Skip to main content

Cold-Temperate Seaweed Communities of the Southern Hemisphere

  • Chapter
  • First Online:
Seaweed Biology

Part of the book series: Ecological Studies ((ECOLSTUD,volume 219))

Abstract

In the southern hemisphere, five cold-temperate regions, the southwestern and southeastern South America, Victoria-Tasmania, southern New Zealand, and the sub-Antarctic islands regions, are identified. The Antarctic Circumpolar Current (ACC) as well as diverse geological, paleoclimatic, and long-distance dispersal processes has modeled the diversity, ecology, and biogeography of the marine flora of this region. While the coasts of Victoria-Tasmania, New Zealand, and southern Chile show remarkable endemism, the ACC on the other hand has served as a migration route creating similarities in the floras between the regions, especially along the sub-Antarctic islands. Seaweed zonation in Australia and New Zealand is dominated by fucaleans, whereas in southern Chile, the coast of Argentina, and sub-Antarctic islands the rocky shores are populated by kelps such as Macrocystis and Lessonia. A distinctive and conspicuous circumpolar element is the large fucoid Durvillaea antarctica, which is paradigm of the biogeographic processes of the sub-Antarctic seaweeds in this region. In this chapter, the present state of the cold-temperate seaweed flora is examined in the context of their regional biodiversity, differences with other regions, and major biogeographical processes. Finally, an appraisal of the present and future threats for these seaweeds communities arising from global anthropogenic impacts is provided.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-642-28451-9_23

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acha EM, Mianzan HW, Guerrero RA, Favero M, Bava J (2004) Marine fronts at the continental shelves of austral South America physical and ecological processes. J Mar Syst 44:83–105

    Google Scholar 

  • Barrales H, Lobban CS (1975) The comparative ecology of Macrocystis pyrifera, with emphasis on the forests of Chubut, Argentina. Ecology 63:657–677

    Google Scholar 

  • Beckley LE, Branch GM (1992) A quantitative scuba-diving survey of the sublittoral macrobenthos at subantarctic Marion Island. Polar Biol 11:553–563

    Google Scholar 

  • Bergstrom DM, Chown SL (1999) Life at the front: history, ecology and change on southern ocean islands. Trends Ecol Evol 14:472–477

    PubMed  Google Scholar 

  • Bertness MD, Crain CM, Silliman BR, Bazterrica MC, Reyna MV, Hildago F, Farina JK (2006) The community structure of western Atlantic Patagonian rocky shores. Ecol Monogr 76:439–460

    Google Scholar 

  • Bolton JJ (1994) Global seaweed diversity: patterns and anomalies. Bot Mar 37:241–245

    Google Scholar 

  • Bolton JJ (2010) The biogeography of kelps (Laminariales, Phaeophyceae): a global analysis with new insights from recent advances in molecular phylogenetics. Helgol Mar Res 64:263–279

    Google Scholar 

  • Boraso A, Zaixso JM (2011). Atlas de sensibilidad ambiental de la costa y el Mar Argentino. Algas marinas bentónicas. pp 1–28. http://atlas.ambiente.gov.ar/tematicas/mt_02/pdfs/AL_01_Introduccion.pdf

  • Boyle MC, Jillett JB, Mladenov PV (2001) Intertidal communities in Doubtful Sound, New Zealand: changes over time. NZ J Mar Freshwat Res 35:663–673

    Google Scholar 

  • Broom JES, Nelson WA, Farr TJ, Phillips LE, Clayton M (2010) Relationships of the Porphyra (Bangiales, Rhodophyta) flora of the Falkland Islands: a molecular survey using rbcL and nSSU sequence data. Aust Syst Bot 23:27–37

    Google Scholar 

  • Buschmann AH (1992) Algal communities of a wave-protected intertidal rocky shore in southern Chile. In: Seeliger U (ed) Coastal plant communities of Latin America. Academic, Orlando, pp 91–104

    Google Scholar 

  • Buschmann AH, Vásquez JA, Osorio P, Reyes E, Filún L, Hernández-González MC, Vega A (2004) The effect of water movement, temperature and salinity on abundance and reproductive patterns of Macrocystis spp. (Phaeophyta) at different latitudes in Chile. Mar Biol 145:849–862

    Google Scholar 

  • Camus PA (2001) Biogeografía marina de Chile continental. Rev Chi Hist Nat 74:587–617

    Google Scholar 

  • Casas G, Scrosati R, Piriz ML (2004) The invasive kelp Undaria pinnatifida (Phaeophyceae, Laminariales) reduces native seaweed diversity in Nuevo Gulf (Patagonia, Argentina). Biol Inv 6:411–416

    Google Scholar 

  • Castilla JC, Uribe M, Bahamonde N, Clarke M, Desqueyroux-Faúndez R, Kong I, Moyano H, Rozbaczylo N, Santelices B, Valdovinos C, Zavala P (2005) Down under the southeastern Pacific: marine non-indigenous species in Chile. Biol Inv 7:213–232

    Google Scholar 

  • Cheshire AC, Hallam ND (1988) Biomass and density of native stands of Durvillaea potatorum (southern bull-kelp) in south eastern Australia. Mar Ecol Prog Ser 48:277–283

    Google Scholar 

  • Cheshire AC, Conran JG, Hallam ND (1995) A cladistic analysis of the evolution and biogeography of Durvillaea (Phaeophyta). J Phycol 1995:644–655

    Google Scholar 

  • Clayton MN (1994) Evolution of the Antarctic marine benthic algal flora. Rev J Phycol 30:897–904

    Google Scholar 

  • Clayton MN, Wiencke C, Klöser H (1997) New records of temperate and sub-Antarctic marine benthic macroalgae from Antarctica. Polar Biol 17:141–149

    Google Scholar 

  • Coyer JA, Smith GJ, Andersen RA (2001) Evolution of Macrocystis spp. (Phaeophyceae) as determined by ITS1 and ITS2 sequences. J Phycol 37:574–585

    Google Scholar 

  • Dayton PK (1985) Ecology of kelp communities. Annu Rev Ecol Syst 16:215–245

    Google Scholar 

  • Delille B, Borges AV, Delille D (2009) Influence of giant kelp beds (Macrocystis pyrifera) on diel cycles of pCO2 and DIC in the Sub-Antarctic coastal area. Est Coast Shelf Sci 81:114–122

    Google Scholar 

  • Demes KW, Graham MH, Suskiewicz TS (2009) Phenotypic plasticity reconciles incongruous molecular and morphological taxonomies: the giant kelp, Macrocystis (Laminariales, Phaeophyceae), is a monospecific genus. J Phycol 45:1266–1269

    Google Scholar 

  • Faugeron S, Martínez EA, Correa JA, Billot C (2005) Long-term copper mine waste disposal in northern Chile associated with gene flow disruption of the intertidal kelp Lessonia nigrescens. Mar Ecol Prog Ser 288:129–140

    CAS  Google Scholar 

  • Fraser CI, Spencer HG, Waters JM (2009a) Glacial oceanographic contrasts explain phylogeography of Australian bull kelp. Mol Ecol 18:2287–2296

    PubMed  Google Scholar 

  • Fraser CI, Nikula R, Spencer HG, Waters JM (2009b) Kelp genes reveal effects of subantarctic sea ice during the Last Glacial Maximum. Proc Nat Acad Sci USA 106:3249–3253

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fraser CI, Hay CH, Spencer HG, Waters JM (2009c) Genetic and morphological analyses of the southern bull kelp Durvillaea antarctica (Phaeophyceae: Durvillaeales) in New Zealand reveal cryptic species. J Phycol 45:436–443

    CAS  Google Scholar 

  • Fraser CI, Thiel M, Spencer HG, Waters JM (2010a) Contemporary habitat discontinuity and historic glacial ice drive genetic divergence in Chilean kelp. BMC Evol Biol 10:203b

    Google Scholar 

  • Fraser CI, Winter DJ, Hamish GS, Waters JM (2010b) Multigene phylogeny of the southern bull-kelp genus Durvillaea (Phaeophyceae: Fucales). Mol Phylogenet Evol 57:1301–1311

    PubMed  CAS  Google Scholar 

  • Freeman D, Cooper S, Funnell G, Neale D (2011) Nearshore benthic community structure at the Bounty and Antipodes Islands subantarctic New Zealand. Polar Biol. doi:10.1007/s00300-011-1006-1

  • Gómez I, Huovinen P (2011) Morpho-functional patterns and zonation of South Chilean seaweeds: the importance of photosynthetic and bio-optical traits. Mar Ecol Prog Ser 422:77–91

    Google Scholar 

  • Gómez I, López-Figueroa F, Ulloa N, Morales V, Lovengreen C, Huovinen P, Hess S (2004) Patterns of photosynthesis in 18 species of intertidal macroalgae from southern Chile. Mar Ecol Prog Ser 270:103–116

    Google Scholar 

  • Graham MH, Vásquez JA, Buschmann AH (2007) Global ecology of the giant kelp Macrocystis: from ecotypes to ecosystems. Oceanogr Mar Biol Annu Rev 45:39–88

    Google Scholar 

  • Häder D-P, Lebert M, Helbling EW (2003) Effects of solar radiation on the Patagonian Rhodophyte, Corallina officinalis (L.). Photosynth Res 78:119–132

    PubMed  Google Scholar 

  • Harley CDG, Hughes RA, Hultgren KM, Miner BG, Sorte CJB, Thornber CS, Rodriguez LF, Tomanek L, Williams SL (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241

    PubMed  Google Scholar 

  • Hay ME (1981) The functional morphology of turf-forming seaweeds: persistence in stressful marine habitats. Ecology 62:739–750

    Google Scholar 

  • Hay CH (1987) Lessonia adamsiae sp. nov. (Phaeophyta: Laminariales) from the Snares Islands, New Zealand. NZ J Bot 25:295–308

    Google Scholar 

  • Hay CH (1989) Lessonia tholiformis sp. nov. (Phaeophyta: Laminariales) from the Chatham Islands, New Zealand. NZ J Bot 27:461–469

    Google Scholar 

  • Heath RA (1985) A review of the physical oceanography of the seas around New Zealand–1982. NZ J Mar Freshwat Res 19:79–124

    Google Scholar 

  • Hommersand MH, Moe RL, Amsler CD, Fredericq S (2009) Notes on the systematics and biogeographical relationships of Antarctic and sub-Antarctic Rhodophyta with descriptions of four new genera and five new species. Bor Mar 52:509–534

    Google Scholar 

  • Huovinen P, Gómez I (2011) Spectral attenuation of solar radiation in Patagonian fjord and coastal waters and implications for algal photobiology. Cont Shelf Res 31:254–259

    Google Scholar 

  • Huovinen P, Gómez I, Lovengreen C (2006) A Five-year study of solar ultraviolet radiation in southern Chile (39°S): Potential impact on physiology of coastal marine algae? Photochem Photobiol 82:515–522

    PubMed  CAS  Google Scholar 

  • Hurd CL, Nelson WA, Falshaw R, Neill KF (2004) History, current status and future of marine macroalgal research in New Zealand: Taxonomy, ecology, physiology and human uses. Phycol Res 52:80–106

    Google Scholar 

  • Ingólfsson A (2005) Community structure and zonation patterns of rocky shores at high latitudes: an interocean comparison. J Biogeogr 32:169–182

    Google Scholar 

  • Jara HF, Moreno CA (1984) Hervibory and structure in a mid-littoral rocky community: a case in southern Chile. Ecology 65:28–38

    Google Scholar 

  • John DM, Tittley I, Lawson GW, Pugh PJA (1994) Distribution of seaweed floras in the Southern Ocean. Bot Mar 37:235–239

    Google Scholar 

  • Johnson CR, Banks SC, Barrett NS, Cazassus F, Dunstan PK, Edgar GJ, Frusher SD, Gardner C, Haddon M, Helidoniotis F, Hill KL, Holbrook NJ, Hosie GW, Last PR, Ling SD, Melbourne-Thomas J, Miller K, Pecl GT, Richardson AJ, Ridgway KR, Rintoul SR, Ritz DA, Ross DJ, Sanderson JC, Shepherd SA, Slotwinski A, Swadling KM, Taw N (2011) Climate change cascades: Shifts in oceanography, species ranges and subtidal marine community dynamics in eastern Tasmania. J Exp Mar Biol Ecol 400:17–32

    Google Scholar 

  • Kaehler S, Pakhomov EA, Kalin RM, Davis S (2006) Trophic importance of kelp-derived suspended particulate matter in a through-flow sub-Antarctic system. Mar Ecol Prog Ser 316:17–22

    CAS  Google Scholar 

  • Kenny R, Haysom N (1962) Ecology of rocky shore organisms at Macquarie Island. Pacific Sci 16:245–263

    Google Scholar 

  • Kerswell AP (2006) Global biodiversity patterns of benthic marine algae. Ecology 87:2479–2488

    PubMed  Google Scholar 

  • Klemm MF, Hallam ND (1988) Standing crop of Durvillaea antarctica (Chamisso) Hariot (Phaeophyta) on the Australian sub-Antarctic Macquarie and Heard Islands. Phycologia 27:505–509

    Google Scholar 

  • Lane CE, Mayes C, Druehl LD, Saunders GW (2006) A multi-gene molecular investigation of the kelp (Laminariales, Phaeophyta) supports substantial taxonomic re-organization. J Phycol 42:493–512

    CAS  Google Scholar 

  • Lilley SA, Schiel DR (2006) Community effects following the deletion of a habitat forming alga from rocky marine shores. Oecologia 148:672–681

    PubMed  Google Scholar 

  • Ling SD, Johnson CR (2009) Population dynamics of an ecologically important range-extender: kelp beds versus sea urchin barrens. Mar Ecol Prog Ser 374:113–125

    Google Scholar 

  • Lüning K (1990) Seaweeds, Their environment, biogeography and ecophysiology. Wiley, New York

    Google Scholar 

  • Lutz VA, Boschi EE, Bremec CS, Cousseau MB, Figueroa DE et al (2003) Perspectives of marine biodiversity studies in Argentina. Gayana 67:371–382

    Google Scholar 

  • Meneses I, Santelices B (2000) Patterns and breaking points in the distribution of benthic algae along the temperate Pacific coast of South America. Rev Chi Hist Nat 73:615–623

    Google Scholar 

  • Moe RC, Silva PC (1977) Antarctic marine flora: uniquely devoid of kelps. Science 196:1206–1208

    PubMed  CAS  Google Scholar 

  • Moreno CA, Jaramillo E (1983) The role of grazers in the zonation of intertidal macroalgae of the Chilean coast. Oikos 41:73–76

    Google Scholar 

  • Moreno CA, Sutherland JP (1982) Physical and biological processes in a Macrocystis pyrifera community near Valdivia, Chile. Oecologia 55:1–6

    Google Scholar 

  • Nelson WA, Broom JES (2010) The identity of Porphyra columbina (Bangiales, Rhodophyta) originally described from the New Zealand subantarctic islands. Aust Syst Bot 23:16–26

    Google Scholar 

  • Nelson WA, Villouta E, Neill KF, Williams GC, Adams NM, Slivsgaard R (2002) Marine macroalgae of Fiordland, New Zealand. Tuhinga 13:117–152

    Google Scholar 

  • Norton TA, Melkonian M, Andersen RA (1996) Algal biodiversity. Phycologia 35:308–326

    Google Scholar 

  • Oppliger LV, Correa JA, Faugeron S, Beltrán J, Tellier F, Valero M, Destombe C (2011) Sex ratio variation in the Lessonia nigrescens complex (Laminariales, Phaeophyceae): Effect of latitude, temperature, and marginality. J Phycol 47:5–12

    Google Scholar 

  • Orce VL, Helblin EW (1997) Latitudinal UVR-PAR measurements in Argentina: Extent of the “Ozone Hole”. Global Planet Change 15:113–121

    Google Scholar 

  • Orsi AH, Whitworth T, Nowlin WD (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res I 42:641–673

    Google Scholar 

  • Otaíza RD, Santelices B (1985) Vertical distribution of chitons (Mollusca: Polyplacophora) in the rocky intertidal zone of central Chile. J Exp Mar Biol Ecol 86:229–240

    Google Scholar 

  • Papenfuss G (1964) Catalogue and bibliography of Antarctic and subantarctic benthic marine algae. Am Geophys Union, Antarctic Res Ser 1:1–76

    Google Scholar 

  • Parsons MJ (1985) New Zealand seaweed flora and its relationship. NZ J Mar Freshw Res 19:131–138

    Google Scholar 

  • Paruelo JM, Beltrán A, Jobbágy E, Sala OE, Golluscio RA (1998) The climate of Patagonia: general patterns and controls on biotic processes. Ecol Aust 8:85–101

    Google Scholar 

  • Perissinotto R, McQuaid CD (1992) Deep occurrence of the giant kelp Macrocystis laevis in the Southern Ocean. Mar Ecol Prog Ser 81:89–95

    Google Scholar 

  • Peters AF, van Oppen MJH, Wiencke C, Stam WT, Olsen JL (1997) Phylogeny and historical ecology of the Desmarestiaceae (Phaeophyceae) support a southern hemisphere origin. J Phycol 33:294–309

    CAS  Google Scholar 

  • Phillips JA (2001) Marine macroalgal biodiversity hotspots: why is there high species richness and endemism in southern Australian marine benthic flora? Biodiv Conserv 10:1555–1577

    Google Scholar 

  • Poloczanska ES, Babcock RC, Butler A, Hobday AJ, Hoegh-Guldberg O, Kunz TJ, Matear R, Milton DA, Okey TA, Richardson AJ (2007) Climate change and Australian marine life. Oceanogr Mar Biol Annu Rev 45:407–478

    Google Scholar 

  • Ramírez ME (2010) Flora marina bentónica de la región austral de Sudamérica y la Antártica. An Inst Patagonia 38:57–71

    Google Scholar 

  • Rautenberger R, Mansilla A, Gómez I, Wiencke C, Bischof K (2009) Photosynthetic acclimation to UV-radiation of intertidal macroalgae from the Strait of Magellan (Chile). Rev Chil Hist Nat 82:43–61

    Google Scholar 

  • Sanderson JC, Thomas DP (1987) Subtidal macroalgal communities in the D’Entrecasteaux Channel, Tasmania. Aust J Ecol 12:41–51

    Google Scholar 

  • Santelices B (1980) Phytogeographic characterization of the temperate coast of Pacific South America. Phycologia 19:1–12

    Google Scholar 

  • Santelices B (1989) Algas marinas de Chile. Distribución, ecología, utilización y diversidad. Ediciones Universidad Católica de Chile, Santiago, Chile

    Google Scholar 

  • Santelices B, Marquet P (1998) Seaweeds, latitudinal diversity patterns, and Rapaport’s rule. Div Dist 4:71–75

    Google Scholar 

  • Santelices B, Ojeda FP (1984) Population dynamics of coastal forests of Macrocystis pyrifera in Puerto Toro, Isla Navarino, Southern Chile. Mar Ecol Prog Ser 14:175–183

    Google Scholar 

  • Santelices B, Castilla J, Cancino J, Schmiede P (1980) Comparative ecology of Lessonia nigrescens and Durvillaea antarctica (Phaeophyta) in central Chile. Mar Biol 59:119–132

    Google Scholar 

  • Schiel DR (1990) Macroalgal assemblages in New Zealand: structure, interactions and demography. Hydrobiologia 192:59–76

    Google Scholar 

  • Schiel DR (2004) The structure and replenishment of rocky shore intertidal communities and biogeographic comparisons. J Exp Mar Biol Ecol 300:309–342

    Google Scholar 

  • Schiel DR, Hickford MJH (2001) Biological structure of nearshore rocky subtidal habitats in southern New Zealand, vol 182, Conserv Ser. N.Z. Department of Conservation Science, New Zealand, p 55

    Google Scholar 

  • Schiel DR, Andrew NL, Foster MS (1995) The structure of subtidal algal and invertebrate assemblages at the Chatham Islands, New Zealand. Mar Biol 123:355–367

    Google Scholar 

  • Schwarz AM, Hawes I, Wendy N, Neil A (2006) Growth and reproductive phenology of the kelp Lessonia variegata in central New Zealand. NZ J Mar Freshw Res 40:273–284

    Google Scholar 

  • Scrosati RA (1991) Estudios anatómicos en Lessonia vadosa (Phaeophyta, Laminariales) de la Argentina. Boletín de la Sociedad Argentina de Botánica 27:165–171

    Google Scholar 

  • Searles RB (1978) The genus Lessonia Bory (Phaeophyta, Laminariales) in southern Chile and Argentina. Br Phycol J 13:361–381

    Google Scholar 

  • Smith SDA, Simpson RD (2002) Spatial variation in the community structure of intertidal habitats at Macquarie island (sub-Antarctic). Antarctic Sci 14:374–384

    Google Scholar 

  • Strub PT, Mesías JM, Montecino V, Rutllant J, Salinas S (1998) Coastal ocean circulation off western South America. In: Robinson AR, Brink KH (eds) The sea. Wiley, New York, pp 273–314

    Google Scholar 

  • Tellier F, Meynard AP, Correa JA, Faugeron S, Valero M (2009) Phylogeographic analyses of the 30°S south-east Pacific biogeographic transition zone establish the occurrence of a sharp genetic discontinuity in the kelp Lessonia nigrescens: Vicariance or parapatry? Mol Phylogenet Evol 53:679–693

    PubMed  CAS  Google Scholar 

  • Thiel M, Macaya EC, Acuña E, Arntz WE, Bastias H et al (2007) The Humboldt current system of northern and central Chile. Oceanographic processes, ecological interactions and socioeconomic feedback. Oceanogr Mar Biol Annu Rev 45:195–344

    Google Scholar 

  • Upton J, Shaw CJ (2002) An overview of the oceanography and meteorology of the Falkland Islands. Aquatic Conserv Mar Freshwat Ecosyst 12:15–25

    Google Scholar 

  • Valentine JP, Johnson CR (2004) Establishment of the introduced kelp Undaria pinnatifida following dieback of the native macroalga Phyllospora comosa in Tasmania, Australia. Mar Freshw Res 55:223–230

    Google Scholar 

  • Valentine JP, Johnson CR (2005) Persistence of sea urchin (Heliocidaris erythrogramma) barrens on the east coast of Tasmania: inhibition of macroalgal recovery in the absence of high densities of sea urchins. Bot Mar 48:106–115

    Google Scholar 

  • van Oppen MJH, Diekmann OE, Wiencke C, Stam WT, Olsen JL (1994) Tracking dispersal routes: phylogeography of the Arctic-Antarctic disjunct seaweed Acrosiphonia arcta (Chlorophyta). J Phycol 30:67–80

    Google Scholar 

  • van Tussenbroek BI (1989) Seasonal growth and composition of fronds of Macrocystis pyrifera in the Falkland Islands. Mar Biol 100:419–430

    Google Scholar 

  • van Tussenbroek BI (1993) Plant and frond dynamics of the giant kelp, Macrocystis pyrifera, forming a fringing zone in the Falkland Islands. Eur J Phycol 28:161–165

    Google Scholar 

  • Vásquez JA, Castilla JC, Santelices B (1984) Distributional patterns and diets of four species of sea urchins in giant kelp forest (Macrocystis pyrifera) of Puerto Toro, Navarino Island, Chile. Mar Ecol Prog Ser 19:55–63

    Google Scholar 

  • Villouta E, Santelices B (1986) Lessonia trabeculata sp. nov. (Laminariales, Phaeophyta), a new kelp from Chile. Phycologia 25:81–86

    Google Scholar 

  • Villouta E, Chadderton WL, Pugsley CW, Hay CH (2001) Effects of sea urchin (Evechinus chloroticus) grazing in Dusky Sound, Fiordland, New Zealand. NZ J Mar Freshw Res 35:1007–1024

    Google Scholar 

  • Waters JM (2008a) Driven by the West Wind Drift? A synthesis of southern temperate marine biogeography, with new directions for dispersal. J Biogeogr 35:417–427

    Google Scholar 

  • Waters JM (2008b) Marine biogeochemical disjunction in temperate Australia: historical landbridge, contemporary currents, or both? Div Dist 14:692–700

    Google Scholar 

  • Waters JM (2010) Australia’s marine biogeography revisited: Back to the future? Aust Ecol 35:988–992

    Google Scholar 

  • Westermeier R, Rivera PJ (1986) Caracterización ficológica del intermareal rocoso de la Xa. Región (Valdivia, Osorno, Llanquihue y Chiloé) y de la XII región (Islas Diego Ramírez), Chile. In: Westermeier R (ed), Actas Segundo Congreso Nacional sobre Algas Marinas Chilenas. pp 125–144

    Google Scholar 

  • Westermeier R, Müller DG, Gómez I, Rivera P, Wenzel H (1994) Population biology of Durvillaea antarctica and Lessonia nigrescens (Phaeophyta) on the rocky shores of southern Chile. Mar Ecol Prog Ser 110:187–194

    Google Scholar 

  • Wiencke C, Clayton MN (2002) Antarctic Seaweeds. ARG Gantner Verlag KG, Ruggell

    Google Scholar 

  • Wiencke C, Bartsch I, Bischoff B, Peters AF, Breeman AM (1994) Temperature requirements and biogeography of Antarctic, Arctic and amphiequatorial seaweeds. Bot Mar 37:247–259

    Google Scholar 

  • Wiencke C, Clayton MN, Langreder C (1996) Life history and seasonal morphogenesis of the endemic Antarctic brown alga Desmarestia anceps Montagne. Bot Mar 39:435–444

    Google Scholar 

Download references

Acknowledgements

This review has been written in the frame of the Project Fondecyt 1090494.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pirjo Huovinen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Huovinen, P., Gómez, I. (2012). Cold-Temperate Seaweed Communities of the Southern Hemisphere. In: Wiencke, C., Bischof, K. (eds) Seaweed Biology. Ecological Studies, vol 219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28451-9_14

Download citation

Publish with us

Policies and ethics