Skip to main content

Algae from Primary Endosymbioses

  • Chapter
  • First Online:
Biology of Algae, Lichens and Bryophytes
  • 288 Accesses

Abstract

The red algae are a group of important photoautotrophic organisms that include unicellular microalgae as well as large macroalgae with a size of more than one meter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Monoecious/dioecious is the correct terminology given that the sex is determined in the haploid phase (see Vranken et al. 2023).

References

  • Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, Agatha S, Berney C, Brown MW, Burki F, Cárdenas P, Čepička I, Chistyakova L, del Campo J, Dunthorn M, Edvardsen B, Eglit Y, Guillou L, Hampl V, Heiss AA, Hoppenrath M, James TY, Karnkowska A, Karpov S, Kim E, Kolisko M, Kudryavtsev A, Lahr DJG, Lara E, Le Gall L, Lynn DH, Mann DG, Massana R, Mitchell EAD, Morrow C, Park JS, Pawlowski JW, Powell MJ, Richter DJ, Rueckert S, Shadwick L, Shimano S, Spiegel FW, Torruella G, Youssef N, Zlatogursky V, Zhang Q (2019a) Revisions to the classification, nomenclature, and diversity of eukaryotes. J Eukaryot Microbiol 66:4–119. https://doi.org/10.1111/jeu.12691

  • Ambati RR, Gogisetty D, Aswathanarayana RG, Ravi S, Bikkina PN, Bo L, Yuepeng S (2019) Industrial potential of carotenoid pigments from microalgae: current trends and future prospects. Crit Rev Food Sci Nutr 59:1880–1902

    Article  CAS  PubMed  Google Scholar 

  • An SS, Friedl T, Hegewald E (1999) Phylogenetic relationships of Scenedesmus and Scenedesmus-like coccoid green algae as inferred from ITS-2 rDNA sequence comparisons. Plant Biol 1:418–428

    Article  Google Scholar 

  • Archibald JM, Simpson AGB, Slamovits CH (eds) (2017) Handbook of the protists. Springer International Publishing, Cham, p 1657

    Google Scholar 

  • Arora M, Anil AC, Leliaert F, Delany J, Mesbahi E (2013) Tetraselmis indica (Chlorodendrophyceae, Chlorophyta), a new species isolated from salt pans in Goa, India. Eur J Phycol 48:61–78. https://doi.org/10.1080/09670262.2013.768357

  • Baker AL et al (2012) Phycokey—an image based key to Algae (PS Protista), Cyanobacteria, and other aquatic objects. University of New Hampshire Center for Freshwater Biology. http://cfb.unh.edu/phycokey/phycokey.htm. Accessed 17 Dec 2021

  • Ballantine DL, Norris JN (1994) Verdigellas, a new deep-water genus (Tetrasporales, Chlorophyta) from the tropical western Atlantic. Cryptogam Bot 4:368–372

    Google Scholar 

  • Bar-On YM, Phillips R, Milo R (2018) The biomass distribution on Earth. Proc Natl Acad Sci 115:6506. https://doi.org/10.1073/pnas.1711842115

  • Becker B, Marin B (2009) Streptophyte algae and the origin of embryophytes. Ann Bot 103:999–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker B, Marin B, Melkonian M (1994) Structure, composition, and biogenesis of prasinophyte cell coverings. Protoplasma 181:233–244

    Article  Google Scholar 

  • Belcher JH (1960) Culture studies of Bangia atropurpurea (Roth) Ag. New Phytol 59:367–373

    Article  Google Scholar 

  • Bell EM, Laybourn-Parry J (2003) Mixotrophy in the Antarctic phytoflagellate, Pyramimonas gelidicola (Chlorophyta: Prasinophyceae). J Phycol 39:644–649

    Article  Google Scholar 

  • Bengtson S, Sallstedt T, Belivanova V, Whitehouse M (2017) Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae. PLoS Biol 15(3):e2000735. https://doi.org/10.1371/journal.pbio.2000735

  • Berger S, Kaever MJ (1992) Dasycladales: an illustrated monograph of a fascinating algal order. Thieme, Stuttgart

    Google Scholar 

  • Berger S, Liddle LB (2003) The life cycle of Acetabularia (Dasycladales, Chlorophyta): textbook accounts are wrong. Phycologia 42:204–207

    Google Scholar 

  • Bhattacharya D, Weber K, An SS, Berning-Koch W (1998) Actin phylogeny identifies Mesostigma viride as a flagellate ancestor of the land plants. J Mol Evol 47:544–550. https://doi.org/10.1007/PL00006410

  • Bilan MI, Usov AI (2001) Polysaccharides of calcareous algae and their effect on the calcification process. Russ J Bioorg Chem 27:2–16

    Article  CAS  Google Scholar 

  • Bold HC, Wynne MJ (1978) Introduction to the Algae. Structure and reproduction. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, USA

    Google Scholar 

  • Bold HC, Wynne MJ (1985) Introduction to the algae: structure and reproduction, 2nd edn. Prentice-Hall, Englewood Cliffs, N.J., p 720

    Google Scholar 

  • Borowitzka MA (2013) Dunaliella: biology, production, and markets. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology. Wiley-Blackwell, pp 359–368. https://doi.org/10.1002/9781118567166.ch18

  • Borowitzka MA, Vesk M (1978) Ultrastructure of the Corallinaceae. I. The vegetative cells of Corallina officinalis and C. cuvierii. Mar Biol 46:295–304

    Article  Google Scholar 

  • Brawley SH, Blouin NA, Ficko-Blean E, Wheeler GL, Lohr M, Goodson HV, Jenkins JW, Blaby-Haas CE, Helliwell KE, Chan CX, Marriage TN, Bhattacharya D, Klein AS, Badis Y, Brodie J, Cao Y, Collén J, Dittami SM, Gachon CMM, Green BR, Karpowicz SJ, Kimt JW, Kudahl UJ, Lin S, Michel G, Mittag M, Olson BJSC, Pangilinan JL, Peng Y, Qiu H, Shu S, Singer JT, Smith AG, Sprecher BN, Wagner V, Wang W, Wang Z-Y, Yan J, Yarish C, Zäuner-Riek S, Zhuang Y, Zou Y, Lindquist EA, Grimwood J, Barry KW, Rokhsar DS, Schmutz J, Stiller JW, Grossman AR, Prochnik SE (2017) Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta). Proc Natl Acad Sci USA 114(31):E6361–E6370. https://doi.org/10.1073/pnas.1703088114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breton G (2014) Introduction de l’algue rouge Compsopogon aeruginosus (J. Agardh) Kützing dans le port de Rouen, Normandie, France. Hydroécologie Appliquée 18:15–22

    Article  Google Scholar 

  • Brodie J, Maggs CA, John DM (2007) Green seaweeds of Britain and Ireland. British Phycological Society, London

    Google Scholar 

  • Buschmann H, Zachgo S (2016) The evolution of cell division: from streptophyte algae to land plants. Trends Plant Sci 21:872–883. https://doi.org/10.1016/j.tplants.2016.07.004

  • Butterfield NJ (2000) Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity and the mesoproterozoic/neoproterozoic radiation of eukaryotes. Paleobiology 26:386–404

    Article  Google Scholar 

  • Butterfield NJ (2015) Early evolution of the Eukaryota. Palaeontology 58:5–17

    Article  Google Scholar 

  • Butterfield NJ, Knoll AH, Swett K (1990) A bangiophyte red alga from the Proterozoic of Arctic Canada. Science 250:104–107

    Article  CAS  PubMed  Google Scholar 

  • Butterfield NJ, Knoll AH, Swett K (1994) Paleobiology of the Neoproterozoic Svanbergfjellet formation, Spitsbergen. Fossils Strata 34:1–84

    Article  Google Scholar 

  • Caisová L, Marin B, Sausen N, Pröschold T, Melkonian M (2011) Polyphyly of Chaetophora and Stigeoclonium within the Chaetophorales (Chlorophyceae), revealed by sequence comparisons of nuclear-encoded SSU rRNA genes. J Phycol 47:164–177. https://doi.org/10.1111/j.1529-8817.2010.00949.x

  • Caisová L, Melkonian M (2018) The Chaetophorales (Chlorophyceae)—a taxonomic revision at family level. Eur J Phycol 53:381–392

    Article  Google Scholar 

  • Carvalho-Santos Z, Azimzadeh J, Pereira-Leal JB, Bettencourt-Dias M (2011) Tracing the origins of centrioles, cilia, and flagella. J Cell Biol 194:165–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavalier-Smith T (2002) Origins of the machinery of recombination and sex. Heredity 88:125–141

    Article  CAS  PubMed  Google Scholar 

  • Chantangsi C, Esson HJ, Leander BS (2008) Morphology and molecular phylogeny of a marine interstitial tetraflagellate with putative endosymbionts: Auranticordis quadriverberis n. gen. et sp. (Cercozoa). BMC Microbiol 8:123

    Google Scholar 

  • Chapuis IS, Necchi O Jr, Zuccarello GC, Xie S-L, Aboal M, Sánchez Castillo PM, Vis ML (2017) A new genus, Volatus and for new species of Batrachospermum sensu stricto (Batrachospermales, Rhodophyta). Phycologia 56:454–468

    Article  Google Scholar 

  • Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102:71–81

    Article  CAS  PubMed  Google Scholar 

  • Cheng S, Xian W, Fu Y, Marin B, Keller J, Wu T, Sun W, Li X, Xu Y, Zhang Y, Wittek S, Reder T, Günther G, Gontcharov A, Wang S, Li L, Liu X, Wang J, Yang H, Xu X, Delaux P-M, Melkonian B, Wong GK-S, Melkonian M (2019b) Genomes of subaerial zygnematophyceae provide insights into land plant evolution. Cell 179:1057–1067.e1014. https://doi.org/10.1016/j.cell.2019.10.019

  • Chihara M, Inouye I, Takahata N (1986) Oltmannsiellopsis, a new Genus of marine flagellate (Dunaliellaceae, Chlorophyceae). Arch Protistenk 132:313–324

    Article  Google Scholar 

  • Chong J, Jackson C, Kim JI, Yoon HS, Reyes-Prieto A (2014) Molecular markers from different genomic compartments reveal cryptic diversity within glaucophyte species. Mol Phylogenet Evol 76:181–188

    Article  CAS  PubMed  Google Scholar 

  • Ciancia M, Fernández PV, Leliaert F (2020) Diversity of sulfated polysaccharides from cell walls of coenocytic green algae and their structural relationships in view of green algal evolution. Front Plant Sci 11

    Google Scholar 

  • Cocquyt E, Verbruggen H, Leliaert F, De Clerck O (2010) Evolution and cytological diversification of the green seaweeds (Ulvophyceae). Mol Biol Evol 27:2052–2061

    Article  CAS  PubMed  Google Scholar 

  • Coesel P, Vanhoof A, Meesters K (2017) Zygospore morphology in the conjugating green alga Spirotaenia diplohelica (Streptophyta, Zygnematophyceae, Mesotaeniaceae). Phytotaxa 329: 284–288. https://doi.org/10.11646/phytotaxa.329.3.10

  • Colbath GK (1983) Fossil prasinophycean phycomata (Chlorophyta) from the Silurian Bainbridge formation, Missouri, USA. Phycologia 22:249–265

    Article  Google Scholar 

  • Collén J, Porcel B, Carré W, Ball SG, Chaparro C, Tonon T, BarbeyronT MG, Noel B, Valentin K, Elias M, Artiguenave F, Arun A, Aury J-M, Barbosa-Neto JF, Bothwell JH, Bouget FY, Brillet L, Cabello-Hurtado F, Capella-Gutiérrez S, Charrier B, Cladière L, Cock JM, CoelhoSM CC, Czjzek M, Da Silva C, Delage L, Denoeud F, Deschamps P, Dittami SM, Gabaldón T, Gachon CMM, Groisillier A, Hervé C, Jabbari K, Katinka M, Kloareg B, Kowalczyk N, Labadie K, Leblanc C, Lopez PJ, McLachlan DH, Meslet-Cladiere L, Moustafa A, Nehr Z, Collén PN, Panaud O, Partensky F, Poulain J, Rensing SA, Rousvoal S, Samson G, Symeonidi A, Weissenbach J, Zambounis A, Wincker P, Boyen C (2013) Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proc Natl Acad Sci 110(13):5247–5252

    Article  PubMed  PubMed Central  Google Scholar 

  • Courties C, Vaquer A, Troussellier M, Lautier J, Chretiennot-Dinet MJ, Neveux J, Machado C, Claustre H (1994) Smallest eukaryotic organism. Nature 370:255–355

    Article  Google Scholar 

  • Darienko T, Rad-Menéndez C, Campbell C, Pröschold T (2019) Are there any true marine Chlorella species? Molecular phylogenetic assessment and ecology of marine Chlorella-like organisms, including a description of Droopiella gen. nov. Syst Biodivers 1–19. https://doi.org/10.1080/14772000.2019.1690597

  • Daugbjerg N, Fassel NM, Moestrup Ø (2020) Microscopy and phylogeny of Pyramimonas tatianae sp. nov. (Pyramimonadales, Chlorophyta), a scaly quadriflagellate from Golden Horn Bay (eastern Russia) and formal description of Pyramimonadophyceae classis nova. Eur J Phycol 55:49–63

    Article  Google Scholar 

  • Darienko T, Friedl T (2021) 2.6 Eukaryotic algal communities of rock surfaces. In: Büdel B, Friedl T (eds) Life at rock surfaces. De Gruyter, pp 189–212. https://doi.org/10.1515/9783110646467-008

  • Darienko T, Pröschold T (2015) Genetic variability and taxonomic revision of the genus Auxenochlorella (Shihira et Krauss) Kalina et Puncocharova (Trebouxiophyceae, Chlorophyta). J Phycol 51:394–400. https://doi.org/10.1111/jpy.12279

  • Davison A, Blaxter M (2005) Ancient origin of glycosyl hydrolase family 9 cellulase genes. Mol Biol Evol 22(5):1273–1284

    Article  CAS  PubMed  Google Scholar 

  • De Clerck O, Bogaert K, Leliaert F (2012) Diversity and evolution of algae: primary endosymbioses. Adv Bot Res 64:55–86

    Article  Google Scholar 

  • De Clerck O, Bolton JJ, Anderson RJ, Coppejans E (2005) Guide to the seaweeds of KwaZulu-Natal. Scr Bot Belg 33:1–294

    Google Scholar 

  • de Vries J, Curtis BA, Gould SB, Archibald JM (2018) Embryophyte stress signaling evolved in the algal progenitors of land plants. Proc Natl Acad Sci 115:E3471–E3480. https://doi.org/10.1073/pnas.1719230115

  • de Vries J, de Vries S, Slamovits CH, Rose LE, Archibald JM (2017) How embryophytic is the biosynthesis of phenylpropanoids and their derivatives in streptophyte algae? Plant Cell Physiol 58:934–945. https://doi.org/10.1093/pcp/pcx037

  • de Vries S, Fürst-Jansen JMR, Irisarri I, Dhabalia Ashok A, Ischebeck T, Feussner K, Abreu IN, Petersen M, Feussner I, de Vries J (2021) The evolution of the phenylpropanoid pathway entailed pronounced radiations and divergences of enzyme families. Plant J 107:975–1002. https://doi.org/10.1111/tpj.15387

  • Del Cortona A, Jackson CJ, Bucchini F, Van Bel M, D’hondt S, Škaloud P, Delwiche CF, Knoll AH, Raven JA, Verbruggen H, Vandepoele K, De Clerck O, Leliaert F (2020) Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds. Proc Natl Acad Sci USA 117:2551–2559

    Google Scholar 

  • Delaux P-M, Radhakrishnan GV, Jayaraman D, Cheema J, Malbreil M, Volkening JD, Sekimoto H, Nishiyama T, Melkonian M, Pokorny L, Rothfels CJ, Sederoff HW, Stevenson DW, Surek B, Zhang Y, Sussman MR, Dunand C, Morris RJ, Roux C, Wong GK-S, Oldroyd GED, Ané J-M (2015) Algal ancestor of land plants was preadapted for symbiosis. Proc Natl Acad Sci 112:13390. https://doi.org/10.1073/pnas.1515426112

  • Delaux P-M, Schornack S (2021) Plant evolution driven by interactions with symbiotic and pathogenic microbes. Science 371:eaba6605. https://doi.org/10.1126/science.aba6605

  • Delaye L, Valadez-Cano C, Pérez-Zamorano B (2016) How really ancient is paulinella chromatophora? PLoS Curr Tree Life Edn 1. https://doi.org/10.1371/currents.tol.e68a099364bb1a1e129a17b4e06b0c6b

  • Demir-Hilton E, Sudek S, Cuvelier ML, Gentemann CL, Zehr JP, Worden AZ (2011) Global distribution patterns of distinct clades of the photosynthetic picoeukaryote Ostreococcus. ISME J 5:1095–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derelle E, Ferraz C, Rombauts S, Rouze P, Worden AZ, Robbens S, Partensky F, Degroeve S, Echeynie S, Cooke R, Saeys Y, Wuyts J, Jabbari K, Bowler C, Panaud O, Piegu B, Ball SG, Ral JP, Bouget FY, Piganeau G, De Baets B, Picard A, Delseny M, Demaille J, Van de Peer Y, Moreau H (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci USA 103:11647–11652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Díaz-Tapia P, Bárbara I (2013) Seaweeds from sand-covered rocks of the Atlantic Iberian Peninsula. Part. 1. The Rhodomelaceae (Ceramiales, Rhodophyta). Cryptogamie Algologie 34:325–422

    Article  Google Scholar 

  • Díaz-Tapia P, Maggs CA, Macaya EC, Verbruggen H (2018) Widely distributed red algae often represent hidden introductions, complexes of cryptic species or species with strong phylogeographic structure. J Phycol 54:829–839

    Article  PubMed  Google Scholar 

  • Domozych DS (2019) Algal cell walls. e LS.https://doi.org/10.1002/9780470015902.a0000315.pub4

  • Domozych D, Ciancia M, Fangel JU, Mikkelsen MD, Ulvskov P, Willats WGT (2012) The cell walls of green algae: a journey through evolution and diversity. Front Plant Sci 3

    Google Scholar 

  • Dutcher SK, O’Toole ET (2016) The basal bodies of Chlamydomonas reinhardtii. Cilia 5:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Eckhardt R, Schnetter R, Seibold G (1986) Nuclear behaviour during the life cycle of Derbesia (Chlorophyceae). Brit Phycol J 21:287–295

    Article  Google Scholar 

  • Eloranta P, Kwandrans J, Kusel-Fetzmann E (2011) Rhodophyta and Phaeophyceae. In: Büdel B, Gärtner G, Krienitz L, Preisig HR, Schagerl M (eds) Freshwater flora of Central Europe, vol 7. Spektrum Akademischer Verlag, 155 p

    Google Scholar 

  • Engel BD, Schaffer M, Kuhn Cuellar L, Villa E, Plitzko JM, Baumeister W (2015) Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography. eLife 4:e04889

    Google Scholar 

  • Entwisle TJ, Johnston ET, Lam DL, Vis ML (2016) Nocturama gen. nov., Nothocladus s. lat. and other taxonomic novelties resulting from the further resolution of paraphyly in Australasian members of Batrachospermum (Batrachospermales, Rhodophyta). J Phycol 52:384–396

    Article  CAS  PubMed  Google Scholar 

  • Entwisle TJ, Vis ML, Chiasson WB, Necchi O Jr, Sherwood AR (2009) Systematics of the Batrachospermales (Rhodophyta)—a synthesis. J Phycol 45:704–715

    Article  PubMed  Google Scholar 

  • Esser K (2000) Kryptogamen 1: Cyanobakterien, Algen, Pilze, Flechten, 3rd edn. Springer, Berlin Heidelberg, 585 p

    Google Scholar 

  • Evans JR, Chapuis IS, Vis ML (2017) Adding to the freshwater red algal diversity in North America: Lympha mucosa gen. et sp. nov. (Batrachospermales, Rhodophyta). Algae 32:171–179

    Article  Google Scholar 

  • Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJR (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360

    Article  CAS  PubMed  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537

    Article  CAS  Google Scholar 

  • Field KJ, Pressel S (2018) Unity in diversity: structural and functional insights into the ancient partnerships between plants and fungi. New Phytol 220:996–1011. https://doi.org/10.1111/nph.15158

  • Fischer E, Gerlach J, Killmann D, Quandt D (2020) The freshwater red algae (Batrachospermales, Rhodophyta) of Africa and Madagascar I. New species of Kumanoa, Sirodotia and the new genus Ahidranoa (Batrachospermaceae). Plant Fungal Syst 65(1):147–166

    Google Scholar 

  • Flores-Sandoval E, Eklund DM, Hong S-F, Alvarez JP, Fisher TJ, Lampugnani ER, Golz JF, Vázquez-Lobo A, Dierschke T, Lin S-S, Bowman John L (2018a) Class C ARFs evolved before the origin of land plants and antagonize differentiation and developmental transitions in Marchantia polymorpha. New Phytol 218:1612–1630. https://doi.org/10.1111/nph.15090

  • Floyd GL, O’Kelly CJ (1990) Phylum Chlorophyta. Class Ulvophyceae. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of protoctista. The structure, cultivation, habitats and life histories of the eukaryotic microorganisms and their descendants exclusive of animals, plants and fungi. Jones and Bartlett Publishers, Boston, pp 600-07

    Google Scholar 

  • Frazer J (2015) Why red algae never packed their bags for Land. Scientific American. https://blogs.scientificamerican.com/artful-amoeba/why-red-algae-never-packed-their-bags-for-land/

  • Friedl T, O’Kelly CJ (2002) Phylogenetic relationships of green algae assigned to the genus Planophila (Chlorophyta): evidence from 18S rDNA sequence data and ultrastructure. Eur J Phycol 37:373–384

    Article  Google Scholar 

  • Friedl T, Rybalka N (2012) Systematics of the green algae: a brief introduction to the current status. In: Lüttge U, Beyschlag W, Büdel B, Francis D (eds) Progress in botany, vol 73. Springer Berlin Heidelberg, pp 259–280. https://doi.org/10.1007/978-3-642-22746-2_10

  • Friedmann I (1959) Structure, life-history, and sex determination of Prasiola stipitata Suhr. Ann Bot 23:571–594

    Article  Google Scholar 

  • Fritsch FE (1945) Structure and reproduction of the algae, vol 1. Cambridge University Press, Cambridge

    Google Scholar 

  • Fučíková K, Lewis PO, Lewis LA (2014) Widespread desert affiliation of trebouxiophycean algae (Trebouxiophyceae, Chlorophyta) including discovery of three new desert genera. Phycol Res 62:294–305. https://doi.org/10.1111/pre.12062

  • Fučíková K, Lewis PO, Neupane S, Karol KG, Lewis LA (2019) Order, please! Uncertainty in the ordinal-level classification of Chlorophyceae. Peer J 7:e6899. https://doi.org/10.7717/peerj.6899

  • Fučíková K, Pažoutová M, Rindi F (2015) Meiotic genes and sexual reproduction in the green algal class Trebouxiophyceae (Chlorophyta). J Phycol 51:419–430

    Article  PubMed  Google Scholar 

  • Gabr A, Grossman AR, Bhattacharya D (2020) Paulinella, a model for understanding plastid primary endosymbiosis. J Phycol 56(4):837–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gantt E (1990) Pigmentation and photoacclimation. In: Cole KM, Sheath RG (eds) Biology of the red algae. Cambridge University Press, New York, pp 203–219

    Google Scholar 

  • Gao K, Aruga Y, Asada H, Ishihara T, Akano T, Kiyohara M (1993) Calcification in the articulated coralline alga Corallina pilulifera, with special reference to the effect of elevated CO2 concentration. Mar Biol 117:129–132

    Article  CAS  Google Scholar 

  • Gao G, Clare AS, Rose C, Caldwell GS (2017) Eutrophication and warming-driven green tides (Ulva rigida) are predicted to increase under future climate change scenarios. Mar Pollut Bull 114:439–447

    Article  CAS  PubMed  Google Scholar 

  • Gärtner G (1987) Compsopogon coeruleus (Balbis) Montagne (Rhodophyta, Bangiophycidae) erstmal in Tirol als Aquarienbewohner nachgewiesen. Berichte des Naturwissenschaftlich-medizinischen Vereins Innsbruck 74:41–47

    Google Scholar 

  • Gärtner G, Ingolic E (1989) Some ultrastructural aspects of the pyrenoids in Chlorokybus atmophyticus Geitler (Charophyceae, Chlorokybales). Phyton (Austria) 29:49–59

    Google Scholar 

  • Geitler L (1959) Syncyanosen. In: Ruhland W (ed) Handbuch der Pflanzenphysiologie, vol 11. Springer, Berlin/Göttingen/Heidelberg, pp 530–545

    Google Scholar 

  • Gibson TM, Shih PM, Cumming VM, Fischer WW, Crockford PW, Hodgskiss MS, Wörndle S, Creaser RA, Rainbird RH, Skulski TM (2017) Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis. Geology 46(2):135–138

    Google Scholar 

  • Glaser K, Donner A, Albrecht M, Mikhailyuk T, Karsten U (2017a) Habitat-specific composition of morphotypes with low genetic diversity in the green algal genus Klebsormidium (Streptophyta) isolated from biological soil crusts in Central European grasslands and forests. Eur J Phycol 52:188–199. https://doi.org/10.1080/09670262.2016.1235730

  • Goff LJ, Coleman AW (1990) DNA: microspectrophotometric studies. In: Cole KM, Sheath RG (eds) Biology of the red algae. Cambridge University Press, Cambridge, UK, pp 43–72

    Google Scholar 

  • Gontcharov AA (2008) Phylogeny and classification of Zygnematophyceae (Streptophyta): current state of affairs. Fottea 8:87–104. https://doi.org/10.5507/fot.2008.004

  • Gontcharov AA, Melkonian M (2004) Unusual position of the genus Spirotaenia (Zygnematophyceae) among streptophytes revealed by SSU rDNA and rbcL sequence comparisons. Phycologia 43:105–113. https://doi.org/10.2216/i0031-8884-43-1-105.1

  • Graham LE, Graham JM, Wilcox LW, Cook ME (2016) Algae, 3rd edn. LJLM Press, p 683

    Google Scholar 

  • Grall J, Hall-Spencer JM (2003) Problems facing maerl conservation in Brittany. J Aquat Conserv Mar Freshw Ecosyst 13:55–64

    Google Scholar 

  • Grant SWF, Knoll AH, Germs GJB (1991) Probable calcified metaphytes in the latest Proterozoic Nama Group, Namibia: origin, diagenesis, and implications. J Paleontol 65(1):1–18

    Article  CAS  PubMed  Google Scholar 

  • Green TGA, Kilian E, Lange OL (1991) Pseudocyphellaria dissimilis: a desiccation-sensitive, highly shade-adapted lichen from New Zealand. Oecologia 85:498–503

    Article  CAS  PubMed  Google Scholar 

  • Grimsley N, Pequin B, Bachy C, Moreau H, Piganeau G (2010) Cryptic sex in the smallest eukaryotic marine green alga. Mol Biol Evol 27:47–54

    Article  CAS  PubMed  Google Scholar 

  • Guillou L, Eikrem W, Chretiennot-Dinet MJ, Le Gall F, Massana R, Romari K, Pedros-Alio C, Vaulot D (2004) Diversity of picoplanktonic prasinophytes assessed by direct nuclear SSU rDNA sequencing of environmental samples and novel isolates retrieved from oceanic and coastal marine ecosystems. Protist 155:193–214

    Article  CAS  PubMed  Google Scholar 

  • Guiry MD (2012) How many species of algae are there? J Phycol 48:1057–1063

    Article  PubMed  Google Scholar 

  • Guiry MD, Guiry GM (2023) AlgaeBase. World-wide electronic publication. National University of Ireland, Galway. http://www.algaebase.org. Accessed 14 Feb 2023

  • Gustavson TC, Delevoryas T (1992) Caulerpa-like marine alga from Permian strata, Palo Duro Basin, West Texas. J Paleontol 66:160–161

    Google Scholar 

  • Hall JD, Delwiche CF (2007) In the shadow of giants: systematics of the charophyte green algae. In: Brodie J, Lewis J (eds) Unravelling the algae: the past, present, and future of algal systematics. Taylor and Francis, pp 155–169

    Chapter  Google Scholar 

  • Hallmann C, Hoppert M, Mudimu O, Friedl T (2016) Biodiversity of green algae covering artificial hard substrate surfaces in a suburban environment: a case study using molecular approaches. J Phycol 52:732–744. https://doi.org/10.1111/jpy.12437

  • Hasegawa T, Miyashita H, Kawachi M, Ikemoto H, Kurano N, Miyachi S, Chihara M (1996) Prasinoderma coloniale gen. et sp. nov., a new pelagic coccoid prasinophyte from the western Pacific ocean. Phycologia 35:170–176

    Article  Google Scholar 

  • Henderson GP, Gan L, Jensen GJ (2007) 3-D ultrastructure of O. tauri: electron cryotomography of an entire eukaryotic cell. PloS one 2(8): e749

    Google Scholar 

  • Herron MD, Hackett JD, Aylward FO, Michod RE (2009) Triassic origin and early radiation of multicellular volvocine algae. Proc Natl Acad Sci USA 106:3254–3258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hess S, Williams SK, Busch A, Irisarri I, Delwiche CF, de Vries S, Darienko T, Roger AJ, Archibald JM, Buschmann H, von Schwartzenberg K, de Vries J (2022) A phylogenomically informed five-order system for the closest relatives of land plants. Curr Biol 32:4473–4482. https://doi.org/10.1016/j.cub.2022.08.022

  • Heynig H (1971) Die Rotalge Compsopogon als Bewohner von Warmwasser-Aquarien. Mikrokosmos 60:228–235

    Google Scholar 

  • Hoffman LR (1983) Atractomorpha echinata gen. et sp. nov., a new anisogamous member of the Sphaeropleaceae (Chlorophyceae). J Phycol 19:76–86

    Google Scholar 

  • Holzinger A, Pichrtová M (2016) Abiotic stress tolerance of charophyte green algae: new challenges for omics techniques. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.00678

  • Hori T, Enomoto S (1978) Developmental cytology of Dictyosphaeria cavernosa. I. Light and electron microscope observations on cytoplasmic cleavage in zooid formation. Bot Mar 21:401–408

    Article  Google Scholar 

  • Hoshaw RW, Hilton RL (1966) Observations on the sexual cycle of the saccoderm desmid Spirotaenia condensata. J Arizona Acad Sci 4:88–92

    Article  Google Scholar 

  • Hou Z, Ma X, Shi X, Li X, Yang L, Xiao S, De Clerck O, Leliaert F, Zhong B (2022) Phylotranscriptomic insights into a Mesoproterozoic-Neoproterozoic origin and early radiation of green seaweeds (Ulvophyceae). Nat Commun 13:1610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huisman JM (2015) Algae of Australia: marine benthic algae of north-western Australia. 1. Green and brown algae. Australian Biological Resources Study/CSIRO Publishing, Australia, pp viii + 320

    Google Scholar 

  • Irisarri I, Darienko T, Pröschold T, Fürst-Jansen JMR, Jamy M, de Vries J (2021) Unexpected cryptic species among streptophyte algae most distant to land plants. Proc R Soc B Biol Sci 288:20212168. https://doi.org/10.1098/rspb.2021.2168

  • Jackson CJ, Reyes-Prieto A (2014) The mitochondrial genomes of the Glaucophytes Gloeochaete wittrockiana and Cyanoptyche gloeocystis: multilocus phylogenetics suggests a monophyletic Archaeplastida. Genome Biol Evol 6(10): 2774–2785

    Google Scholar 

  • Jackson C, Clayden S, Reyes-Prieto A (2015) The Glaucophyta: the blue-green plants in a nutshell. Acta Societas Botanicorum Poloniae 84(2):149–165

    Article  Google Scholar 

  • Janouškovec J, Horák A, Oborník M, Lukeš J, Keeling PJ (2010) A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc Natl Acad Sci 107:10949–10954. https://doi.org/10.1073/pnas.1003335107

  • Jeong SY, Diaz-Pulido G, Maneveldt GW, Gabrielson PW, Nelson WA, Won BY, Cho TO (2022) Phymatolithopsis gen. nov. (Hapalidiales, Corallinophycidae, Rhodophyta) based on molecular and morpho-anatomical evidence. J Phycol 58(1):161–178

    Google Scholar 

  • Jeong SY, Won BY, Cho TO (2019) Two new encrusting species from the genus Phymatolithon (Hapalidiales, Corallinophycidae, Rhodophyta) from Korea. Phycologia. https://doi.org/10.1080/00318884.2019.1625608

  • Jiao C, Sørensen I, Sun X, Sun H, Behar H, Alseekh S, Philippe G, Palacio Lopez K, Sun L, Reed R, Jeon S, Kiyonami R, Zhang S, Fernie AR, Brumer H, Domozych DS, Fei Z, Rose JKC (2020) The Penium margaritaceum genome: hallmarks of the origins of land plants. Cell 181:1097-1111.e1012. https://doi.org/10.1016/j.cell.2020.04.019

  • Joubert JJ, Rijkenberg FHJ (1971) Parasitic green algae. Annu Rev Phytopathol 9:45–64

    Article  Google Scholar 

  • Jouenne F, Eikrem W, Le Gall F, Marie D, Johnsen G, Vaulot D (2011) Prasinoderma singularis sp. nov. (Prasinophyceae, Chlorophyta), a solitary coccoid prasinophyte from the South-East Pacific Ocean. Protist 162:70–84

    Google Scholar 

  • Kadlubowska J (2009) Süßwasserflora von Mitteleuropa, Bd. 16: Chlorophyta VIII. Conjugatophyceae I: Zygnemales. Süßwasserflora von Mitteleuropa: Spektrum Akademischer Verlag, pp IV, 534

    Google Scholar 

  • Kamiya M, Lindstrom SC, Nakayama T, Yokoyama A, Lin S-M, Guiry MD, Gurgel CFD, Huisman JM, Kitayama T, Suzuki M, Cho TO, Frey W (eds) (2017) Part 2/2: Photoautotrophic eukaryotic Algae—Rhodophyta. In: Frey W (ed) Syllabus of plant families—a Engler’s syllabus der Pflanzenfamilien. Schweizerbart Science Publishers, Stuttgart, Germany, 171 p

    Google Scholar 

  • Karol KG, McCourt RM, Cimino MT, Delwiche CF (2001) The closest living relatives of land plants. Science 294:2351–2353. https://doi.org/10.1126/science.1065156

  • Karsten U, Friedl T, Schumann R, Hoyer K, Lembcke S (2005) Mycosporine-like amino acids and phylogenies in green algae: prasiola and its relatives from the Trebouxiophyceae (Chlorophyta). J Phycol 41:557–566. https://doi.org/10.1111/j.1529-8817.2005.00081.x

  • Karsten U, Holzinger A (2012) Light, temperature, and desiccation effects on photosynthetic activity, and drought-induced ultrastructural changes in the green alga Klebsormidium dissectum (Streptophyta) from a high alpine soil crust. Microb Ecol 63:51–63. https://doi.org/10.1007/s00248-011-9924-6

  • Keeling PJ (2010) The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc B Biol Sci 365:729–748

    Article  CAS  Google Scholar 

  • Kenrick P, Crane PR (1997) The origin and early evolution of plants on land. Nature 389:33–39

    Article  CAS  Google Scholar 

  • Kies L (1967) Oogamie bei Eremosphaera viridis De Bary. Flora oder Allgemeine botanische Zeitung Abt B, Morphologie und Geobotanik. 157:1–12. https://doi.org/10.1016/S0367-1801(17)30047-9

  • Kies L (1974) Elektronenmikroskopische Untersuchungen an Paulinella chromatophora Lauterborn, einer Thekamöbe mit blau-grünen Endosymbionten (Cyanellen). Protoplasma 80:69–89

    Article  CAS  PubMed  Google Scholar 

  • Kies L (1976) Untersuchungen zur Feinstruktur und taxonomischen Einordnung von Gloeochate wittrockiana, einer apoplastidalen capsalen Alge mit blaugrünen Endosymbionten (Cyanellen). Protoplasma 87:419–446

    Article  Google Scholar 

  • Kies L (1979) Zur systematischen Einordnung von Cyanophora paradoxa, Gloeochaete wittrockiana und Glaucocystis nostochinearum. Berichte der Deutschen Botanischen Gesellschaft 92:445–454

    Article  Google Scholar 

  • Kies L (1989) Ultrastructure of Cyanoptyche gloeocystis f. dispersa (Glaucocystophyceae). Plant Syst Evol 164:65–73

    Article  Google Scholar 

  • Kim GH, Klotchkova TA, Kang Y-M (2001) Life without a cell membrane: regeneration of protoplasts from disintegrated cells of the marine green alga Bryopsis plumosa. J Cell Sci 114:2009–2014

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Park MG (2016) Paulinella longichromatophora sp. nov., a new marine photosynthetic testate amoeba containing a chromatophore. Protist 167:1–12

    Article  PubMed  Google Scholar 

  • Koeman R, Van den Hoek C (1981) The taxonomy of Ulva (Chlorophyceae) in the Netherlands. Br Phycol J 16:9–53

    Article  Google Scholar 

  • Kugrens P, Clay BL, Meyer CJ (1999) Ultrastructure and description of Cyanophora biloba sp. nov., with additional observations on C. paradoxa (Glaucophyta). J Phycol 35:844–854

    Article  Google Scholar 

  • Kustatscher E, Dotzler N, Taylor TN, Krings M (2014) Microfossils with suggested affinities to the Pyramimonadales (Pyramimonadophyceae, Chlorophyta) from the lower Devonian Rhynie chert. Acta Palaeobot 54:163–171

    Article  Google Scholar 

  • La Claire JW II (1992) Contractile movements in the algae: the Siphonocladales as model systems. In: The cytoskeleton of the algae. CRC Press, pp 239–253

    Google Scholar 

  • Lass-Flörl C, Mayr A (2007) Human protothecosis. Clin Microbiol Rev 20:230–242

    Article  PubMed  PubMed Central  Google Scholar 

  • Lauterborn R (1895) Protozoenstudien II. Paulinella chromatophora nov. gen., nov. spec., ein beschalter Rhizopode des Süßwassers mit blaugrünen chromatophorenartigen Einschlüssen. Zeitschrift für wissenschaftliche Zoologie 59:537–544

    Google Scholar 

  • Lechtreck KF, Gould TJ, Witman GB (2013) Flagellar central pair assembly in Chlamydomonas reinhardtii. Cilia 2:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee RE (2018) Phycology, 5th edn. Cambridge University Press, New York, NY, p 535

    Book  Google Scholar 

  • Leliaert F, De Clerck O, Verbruggen H, Boedeker C, Coppejans E (2007) Molecular phylogeny of the Siphonocladales (Chlorophyta: Cladophorophyceae). Mol Phylogenet Evol 44:1237–1256

    Article  CAS  PubMed  Google Scholar 

  • Leliaert F, Lopez-Bautista JM (2015) The chloroplast genomes of Bryopsis plumosa and Tydemania expeditiones (Bryopsidales, Chlorophyta): compact genomes and genes of bacterial origin. BMC Genom 16

    Google Scholar 

  • Leliaert F, Lopez-Bautista JM, De Clerck O (2015) Class Ulvophyceae KR Mattox & KD Stewart. In: Frey W (ed) Part 2/1: Photoautotrophic eukaryotic Algae. Syllabus of plant families—a Engler’s syllabus der Pflanzenfamilien. Schweizerbart Science Publishers, Stuttgart, Germany, pp 247–281

    Google Scholar 

  • Leliaert F, Smith DR, Moreau H, Herron MD, Verbruggen H, Delwiche CF, De Clerck O (2012) Phylogeny and molecular evolution of the green algae. Crit Rev Plant Sci 31:1–46. https://doi.org/10.1080/07352689.2011.615705

  • Leliaert F, Tronholm A, Lemieux C, Turmel M, DePriest MS, Bhattacharya D, Karol KG, Fredericq S, Zechman FW, Lopez-Bautista JM (2016) Chloroplast phylogenomic analyses reveal the deepest-branching lineage of the Chlorophyta, Palmophyllophyceae class. nov. Sci Rep 6:25367

    Google Scholar 

  • Leliaert F, Verbruggen H, Zechman FW (2011) Into the deep: new discoveries at the base of the green plant phylogeny. BioEssays 33:683–692

    Article  PubMed  Google Scholar 

  • Lemieux C, Otis C, Turmel M (2007) A clade uniting the green algae Mesostigma viride and Chlorokybus atmophyticus represents the deepest branch of the Streptophyta in chloroplast genome-based phylogenies. BMC Biol 5:2. https://doi.org/10.1186/1741-7007-5-2

  • Lemieux C, Otis C, Turmel M (2014a) Six newly sequenced chloroplast genomes from prasinophyte green algae provide insights into the relationships among prasinophyte lineages and the diversity of streamlined genome architecture in picoplanktonic species. BMC Genom 15:857

    Article  Google Scholar 

  • Lemieux C, Otis C, Turmel M (2014b) Chloroplast phylogenomic analysis resolves deep-level relationships within the green algal class Trebouxiophyceae. BMC Evol Biol 14:211. https://doi.org/10.1186/s12862-014-0211-2

  • Lepère C, Vaulot D, Scanlan DJ (2009) Photosynthetic picoeukaryote community structure in the South East Pacific Ocean encompassing the most oligotrophic waters on earth. Environ Microbiol 11:3105–3117

    Article  PubMed  Google Scholar 

  • Letsch MR, Muller-Parker G, Friedl T, Lewis LA (2009) Elliptochloris marina sp. nov. (Trebouxiophyceae, Chlorophyta), symbiotic green alga of the temperate pacific sea anemones Anthopleura xanthogrammica and A. elegantissima (Anthozoa, Cnidaria). J Phycol 45:1127–1135. https://doi.org/10.1111/j.1529-8817.2009.00727.x

  • Leukart P, Knappe J (1995) Observations on Balbiania investiens (Rhodophyta) from two new locations in Germany and from laboratory culture. Nova Hedwigia 60:527–532

    Google Scholar 

  • Lewin RA, Krienitz L, Goericke R, Takeda H, Hepperle D (2000) Picocystis salinarum gen. et sp. nov. (Chlorophyta)—a new picoplanktonic green alga. Phycologia 39:560–565

    Article  Google Scholar 

  • Lewis LA, McCourt RM (2004) Green algae and the origin of land plants. Am J Bot 91:1535–1556. https://doi.org/10.3732/ajb.91.10.1535

  • Lhee D, Ha J-S, Kim S, Park MG, Bhattacharya D, Yoon HS (2019) Evolutionary dynamics of the chromatophore genome in three photosynthetic Paulinella species. Sci Rep 9:2560. https://doi.org/10.1038/s41598-019-38621-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Wang S, Wang H, Sahu SK, Marin B, Li H, Xu Y, Liang H, Li Z, Cheng S, Reder T, Çebi Z, Wittek S, Petersen M, Melkonian B, Du H, Yang H, Wang J, Wong GK-S, Xu X, Liu X, Van de Peer Y, Melkonian M, Liu H (2020) The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants. Nat Ecol Evol 4:1220–1231

    Article  PubMed  PubMed Central  Google Scholar 

  • Li M, Calteau A, Semchonok DA, Witt TA, Nguyen JT, Sassoon N, Boekema EJ, Whitelegge J, Gugger M, Bruce BD (2019a) Physiological and evolutionary implications of tetrameric photosystem I in cyanobacteria. Nature Plants 5:1309–1319

    Article  CAS  PubMed  Google Scholar 

  • Li S, Tan H, Liu B, Zhu H, Hu Z, Liu G (2021) Watanabeales ord. nov. and twelve novel species of Trebouxiophyceae (Chlorophyta). J Phycol 57:1167–1186. https://doi.org/10.1111/jpy.13165

  • Li W, Ding J, Li F, Wang T, Yang Y, Li Y, Campbell DA et al (2019b) Functional responses of smaller and larger diatoms to gradual CO2 rise. Sci Total Environ 680:79–90

    Article  CAS  PubMed  Google Scholar 

  • Littler MM, Littler DS, Blair SM, Norris JM (1986) Deep-water plant communities from an uncharted seamount off San Salvador Island, Bahamas: distribution, abundance, and primary productivity. Deep Sea Res Part A Oceanogr Res Papers 33:881–892

    Article  CAS  Google Scholar 

  • Liu LC (2009) Mechanism for differential desiccation tolerance in Porphyra species. Dissertation for the degree of Doctor of Philosophy in Biology, Graduate School of Arts and Sciences of the Northeastern University, Boston Massachusetts, USA, 134 p

    Google Scholar 

  • Lokhorst GM (1996) Comparative taxonomic studies on the genus Klebsormidium (Charophyceae) in Europe. Cryptogam Stud 5:1–132

    Google Scholar 

  • Lokhorst GM, Sluiman HJ, Star W (1988) The ultrastructure of mitosis and cytokinesis in the sarcinoid Chlorokybus atmophyticus (Chlorophyta, Charophyceae) revealed by rapid freeze fixation and freeze substitution. J Phycol 24:237–248. https://doi.org/10.1111/j.1529-8817.1988.tb04239.x

  • Lokhorst GM, Vroman M (1972) Taxonomic study on three freshwater Ulothrix species. Acta Botanica Neerlandica 21:449–480

    Article  Google Scholar 

  • Lopes dos Santos A, Gourvil P, Tragin M, Noel M-H, Decelle J, Romac S, Vaulot D (2016) Diversity and oceanic distribution of prasinophytes clade VII, the dominant group of green algae in oceanic waters. ISME J

    Google Scholar 

  • Lopes dos Santos A, Pollina T, Gourvil P, Corre E, Marie D, Garrido JL, Rodríguez F, Noël M-H, Vaulot D, Eikrem W (2017) Chloropicophyceae, a new class of picophytoplanktonic prasinophytes. Sci Rep 7:14019

    Article  PubMed  PubMed Central  Google Scholar 

  • López-Bautista JM, Waters DA, Chapman RL (2002) The Trentepohliales revisited. Constancea 83

    Google Scholar 

  • Ma S, Huss VAR, Tan D, Sun X, Chen J, Xie Y, Zhang J (2013) A novel species in the genus Heveochlorella (Trebouxiophyceae, Chlorophyta) witnesses the evolution from an epiphytic into an endophytic lifestyle in tree-dwelling green algae. Eur J Phycol 48:200–209. https://doi.org/10.1080/09670262.2013.790996

  • Maberly SC, Raven JA, Johnston AM (1992) Discrimination between 12C and 13C by marine plants. Oecologia 91:481–492

    Article  CAS  PubMed  Google Scholar 

  • Maggs CA, Hommersand MH (1993) Seaweeds of the British Isles, vol 1. Rhodophyta. Part 3A. Ceramiales. HMSO, London, 444 pp

    Google Scholar 

  • Mangeney E, Gibbs SP (1987) Immunocytochemical localization of ribulose-1,5-bisphosphate carboxylase/oxygenase in the cyanelles of Cyanophora paradoxa and Glaucocystis nostochinearum. Eur J Cell Biol 43:65–70

    CAS  Google Scholar 

  • Manton I, Ettl H (1965) Observations on the fine structure of Mesostigma viride Lauterborn. J Linnean Soc Lond Bot 59:175–184. https://doi.org/10.1111/j.1095-8339.1965.tb00056.x

  • Mantri VA, Kazi MA, Balar NB, Gupta V, Gajaria T (2020) Concise review of green algal genus Ulva Linnaeus. J Appl Phycol 32:2725–2741

    Article  Google Scholar 

  • Marin B, Melkonian M (1999) Mesostigmatophyceae, a new class of streptophyte green algae revealed by SSU rRNA sequence comparisons. Protist 150:399–417

    Article  CAS  PubMed  Google Scholar 

  • Marin B, Melkonian M (2010) Molecular phylogeny and classification of the Mamiellophyceae class. nov. (Chlorophyta) based on sequence comparisons of the nuclear- and plastid-encoded rRNA operons. Protist 161:304–336

    Article  CAS  PubMed  Google Scholar 

  • Marin B, Nowack ECM, Glöckner G, Melkonian M (2007) The ancestor of the Paulinella chromatophore obtained a carboxysomal operon by horizontal gene transfer from a Nitrococcus-like γ-proteobacterium. BMC Evol Biol 7:85. https://doi.org/10.1186/1471-2148-7-85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marin B, Nowack ECM, Melkonian M (2005) A plastid in the making: evidence for a second primary endosymbiosis. Protist 156:425–432

    Article  CAS  PubMed  Google Scholar 

  • Markager S, Sand-Jensen K (1992) Light requirements and depth zonation of marine macroalgae. Mar Ecol Prog Ser 88:83–92

    Article  Google Scholar 

  • Martin W, Stoebe B, Goremykin V, Hansmann S, Hasegawa M, Kowallik K (1998) Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393:162–165

    Article  CAS  PubMed  Google Scholar 

  • Martin-Arevalillo R, Thévenon E, Jégu F, Vinos-Poyo T, Vernoux T, Parcy F, Dumas R (2019) Evolution of the auxin response factors from charophyte ancestors. PLoS Genet 15:e1008400. https://doi.org/10.1371/journal.pgen.1008400

  • Maruyama S, Kim E (2013) A modern descendant of early green algal phagotrophs. Curr Biol

    Google Scholar 

  • Matheson K, McKenzie CH, Sargent P, Hurley M, Wells T (2014) Northward expansion of the invasive green algae Codium fragile spp. fragile (Suringar) Hariot, 1889 into coastal waters of Newfoundland, Canada. Bioinvasions Rec 3:151–158

    Google Scholar 

  • Matsuzaki R, Nozaki H, Takeuchi N, Hara Y, Kawachi M (2019) Taxonomic re-examination of “Chloromonas nivalis (Volvocales, Chlorophyceae) zygotes” from Japan and description of C. muramotoi sp. nov. PLoS One 14:e0210986. https://doi.org/10.1371/journal.pone.0210986

  • Mattox KR, Stewart KD (1984) Classification of the green algae: a concept based on comparative cytology. In: Irvine DEG, John DM (eds) Systematics of the green algae. Academic Press, London, pp 29–72

    Google Scholar 

  • McCoy SJ, Kamenos NA (2015) Coralline algae (Rhodophyta) in a changing world: integrating ecological, physiological, and geochemical responses to global change. J Phycol 51(1):6–24

    Article  PubMed  PubMed Central  Google Scholar 

  • McManus HA, Fučíková K, Lewis PO, Lewis LA, Karol KG (2018) Organellar phylogenomics inform systematics in the green algal family Hydrodictyaceae (Chlorophyceae) and provide clues to the complex evolutionary history of plastid genomes in the green algal tree of life. Am J Bot 105:315–329. https://doi.org/10.1002/ajb2.1066

  • McNaughton EE, Goff LJ (1990) The role of microtubules in establishing nuclear spatial patterns in multinucleate green algae. Protoplasma 157:19–37

    Article  Google Scholar 

  • Melkonian M (1989) Flagellar apparatus ultrastructure in Mesostigma viride (Prasinophyceae). Pl Syst Evol 164:93–122

    Article  Google Scholar 

  • Melkonian M (1990) Phylum Chlorophyta. Class prasinophyceae. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of Protoctista. The structure, cultivation, habitats and life histories of the eukaryotic microorganisms and their descendants exclusive of animals, plants and fungi. Jones and Bartlett Publishers, Boston, pp 600-07

    Google Scholar 

  • Melkonian M, Marin B, Surek B (1995a) Phylogeny and evolution of the algae. In: Arai RKM, Doi Y (ed) Biodiversity and evolution proceedings of the 10th international symposium on Biology. The National Science Museum Foundation, Tokyo, pp 153–176

    Google Scholar 

  • Melkonian M, Peveling E (1988) Zoospore ultrastructure in species of Trebouxia and Pseudotrebouxia (Chlorophyta). Plant Syst Evol 158:183–210

    Article  Google Scholar 

  • Menzel D (1987) The cytoskeleton of the giant coenocytic green alga Caulerpa visualized by immunocytochemistry. Protoplasma 139:71–76

    Article  Google Scholar 

  • Menzel D (1988) How do giant plant cells cope with injury?—The wound response in siphonous green algae. Protoplasma 144:73–91

    Article  Google Scholar 

  • Menzel D (1994) Cell differentiation and the cytoskeleton in Acetabularia. New Phytol 128:369–393

    Article  PubMed  Google Scholar 

  • Michaux-Ferrière N, Soulié-Märsche I (1987) The quantities of DNA in the vegetative nuclei of Chara vulgaris and Tolypella glomerata (Charophyta). Phycologia 26:435–442. https://doi.org/10.2216/i0031-8884-26-4-435.1

  • Mikhailyuk T, Holzinger A, Tsarenko P, Glaser K, Demchenko E, Karsten U (2020) Dictyosphaerium-like morphotype in terrestrial algae: what is Xerochlorella (Trebouxiophyceae, Chlorophyta)? J Phycol 56:671–686. https://doi.org/10.1111/jpy.12974

  • Mikhailyuk T, Lukešová A, Glaser K, Holzinger A, Obwegeser S, Nyporko S, Friedl T, Karsten U (2018) New taxa of Streptophyte Algae (Streptophyta) from terrestrial habitats revealed using an integrative approach. Protist 169:406–431. https://doi.org/10.1016/j.protis.2018.03.002

  • Mikhailyuk TI, Sluiman HJ, Massalski A, Mudimu O, Demchenko EM, Kondratyuk SY, Friedl T (2008) New streptophyte green algae from terrestrial habitats and an assessment of the genus Interfilum (Klebsormidiophyceae, Streptophyta). J Phycol 44:1586–1603. https://doi.org/10.1111/j.1529-8817.2008.00606.x

    Article  PubMed  Google Scholar 

  • Mine I, Anota Y, Menzel D, Okuda K (2005) Poly(A)+ RNA and cytoskeleton during cyst formation in the cap ray of Acetabularia peniculus. Protoplasma 226:199–206

    Article  CAS  PubMed  Google Scholar 

  • Mine I, Menzel D, Okuda K (2008) Morphogenesis in giant-celled algae. Int Rev Cell Mol Biol 37–83

    Google Scholar 

  • Miyaji K (1999) A new type of pyrenoid in the genus Rhizoclonium (Cladophorales, Chlorophyta). Phycologia 38:267–276

    Article  Google Scholar 

  • Miyamura S, Sakaushi S, Hori T, Nagumo T (2010) Behavior of flagella and flagellar root systems in the planozygotes and settled zygotes of the green alga Bryopsis maxima Okamura (Ulvophyceae, Chlorophyta) with reference to spatial arrangement of eyespot and cell fusion site. Phycol Res 58:258–269

    Article  Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N, Miyachi S, Chihara M (1993) Prasinococcus capsulatus gen. et sp. nov., a new marine coccoid prasinophyte. J Gen Appl Microbiol 39:571–582

    Article  CAS  Google Scholar 

  • Moestrup Ø, Ettl H (1979) A light and electron microscopical study of Nephroselmis olivacea (Prasinophyceae). Opera Botanica 49:39 p

    Google Scholar 

  • Molino A, Mehariya S, Iovine A, Casella P, Marino T, Karatza D, Chianese S, Musmarra D (2020) Enhancing biomass and lutein production from Scenedesmus almeriensis: Effect of carbon dioxide concentration and culture medium reuse. Front Plant Sci 11. https://doi.org/10.3389/fpls.2020.00415

  • Motomura T (1996) Cell cycle analysis in a multinucleate green alga, Boergesenia forbesii (Siphonocladales, Chlorophyta). Phycol Res 44:11–17

    Article  Google Scholar 

  • Muggia L, Leavitt S, Barreno E (2018) The hidden diversity of lichenised Trebouxiophyceae (Chlorophyta). Phycologia. 57: 503–524. https://doi.org/10.2216/17-134.1

  • Müller J (1960) Die Rotalge Compsopogon aeruginosus – ein neuer Aquariumbewohner? Mikrokosmos 49:203–207

    Google Scholar 

  • Müller KM, Cannone JJ, Sheath RG (2005) A molecular phylogenetic analysis of the Bangiales (Rhodophyta) and description of a new genus and species, Pseudobangia kaycoleia. Phycologia 44(2):146–155

    Article  Google Scholar 

  • Müller KM, Oliveira MC, Sheath RG, Bhattacharya D (2001) Ribosomal DNA phylogeny of the Bangiophycidae (Rhodophyta) and the origin of secondary plastids. Am J Bot 88:1390–1400

    Article  PubMed  Google Scholar 

  • Müller MK, Cole MK, Sheath RG (2003) Systematic of Bangia (Bangiales, Rhodophyta) in North America. II. Biogeographical trends in karyology: chromosome numbers and linkage with gene sequence phylogenetic trees. Phycologia 42:209–219

    Article  Google Scholar 

  • Mumford TF, Miura A (1988) Porphyra as food: cultivation and economics. In: Lembi CA, Waaland JR (eds) Algae and human affairs. Cambridge University Press, Cambridge, UK, pp 87–117

    Google Scholar 

  • Mutte SK, Kato H, Rothfels C, Melkonian M, Wong GK-S, Weijers D (2018) Origin and evolution of the nuclear auxin response system. eLife 7:e33399. https://doi.org/10.7554/eLife.33399

  • Nakada T, Misawa K, Nozaki H (2008) Molecular systematics of volvocales (Chlorophyceae, Chlorophyta) based on exhaustive 18S rRNA phylogenetic analyses. Mol Phylogenet Evol 48:281–291

    Article  CAS  PubMed  Google Scholar 

  • Nakayama T, Suda S, Kawachi M, Inouye I (2007) Phylogeny and ultrastructure of Nephroselmis and Pseudoscourfieldia (Chlorophyta), including the description of Nephroselmis anterostigmatica sp. nov. and a proposal for the Nephroselmidales ord. nov. Phycologia 46:680–697

    Article  Google Scholar 

  • Nakayama T, Watanabe S, Inouye I (1996) Phylogeny of wall-less green flagellates inferred from 18S rDNA sequence data. Phycol Res 44:151–161

    Article  Google Scholar 

  • Necchi O Jr, Agostinho DC, Vis ML (2018) Revision of Batrachospermum section Virescentia (Batrachospermales, Rhodophyta) with the establishment of the new genus, Virescentia stat. nov. Cryptogamie Algologie 39:313–338

    Article  Google Scholar 

  • Necchi O Jr, Garcia Filho A, Paiano MO (2019a) Revision of Batrachospermum sections Acarposporophytum and Aristata (Batrachospermales, Rhodophyta) with the establishment of the new genera Acarposporophycos and Visia. Phytotaxa 395:51–65

    Article  Google Scholar 

  • Necchi O, Jr, Garcia Filho A, Paiano MO, Vis ML (2019b) Revision of Batrachospermum section Macrospora (Batrachospermales, Rhodophyta) with the establishment of the new genus Montagnia. Phycologia. https://doi.org/10.1080/00318884.2019.1624143

  • Necchi O Jr, Vis ML (2012) Monograph of the genus Kumanoa (Batrachospermales, Rhodophyta). Bibliotheca Phycol J Cramer Berlin 116:79

    Google Scholar 

  • Nelson WA, Broom JES (2005) Contributions of molecular biology to understanding systematics and phylogeny in the order Bangiales. Nat Hist Res 8:1–12

    Google Scholar 

  • Němcová Y, Eliáš M, Škaloud P, Hodač L, Neustupa J (2011) Jenufa gen. nov.: a new genus of coccoid green algae (Chlorophyceae, incertae sedis) previously recorded by environmental sequencing. J Phycol 47:928–938. https://doi.org/10.1111/j.1529-8817.2011.01009.x

  • Neustupa J (2015b) Chlorophyta, Streptophyta p.p., Trentepohliales. In: Frey W (ed) Part 2/1: Photoautotrophic eukaryotic Algae. Syllabus of plant families—a Engler’s syllabus der Pflanzenfamilien. Schweizerbart Science Publishers, Stuttgart, Germany, pp 191–300

    Google Scholar 

  • Nie Y, Foster CS, Zhu T, Yao R, Duchêne DA, Ho SY, Zhong B (2020) Accounting for uncertainty in the evolutionary timescale of green plants through clock-partitioning and fossil calibration strategies. Syst Biol 69:1–16

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama T, Sakayama H, de Vries J, Buschmann H, Saint-Marcoux D, Ullrich KK, Haas FB, Vanderstraeten L, Becker D, Lang D, Vosolsobě S, Rombauts S, Wilhelmsson PKI, Janitza P, Kern R, Heyl A, Rümpler F, Villalobos LIAC, Clay JM, Skokan R, Toyoda A, Suzuki Y, Kagoshima H, Schijlen E, Tajeshwar N, Catarino B, Hetherington AJ, Saltykova A, Bonnot C, Breuninger H, Symeonidi A, Radhakrishnan GV, Van Nieuwerburgh F, Deforce D, Chang C, Karol KG, Hedrich R, Ulvskov P, Glöckner G, Delwiche CF, Petrášek J, Van de Peer Y, Friml J, Beilby M, Dolan L, Kohara Y, Sugano S, Fujiyama A, Delaux P-M, Quint M, Theißen G, Hagemann M, Harholt J, Dunand C, Zachgo S, Langdale J, Maumus F, Van Der Straeten D, Gould SB, Rensing SA (2018) The Chara genome: secondary complexity and implications for plant terrestrialization. Cell 174: 448–464.e424. https://doi.org/10.1016/j.cell.2018.06.033

  • Nitecki MH (1976) Ordovician Batophoreae (Dasycladales) from Michigan. Fieldiana Geol 35(4):29–40

    Google Scholar 

  • O’Kelly CJ (1992) Flagellar apparatus architecture and the phylogeny of “green algae”: chlorophytes, euglenoids, glaucophytes. In: Menzel D (ed) The cytoskeleton of the algae. CRC Press, Boca Raton, pp 315–45

    Google Scholar 

  • O’Kelly CJ, Floyd GL (1984) Flagellar apparatus absolute orientations and the phylogeny of the green algae. Biosystems 16:227–251

    Article  Google Scholar 

  • O’Kelly CJ, Watanabe S, Floyd GL (1994) Ultrastructure and phylogenetic relationships of Chaetopeltidales ord. nov. (Chlorophyta, Chlorophyceae). J Phycol 30:118–128. https://doi.org/10.1111/j.0022-3646.1994.00118.x

  • Okamoto N, Inouye I (2006) Hatena arenicola gen. et sp. nov., a katablepharid undergoing probable plastid acquisition. Protist 157:401–419

    Article  PubMed  Google Scholar 

  • Okuda K, Mine I, Morinaga T, Kuwaki N (1997) Cytomorphogenesis in cenocytic green algae. V. Segregative cell division and cortical microtubules in Dictyosphaeria cavernosa (Siphonocladales, Chlorophyceae). Phycol Res 45:189–196

    Article  Google Scholar 

  • Oliveira MC, Bhattacharya D (2000) Phylogeny of the Bangiophycidae (Rhodophyta) and the secondary endosymbiotic origin of algal plastids. Am J Bot 87:482–492

    Article  CAS  PubMed  Google Scholar 

  • Oltmanns F (1898) Die Entwickelung der Sexualorgane bei Coleochaete pulvinata. Flora oder Allgemeine Botanische Zeitung 85:1–14

    Google Scholar 

  • One Thousand Plant Transcriptomes Initiative (2019) One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574:679–685. https://doi.org/10.1038/s41586-019-1693-2

  • Pagels F, Salvaterra D, Amaro HM, Guedes AC (2020) Chapter 18—Pigments from microalgae. In Jacob-Lopes E, Maroneze MM, Queiroz MI, Zepka LQ (eds) Handbook of microalgae-based processes and products. Academic Press, pp 465–492

    Google Scholar 

  • Palmer JD (2003) The symbiotic birth and spread of plastids: how many times and whodunit? J Phycol 39:4–12. https://doi.org/10.1046/j.1529-8817.2003.02185.x

  • Parke M, Boalch GT, Jowett R, Harbour DS (1978) The genus Pterosperma (Prasinophyceae): species with a single equatorial ala. J Mar Biol Assoc UK 58:239–276

    Article  Google Scholar 

  • Pascher A (1929a) Studien über Symbiosen. I. Über einige Endosymbiosen von Blaualgen in Einzellern. Jahrbücher für Wissenschaftliche Botanik 71:386–462

    Google Scholar 

  • Pascher A (1929b) Über die Natur der blaugrünen Chromatophoren des Rhizopoden Paulinella chromatophora. Zool Anz 81:189–194

    Google Scholar 

  • Patron NJ, Keeling PJ (2005) Common evolutionary origin of starch biosynthetic enzymes in green and red algae. J Phycol 41(6):1131–1141

    Article  CAS  Google Scholar 

  • Peña V, Barreiro R, Hall-Spencer JM, Grall J (2013) Lithophyllum spp. form unusual maerl beds in the North East Atlantic: the case study of L. fasciculatum (Lamarck) Foslie, 1898, in Brittany. An aodles cahiers naturalists de l’Observatoire Marin 2:11–21

    Google Scholar 

  • Pena V, Vieira C, Braga JC, Aguirre J, Rosler A, Baele G, De Clerck O, Le Gall L (2020) Radiation of the coralline red algae (Corallinophycidae, Rhodophyta) crown group as inferred from a multilocus time-calibrated phylogeny. Mol Phylogenet Evol 150:106845

    Google Scholar 

  • Pickett-Heaps J (1975) Green algae: structure, reproduction and evolution in selected genera. Sinauer Associates Inc., Publishers, Sunderland, Massachusetts

    Google Scholar 

  • Pierangelini M, Glaser K, Mikhailyuk T, Karsten U, Holzinger A (2019d) Light and dehydration but not temperature drive photosynthetic adaptations of basal streptophytes (Hormidiella, Streptosarcina and Streptofilum) living in terrestrial habitats. Microb Ecol 77:380–393. https://doi.org/10.1007/s00248-018-1225-x

  • Plieger T, Wolf M (2021) 18S and ITS2 rDNA sequence-structure phylogeny of Prototheca (Chlorophyta, Trebouxiophyceae). Biologia. https://doi.org/10.1007/s11756-021-00971-y

  • Prescott GW, Croasdale HT, Vinyard WC (1972) Desmidiales part I. Saccodermae, Mesotaeniaceae. North America Flora II. The New York Botanical Garden, New York, USA

    Google Scholar 

  • Price DC, Chan CX, Yoon HS, Yang EC, Qiu H, Weber APM, Schwacke R, Gross J, Blouin NA, Lane C, Reyes-Prieto A, Durnford DG, Neilson JA, Lang BF, Burger G, Steiner JM, Löffelhardt W, Meuser JE, Posewitz MC, Ball S, Arias MC, Henrissat B, Coutinho PM, Rensing SA, Symeonidi A, Doddapaneni H, Green BR, Rajah VD, Boore J, Bhattacharya D (2012) Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants. Science 335:843–847. https://doi.org/10.1126/science.1213561

    Article  CAS  PubMed  Google Scholar 

  • Price DC, Steiner JM, Yoon HS, Bhattacharya D, Löffelhardt W (2017) Glaucophyta. In: Archibald JM, Simpson AGB, Slamovits CH (eds) Handbook of the protists, 2nd edn. Springer International Publishing, pp 23–87

    Google Scholar 

  • Pringsheim EG (1958a) Organismen mit blaugrünen Assimilatoren. Praha: Studies in plant physiology, pp. 165–184

    Google Scholar 

  • Pringsheim EG (1958b). Über Mixotrophie bei Flagellaten. Planta 52(4. H):405–430

    Google Scholar 

  • Procházková L, Němcová Y, Neustupa J (2016) Phyllosiphon ari sp. nov. (Watanabea clade, Trebouxiophyceae), a new parasitic species isolated from leaves of Arum italicum (Araceae). Phytotaxa 283:143–154. https://doi.org/10.11646/phytotaxa.283.2.3

  • Pröschold T, Darienko T (2020) Choricystis and Lewiniosphaera gen. nov. (Trebouxiophyceae Chlorophyta), two different green algal endosymbionts in freshwater sponges. Symbiosis. https://doi.org/10.1007/s13199-020-00711-x

  • Pröschold T, Darienko T, Silva PC, Reisser W, Krienitz L (2011) The systematics of Zoochlorella revisited employing an integrative approach. Environ Microbiol 13:350–364. https://doi.org/10.1111/j.1462-2920.2010.02333.x

  • Pröschold T, Marin B, Schlösser UG, Melkonian M (2001) Molecular phylogeny and taxonomic revision of Chlamydomonas (Chlorophyta). I. Emendation of Chlamydomonas Ehrenberg and Chloromonas Gobi, and description of Oogamochlamys gen. nov. and Lobochlamys gen. nov. Protist 152:265–300

    Article  PubMed  Google Scholar 

  • Provan J, Booth D, Todd NP, Beatty GE, Maggs CA (2008) Tracking biological invasions in space and time: elucidating the invasive history of the green alga Codium fragile using old DNA. Divers Distrib 14:343–354

    Article  Google Scholar 

  • Pueschel CM, Judson BL, Wegeberg S (2005) Decalcification during epithallial cell turnover Jania adherens (Corallinales, Rhodophyta). Phycologia 44:156–162

    Article  Google Scholar 

  • Puttick MN, Morris JL, Williams TA, Cox CJ, Edwards D, Kenrick P, Pressel S, Wellman CH, Schneider H, Pisani D, Donoghue PCJ (2018b) The interrelationships of land plants and the nature of the ancestral embryophyte. Curr Biol 28:733–745.e732. https://doi.org/10.1016/j.cub.2018.01.063

  • Qin X, Pi X, Wang W, Han G, Zhu L, Liu M, Cheng L, Shen J-R, Kuang T, Sui S-F (2019) Structure of a green algal photosystem I in complex with a large number of light-harvesting complex I subunits. Nat Plants 5:263–272

    Article  PubMed  Google Scholar 

  • Qiu H, Price DC, Weber APM, Facchinelli F, Yoon HS, Bhattacharya D (2013) Assessing the bacterial contribution to the plastid proteome. Trends Plant Sci 18(12):680–687

    Article  CAS  PubMed  Google Scholar 

  • Qiu H, Price DC, Yang EC, Yoon HS, Bhattacharya D (2015) Evidence of ancient genome reduction in red algae (Rhodophyta). J Phycol 51(4):624–636

    Article  CAS  PubMed  Google Scholar 

  • Raven JA, Berdal J (1981) Carbon dioxide as the exogenous inorganic source for Batrachospermum and Lemanea. Brit Phycol J 16:165–175

    Article  Google Scholar 

  • Raven JA, Berdal J, Griffiths H (1982) Inorganic C-sources for Lemanea, Cladophora and Ranunculus in a fast-flowing stream: measurements of gas exchange and of carbon isotope ratio and their ecological implications. Oecologia 53:68–78

    Article  PubMed  Google Scholar 

  • Reyes-Prieto A, Bhattacharya D (2007) Phylogeny of nuclear-encoded plastid-targeted proteins supports an early divergence of glaucophytes within plantae. Mol Biol Evol 24:2358–2361

    Article  CAS  PubMed  Google Scholar 

  • Riding R, Cope JCW, Taylor PD (1998) A coralline red alga from the lower Ordovician of Wales. Palaeontology 41(5):1069–1076

    Google Scholar 

  • Rieth A (1972) Über Chlorokybus atmophyticus Geitler 1942. Archiv für Protistenkunde 114:330–342

    Google Scholar 

  • Rindi F, Guiry MD, Lopez-Bautista JM (2008) Distribution, morphology, and phylogeny of Klebsormidium (Klebsormidiales, Charophyceae) in urban environments in Europe. J Phycol 44

    Google Scholar 

  • Rindi F, Mikhailyuk TI, Sluiman HJ, Friedl T, Lopez-Bautista JM (2011) Phylogenetic relationships in Interfilum and Klebsormidium (Klebsormidiophyceae, Streptophyta). Mol Phylogenet Evol 58:218–231. https://doi.org/10.1016/j.ympev.2010.11.030

    Article  PubMed  Google Scholar 

  • Rodríguez-Espeleta N, Brinkmann V, Burey SC, Roure B, Burger G, Löffelhardt W, Bohnert HJ, Philippe H, Lang BF (2005) Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr Biol 15:1325–1330

    Article  Google Scholar 

  • Rogers CE, Domozych DS, Stewart KD, Mattox KR (1981) The flagellar apparatus of Mesostigma viride (Prasinophyceae): multilayered structures in a scaly green flagellate. Plant Syst Evol 138:247–258

    Article  Google Scholar 

  • Rogers CE, Mattox KR, Stewart KD (1980) The zoospore of Chlorokybus atmophyticus, a charophyte with sarcinoid growth habit. Am J Bot 67:774–783. https://doi.org/10.1002/j.1537-2197.1980.tb07706.x

  • Rossignolo NL, Necchi O Jr (2016) Revision of section Setacea of the genus Batrachospermum (Batrachospermales, Rhodophyta) with emphasis on specimens from Brazil. Phycologia 55:337–346

    Article  CAS  Google Scholar 

  • Saini DK, Pabbi S, Prakash A, Shukla P (2020) Chapter 4—Synthetic biology applied to microalgae-based processes and products. In: Jacob-Lopes E, Maroneze MM, Queiroz MI, Zepka LQ (eds) Handbook of microalgae-based processes and products. Academic Press, pp. 85–98

    Google Scholar 

  • Salomaki ED, Kwandrans J, Eloranta P, Vis ML (2014) Molecular and morphological evidence for Sheathia gen. nov. (Batrachospermales, Rhodophyta) and three new species. J Phycol 50:526–542

    Article  CAS  PubMed  Google Scholar 

  • Salomé PA, Merchant SS (2019) A series of fortunate events: introducing Chlamydomonas as a reference organism. Plant Cell 31:1682–1707

    Article  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Baracaldo P, Raven JA, Pisani D, Knoll AH (2017) Early photosynthetic eukaryotes inhabited low-salinity habitats. Proc Natl Acad Sci 114(37):E7737–E7745. https://doi.org/10.1073/pnas.1620089114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saunders GW, Filloramo G, Dixon K, Gall L, Maggs CA, Kraft GT (2016) Multigene analysis resolve early diverging lineages in the Rhodymeniophycidae (Florideophyceae, Rhodopyta). J Phycol 52:505–522

    Google Scholar 

  • Saunders GW, Hommersand MH (2004) Assessing red algal supraordinal diversity and taxonomy in the context of contemporary systematic data. Am J Bot 91:1494–1507

    Article  PubMed  Google Scholar 

  • Schagerl M, Pichler C (2000) Pigment composition of freshwater Charophyceae. Aquat Bot 67:117–129. https://doi.org/10.1016/S0304-3770(99)00095-9

  • Schnepf E, Koch W, Deichgräber G (1966) Zur Cytologie und taxonomischen Einordnung yon Glaucocystis. Archiv für Mikrobiologie 55:149–174

    Google Scholar 

  • Schiller CM, Whitlock C, Brown SR (2022) Holocene geo-ecological evolution of Lower Geyser Basin, Yellowstone National Park (USA). Quat Res. 105:201–217. https://doi.org/10.1017/qua.2021.42

  • Schmidt M, Geßner G, Luff M, Heiland I, Wagner V, Kaminski M, Geimer S, Eitzinger N, Reißenweber T, Voytsekh O, Fiedler M, Mittag M, Kreimer G (2006) Proteomic analysis of the eyespot of Chlamydomonas reinhardtii provides novel insights into its components and tactic movements. Plant Cell 18:1908–2930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott JL, Orlova E, West JA (2010) Ultrastructural observations of vegetative cells of two new genera in the Erythropeltidales (Compsopogonophyceae, Rhodophyta): Pseudoerythrocladia and Madagascaria. Algae 25:11–15

    Article  Google Scholar 

  • Sears JR (1967) Mitotic waves in the green alga Blastophysa rizhopus as related to coenocyte form. J Phycol 3:136–139

    Article  CAS  PubMed  Google Scholar 

  • Škaloud P, Kalina T, Nemjová K, De Clerck O, Leliaert L (2013) Morphology and phylogenetic position of the freshwater green microalgae Chlorochytrium (Chlorophyceae) and Scotinosphaera (Scotinosphaerales, ord. nov., Ulvophyceae). J Phycol 49:115–129

    Article  PubMed  Google Scholar 

  • Škaloud P, Rindi F (2013) Ecological differentiation of cryptic species within an asexual protist morphospecies: a case study of filamentous green alga Klebsormidium (Streptophyta). J Eukaryotic Microbiol 60:350–362. https://doi.org/10.1111/jeu.12040

  • Škaloud P, Rindi F, Boedeker C, Leliaert F (2018) Freshwater flora of Central Europe, vol 13: Chlorophyta: Ulvophyceae. Springer Spektrum, Berlin, Heidelberg, 288 pp

    Google Scholar 

  • Skokan R, Medvecká E, Viaene T, Vosolsobě S, Zwiewka M, Müller K, Skůpa P, Karady M, Zhang Y, Janacek DP, Hammes UZ, Ljung K, Nodzyński T, Petrášek J, Friml J (2019) PIN-driven auxin transport emerged early in streptophyte evolution. Nat Plants 5:1114–1119. https://doi.org/10.1038/s41477-019-0542-5

  • Skuja H (1956) Taxonomische und biologische Studien über das Phytoplankton schwedischer Binnengewässer. Nova Acta Regiae Societatis Scientiarum Urpsaliensis Ser 4 4(3):1–404

    Google Scholar 

  • Sluiman HJ (1983) The flagellar apparatus of the zoospore of the filamentous green algaColeochaete pulvinata: absolute configuration and phylogenetic significance. Protoplasma 115:160–175. https://doi.org/10.1007/BF01279807

  • Sluiman HJ (1989) The green algal class Ulvophyceae. An ultrastructural survey and classification. Crypt Bot 1:83–94

    Google Scholar 

  • Sluiman HJ, Guihal C, Mudimu O (2008) Assessing phylogenetic affinities and species delimitations in Klebsormidiales (Streptophyta): nuclear-encoded rDNA phylogenies and its secondary structure models in Klebsormidium, Hormidiella, and Entransia. J Phycol 44:183–195. https://doi.org/10.1111/j.1529-8817.2007.00442.x

  • Smetacek V, Zingone A (2013) Green and golden seaweed tides on the rise. Nature 504:84–88

    Article  CAS  PubMed  Google Scholar 

  • Sørensen I, Pettolino FA, Bacic A, Ralph J, Lu F, O’Neill MA, Fei Z, Rose JKC, Domozych DS, Willats WGT (2011) The charophycean green algae provide insights into the early origins of plant cell walls. Plant J 68:201–211. https://doi.org/10.1111/j.1365-313X.2011.04686.x

  • Speijer D, Lukeš J, Eliáš M (2015) Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life. Proc Natl Acad Sci USA 112:8827–8834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starmach K (1977) Flora Słodkowodna Polski Tom 14. Phaeophyta-Brunatnice, Rhodophyta-Krasnorosty. Warszawa PWN, pp 445

    Google Scholar 

  • Staves MP, La Claire JW (1985) Nuclear synchrony in Valonia macrophysa (Chlorophyta): light microscopy and flow cytometry. J Phycol 21:68–71

    Article  Google Scholar 

  • Stiller JW, Hall BD (1997) The origin of red algae: implications for plastid evolution. Proc Natl Acad Sci 94:4520–4525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuercke B, Freshwater DW (2010) Two new species of Polysiphonia (Ceramiales, Florideophyceae) from the western Atlantic. Bot Mar 53:301–311

    Article  Google Scholar 

  • Sun L, Fang L, Zhang Z, Chang X, Penny D, Zhong B (2016) Chloroplast phylogenomic inference of green algae relationships. Sci Rep 6:20528. https://doi.org/10.1038/srep20528

  • Sun Y, Harpazi B, Wijerathna-Yapa A, Merilo E, de Vries J, Michaeli D, Gal M, Cuming AC, Kollist H, Mosquna A (2019e) A ligand-independent origin of abscisic acid perception. Proc Natl Acad Sci 116:24892. https://doi.org/10.1073/pnas.1914480116

  • Sutherland JE, Lindstrom SC, Nelson WA, Brodie J, Lynch MDJ, Hwang MS, Miyata M, Kikuchi N, Oliveira MC, Farr T, Neefus C, Mols-Mortensen A, Milstein D, Müller KM (2011) A new look at an ancient order: generic revision of the Bangiales (Rhodophyta). J Phycol 47(5):1131–1151

    Article  PubMed  Google Scholar 

  • Sym SD, Pienaar RN (1993) The class Prasinophyceae. In: Round FE, Chapman DJ (eds) Prog. Phycological Research Biopress Ltd., Bristol, pp 281–376

    Google Scholar 

  • Sym SD (2015) Basal lineages of green algae: their diversity and phylogeny. In Ohtsuka S, Suzaki T, Horiguchi T, Suzuki N, Not F (eds) Marine protists. Springer, pp 89–105

    Google Scholar 

  • Takahashi T, Nishida T, Tuji A, Saito C, Matsuzaki R, Sato M, Toyooka K, Yasuda H, Nozaki H (2016) Delineation of six species of the primitive algal genus Glaucocystis based on in situ ultrastructural characteristics. Sci Rep 6:29209. https://doi.org/10.1038/srep292091

    Article  PubMed  PubMed Central  Google Scholar 

  • Takahashi T, Sato M, Toyooka K, Nozaki H (2014) Surface ornamentation of Cyanophora paradoxa (Cyanophorales, Glaucophyta) cells as revealed by ultra-high resolution field emission scanning electron microscopy. Cytologia 79(1):119–123

    Article  Google Scholar 

  • Tang Q, Pang K, Yuan X, Xiao S (2020) A one-billion-year-old multicellular chlorophyte. Nat Ecol Evol 4:543–549

    Article  PubMed  PubMed Central  Google Scholar 

  • Teichert S, Woelkerling W, Rüggeberg A, Wisshak M, Piebenburg D, Meyerhöfer M, Form A, Büdenbender J, Freiwald A (2012) Rhodolith beds (Corallinales, Rhodophyta) and their physical and biological environment at 80°31’ N in Nodrkappbukta (Nordaustlandet, Svalbard Archipelago, Norway). Phycologia 51(4):371–390

    Article  Google Scholar 

  • Terlova EF, Holzinger A, Lewis LA (2021) Terrestrial green algae show higher tolerance to dehydration than do their aquatic sister-species. Microbial Ecol 82:770–782. https://doi.org/10.1007/s00248-020-01679-3

  • Terlova EF, Lewis LA (2019) A new species of Tetradesmus (Chlorophyceae, Chlorophyta) isolated from desert soil crust habitats in southwestern North America. Plant Fungal System 64:25–32. https://doi.org/10.2478/pfs-2019-0004

  • Tragin M, Vaulot D (2018) Green microalgae in marine coastal waters: the ocean sampling day (OSD) dataset. Sci Rep 8:14020

    Article  PubMed  PubMed Central  Google Scholar 

  • Tragin M, Vaulot D (2019) Novel diversity within marine Mamiellophyceae (Chlorophyta) unveiled by metabarcoding. Sci Rep 9:5190

    Article  PubMed  PubMed Central  Google Scholar 

  • Tremouillaux-Guiller J, Huss VAR (2007) A cryptic intracellular green alga in Ginkgo biloba: ribosomal DNA markers reveal worldwide distribution. Planta 226:553–557. https://doi.org/10.1007/s00425-007-0526-y

    Article  CAS  PubMed  Google Scholar 

  • Tsekos I (2002) The sites of cellulose synthesis in algae: diversity and evolution of cellulose-synthesizing enzyme complexes. J Phycol 655(4):635–655

    Article  Google Scholar 

  • Turiel S, Garrido-Cardenas JA, Gómez-Serrano C, Acién FG, Carretero-Paulet L, Blanco S (2021) A polyphasic characterisation of Tetradesmus almeriensis sp. nov. (Chlorophyta: Scenedesmaceae). Processes 9. https://doi.org/10.3390/pr9112006

  • Turmel M, de Cambiaire J-C, Otis C, Lemieux C (2016) Distinctive architecture of the chloroplast genome in the chlorodendrophycean green algae Scherffelia dubia and Tetraselmis sp. CCMP 881. PLoS One 11:e0148934

    Google Scholar 

  • Turmel M, Otis C, Lemieux C (2017) Divergent copies of the large inverted repeat in the chloroplast genomes of ulvophycean green algae. Sci Rep 7:994. https://doi.org/10.1038/s41598-017-01144-1

  • Turner NJ (2003) The ethnobotany of edible seaweed (Porphyra abbotae and related species; Rhodophyta, Bangiales) and its use by first nations on the Pacific coast of Canada. Can J Bot 81:283–293

    Article  Google Scholar 

  • Ueki N, Ide T, Mochiji S, Kobayashi Y, Tokutsu R, Ohnishi N, Yamaguchi K, Shigenobu S, Tanaka K, Minagawa J, Hisabori T, Hirono M, Wakabayashi KI (2016) Eyespot-dependent determination of the phototactic sign in Chlamydomonas reinhardtii. Proc Natl Acad Sci 113:5299–5304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueno R, Hanagata N, Urano N, Suzuki M (2005) Molecular phylogeny and phenotypic variation in the heterotrophic green algal genus Prototheca (Trebouxiophyceae, Chlorophyta). J Phycol 41:1268–1280. https://doi.org/10.1111/j.1529-8817.2005.00142.x

  • Urbaniak J, Gąbka M (2014) Polish Charophytes. An illustrated guide to identification. UWP Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Wrocław

    Google Scholar 

  • van den Hoek C, Mann DG, Jahns HM (1995b) Algae: an introduction to phycology. Cambridge University Press, 640 pp

    Google Scholar 

  • Vanormelingen P, Hegewald E, Braband A, Kitschke M, Friedl T, Sabbe K, Vyverman W (2007) The systematics of a small spineless Desmodesmus species, D. costato-granulatus (Sphaeropleales, Chlorophyceae), based on ITS2 rDNA sequence analyses and cell wall morphology. J Phycol 43:378–396. https://doi.org/10.1111/j.1529-8817.2007.00325.x

  • Varela-Álvarez E, Meirmans PG, Guiry MD, Serrão EA (2022) Biogeographic Population structure of chimeric blades of Porphyra in the Northeast Atlantic reveals southern rich gene pools, introgression and cryptic plasticity. Front Plant Sci 13:818368

    Article  PubMed  PubMed Central  Google Scholar 

  • Verbruggen H, Ashworth M, LoDuca ST, Vlaeminck C, Cocquyt E, Sauvage T, Zechman FW, Littler DS, Littler MM, Leliaert F, De Clerck O (2009) A multi-locus time-calibrated phylogeny of the siphonous green algae. Mol Phylogenet Evol 50:642–653

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen H, Maggs CA, Saunders GW, Le Gall L, Yoon HS, De Clerck O (2010) Data mining approach identifies research priorities and data requirements for resolving the red algal tree of life. BMC Evol Biol 10(1):16

    Article  PubMed  PubMed Central  Google Scholar 

  • Verlaque M, Durand C, Huisman JM, Boudouresque CF, Le Parco Y (2003) On the identity and origin of the Mediterranean invasive Caulerpa racemosa (Caulerpales, Chlorophyta). Eur J Phycol 38:325–339

    Article  Google Scholar 

  • Vis ML, Saunders GW, Sheath RG, Dunse K, Entwisle TJ (1998) Phylogeny of the Batrachospermales (Rhodophyta) inferred from rbcL and 18S ribosomal DNA gene sequences. J Phycol 34:341–350

    Article  CAS  Google Scholar 

  • Vosolsobě S, Skokan R, Petrášek J (2020) The evolutionary origins of auxin transport: what we know and what we need to know. J Exp Bot 71:3287–3295. https://doi.org/10.1093/jxb/eraa169

  • Vranken S, Bosch S, Peña V, Leliaert F, Mineur F, De Clerck O (2018) A risk assessment of aquarium trade introductions of seaweed in European waters. Biol Invas 20:1171–1187

    Article  Google Scholar 

  • Vranken S, Robuchon M, Dekeyzer S, Bárbara I, Bartsch I, Blanfuné A, Boudouresque CF, Decock W, Destombe C, de Reviers B, Díaz-Tapia P (2013) AlgaeTraits: a trait database for (European) seaweeds. Earth Syst Sci Data15(7):2711–2754

    Google Scholar 

  • Wang S, Li L, Li H, Sahu SK, Wang H, Xu Y, Xian W, Song B, Liang H, Cheng S, Chang Y, Song Y, Çebi Z, Wittek S, Reder T, Peterson M, Yang H, Wang J, Melkonian B, Van De Peer Y, Xu X, Wong GK-S, Melkonian M, Liu H, Liu X (2020a) Genomes of early-diverging streptophyte algae shed light on plant terrestrialization. Nature Plants 6:95–106. https://doi.org/10.1038/s41477-019-0560-3

  • Watanabe S, Floyd GL (1989) Ultrastructure of the quadriflagellate zoospores of the filamentous green algae Chaetophora incrassata and Pseudoschizomeris caudata (Chaetophorales, chlorophyceae) with emphasis on the flagellar apparatus. The botanical magazine (Shokubutsu-gaku-zasshi) Tokyo. 102:533–546. https://doi.org/10.1007/BF02488435

  • Watanabe S, Fučíková K, Lewis LA, Lewis PO (2016) Hiding in plain sight: Koshicola spirodelophila gen. et sp. nov. (Chaetopeltidales, Chlorophyceae), a novel green alga associated with the aquatic angiosperm Spirodela polyrhiza. Am J Bot 103:865–875. https://doi.org/10.3732/ajb.1500481

  • Watanabe S, Nakayama T (2007) Ultrastructure and phylogenetic relationships of the unicellular green algae Ignatius tetrasporus and Pseudocharacium americanum (Chlorophyta). Phycol Res 55:1–16

    Article  CAS  Google Scholar 

  • Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter E, Matasci N, Ayyampalayam S, Barker MS, Burleigh JG, Gitzendanner MA, Ruhfel BR, Wafula E, Der JP, Graham SW, Mathews S, Melkonian M, Soltis DE, Soltis PS, Miles NW, Rothfels CJ, Pokorny L, Shaw AJ, Degironimo L, Stevenson DW, Surek B, Villarreal JC, Roure B, Philippe H, Depamphilis CW, Chen T, Deyholos MK, Baucom RS, Kutchan TM, Augustin MM, Wang J, Zhang Y, Tian Z, Yan Z, Wu X, Sun X, Wong GK-S, Leebens-Mack J (2014) Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc Natl Acad Sci 111:E4859–E4868. https://doi.org/10.1073/pnas.1323926111

  • Wisshak M (2019) Karbonatfabriken im Polarmeer. Natur Forschung Museum 149:6–11

    Google Scholar 

  • Wodniok S, Brinkmann H, Glockner G, Heidel A, Philippe H, Melkonian M, Becker B (2011) Origin of land plants: do conjugating green algae hold the key? BMC Evol Biol 11:104

    Article  PubMed  PubMed Central  Google Scholar 

  • Woodhouse FG, Goldstein RE (2013) Cytoplasmic streaming in plant cells emerges naturally by microfilament self-organization. Proc Natl Acad Sci 110:14132–14137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worden AZ, Lee JH, Mock T, Rouze P, Simmons MP, Aerts AL, Allen AE, Cuvelier ML, Derelle E, Everett MV, Foulon E, Grimwood J, Gundlach H, Henrissat B, Napoli C, McDonald SM, Parker MS, Rombauts S, Salamov A, Von Dassow P, Badger JH, Coutinho PM, Demir E, Dubchak I, Gentemann C, Eikrem W, Gready JE, John U, Lanier W, Lindquist EA, Lucas S, Mayer KFX, Moreau H, Not F, Otillar R, Panaud O, Pangilinan J, Paulsen I, Piegu B, Poliakov A, Robbens S, Schmutz J, Toulza E, Wyss T, Zelensky A, Zhou K, Armbrust EV, Bhattacharya D, Goodenough UW, Van de Peer Y, Grigoriev IV (2009) Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science 324:268–272

    Article  CAS  PubMed  Google Scholar 

  • Yamagishi T, Yamaguchi H, Suzuki S, Yoshikawa M, Jameson I, Lorenz M, Nobles DR, Campbell C, Seki M, Kawachi M, Yamamoto H (2020) Comparative genome analysis of test algal strain NIVA-CHL1 (Raphidocelis subcapitata) maintained in microalgal culture collections worldwide. PLoS One 15:e0241889. https://doi.org/10.1371/journal.pone.0241889

  • Yamaguchi H, Suda S, Nakayama T, Pienaar RN, Chihara M, Inouye I (2011) Taxonomy of Nephroselmis viridis sp. nov. (Nephroselmidophyceae, Chlorophyta), a sister marine species to freshwater N. olivacea. J Plant Res 124:49–62

    Article  PubMed  Google Scholar 

  • Yamaguchi H, Nakayama T, Hongoh Y, Kawachi M, Inouye I (2014) Molecular diversity of endosymbiotic Nephroselmis (Nephroselmidophyceae) in Hatena arenicola (Katablepharidophycota). J Plant Res 127:241–247

    Article  PubMed  Google Scholar 

  • Yang EC, Boo SM, Bhattacharya D, Saunders GW, Knoll AH, Fredericq S, Graf L, Yoon HS (2016) Divergence time estimates and the evolution of major lineages in the florideophyte red algae. Sci Rep 6:21361. https://doi.org/10.1038/srep21361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon HS, Hackett JD, Ciniglia C, Pinto G, Bhattacharya D (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21:809–818

    Article  CAS  PubMed  Google Scholar 

  • Yoon HS, Müller KM, Sheath RG, Ott FD, Bhattacharya D (2006) Defining the major lineages of red algae (Rhodophyta). J Phycol 42(2):482–492

    Article  CAS  Google Scholar 

  • Yoon HS, Nelson W, Lindstrom SC, Bo SM, Pueschel C, Qiu H, Bhattacharya D (2017) Rhodophyta. In: Archibald JM, Simpson AGB, Slamovits CH (eds) Handbook of protists, 2nd edn. Springer International Publishing, pp 89–133

    Google Scholar 

  • Yoon HS, Zuccarello GC, Bhattacharya D (2010) Evolutionary history and taxonomy of red algae. In: Seckbach J, Chapman DJ (eds) Red algae in the genomic age. Cellular origin, life in extreme habitats and astrobiology, vol 13, pp 25–42

    Google Scholar 

  • Zahradníková M, Andersen HL, Tønsberg T, Beck A (2017) Molecular evidence of Apatococcus, including A. fuscideae sp. nov., as photobiont in the genus Fuscidea. Protist 168:425–438. https://doi.org/10.1016/j.protis.2017.06.002

  • Zechman FW, Verbruggen H, Leliaert F, Ashworth M, Buchheim MA, Fawley MW, Spalding H, Pueschel CM, Buchheim JA, Verghese B, Hanisak MD (2010) An unrecognized ancient lineage of green plants persists in deep marine waters. J Phycol 46:1288–1295

    Article  Google Scholar 

  • Zhang J, Huss VAR, Sun X, Chang K, Pang D (2008) Morphology and phylogenetic position of a trebouxiophycean green alga (Chlorophyta) growing on the rubber tree, Hevea brasiliensis, with the description of a new genus and species. Eur J Phycol 43:185–193. https://doi.org/10.1080/09670260701718462

  • Zhu H, Leliaert F, Zhao Z, Xia S, Hu Z, Liu G (2015) Ulvella tongshanensis (Ulvellaceae, Chlorophyta), a new freshwater species from China, and an emended morphological circumscription of the genus Ulvella. Fottea 15:95–104

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burkhard Büdel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Der/die Autor(en), exklusiv lizenziert durch Springer-Verlag GmbH, DE, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Büdel, B., Friedl, T. (2024). Algae from Primary Endosymbioses. In: Büdel, B., Friedl, T., Beyschlag, W. (eds) Biology of Algae, Lichens and Bryophytes. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-65712-6_4

Download citation

Publish with us

Policies and ethics