas. Acta Hort 407:169–179

    Google Scholar 

  • Chèvre AM, Eber F, Darmency H, Fleury A, Picault H, Letanneur JC, Renard M (2000) Assessment of interspecific hybridization between transgenic oilseed rape and wild radish under normal agronomic conditions. Theor Appl Genet 100:1233–1239

    Article  Google Scholar 

  • Christoffers MJ, Nandula VK, Howatt KA, Wehking TR (2006) Target-site resistance to acetolactate synthase inhibitors in wild mustard (Sinapis arvensis). Weed Sci 54:191–197

    CAS  Google Scholar 

  • Daniels R, Boffey C, Mogg R, Bond J, Clarke R (2005) The potential for dispersal of herbicide tolerance genes from genetically-modified, herbicide-tolerant oilseed rape crops to wild relatives. Final report to DEFRA, Contract reference EPG 1/5/151, Dorchester/UK. http://randd.defra.gov.uk/Document.aspx?Document=CB02006_2730_FRP.pdf. Accessed 18 May 2010

  • Daun J, Barthet V, Scarth R (2003) Erucic acid levels in Sinapis arvensis L from different parts of the world. In: Proceedings of the 11th international rapeseed congress, Copenhagen/Denmark, vol 1, 06–10 July 2003, pp 290–292

    Google Scholar 

  • Durkeet AB, Harborne JB (1973) Flavonol glycosides in Brassica and Sinapis. Phytochemistry 12:1085–1089

    Article  Google Scholar 

  • Ecker R, Yaniv Z (1993) Genetic control of fatty acid composition in seed oil of Sinapis alba L. Euphytica 69:45–49

    Article  CAS  Google Scholar 

  • Flannery ML, Mitchell FJG, Coyne S, Kavanagh TA, Burke JI, Salamin N, Dowding P, Hodkinson TR (2006) Plastid genome characterisation in Brassica and Brassicaceae using a new set of nine SSRs. Theor Appl Genet 113:1221–1231

    Article  CAS  PubMed  Google Scholar 

  • Ford MA, Kay QON (1985) The genetics of incompatibility in Sinapis arvensis L. Heredity 54:99–102

    Article  Google Scholar 

  • Gavloski JE, Ekuere U, Keddie A, Dosdall L, Kott L, Good AG (2000) Identification and evaluation of flea beetle (Phyllotreta cruciferae) resistance within Brassicaceae. Can J Plant Sci 80:881–887

    Google Scholar 

  • Gómez-Campo C (1980) Morphology and morphotaxonomy of the tribe Brassiceae. In: Tsunoda S, Hinata K, Gómez-Campo C (eds) Brassica crops and wild allies. Japan Science Societies Press, Tokyo, Japan, pp 3–31

    Google Scholar 

  • Gong ZH, He YK, Wang M (1994) Studies on the resistance of intergeneric hybrids of Chinese cabbage x white mustard to Alternaria leaf spot. Acta Hortic Sin 21:401–403

    Google Scholar 

  • Gugel RK, Séguin-Swartz G (1997) Introgression of Blackleg resistance from Sinapis alba into Brassica napus. 2nd International symposium on Brassicas/10th Cruciferae genetics workshop, Rennes, France, 23–27 Sept 1997, Book of Abstract, p 222

    Google Scholar 

  • Hails RS, Morley K (2005) Genes invading new populations: a risk assessment perspective. Trends Ecol Evol 20(5):245–252

    Article  PubMed  Google Scholar 

  • Hansen LN, Earle ED (1997) Somatic hybrids between Brassica oleracea (L.) and Sinapis alba (L.) with resistance to Alternaria brassicae (Berk.) Sacc. Theor Appl Genet 94:1078–1085

    Article  Google Scholar 

  • Hansen LN, King SR, Earle ED (1995) Screening for resistance to Alternaria brassicae (Berk.) Sacc. in Sinapis alba L. Cruciferae Newsletter 17:76–78

    Google Scholar 

  • Harberd DJ (1972) A contribution to the cytotaxonomy of Brassica (Cruciferae) and its allies. Bot J Linn Soc 65:1–23

    Article  Google Scholar 

  • Harberd DJ, McArthur ED (1980) Meiotic analysis of some species and genus hybrids in the Brassiceae. In: Tsumoda S, Hinata K, Gómez-Campo C (eds) Brassica crops and wild allies: biology and breeding. Japan Science Societies Press, Tokyo, Japan, pp 65–87

    Google Scholar 

  • Heap IM (2010) International survey of herbicide-resistant weeds. http://www.weedscience.org/In.asp. Accessed 18 May 2010

  • Heap IM, Morrison IN (1992) Resistance to auxin-type herbicides in wild mustard (Sinapis arvensis L.) populations in western Canada. Weed Sci Soc Am 32:55

    Google Scholar 

  • Henderson AE, Hallett RH, Soroka J (2004) Prefeeding behavior of the crucifer flea beetle, Phyllotreta cruciferae, on host and nonhost crucifers. J Insect Behav 17:17–39

    Article  Google Scholar 

  • Homann A, Link G (2003) DNA-binding and transcription characteristics of three cloned sigma factors from mustard (Sinapis alba L.) suggest overlapping and distinct roles in plastid gene expression. Eur J Biochem 270:1288–1300

    Article  CAS  PubMed  Google Scholar 

  • Howlett BJ (2004) Current knowledge of the interaction between Brassica napus and Leptosphaeria maculans. Can J Plant Pathol 26:245–252

    Article  Google Scholar 

  • Hu Q, Andersen SB, Dixelius C, Hansen LN (2002) Production of fertile intergeneric somatic hybrids between Brassica napus and Sinapsis arvensis for the enrichment of the rapeseed gene pool. Plant Cell Rep 21:147–152

    Article  CAS  Google Scholar 

  • Hughes W (1933) A study of Phoma lingam (Tode) Desm. and the “dry rot” it causes, particularly in swede turnips. Sci Proc Roy Dublin Soc 20:495–529

    Google Scholar 

  • Inomata N (1988) Intergeneric hybridization between Brassica napus and Sinapis arvensis and their crossability. Cruciferae Newsletter 13:22–23

    Google Scholar 

  • Inomata N (1994) Intergeneric hybridization between Brassica napus and Sinapis pubescens, and the cytology and crossability of their progenies. Theor Appl Genet 89:540–544

    Article  Google Scholar 

  • Inomata N (1997) Hybrid progenies of the cross in Brassica napus x Sinapis arvensis. Cruciferae Newsletter 18:14–15

    Google Scholar 

  • Jacobson HA, Petersen JB, Putnam DE (1988) Evidence of pre-Columbian Brassica in the northeastern U.S. Rhodora 90:355–362

    Google Scholar 

  • Janchen E (1942) Das System der Cruciferen. Oesterr Bot Z 91:1–28 (in German)

    Article  Google Scholar 

  • Jasieniuk M, Morrison IN, Brûlé-Babel AL (1995) Inheritance of dicamba resistance in wild mustard (Brassica kaber). Weed Sci 43:192–195

    CAS  Google Scholar 

  • Johnston JS, Pepper AE, Hall AE, Chen ZJ, Hodnett G, Drabek J, Lopez R, Price HJ (2005) Evolution of genome size in Brassicaceae. Ann Bot 95:229–235

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen RB, Andersen B (1994) Spontaneous hybridization between oilseed rape (Brassica napus) and a weedy B. campestris (Brassicaceae): a risk of growing genetically modified oilseed rape. Am J Bot 81:1620–1626

    Article  Google Scholar 

  • Jyoti JL, Shelton AM, Earle ED (2001) Identifying sources and mechanisms of resistance in crucifers for control of cabbage maggot (Diptera: Anthomyiidae). J Econ Entomol 94:942–949

    Article  CAS  PubMed  Google Scholar 

  • Kapila R, Negi MS, This P, Delseny M, Srivastava PS, Lakshmikumaran M (1996) A new family of dispersed repeats from Brassica nigra: characterization and localization. Theor Appl Genet 93:1123–1129

    Article  CAS  Google Scholar 

  • Karpetchenko GD (1924) The number of chromosomes and the genetic correlation of cultivated Cruciferae. Trudy Prikl Bot Selekts 13:3–14 (in Russian)

    Google Scholar 

  • Kerlan MC, Chèvre AM, Eber F, Baranger A, Renard M (1992) Risk assessment of outcrossing of transgenic rapeseed to related species. 1. Interspecific hybrid production under optimal conditions with emphasis on pollination and fertilization. Euphytica 62:145–153

    Article  Google Scholar 

  • Kerlan MC, Chèvre AM, Eber F (1993) Interspecific hybrids between transgenic rapeseed (Brassica napus) and related species: cytogenetical characterization and detection of the transgene. Genome 36:1099–1106

    Article  CAS  PubMed  Google Scholar 

  • Klewer A (2005) Übertragung von Resistenzen gegen die Alternaria-Rapsschwärze aus verwandten Arten in Brassica napus L. PhD Thesis, Freie Universität Berlin. http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000001798. Accessed 18 May 2010 (in German, with an English abstract)

  • Kolte SJ (1985) Diseases of annual edible oilseed crops, vol 2–3. CRC, Boca Raton, FL, p 118

    Google Scholar 

  • Kumar GR, Bhat SR, Prakash S, Chopra VL (2003) Development of novel white rust resistant genetic stocks in crop Brassica by somatic hybridization. In: Vasil IK (ed) Plant biotechnology 2002 and beyond. Proceedings of the 10th IAPTC&B congress, 23–28 June 2002, Orlando, FL, USA, pp 555–558

    Google Scholar 

  • Kuswinanti T, Koopmann B, Hoppe H-H (1999) Virulence pattern of aggressive isolates of Leptosphaeria maculans on an extended set of Brassica differentials. J Plant Dis Prot 106:12–20

    Google Scholar 

  • Lefol E, Danielou V, Darmency H (1996) Predicting hybridization between transgenic oilseed rape and wild mustard. Field Crops Res 45:153–161

    Article  Google Scholar 

  • Lelivelt CLC, Leunissen EHM, Frederiks HJ, Helsper JPFG, Krens FA (1993) Transfer of resistance of the beet cyst nematode (Heterodera schachtii Schm.) from Sinapis alba L. (white mustard) to the Brassica napus L. gene pool by means of sexual and somatic hybridization. Theor Appl Genet 85:688–696

    Article  Google Scholar 

  • Mamula D, Juretic N, Horvath J (1997) Susceptibility of host plants to belladonna mottle and turnip yellow mosaic tymoviruses: multiplication and distribution. Acta Phytopathol Entomol Hung 32:289–298

    Google Scholar 

  • Manton I (1932) Introduction to the general cytology of the Cruciferae. Ann Bot 46:509–556

    Google Scholar 

  • Mithila J, Hall JC (2007) Production of an auxinic herbicide-resistant microspore-derived doubled haploid wild mustard (Sinapis arvensis L.) plant. Crop Prot 26:357–362

    Article  CAS  Google Scholar 

  • Mizushima U (1950) Karyogenetic studies of species and genus hybrids in the tribe Brassiceae of Cruciferae. Tohoku Agric Res 1:1–14

    Google Scholar 

  • Mohapatra D, Bajaj YPS (1987) Interspecific hybridization in Brassica juncea x Brassica hirta using embryo rescue. Euphytica 36:321–326

    Article  Google Scholar 

  • Moyes CL, Cole SG, Casais CA, Dale PJ (1999) Sexual compatibility between oilseed rape and Sinapis arvensis. In: Wratten N, Salisbury P (eds) Proceedings of the 10th international rapeseed congress, Canberra/Australia, 26–29 Sept 1999. On CD and http://www.regional.org.au/au/gcirc/4/529.htm. Accessed 18 May 2010

  • Moyes CL, Lilley JM, Casais CA, Cole SG, Haeger PD, Dale PJ (2002) Barriers to gene flow from oilseed rape (Brassica napus) into populations of Sinapis arvensis. Mol Ecol 11:103–112

    Article  CAS  PubMed  Google Scholar 

  • Mulligan GA (undated): Key to the Brassicaceae (Cruciferae) of Canada and Alaska. http://www.brassica.info/info/publications/guidewild/BrassKey.pdf. Accessed 18 May 2010

  • Nelson MN, Lydiate DJ (2006) New evidence from Sinapis alba L. for ancestral triplication in a crucifer genome. Genome 49:230–238

    Article  CAS  PubMed  Google Scholar 

  • Nelson MN, Nixon J, Lydiate DJ (2005) Genome-wide analysis of the frequency and distribution of crossovers at male and female meiosis in Sinapis alba L. (white mustard). Theor Appl Genet 111:31–43

    Article  CAS  PubMed  Google Scholar 

  • Nothnagel T, Budahn H, Straka P, Schrader O (1996) Erfolgreiche Rückkreuzung somatischer Hybriden zwischen Sinapis alba und Brassica oleracea mit dem B. oleracea Elter. Vortr Pflanzenzüchtg 32:73–75 (in German)

    Google Scholar 

  • Oshima M (2000) Molecular phylogenetic relationship of Brassica and allied genera. 3rd international symposium on Brassicas/12th crucifer genetics workshop, Wellesbourne, UK, 5–9 Sept 2000, Abstract, p 21

    Google Scholar 

  • Palmieri S (2007) Use of Crucifers containing the glucosinolate-myrosinase system as a source of bioactive molecules. In: Proceedings of the 12th international rapeseed congress, Wuhan/China, vol IV, 2630 March 2007, pp 6568 (and on CD)

    Google Scholar 

  • Pattison AB, Versteeg C, Akiew S, Kirkegaard J (2006) Resistance of Brassicaceae plants to root-knot nematode (Meloidogyne spp.) in northern Australia. Int J Pest Manag 52:53–62

    Google Scholar 

  • Pfannschmidt T, Ogrzewalla K, Baginsky S, Sickmann A, Meyer HE, Link G (2000) The multisubunit chloroplast RNA polymerase A from mustard (Sinapis alba L.). Integration of a prokaryotic core into a larger complex with organelle-specific functions. Eur J Biochem 267:253–261

    Article  CAS  PubMed  Google Scholar 

  • Pietka T, Ogrodowczyk M, Krzymanski J (2007) Progress in breeding research on double low white mustard (Sinapis alba L.). In: Proceedings of the 12th international rapeseed congress, Wuhan/China, vol I, 2630 March 2007, pp 203205 (and on CD)

    Google Scholar 

  • Plümper B (1995) Somatische und sexuelle Hybridisierung für den Transfer von Krankheitsresistenzen auf Brassica napus L. PhD Thesis, Freie Universität, Berlin, German

    Google Scholar 

  • Purwantara A, Salisbury PA, Burton WA, Howlett BJ (1998) Reaction of Brassica juncea (Indian mustard) lines to Australian isolates of Leptosphaeria maculans under glasshouse and field conditions. Eur J Plant Pathol 104:895–902

    Article  Google Scholar 

  • Rakow G (2002) Oilseed breeding in Canada. In: 13th Crucifer genetic workshop, 23–26 March 2002, University of California, Davis/USA, Book of Abstract, p 62

    Google Scholar 

  • Rakow G, Raney JP (2003) Present status and future perspectives of breeding for seed quality in Brassica oilseed crops. In: Proceedings of the 11th international rapeseed congress, Copenhagen/Denmark, vol 1, 0610 July 2003, pp 181185

    Google Scholar 

  • Rieger MA, Potter TD, Preston C, Powles SB (2001) Hybridisation between Brassica napus L. and Raphanus raphanistrum L. under agronomic field conditions. Theor Appl Genet 103:555–560

    Article  CAS  Google Scholar 

  • Rieger MA, Lamond M, Preston C, Powles SB, Roush RT (2002) Pollen-mediated movement of herbicide resistance between commercial canola fields. Science 296:2383–2386

    Article  Google Scholar 

  • Ripley VL, Arnison PG (1990) Hybridization of Sinapis alba L. and Brassica napus L. via embryo rescue. Plant Breed 104:26–33

    Article  Google Scholar 

  • Ripley V, Thorpe M, Iler S, Mizier K, Beversdorf WD (1992) Isozyme analysis as a tool for introgression of Sinapis alba germ plasm into Brassica napus. Theor Appl Genet 84:403–410

    Article  Google Scholar 

  • Rothmaler W (1988) Exkursionsflora für die Gebiete der DDR und der BRD, vol 4. Volk und Wissen, Berlin, p 231 (in German)

    Google Scholar 

  • Salisbury PA, Ballinger DJ (1993) Evaluation of race variability in Leptosphaeria maculans on Brassica species in Australia. In: Proceedings of the 9th Australian research assembly on Brassicas, Wagga Wagga, Australia, pp 107111

    Google Scholar 

  • Schrader O, Budahn H, Ahne R (2000) Detection of 5S and 25S rRNA genes in Sinapis alba, Raphanus sativus and Brassica napus by double fluorescence in situ hybridization. Theor Appl Genet 100:665–669

    Article  CAS  Google Scholar 

  • Schulz OE (1919) Cruciferae-Brassiceae. Part I. Subtribes Brassicinae and Raphaninae. In: Engler A (ed) Das Pflanzenreich IV. 105 (Heft 70). Wilhelm Engelmann, Leipzig, pp 1–290

    Google Scholar 

  • Schulz OE (1923) Cruciferae-Brassiceae. Part II. Subtribes Cakilinae, Zillinae, Vellinae, Savignyinae and Moricandiinae. In: Engler A (ed) Das Pflanzenreich IV. 105 (Heft 84). Wilhelm Engelmann, Leipzig, pp 1–100

    Google Scholar 

  • Schulz OE (1936) Cruciferae-Brassicaceae. In: Engler A, Harms H (eds) Die Natürlichen Pflanzenfamilien, Band 17-b, 2nd edn. Wilhelm Engelmann, Leipzig, pp 227–658

    Google Scholar 

  • Séguin-Swartz G, Warwick SI, Scarth R (1997) Cruciferae: compendium of trait genetics. http://www.brassica.info/info/publications/compend.pdf. Accessed 18 May 2010

  • Sharma TR, Singh BM (1992) Transfer of resistance to Alternaria brassicae in Brassica juncea through interspecific hybridization among Brassica. J Genet Breed 46:373–378

    Google Scholar 

  • Sharma G, Kumar VD, Haque A, Bhat SR, Prakash S, Chopra VL (2002) Brassica coenospecies: a rich reservoir for genetic resistance to leaf spot caused by Alternaria brassicae. Euphytica 125:411–417

    Article  Google Scholar 

  • Siemens J (2002) Interspecific hybridisation between wild relatives and Brassica napus to introduce new resistance traits into the oilseed rape gene pool. Czech J Genet Plant Breed 38:155–157

    Google Scholar 

  • Snow AA (2002) Transgenic crops: why gene flow matters. Nat Biotechnol 20:542

    Article  CAS  PubMed  Google Scholar 

  • Snowdon RJ, Winter H, Diestel A, Sacristán MD (2000) Development and characterisation of Brassica napus-Sinapis arvensis addition lines exhibiting resistance to Leptosphaeria maculans. Theor Appl Genet 101:1008–1014

    Article  Google Scholar 

  • Song KM, Osborn TC, Williams PH (1988) Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). 1. Genome evolution of diploid and amphidiploid species. Theor Appl Genet 75:784–794

    Article  CAS  Google Scholar 

  • Stevens JP, Kay QON (1988) The number of loci controlling the sporophytic selfincompatibility system in Sinapis arvensis L. Heredity 61:411–418

    Article  Google Scholar 

  • Stewart CN Jr, Halfhill MD, Warwick SI (2003) Transgene introgression from genetically modified crops to their wild relatives. Nat Rev Genet 4:806–817

    Article  CAS  PubMed  Google Scholar 

  • Tewari JP, Conn KL, Dahiya J (1987) Resistance to Alternaria brassicae in crucifers. In: Proceedings of the 7th international rapeseed conference, Poznan, Poland, vol 5, pp 1085–1090

    Google Scholar 

  • Thierfelder A, Hackenberg E, Nichterlein K, Friedt W (1991) Development of nematode-resistant rapeseed genotypes via interspecific hybridization. In: Proceedings of the 8th international rapeseed congress, Saskatoon, Canada, pp 269273

    Google Scholar 

  • Thompson KF (1963) Resistance to the cabbage aphid (Brevicoryne brassicae) in Brassica plants. Nature 198:209

    Article  Google Scholar 

  • Toriyama K, Kameya T, Hinata K (1987) Selection of a universal hybridizer in Sinapis turgida Del. and regeneraton of plantlets from somatic hybrids with Brassica species. Planta 170:308–313

    Article  CAS  Google Scholar 

  • Tsukamoto C, Furuya M, Chikayasu K, Okubo K, Hinata K (1993) Chemotaxonomic markers in Brassica seeds at the species and subspecies levels. Biosci Biotechnol Biochem 57:653–654

    Article  CAS  Google Scholar 

  • Ulmer BJ, Dosdall LM (2006) Glucosinolate profile and oviposition behavior in relation to the susceptibilities of Brassicaceae to the cabbage seedpod weevil. Entomol Exp Appl 12:203–213

    Article  Google Scholar 

  • von Lintig J, Welsch R, Bonk M, Giuliano G, Batschauer A, Kleinig H (1997) Light-dependent regulation of carotenoid biosynthesis occurs at the level of phytoene synthase expression and is mediated by phytochrome in Sinapis alba and Arabidopsis thaliana seedlings. Plant J 12:625–634

    Article  Google Scholar 

  • Wang YP, Sonntag K, Rudloff E, Chen JM (2005) Intergeneric somatic hybridization between Brassica napus L. and Sinapis alba L. J Integr Plant Biol 47:84–91

    Article  CAS  Google Scholar 

  • Warwick SI, Black LD (1991) Molecular systematics of Brassica and allied genera (subtribe Brassicinae, Brassiceae) – chloroplast genome and cytodeme congruence. Theor Appl Genet 82:81–92

    Article  CAS  Google Scholar 

  • Warwick SI, Black LD (1997) Phylogenetic implications of chloroplast DNA restriction site variation in subtribes Raphaninae and Cakilinae (Brassicaceae, tribe Brassiceae). Can J Bot 75:960–973

    Google Scholar 

  • Warwick SI, Hall JC (2009) Phylogeny of Brassica and wild relatives. In: Gupta SK (ed) Biology and breeding of crucifers. CRC, Boca Raton, FL, pp 19–36

    Google Scholar 

  • Warwick SI, Sauder CA (2005) Phylogeny of the tribe Brassiceae (Brassicaceae) based on chloroplast restriction site polymorphisms and nuclear ribosomal internal transcribed spacer and chloroplast trnL intron sequences. Can J Bot 83:467–483

    Article  CAS  Google Scholar 

  • Warwick SI, Simard M-J, Légère A, Beckie HJ, Braun L, Zhu B, Mason P, Séguin-Swartz G, Stewart CN (2003) Hybridization between Brassica napus L. and its wild relatives: B. rapa L., Raphanus raphanistrum L., Sinapis arvensis L., and Erucastrum gallicum (Willd.) O. E. Schulz. Theor Appl Genet 107:528–539

    Article  CAS  PubMed  Google Scholar 

  • Warwick SI, Sauder CA, Beckie HJ (2005) Resistance in Canadian biotypes of wild mustard (Sinapis arvensis L.) to acetolactate synthase (ALS)-inhibiting herbicides. Weed Sci 53:631–639

    Article  CAS  Google Scholar 

  • Warwick SI, Francis A, Al-Shehbaz IA (2006) Brassicaceae: species checklist and database on CD-Rom. Plant Syst Evol 259:249–258

    Article  Google Scholar 

  • Warwick SI, Francis A, Gugel RK (2009) Guide to Wild Germplasm of Brassica and Allied Crops (tribe Brassiceae, Brassicaceae), 3rd edn. http://www.brassica.info/info/publications/guide-wild-germplasm.php. Accessed 18 May 2010

  • Wei WH, Zhang SF, Wang LJ, Li J, Chen B, Wang Z, Luo LX, Fang XP (2007) Cytogenetic analysis of F1, F2 and BC1 plants from intergeneric sexual hybridization between Sinapis alba and Brassica oleracea by genomic in situ hybridization. Plant Breed 126:392–398

    Article  Google Scholar 

  • Wei WH, Li Y, Wang L, Liu S, Yan X, Mei D, Li Y, Xu Y, Peng P, Hu Q (2010) Development of a novel Sinapis arvensis disomic addition line in Brassica napus containing the restorer gene for Nsa CMS and improved resistance to Sclerotinia sclerotiorum and pod shattering. Theor Appl Genet 107:1089–1097

    Article  Google Scholar 

  • Wilkinson MJ, Elliott LJ, Allainguillaume J, Shaw MW, Norris C, Welters R, Alexander M, Sweet J, Mason DC (2003) Hybridization between Brassica napus and B. rapa on a national scale in the United Kingdom. Science 302:457–459

    Article  CAS  PubMed  Google Scholar 

  • Winter H (2004) Untersuchungen zur Introgression von Resistenzen gegen die Wurzelhals- und Stengelfäule [Leptosphaeria maculans (Desm.) Ces. et De Not.] aus verwandten Arten in den Raps (Brassica napus L.). PhD Thesis, Freie Universität, Berlin. http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000001209. Accessed 18 May 2010, in German, with an English abstract

  • Yaniv Z, Schafferman D, Elber Y, Ben-Moshe E, Zur M (1994) Evaluation of Sinapis alba, native to Israel, as a rich source of erucic acid in seed oil. J Ind Crops 2:137–142

    Article  CAS  Google Scholar 

  • Yaniv Z, Elber Y, Schafferman D, Ben-Moshe E, Zur M (1995) A survey of crucifers native to Israel, as a source of oils. Plant Genet Resour Newsl 101:1–5

    Google Scholar 

Download references

Acknowledgments

The author dedicates this chapter to Maria Dolores Sacristán, former leader of the group “Molecular genetics and cytogenetics of crop plants” at the Institute of Applied Genetics, Freie Universität Berlin, Germany. She founded my love for wild crucifers as gene resources and my special interest in the blackleg fungus, L. maculans. For nearly 20 years now, she always inspired me with her huge knowledge, in particular on interspecific hybridizations and cytogenetics.

Moreover, I especially acknowledge the significant contributions to parts of the results mentioned above of my former colleagues from Berlin, Antje Klewer (now: Rijk Zwaan Breeding B.V., Fijnaart, The Netherlands) and Antje Diestel, as well as those of Rod Snowdon, Justus-Liebig-University Giessen/Germany. I thank Bernhard Plümper for producing and analyzing the original hybrids and early backcross generations with the Sinapis species in both, the Alternaria spp. and L. maculans resistance transfer projects. Many thanks also to Hannelore Lehmann, Yvonne Bernhardt and Sabine Gillandt in Berlin and Jana Stephan in Dresden for excellent technical assistance. I gratefully acknowledge the financial support for parts of the projects given from Deutsche Forschungsgemeinschaft, from Norddeutsche Pflanzenzucht, Hans-Georg Lembke KG, and from Professor Werner Schulze-Stiftung im Stifterverband für die Deutsche Wissenschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Winter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Winter, H. (2011). Sinapis. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14871-2_17

Download citation

Publish with us

Policies and ethics