Skip to main content

Algae from Secondary Endosymbiosis

  • Chapter
  • First Online:
Biology of Algae, Lichens and Bryophytes
  • 299 Accesses

Abstract

The photosynthetic world is not only dominated by the green color of trees and plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe K, Jordan RW (2021) Re-examination of Archaeomonas mirabilis from the Late Cretaceous reveals its true identity as the oldest known fossil Parmales (Bolidophyceae). Phycologia 60:362–367

    Article  CAS  Google Scholar 

  • Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, Agatha S, Berney C, Brown MW, Burki F, Cárdenas P, Čepička I, Chistyakova L, del Campo J, Dunthorn M, Edvardsen B, Eglit Y, Guillou L, Hampl V, Heiss AA, Hoppenrath M, James TY, Karnkowska A, Karpov S, Kim E, Kolisko M, Kudryavtsev A, Lahr DJG, Lara E, Le Gall L, Lynn DH, Mann DG, Massana R, Mitchell EAD, Morrow C, Park JS, Pawlowski JW, Powell MJ, Richter DJ, Rueckert S, Shadwick L, Shimano S, Spiegel FW, Torruella G, Youssef N, Zlatogursky V, Zhang Q (2019) Revisions to the classification, nomenclature, and diversity of Eukaryotes. J Eukaryotic Microbiol 66:4–119. https://doi.org/10.1111/jeu.12691

  • Adl SM, Simpson AG, Lane CE, Lukeš J, Bass D, Bowser SS, Brown MW, Burki F, Dunthorn SM, Hampel V, Heiss A, Hoppenrath M, Lara E, le Gall L, Lynn DH, McManus H, Mitchel EAD, Mozley-Stanridge SE, Parfrey LW, Pawlowski J, Rueckert S, Shadwick L, Schoch CL, Smirnov A, Spiegel F (2012) The revised classification of eukaryotes. J Eukaryot Microbiol 59(5):429–514

    Article  PubMed  PubMed Central  Google Scholar 

  • Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup O, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor M (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52(5):399–451

    Article  PubMed  Google Scholar 

  • Agardh CA (1824) Systema algarum. Lund, Literis Berlingianis

    Google Scholar 

  • Ainis AF, Erlandson JM, Gill KM, Graham MH, Vellanoweth RL (2019) The potential use of seaweeds and marine plants by native peoples of Alta and Baja California: implications for “marginal” island ecosystems. In An Archaeology of Abundance. University Press of Florida, pp 135–170

    Google Scholar 

  • Alexander H, Jenkins BD, Rynearson TA, Dyhrman ST (2015) Metatranscriptome analyses indicate resource partitioning between diatoms in the field. Proc Natl Acad Sci 112:E2182–E2190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen AE, Dupont CL, Oborník M, Horák A, Nunes-Nesi A, McCrow JP, Zheng H et al (2011) Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature 473:203–207

    Article  CAS  PubMed  Google Scholar 

  • Allison CW, Hilgert JW (1986) Scale microfossils from the early cambrian of northwest Canada. J Paleontol 60:973–1015

    Article  Google Scholar 

  • Allorge P (1930) Hétérocontes ou Xanthophycées? Rev Algol 5:230

    Google Scholar 

  • Altenburger A, Blossom HE, Garcia-Cuetos L, Jakobsen HH, Carstensen J, Lundholm N, Hansen PJ, Moestrup Ø, Haraguchi L (2020) Dimorphism in cryptophytes - The case of Teleaulax amphioxeia/Plagioselmis prolonga and its ecological implications. Sci Adv 6:eabb1611

    Google Scholar 

  • Ammermann S, Schneider T, Westermann M, Hillebrand H, Rhiel E (2013) Ejectisins: tough and tiny polypeptides are a major component of cryptophycean ejectisomes. Protoplasma 250:551–563

    Article  CAS  PubMed  Google Scholar 

  • Andersen RA (1982) A light and electron microscopical investigation of Ochromonas sphaerocystis Matvienko (Chrysophyceae): the statospore, vegetative cell and its peripheral vesicles. Phycologia 21(3):390–398

    Google Scholar 

  • Andersen RA (1987) Synurophyceae classis nov., a new class of algae. Am J Bot 74:337–353

    Article  Google Scholar 

  • Andersen RA (1989) Absolute orientation of the flagellar apparatus of Hibberdia magna comb. nov. (Chrysophyceae). Nord J Bot 8:653–669

    Article  Google Scholar 

  • Andersen RA (1990) The three-dimensional structure of the flagellar apparatus of Chrysosphaerella brevispina (Chrysophyceae) as viewed by high voltage electron microscopy stereo pairs. Phycologia 29:86–97

    Article  Google Scholar 

  • Andersen RA (1991) The cytoskeleton of chromophyte algae. Protoplasma 164:143–159

    Article  Google Scholar 

  • Andersen RA (2004) A historical review of heterokont phylogeny. Japanese J Phycol 52:153–162

    Google Scholar 

  • Andersen RA (2007) Molecular systematics of the chrysophyceae and synurophyceae. In: Brodie J, Lewis J (eds) Unravelling the Algae. CRC Press, pp 285–313

    Chapter  Google Scholar 

  • Andersen RA (2011) Ochromonas moestrupii sp. nov. (Chrysophyceae), a new golden flagellate from Australia. Phycologia 50:600–607

    Article  Google Scholar 

  • Andersen RA, Bailey JC (2002) Phylogenetic analysis of 32 strains of Vaucheria (Xanthophyceae) using the rbcL gene and its two flanking regions. J Phycol 38:583–592

    Article  CAS  Google Scholar 

  • Andersen RA, Barr DJS, Lynn DH, Melkonian M, Moestrup Ø, Sleigh MA (1991) Terminology and nomenclature of the cytoskeletal elements associated with the flagellar/ciliary apparatus in protists. Protoplasma 164(1–3):1–8

    Article  Google Scholar 

  • Andersen RA, Bidigare RR, Keller MD, Latasa M (1996) A comparison of HPLC pigment signatures and electron microscopic observations for oligotrophic waters of the North Atlantic and Pacific Oceans. Deep Sea Res II: Top Stud Oceanogr 43(2–3):517–537

    Google Scholar 

  • Andersen RA, Graf L, Malakhov Y, Yoon HS (2017) Rediscovery of the Ochromonas type species Ochromonas triangulata (Chrysophyceae) from its type locality (Lake Veysove, Donetsk region, Ukraine). Phycologia 56:591–604

    Article  CAS  Google Scholar 

  • Andersen RA, Potter D, Craig Bailey J (2002) Pinguiococcus pyrenoidosus gen. et sp. nov. (Pinguiophyceae), a new marine coccoid alga. Phycol Res 50:57–65

    Article  Google Scholar 

  • Andersen RA, Preisig H (2002a) Pelagophyceae. In: Lee JJ, Leedale GF, Bradbury PC (eds) An illustrated guide to the protozoa, vol 2, 2nd edn. Society of Protozoologists, Lawrence, Kansas, USA, pp 733–743

    Google Scholar 

  • Andersen RA, Preisig H (2002b) Synurophyceae. In: Lee JJ, Leedale GF, Bradbury PC (eds) An illustrated guide to the protozoa, vol 2, 2nd edn. Society of Protozoologists, Lawrence, Kansas, USA, pp 759–775

    Google Scholar 

  • Andersen RA, Saunders GW, Paskind MP, Sexton JP (1993) Ultrastructure and 18S R RNA gene sequence for Pelagomonas calceolata gen. et sp. nov. and the description of a new algal class, the Pelagophyceae classis nov. J Phycol 29:701–715

    Article  CAS  Google Scholar 

  • Anderson DM, Alpermann TJ, Cembella AD, Collos Y, Masseret E, Montresor M (2012) The globally distributed genus Alexandrium: multifaceted roles in marine ecosystems and impacts on human health. Harmful Algae 14:10–35. https://doi.org/10.1016/j.hal.2011.10.012

  • Anderson DM, Fensin E, Gobler CJ, Hoeglund AE, Hubbard KA, Kulis DM, Landsberg JH et al (2021) Marine harmful algal blooms (HABs) in the United States: history, current status and future trends. Harmful Algae 102:101975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersson JO, Roger AJ (2002) A cyanobacterial gene in nonphotosynthetic protists - an early chloroplast acquisition in eukaryotes? Curr Biol 12:115–119

    Article  CAS  PubMed  Google Scholar 

  • Andreoli C, Bresciani E, Moro I, Scarabel L, La Rocca N, Dalla Valle L, Ghion F (1999) A survey on a persistent greenish bloom in the Comacchio lagoons (Ferrara, Italy). Botanica Marina, p 42

    Google Scholar 

  • Annenkova NV, Hansen G, Rengefors K (2020) Closely related dinoflagellate species in vastly different habitats – an example of a marine–freshwater transition. Eur J Phycol 1–12. https://doi.org/10.1080/09670262.2020.1750057

  • Antia NJ, Kalley JP, McDonald J, Bisalputra T (1973) Ultrastructure of the marine cryptomonad Chroomonas salina cultured under conditions of photoautotrophy and glycerol- heterotrophy. J Protozool 20:377–385

    Article  Google Scholar 

  • Apt KE, Collier JL, Grossman AR (1995) Evolution of the Phycobiliproteins. J Mol Biol 248:79–96

    Article  CAS  PubMed  Google Scholar 

  • Araújo R, Vázquez Calderón F, Sánchez López J, Azevedo IC, Bruhn A, Fluch S, Garcia Tasende M et al. (2021) Current status of the algae production industry in Europe: an emerging sector of the blue bioeconomy. Front Marine Sci 7

    Google Scholar 

  • Archer L, Mc Gee D, Paskuliakova A, McCoy GR, Smyth T, Gillespie E, Touzet N (2019) Fatty acid profiling of new Irish microalgal isolates producing the high-value metabolites EPA and DHA. Algal Res 44:101671

    Article  Google Scholar 

  • Archibald JM (2007) Nucleomorph genomes: structure, function, origin and evolution. Bioessays 29(4):392–402

    Google Scholar 

  • Archibald A, Cunningham W, Manners D, Stark J, Ryley J (1963) Studies on the metabolism of the Protozoa. 10. The molecular structure of the reserve polysaccharides from Ochromonas malhamensis and Peranema trichophorum. Biochem J 88:444–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Archibald JM, Keeling PJ (2002) Recycled plastids: a ‘green movement’ in eukaryotic evolution. Trends Genet 18(11):577–584

    Article  CAS  PubMed  Google Scholar 

  • Archibald JM, Lane CE (2009) Going, going, not quite gone: nucleomorphs as a case study in nuclear genome reduction. J Hered 100(5):582–590

    Google Scholar 

  • Archibald JM, Simpson AGB, Slamovits CH (eds) (2017) Handbook of the protists. Springer International Publishing, Cham, p 1657

    Google Scholar 

  • Archontikis OA, Young JR (2021) A reappraisal of the taxonomy and biodiversity of the extant coccolithophore genus Palusphaera (Rhabdosphaeraceae, Prymnesiophyceae). Phycologia. https://doi.org/10.1080/00318884.2021.1965758

  • Ariztia EV, Andersen RA, Sogin ML (1991) A new phylogeny for chromophyte algae using 16S-like rRNA sequences from Mallomonas papillosa (Synurophyceae) and Tribonema aequale (Xanthophyceae). J Phycol 27:428–436

    Google Scholar 

  • Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S et al (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86

    Article  CAS  PubMed  Google Scholar 

  • Arvola L, Ojala A, Barbosa F, Heaney SI (1991) Migration behaviour of three cryptophytes in relation to environmental gradients: an experimental approach. Brit Phycol J 26:361–373

    Article  Google Scholar 

  • Asakawa M, Gomez-Delan G, Barte-Quilantang M, Ito K (2015) Paralytic shellfish poison (PSP)–producing dinoflagellate and PSP-infested organisms. In Ohtsuka S, Suzaki T, Horiguchi T, Suzuki N,Not F (eds) Marine protists: diversity and dynamics, pp 567–596. Tokyo, Springer Japan. https://doi.org/10.1007/978-4-431-55130-0_24

  • Aumeier C, Polinski E, Menzel D (2015) Actin, actin-related proteins and profiling in diatoms: a comparative genomic analysis. Mar Genomics 23:133–142

    Article  PubMed  Google Scholar 

  • Avia K, Coelho SM, Montecinos GJ, Cormier A, Lerck F, Mauger S, Faugeron S, Valero M, Cock JM, Boudry P (2017) High-density genetic map and identification of QTLs for responses to temperature and salinity stresses in the model brown alga Ectocarpus. Sci Rep 7:43241. https://doi.org/10.1038/srep43241

  • Bach LT, Mackinder LCM, Schulz KG, Wheeler G, Schroeder DC, Brownlee C, Riebesell U (2013) Dissecting the impact of CO2 and pH on the mechanisms of photosynthesis and calcification in the coccolithophore Emiliania huxleyi. New Phytol 199:121–134

    Article  CAS  PubMed  Google Scholar 

  • Bachvaroff TR, Sanchez Puerta MV, Delwiche CF (2005) Chlorophyll c–containing plastid relationships based on analyses of a multigene data set with all four chromalveolate lineages. Mol Biol Evol 22:1772–1782

    Article  CAS  PubMed  Google Scholar 

  • Badger MR, Andrews TJ, Whitney SM, Ludwig M, Yellowlees DC, Leggat W, Price GD (1998) The diversity and coevolution of rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Can J Bot 76:1052–1071

    CAS  Google Scholar 

  • Badis Y, Scornet D, Harada M, Caillard C, Godfroy O, Raphalen M, Gachon CMM et al (2021) Targeted CRISPR-Cas9-based gene knockouts in the model brown alga Ectocarpus. New Phytol 231(5):2077–2091

    Article  CAS  PubMed  Google Scholar 

  • Baker AL, Gretz MR, Coesel PFM, Delwiche C, Sarnoff S, Silverside AJ, Van Egmond W et al (2012) Phycokey—an image based key to Algae (PS Protista), Cyanobacteria, and other aquatic objects. University of New Hampshire Center for Freshwater Biology. http://cfb.unh.edu/phycokey/phycokey.htm

  • Ball SG, Morell MK (2003) From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annu Rev Plant Biol 54(1):207–233

    Article  CAS  PubMed  Google Scholar 

  • Ballen-Segura M, Felip M, Catalan J (2016) Some mixotrophic flagellate species graze on Archaea. Appl Environ Microbiol 83:e02317-e2416

    PubMed  PubMed Central  Google Scholar 

  • Barcytė D, Eikrem W, Engesmo A, Seoane S, Wohlmann J, Horák A, Yurchenko T et al (2021) Olisthodiscus represents a new class of Ochrophyta. J Phycol 57(4):1094–1118

    Article  PubMed  Google Scholar 

  • Barsanti L, Gualtieri P (2020) Anatomy of Euglena gracilis. In Konur O (ed) Handbook of Algal Science, Technology and Medicine. Academic Press, London

    Google Scholar 

  • Barsanti L, Passarelli V, Evangelista V, Frassanito AM, Gualtieri P (2011) Chemistry, physico-chemistry and applications linked to biological activities of β-glucans. Nat Prod Rep 28(3):457–466

    Google Scholar 

  • Bäumer D, Preisfeld A, Ruppel HG (2001) Isolation and characterization of paramylon synthase from Euglena gracilis (euglenophyceae). J Phycol 37(1):38–46

    Article  Google Scholar 

  • Beakes GW, Honda D, Thines M (2014) 3 Systematics of the straminipila: labyrinthulomycota, hyphochytriomycota, and oomycota. In: McLaughlin DJ, Spatafora JW (eds) Systematics and evolution. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 39–97

    Chapter  Google Scholar 

  • Beech PL, Wetherbee R, Pickett-Heaps JD (1990) Secretion and deployment of bristles in Mallomonas splendens (Synurophyceae). J Phycol 26:112–122

    Article  Google Scholar 

  • Belcher JH (1969) A morphological study of the phytoflagellate Chrysococcus Rufescens Klebs in culture. Brit Phycol J 4:105–117

    Article  Google Scholar 

  • Belhadri A, Brugerolle G (1992) Morphogenesis of the feeding apparatus of Entosiphon sulcatum: an immunofluorescence and ultrastructural study. Protoplasma 168:125–135

    Google Scholar 

  • Bell M (1981) Seaweed as a prehistoric resource. In: Brothwell DR, Dimbleby GW (eds) Environmental aspects of coasts and islands. British Archaeological Reports, Oxford, pp 117–126

    Google Scholar 

  • Ben Ali A, De Baere R, De Wachter R, Van de Peer Y (2002) Evolutionary relationships among heterokont algae (the autotrophic Stramenopiles) based on combined analyses of small and large subunit ribosomal RNA. Protist 153:123–132

    Article  CAS  PubMed  Google Scholar 

  • Bendif E, Probert I, Herve A, Billard C, Goux D, Lelong C, Cadoret JP, Veron B (2011) Integrative taxonomy of the Pavlovophyceae (Haptophyta): a reassessment. Protist 162:738–761

    Article  PubMed  Google Scholar 

  • Bennett MS, Triemer RE (2012) A new method for obtaining nuclear gene sequences from field samples and taxonomic revisions of the photosynthetic euglenoids Lepocinclis (Euglena) helicoideus and Lepocinclis (phacus) horridus (Euglenophyta)1. J Phycol 48(1):254–260

    Article  CAS  PubMed  Google Scholar 

  • Bennett MS, Triemer RE (2014) The genus Cyclidiopsis: an obituary. J Eukaryotic Microbiol 61(2):166–172

    Google Scholar 

  • Bennett MS, Triemer RE (2015) Chloroplast genome evolution in the Euglenaceae. J Eukaryot Microbiol 62(6):773–785

    Article  CAS  PubMed  Google Scholar 

  • Bennett MS, Wiegert KE, Triemer RE (2012) Comparative chloroplast genomics between Euglena viridis and Euglena gracilis (Euglenophyta). Phycologia 51(6):711–718

    Google Scholar 

  • Bennett MS, Wiegert KE and Triemer RE (2014). Characterization of Euglenaformis gen. nov. and the chloroplast genome of Euglenaformis [Euglena] proxima (Euglenophyta). Phycologia 53(1):66–73

    Google Scholar 

  • Bennett S, Wernberg T, Connell SD, Hobday AJ, Johnson CR, Poloczanska ES (2016) The “Great Southern Reef”: social, ecological and economic value of Australia’s neglected kelp forests. Mar Freshw Res 67:47

    Article  Google Scholar 

  • Berney C, Pawlowski J (2006) A molecular time-scale for eukaryote evolution recalibrated with the continuous microfossil record. Proc Royal Soc b: Biol Sci 273:1867–1872

    Article  CAS  Google Scholar 

  • Bertaux O, Mederic C, Valencia R (1991) Amplification of ribosomal DNA in the nucleolus of vitamin B12-deficient Euglena cells. Exp Cell Res 195(1):119–128

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya D, Yoon HS, Hackett JD (2004) Photosynthetic eukaryotes unite: endosymbiosis connects the dots. BioEssays 26:50–60. https://doi.org/10.1002/bies.10376

  • Biecheler B (1936) Sur une chloromonadine nouvelle d’eau saumatre Chattonella subsalsa n. gen., n. sp. Archives De Zoologie Experimentale Et Générale 78:79–83

    Google Scholar 

  • Bielewicz S, Bell E, Kong W, Friedberg I, Priscu JC, Morgan-Kiss RM (2011) Protist diversity in a permanently ice-covered Antarctic Lake during the polar night transition. ISME J 5:1559–1564

    Article  PubMed  PubMed Central  Google Scholar 

  • Billard C, Inouye I (2004) What is new in coccolithophore biology? In: Thierstein HR, Young EB (eds) Coccolithophores: from molecular process to global impact. Springer, Berlin/Heidelberg/New York, pp 1–29

    Google Scholar 

  • Billard C (1984) Recherches sur les Chrysophyceae marines de l’ordre des Sarcinochrysidales. Biologie, systématique, phylogénie. Ph.D. dissertation, l’Université de Caen, Caen, France

    Google Scholar 

  • Billoud B, Jouanno É, Nehr Z, Carton B, Rolland É, Chenivesse S, Charrier B (2015) Localization of causal locus in the genome of the brown macroalga Ectocarpus: NGS-based mapping and positional cloning approaches. Front Plant Sci 6. https://doi.org/10.3389/fpls.2015.00068

  • Bird DF, Kalff J (1986) Bacterial grazing by planktonic lake algae. Science 231:493–495

    Article  CAS  PubMed  Google Scholar 

  • Bisalputra T (1966) Electron microscopic study of the protoplasmic continuity in certain brown algae. Can J Bot 44:89–93

    Article  Google Scholar 

  • Bjørnland T, Liaaen-Jensen S (1989) Distribution patterns of carotenoids in relation to chromophyte phylogeny and systematics. In: Green JC, Leadbeater BSC, Diver WI (eds) The chromophyte algae: problems and perspectives. Clarendon, Oxford, pp 37–60

    Google Scholar 

  • Blackman FF (1900) The primitive algae and the flagellata. An account of modern work bearing on the evolution of the algae. Annals of Botany. os-14:647–688

    Google Scholar 

  • Blackwell WH, Powell MJ (2000) A review of group filiation of stramenopiles, additional approaches to the question. Evolut Theory 12:49–88

    Google Scholar 

  • Bobadilla M, Santelices B (2005) Variations in the dispersal curves of macroalgal propagules from a source. J Exp Mar Biol Ecol 327:47–57

    Article  Google Scholar 

  • Bodył A, Stiller JW, Mackiewicz P (2009) Chromalveolate plastids: direct descent or multiple endosymbioses? Trends Ecol Evol 24:119–121. https://doi.org/10.1016/j.tree.2008.11.003

  • Boenigk J, Arndt H (2002) Bacterivory by heterotrophic flagellates: community structure and feeding strategies. Antonie Van Leeuwenhoek 81(1–4):465–480

    Article  PubMed  Google Scholar 

  • Boettcher B, Barral Y (2013) The cell biology of open and closed mitosis. Nucleus 4(3):160–165

    Article  PubMed  PubMed Central  Google Scholar 

  • Bohlin K (1897) Studier ofver några slågten af alggruppen Confervales Borzi. Bihang till Kongliga Svenska Vetenskaps-Academiens Handlingar, 23, Afd. III, No 3, 1–56

    Google Scholar 

  • Bold HC, Wynne MJ (1985) Introduction to the algae: structure and reproduction, 2nd edn. Prentice-Hall, Englewood Cliffs, N.J., p 720

    Google Scholar 

  • Boltovskoy D, Anderson OR, Correa NM (2017) Radiolaria and Phaeodaria. In: Archibald JM, Simpson AGB, Slamovits CH (eds) Handbook of the Protists. Springer International Publishing, Cham, pp 731–763

    Chapter  Google Scholar 

  • Booth BC, Marchant HJ (1987) Parmales, a new order of marine chrysophytes, with descriptions of three new genera and seven new species. J Phycol 23:245–260

    Article  Google Scholar 

  • Borzi A (1889) Botrydiopsis nuovo genere di alghe verdi. Bollettino Della Societá Italiana Di Microbiologia 1:60–70

    Google Scholar 

  • Borzi A (1895) Studi Algologici. Fasc. II. Palermo, A. Reber

    Google Scholar 

  • Bouck GB, Ngo H (1996) Cortical structure and function in euglenoids with reference to trypanosomes, ciliates, and dinoflagellates. Int Rev Cytol 169:267–318

    Article  CAS  PubMed  Google Scholar 

  • Bouck GB (1971) The structure, origin, isolation, and composition of the tubular mastigonemes of the Ochromonas flagellum. J Cell Biol 50:362–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouck GB, Rogalski A, Valaitis A (1978) Surface organization and composition of Euglena. II. Flagellar mastigonemes. J Cell Biol 77(3):805–826

    Google Scholar 

  • Bourdareau S, Tirichine L, Lombard B, Loew D, Scornet D, Wu Y, Coelho SM, Cock JM (2021) Histone modifications during the life cycle of the brown alga Ectocarpus. Genome Biol 22:12

    Google Scholar 

  • Bourrelly P (1954) Phylogénie et systématique des Chrysophycees. In: Rapports et Communications de l’Huitième Congrès International de Botanique [Paris], Sect. 17, pp 117–118

    Google Scholar 

  • Bourrelly P (1957) Recherches sur les Chrysophycées. morphologie, phylogénie, systématique. Revue Algologique Mémoire Hors-Série 1:1–412

    Google Scholar 

  • Bourrelly P (1965) La classification des Chrysophycées, ses problèmes. Rev Algol 1:56–60

    Google Scholar 

  • Bourrelly P (1968) Les Algues d’Eau Douce. II. Les Algues jaunes et brunes, p 438. Société Nouvelle des Éditions Boubée, Paris

    Google Scholar 

  • Bowers HA, Tomas C, Tengs T, Kempton JW, Lewitus AJ, Oldach DW (2006) Raphidophyceae [Chadefaud ex Silva] systematics and rapid identification: Sequence analyses and real-time PCR assays. J Phycol 42:1333–1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes

    Google Scholar 

  • Bown P (ed) (1998) Calcareous nannofossil biostratigraphy. Cambridge, Chapman & Hall. 314. Nature 456:239–244

    Google Scholar 

  • Braje TJ, Dillehay TD, Erlandson JM, Klein RG, Rick TC (2017) Finding the first Americans. Science 358:592–594

    Article  CAS  PubMed  Google Scholar 

  • Brakel J, Sibonga RC, Dumilag RV, Montalescot V, Campbell I, Cottier-Cook EJ, Ward G et al (2021) Exploring, harnessing and conserving marine genetic resources towards a sustainable seaweed aquaculture. Plants People Planet 3:337–349

    Article  Google Scholar 

  • Braun A (1855) Algarum unicellularium genera nova et minus cognita, praemissis observationibus de algis unicellularibus in genere. Auctore Alexandro Braun. Apud W. Engelmann, Lipsiae

    Google Scholar 

  • Breglia SA, Yubuki N, Leander BS (2013) Ultrastructure and molecular phylogenetic position of Heteronema scaphurum: A eukaryovorous euglenid with a cytoproct. J Eukaryot Microbiol 60(2):107–120

    Article  CAS  PubMed  Google Scholar 

  • Breglia SA, Yubuki N, Hoppenrath M and Leander BS (2010) Ultrastructure and molecular phylogenetic position of a novel euglenozoan with extrusive episymbiotic bacteria: Bihospites bacati n. gen. et sp. (Symbiontida). BMC Microbiol 10(1):145

    Google Scholar 

  • Brett SJ, Perasso L, Wetherbee R (1994) Structure and development of the cryptomonad periplast: a review. Protoplasma 181:106–122

    Article  Google Scholar 

  • Briand J, Calvayrac R (1980) Paramylon synthesis in heterotrophic and photoheterotrophic Euglena (Euglenophyceae). J Phycol 16(2):234–239

    Article  CAS  Google Scholar 

  • Bricelj VM, Fisher NS, Guckert JB, Chu F-LE (1989) Lipid composition and nutritional value of the brown tide alga Aureococcus anophagefferens. In: Cosper EM, Bricelj VM, Carpenter EJ (eds) Novel Phytoplankton Blooms. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 85–100

    Chapter  Google Scholar 

  • Bricelj VM, Lonsdale DJ (1997) Aureococcus anophagefferens: causes and ecological consequences of brown tides in U.S. mid-Atlantic coastal waters. Limnol Oceanogr 42:1023–1038

    Article  Google Scholar 

  • Bringloe TT, Starko S, Wade RM, Vieira C, Kawai H, De Clerck O, Cock JM et al (2020a) Phylogeny and evolution of the brown algae. Crit Rev Plant Sci 39:281–321

    Article  CAS  Google Scholar 

  • Bringloe TT, Verbruggen H, Saunders GW (2020b) Unique biodiversity in Arctic marine forests is shaped by diverse recolonization pathways and far northern glacial refugia. Proc Natl Acad Sci 117:22590–22596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briones-Fourzán P, Lozano-Álvarez E (2001) The importance of Lobophora variegata (Phaeophyta: Dictyotales) as a habitat for small juveniles of Panulirus argus (Decapoda: Palinuridae) in a tropical reef lagoon. Bull Mar Sci 68:201–219

    Google Scholar 

  • Brosnan S, Brown PJ, Farmer MA, Triemer RE (2005) Morphological separation of the euglenid genera Trachelomonas and Strombomonas (Euglenophyta) based on lorica development and posterior strip reduction. J Phycol 41(3):590–605

    Article  Google Scholar 

  • Broughton MJ, Howe CJ, Hiller RG (2006) Distinctive organization of genes for light- harvesting proteins in the cryptophyte algal Rhodomonas. Gene 369:72–79

    Article  CAS  PubMed  Google Scholar 

  • Brown HP, Cox A (1954) An electron microscope study of protozoan flagella. Am Midl Nat 52:106–117

    Article  Google Scholar 

  • Brown JM, Labonté JM, Brown J, Record NR, Poulton NJ, Sieracki ME, Logares R, Stepanauskas R (2020) Single cell genomics reveals viruses consumed by marine protists. Front Microbiol 11:524828

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown JW, Sorhannus U (2010) A molecular genetic timescale for the diversification of autotrophic Stramenopiles (Ochrophyta): substantive underestimation of putative fossil ages. PLoS ONE 5:e12759

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown MR, Jeffrey SW, Garland CD (1989) Nutritional aspects of microalgae used in mariculture: a literature review, p 44. Hobart, Tasmania

    Google Scholar 

  • Brown MR, Jeffrey SW, Volkmann JK, Dunstan GA (1997) Nutritional properties of microalgae for mariculture. Aquaculture 151:315–331

    Article  CAS  Google Scholar 

  • Brugerolle G (2002) Cryptophagus subtilis: a new parasite of cryptophytes affiliated with the Perkinsozoa lineage. Eur J Protistol 37:379–390

    Article  Google Scholar 

  • Brugerolle G (2003) Apicomplexan parasite Cryptophagus renamed Rastrimonas gen. Nov Eur J Protistol 39:101

    Article  Google Scholar 

  • Büdel B, Darienko T, Deutschewitz K, Dojani S, Friedl T, Mohr KI, Salisch M, Reisser W, Weber B (2009) Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb Ecol 57:229–247

    Article  PubMed  Google Scholar 

  • Buetow DE (1968) Morphology and ultrastructure of Euglena. Biol Euglena 1:109–184

    Google Scholar 

  • Buetow DE (2011) Euglena, In Encyclopedia of Life Sciences

    Google Scholar 

  • Buggeln RG (1974) Negative phototropism of the haptera of Alaria esculenta (Laminariales). J Phycol 10:80–82

    Article  Google Scholar 

  • Burki F, Kaplan M, Tikhonenkov DV, Zlatogursky V, Minh BQ, Radaykina LV, Smirnov A, Mylnikov AP, Keeling PJ (2016) Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista. Proc R Soc B 283:20152802

    Article  PubMed  PubMed Central  Google Scholar 

  • Burki F, Okamoto N, Pombert JF, Keeling PJ (2012) The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins. Proc R Soc B 279:2246–2254

    Article  PubMed  PubMed Central  Google Scholar 

  • Burki F, Roger AJ, Brown MW, Simpson AGB (2020) The new tree of Eukaryotes. Trends Ecol Evol 35:43–55

    Article  CAS  PubMed  Google Scholar 

  • Burki F, Sandin MM, Jamy M (2021) Diversity and ecology of protists revealed by metabarcoding. Curr Biol 31:R1267–R1280

    Article  CAS  PubMed  Google Scholar 

  • Burki F, Shalchian-Tabrizi K, Minge M, Skjæveland Å, Nikolaev SI, Jakobsen KS, Pawlowski J (2007) Phylogenomics reshuffles the eukaryotic supergroups. PLoS ONE 2(8):e790

    Article  PubMed  PubMed Central  Google Scholar 

  • Burkill PH, Mantoura RFC, Llewellyn CA, Owens NJP (1987) Microzooplankton grazing and selectivity of phytoplankton in coastal waters. Mar Biol 93:581–590

    Article  CAS  Google Scholar 

  • Busse I, Preisfeld A (2002a). Phylogenetic position of Rhynchopus sp. and Diplonema ambulator as indicated by analyses of euglenozoan small subunit ribosomal DNA. Gene 284(1–2):83–91

    Google Scholar 

  • Busse I, Preisfeld A (2002b) Unusually expanded SSU ribosomal DNA of primary osmotrophic euglenids: molecular evolution and phylogenetic inference. J Mol Evol 55(6):757–767

    Article  CAS  PubMed  Google Scholar 

  • Busse I, Preisfeld A (2003) First evidence of a group I intron among euglenozoans discovered in the SSU rDNA of Ploeotia costata (Euglenozoa). Protist 154:57–69

    Article  CAS  PubMed  Google Scholar 

  • Busse I, Patterson DJ, Preisfeld A (2003) Phylogeny of phagotrophic euglenids (Euglenozoa): a molecular approach based on culture material and environmental samples. J Phycol 39:828–836

    Article  CAS  Google Scholar 

  • Butcher RW (1967) An introductory account of the smaller algae of British Coastal waters. Part IV: Cryptophyceae. Ministry of Agriculture, Fisheries and Food. HMSO, London

    Google Scholar 

  • Bütschli O (1884) Dr. HG Bronn's Klassen und Ordnungen des Thier‐Reichs, Vol 1 Abt. II Mastigophora

    Google Scholar 

  • Bütschli O (1883–1887) Mastigophora. In HG Bronn's Klassen und Ordnungen des Thierreichs, Band 1, 2. Abteilung. C.F. Winter’sche Verlagshandlung, Leipzig und Heidelberg

    Google Scholar 

  • Butterfield NJ (2004) A vaucheriacean alga from the middle Neoproterozoic of Spitsbergen: implications for the evolution of Proterozoic eukaryotes and the Cambrian explosion. Paleobiology 30:231–252

    Article  Google Scholar 

  • Calderon-Saenz E, Schnetter R (1989) Morphology, biology and systematics of Cryptochlora perforans (Chlorarachniophyta), a phagotropic marine alga. Plant Syst Evol 163:165–176

    Article  Google Scholar 

  • Calkins GN (1933) The Biology of the Protozoa, p 607 (Edn. 2)

    Google Scholar 

  • Calvert SE (1977) Mineralogy of silica phases in deep-sea cherts and porcelanites. Philosophical transactions of the royal society of London. Series a, Mathem Phy Sci 286:239–252

    CAS  Google Scholar 

  • Camacho A (2006) On the occurrence and ecological features of deep chlorophyll maxima (DCM) in Spanish stratified lakes. Limnetica 25:453–478

    Article  Google Scholar 

  • Campbell C, Vitt DH, Halsey LA, Campbell ID, Thormann MN, Bayley SE (2000) Net primary production and standing biomass in northern continental wetlands. Northern Forestry Centre Information Report NOX -X-369, p 57. Ottawa: Canadian Forest Service

    Google Scholar 

  • Cann JP, Pennick NC (1986). Observations on Petalomonas cantuscygni, n. sp., a new halo-tolerant strain. Archiv für Protistenkunde 132(1–2):63–71

    Google Scholar 

  • Caron DA, Alexander H, Allen AE, Archibald JM, Armbrust EV, Bachy C, Bell CJ, Bharti A, Dyhrman ST, Guida SM, Heidelberg KB, Kaye JZ, Metzner J, Smith SR, Worden AZ (2017) Probing the evolution, ecology and physiology of marine protists using transcriptomics. Nat Rev Microbiol 15(1):6–20

    Article  CAS  PubMed  Google Scholar 

  • Caron DA, Porter KG, Sanders RW (1990) Carbon, nitrogen, and phosphorus budgets for the mixotrophic phytoflagellate Poterioochromonas malhamensis (Chrysophyceae) during bacterial ingestion. Limnol Oceanogr 35:433–443

    Article  CAS  Google Scholar 

  • Carradec Q, Pelletier E, Da Silva C, Alberti A, Seeleuthner Y, Blanc-Mathieu R, Lima-Mendez G et al. (2018) A global ocean atlas of eukaryotic genes. Nat Commun 9

    Google Scholar 

  • Carter N (1937) New or interesting algae from brackish water. Arch Protistenk 90:1–68

    Google Scholar 

  • Casiot C, Bruneel O, Personne JC, Leblanc M, Elbaz-Poulichet F (2004) Arsenic oxidation and bioaccumulation by the acidophilic protozoan, Euglena mutabilis, in acid mine drainage (Carnoulès, France). Sci Total Environ 320(2–3):259–267

    Article  CAS  PubMed  Google Scholar 

  • Casper-Lindley C, Björkman O (1998) Fluorescence quenching in four unicellular algae with different light-harvesting and xanthophyll-cycle pigments. Photosynth Res 56(3):277–289

    Article  CAS  Google Scholar 

  • Cavalier-Smith T (1981) Eukaryotic kingdoms: Seven or nine? BioSystems 14:461–481

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (1986) The kingdom Chromista: origin and systematics. In Round FE, Chapman DJ (eds), Progress in Phycological Research, 4:309–347

    Google Scholar 

  • Cavalier-Smith T (1993) Kingdom protozoa and its 18 phyla. Microbiol Rev 57(4):953–994

    Google Scholar 

  • Cavalier-Smith T (1998) A revised six-kingdom system of life. Biol Rev 73:203–266

    CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (1999) Principles of protein and lipid targeting in secondary symbiogenesis: Euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol 46:347–366

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (2016) Higher classification and phylogeny of Euglenozoa. Eur J Protistol 56:250–276

    Article  PubMed  Google Scholar 

  • Cavalier-Smith T (2017) Euglenoid pellicle morphogenesis and evolution in light of comparative ultrastructure and trypanosomatid biology: Semi-conservative microtubule/strip duplication, strip shaping and transformation. Eur J Protistol 61:137–179

    Article  PubMed  Google Scholar 

  • Cavalier-Smith T, Chao EE (1996) 18S rRNA sequence of Heterosigma carterae (Raphidophyceae), and the phylogeny of heterokont algae (Ochrophyta). Phycologia 35:500–510

    Article  Google Scholar 

  • Cavalier-Smith T, Chao EE, Lewis R (2015) Multiple origins of Heliozoa from flagellate ancestors: New cryptist subphylum Corbihelia, superclass Corbistoma, and monophyly of Haptista, Cryptista, Hacrobia and Chromista. Mol Phylogenet Evol 93:331–362

    Article  PubMed  Google Scholar 

  • Cavalier-Smith T, Couch JA, Thorsteinsen KE, Gilson P, Deane JA, Hill DRA, McFadden GI (1996) Cryptomonad nuclear and nucleomorph 18S rRNA phylogeny. Eur J Phycol 31:315–328

    Article  Google Scholar 

  • Cavalier-Smith T (1978) The evolutionary origin and phylogeny of microtubules, mitotic spindles and eukaryote flagella. Biosystems 10:93–114

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith T, Chao EE, Allsopp MTEP (1995) Ribosomal RNA evidence for chloroplast loss within Heterokonta: pedinellid relationships and a revised classification of Ochristan algae. Arch Protistenk 145:209–220

    Article  Google Scholar 

  • Celis-Plá PSM, Martínez B, Korbee N, Hall-Spencer JM, Figueroa FL (2017) Ecophysiological responses to elevated CO2 and temperature in Cystoseira tamariscifolia (Phaeophyceae). Clim Change 142:67–81

    Article  Google Scholar 

  • Cenci U, Sibbald SJ, Curtis BA, Kamikawa R, Eme L, Moog D, Henrissat B, Maréchal E, Chabi M, Djemiel C, Roger AJ, Kim E, Archibald JM (2018) Nuclear genome sequence of the plastid-lacking cryptomonad Goniomonas avonlea provides insights into the evolution of secondary plastids. BMC Biol 16:137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerino F, Zingone A (2006) A survey of cryptomonad diversity and seasonality at a coastal Mediterranean site. Eur J Phycol 41:363–378

    Article  Google Scholar 

  • Chadefaud M (1950) Les cellules nageuses des Algues dans l’embranchement des Chromophycées. Comptes Rendus De L’academie Des Sciences, Paris 231:788–790

    Google Scholar 

  • Chadefaud M (1960) Traité de Botanique Systématique. Tome I. Les Végétaux non Vasculaires, p 1016. Cryptogamie. Masson et Cie Editeurs, Paris

    Google Scholar 

  • Chang FH, McVeagh M, Gall M, Smith P (2012) Chattonella globosa is a member of Dictyochophyceae: reassignment to Vicicitus gen. nov., based on molecular phylogeny, pigment composition, morphology and life history. Phycologia 51:403–420

    Article  Google Scholar 

  • Chang FH, Sutherland J Bradford-Grieve J (2017) Taxonomic revision of Dictyochales (Dictyochophyceae) based on morphological, ultrastructural, biochemical and molecular data: taxonomic revision of Dictyochales. Phycol Res 65:235–247

    Google Scholar 

  • Chang FH, Sutherland JE, McVeagh M, Gall M (2014) Molecular phylogeny, pigment composition, toxicology and life history of Pseudochattonella cf. verruculosa (Class Dictyochophyceae) from Wellington Harbour, New Zealand. Harmful Algae 34:42–55

    Article  Google Scholar 

  • Chapman ARO (1974) The ecology of macroscopic marine algae. Annu Rev Ecol Syst 5:65–80

    Article  Google Scholar 

  • Charrier B, Le Bail A, de Reviers B (2012) Plant Proteus: brown algal morphological plasticity and underlying developmental mechanisms. Trends Plant Sci 17:468–477

    Article  CAS  PubMed  Google Scholar 

  • Chen LC-M, McLachlan J, Craigie JS (1974) The fine structure of the marine chrysophycean alga Phaeosaccion collinsii. Can J Bot 52:1621–1624

    Article  Google Scholar 

  • Chepurnov VA, Mann DG, Sabbe K, Vyverman W (2004) Experimental studies on sexual reproduction in diatoms. In International Review of Cytology, pp 91–154. Elsevier

    Google Scholar 

  • Cho GY, Lee SH, Boo SM (2004) A new brown algal order, Ishigeales (Phaeophyceae), established on the basis of plastid protein-coding rbcL, psaA, and psbA region comparisons. J Phycol 40:921–936

    Article  CAS  Google Scholar 

  • Christensen T (1962) Alger. In: Böcher TW, Lange MC, Sørensen T (eds) Botanik, vol 2. Systematisk Botanik Number 2. Copenhagen, Denmark, Munksgaard, pp 1–178

    Google Scholar 

  • Cienkowsky L (1870) Über Palmellaceen und einige Flagellaten. Arch Mikrosk Anat 6:421–438

    Article  Google Scholar 

  • Ciugulea I, Triemer RE (2010) Color atlas of photosynthetic euglenoids. Michigan State University Press

    Google Scholar 

  • Clay BL, Kugrens P (1999a) Description and ultrastructure of Kathablepharis tenuis sp. nov. and K. obesa sp. Nov. – Two new freshwater kathablepharids (Kathablepharididae) from Colorado and Wyoming. Eur J Protistol 35:435–447

    Article  Google Scholar 

  • Clay BL, Kugrens P (1999b) Systematics of the enigmatic kathablepharids, Including EM characterization of the type species, Kathablepharis phoenikoston, and new observations on K. remigera comb. Nov Protist 150:43–59

    Article  CAS  PubMed  Google Scholar 

  • Clay BL, Kugrens P, Lee RE (1999) A revised classification of the Cryptophyta. Bot J Linn Soc 131:131–151

    Article  Google Scholar 

  • Clayton MN, Ashburner CM (1994) Secretion of phenolic bodies following fertilisation in Durvillaea potatorum (Durvillaeales, Phaeophyta). Eur J Phycol 29:1–9

    Article  Google Scholar 

  • Cleve PT, Grunow A (1880) Beiträge zur Kenntniss der arctischen Diatomeen. Kongliga Svenska Vetenskaps-Akademiens Handlingar 17:1–121

    Google Scholar 

  • Cock JM, Liu F, Duan D, Bourdareau S, Lipinska AP, Coelho SM, Tarver JE (2017) Rapid evolution of microRNA loci in the brown algae. Genome Biol Evol 9:740–749. https://doi.org/10.1093/gbe/evx038

  • Cock JM, Sterck L, Ahmed S, Allen AE, Amoutzias G, Anthouard V, Artiguenave F, Arun A, Aury J-M, Badger JH, Beszter B, Billiau K, Bonnet E, Bothwell JH, Bowler C, Boyen C, Brownlee C, Carrano CJ, Wincker P (2012) The Ectocarpus genome and brown algal genomics. In Advances in Botanical Research, pp 141–184. Elsevier

    Google Scholar 

  • Cock JM, Sterck L, Rouzé P, Scornet D, Allen AE, Amoutzias G, Anthouard V, Artiguenave F, Aury J-M, Badger JH, Beszteri B, Billiau K, Bonnet E, Bothwell JH, Bowler C, Boyen C, Brownlee C, Carrano CJ, Charrier B, Cho GY, Coelho SM, Collén J, Corre E, Da Silva C, Delage L, Delaroque N, Dittami SM, Doulbeau S, Elias M, Farnham G, Gachon CMM, Gschloessl B, Heesch S, Jabbari K, Jubin C, Kawai H, Kimura K, Kloareg B, Küpper FC, Lang D, Le Bail A, Leblanc C, Lerouge P, Lohr M, Lopez PJ, Martens C, Maumus F, Michel G, Miranda-Saavedra D, Morales J, Moreau H, Motomura T, Nagasato C, Napoli CA, Nelson DR, Nyvall-Collén P, Peters AF, Pommier C, Potin P, Poulain J, Quesneville H, Read B, Rensing SA, Ritter A, Rousvoal S, Samanta M, Samson G, Schroeder DC, Ségurens B, Strittmatter M, Tonon T, Tregear JW, Valentin K, von Dassow P, Yamagishi T, Van de Peer Y, Wincker P (2010) The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465:617–621

    Article  CAS  PubMed  Google Scholar 

  • Coelho SM, Mignerot L, Cock JM (2019) Origin and evolution of sex-determination systems in the brown algae. New Phytol 222:1751–1756

    Article  PubMed  Google Scholar 

  • Cole GT, Wynne MJ (1974) Endocytosis of Microcystis aeruginosa by Ochromonas danica. J Phycol 10:397–410

    Article  Google Scholar 

  • Coleman MA, Minne AJP, Vranken S, Wernberg T (2020) Genetic tropicalisation following a marine heatwave. Sci Rep 10

    Google Scholar 

  • Collini E, Wong CY, Wilk KE, Curmi PMG, Brumer P, Scholes GD (2010) Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nat Lett 463:644–648

    Article  CAS  Google Scholar 

  • Copertino DW, Hallick RB (1993) Group II and group III introns of twintrons: potential relationships with nuclear pre-mRNA introns. Trends Biochem Sci 18(12):467–471

    Article  CAS  PubMed  Google Scholar 

  • Corbella M, Cupellini L, Lipparini F, Scholes GD, Curutchet C (2019) Spectral variability in phycocyanin cryptophyte antenna complexes is controlled by changes in the α polypeptide chains. ChemPhotoChem 3:945–956

    Article  CAS  Google Scholar 

  • Cormier A, Avia K, Sterck L, Derrien T, Wucher V, Andres G, Monsoor M et al (2017) Re-annotation, improved large-scale assembly and establishment of a catalogue of noncoding loci for the genome of the model brown alga Ectocarpus. New Phytol 214:219–232

    Article  CAS  PubMed  Google Scholar 

  • Cornwall CE, Revill, AT, Hall-Spencer JM, Milazzo,M, Raven JA, Hurd CL (2017) Inorganic carbon physiology underpins macroalgal responses to elevated CO2. Sci Rep 7

    Google Scholar 

  • Correns C (1892) Über eine neue braune Süsswasseralge, Naegeliella flagellifera nov. gen. et spec. Berichte Der Deutsche Botanischen Gesellschaft 10:629–636

    Article  Google Scholar 

  • Cosenza VA, Navarro DA, Ponce NMA, Stortz CA (2017) Seaweed polysaccharides: structure and applications. In: Goyanes SN, D’Accorso NB (eds) Industrial applications of renewable biomass products. Springer International Publishing, Cham, pp 75–116

    Chapter  Google Scholar 

  • Cox E (2015) Coscinodiscophyceae, emdiophyceae, fragilariophyceae, bacillariophyceae (Diatoms). Syllabus of Plant Families. Adolf Engler’s Syllabus der Pflanzenfamilien Part 2/1, pp 64–103

    Google Scholar 

  • Craig Bailey J, Bidigare RR, Christensen SJ, Andersen RA (1998) Phaeothamniophyceae classis nova: a new lineage of Chromophytes based upon photosynthetic pigments, rbcL sequence analysis and ultrastructure. Protist 149:245–263

    Article  CAS  PubMed  Google Scholar 

  • Croft MT, Warren MJ, Smith AG (2006) Algae need their vitamins. Eukaryot Cell 5:1175–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cronberg G (2005) The life cycle of Gonyostomum semen (Raphidophyceae). Phycologia 44:285–293

    Article  Google Scholar 

  • Cryan AE, Benes KM, Gillis B, Ramsay-Newton C, Perini V, Wynne MJ (2015) Growth, reproduction, and senescence of the epiphytic marine alga Phaeosaccion collinsii Farlow (Ochrophyta, Phaeothamniales) at its type locality in Nahant, Massachusetts, USA. Botanica Marina, p 58

    Google Scholar 

  • Curtis BA, Tanifuji G, Burki F, Gruber A, Irimia M, Maruyama S, Arias MC, Ball SG, Gile GH, Hirakawa Y, Hopkins JF, Kuo A, Rensing SA, Schmutz J, Symeonidi A, Elias M, Eveleigh RJM, Herman EK, Klute MJ, Nakayama T, Oborník M, Reyes-Prieto A, Armbrust EV, Aves SJ, Beiko RG, Coutinho P, Dacks JB, Durnford DG, Fast NM, Green BR, Grisdale CJ, Hempel F, Henrissat B, Höppner MP, Ishida K-I, Kim E, Kořený L, Kroth PG, Liu Y, Malik S-B, Maier UG, McRose D, Mock T, Neilson JAD, Onodera NT, Poole AM, Pritham EJ, Richards TA, Rocap G, Roy SW, Sarai C, Schaack S, Shirato S, Slamovits CH, Spencer DF, Suzuki S, Worden AZ, Zauner S, Barry K, Bell C, Bharti AK, Crow JA, Grimwood J, Kramer R, Lindquist E, Lucas S, Salamov A, McFadden GI, Lane CE, Keeling PJ, Gray MW, Grigoriev IV, Archibald JM (2012) Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature 492:59–65. https://doi.org/10.1038/nature11681

  • Cuvelier ML, Allen AE, Monier A, McCrow JP, Messie M, Tringe SG, Woyke T, Welsh RM, Ishoey T, Lee JH, Binder BJ, DuPont CL, Latasa M, Guigand C, Buck KR, Hilton J, Thiagarajan M, Caler E, Read B, Lasken RS, Chavez FP, Worden AZ (2010) Targeted metagenomics and ecology of globally important uncultured eukaryotic phytoplankton. Proc Natl Acad Sci USA 107:14679–14684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czerwik-Marcinkowska J, Mrozinska T (2009) Epilithic algae from caves of the Krakowsko- Czestochowska upland (Southern Poland). Acta Societatis Botanicorum Poloniae 78:301–309

    Google Scholar 

  • Da Cunha AM (1913) Contribuição para o conhecimento da fauna de Protozoarios do Brazil. Mem Inst Oswaldo Cruz 5(2):101–122

    Article  Google Scholar 

  • da Silva AF, Lourenço SO, Chaloub RM (2009) Effects of nitrogen starvation on the photosynthetic physiology of a tropical marine microalga Rhodomonas sp. (Cryptophyceae). Aquat Bot 91:291–297

    Article  Google Scholar 

  • Dabbagh N, Preisfeld A (2017) The chloroplast genome of Euglena mutabilis—Cluster arrangement, intron analysis, and intrageneric trends. J Eukaryotic Microbiol 64(1):31–44

    Google Scholar 

  • Dabbagh N, Bennett MS, Triemer RE, Preisfeld A (2017) Chloroplast genome expansion by intron multiplication in the basal psychrophilic euglenoid Eutreptiella pomquetensis. PeerJ 5:e3725

    Article  PubMed  PubMed Central  Google Scholar 

  • Darwin C (1909) The Voyage of the Beagle. The Harvard Classics, Vol 29. New York, USA: P.F. Collier & Son Company

    Google Scholar 

  • Daugbjerg N (1996) Mesopedinella arctica gen. et sp. nov. (Pedinellales, Dictyochophyceae) I: fine structure of a new marine phytofiagellate from Arctic Canada. Phycologia 35:435–445

    Article  Google Scholar 

  • Daugbjerg N, Guillou L (2001) Phylogenetic analyses of Bolidophyceae (Heterokontophyta) using rbcL gene sequences support their sister group relationship to diatoms. Phycologia 40:153–161

    Article  Google Scholar 

  • Daugbjerg N, Norlin A, Lovejoy C (2018) Baffinella frigidus gen. et sp. nov. (Baffinellaceae fam. nov., Cryptophyceae) from Baffin Bay: Morphology, pigment profile, phylogeny, and growth rate response to three abiotic factors. J Phycol 54:665–680

    Article  CAS  PubMed  Google Scholar 

  • Dawson NS, Walne PL (1994) Evolutionary trends in euglenoids. Archiv für Protistenkunde 144(3):221–225

    Google Scholar 

  • Dayton PK (1985) Ecology of kelp communities. Annu Rev Ecol Syst 16:215–245

    Article  Google Scholar 

  • de Lamarck JPBA, De Candolle AP (1805) Flore française Vol. 2, 3rd edn. Agasse, Paris

    Google Scholar 

  • De Mattos Bicudo CE, Ferragut C, Massagardi MR (2009) Cryptophyceae population dynamics in an oligo-mesotrophic reservoir (Ninféias pond) in São Paulo, southeast Brazil. Hoehnea 36:99–111

    Article  Google Scholar 

  • De Souza CPC, Osmani SA (2007) Mitosis, not just open or closed. Eukaryot Cell 6(9):1521–1527

    Article  PubMed  PubMed Central  Google Scholar 

  • De Tommasi E, Gielis J, Rogato A (2017) Diatom frustule morphogenesis and function: a multidisciplinary survey. Mar Genomics 35:1–18

    Article  PubMed  Google Scholar 

  • De Toni JB (1895) Sylloge algarum, Vol 3. Fucoideae (privately published) Padova, pp xvi-638

    Google Scholar 

  • De Vargas C, Aubry M-P, Probert I, Young J (2007) Origin and evolution of Coccolithophores: from coastal hunters to oceanic farmers. In Falkowski PG, Knoll AH (eds) Evolution of primary producers in the Sea. Academic Press (Elsevier Inc.), pp 251–285

    Google Scholar 

  • de Vargas C, Audic S, Henry N, Decelle J, Mahé F, Logares R, Lara E et al (2015) Eukaryotic plankton diversity in the sunlit ocean. Science 348:1261605

    Article  PubMed  Google Scholar 

  • Deane JA, Hill DRA, Brett SJ, McFadden GI (1998) Hanusia phi gen. et sp. nov. (Cryptophyceae): Characterization of ‘Cryptomonas sp. Φ ’ Eur J Phycol 33:149–154

    Article  Google Scholar 

  • Deason TR (1971) The fine structure of sporogenesis in the xantophyceaen alga Pseudobumilleriopsis pyrenoidosa. J Phycol 7:101–107

    Article  Google Scholar 

  • Debroas D, Domaizon I, Humbert JF, Jardillier L, Lepère C, Oudart A, Taïb N (2017) Overview of freshwater microbial eukaryotes diversity: a first analysis of publicly available metabarcoding data. FEMS Microb Ecol 93(4):fix023

    Google Scholar 

  • Deflandre G (1934) Sur les microfossiles d’origine planctonique, conservés à l’état de matière organique dans les silex de la craie. Paris: Comptes Rendus De L’académie Des Sci 199:966–968

    Google Scholar 

  • Deflandre G (1950) Contribution à l’étude des Silicoflagellidés actuels et fossils. Microscopie 2:72–108, 117–142, 191–210

    Google Scholar 

  • del Campo J, Massana R (2011) Emerging diversity within chrysophytes, choanoflagellates and bicosoecids based on molecular surveys. Protist 162:435–448

    Article  PubMed  Google Scholar 

  • Delmont TO, Gaia M, Hinsinger DD, Frémont P, Vanni C, Fernandez-Guerra A, Eren AM, Kourlaiev A, d'Agata L, Clayssen Q, Villar E, Labadie K, Cruaud C, Poulain J, Da Silva C, Wessner M, Noel B, Aury J (2022) Functional repertoire convergence of distantly related eukaryotic plankton lineages abundant in the sunlit ocean. Cell Genomics 2(5):100123

    Google Scholar 

  • Demir-Hilton E, Hutchins DA, Czymmek KJ, Coyne KJ (2012) Description of Viridilobus marinus (gen. et sp. nov.), a new raphidophyte from Delaware’s inland bays. J Phycol 48:1220–1231

    Article  PubMed  Google Scholar 

  • Demura M, Noël M-H, Kasai F, Watanabe MM, Kawachi M (2009) Taxonomic revision of Chattonella antiqua, C. marina and C. ovata (Raphidophyceae) based on their morphological characteristics and genetic diversity. Phycologia 48:518–535

    Article  Google Scholar 

  • Deniaud-Bouët E, Hardouin K, Potin P, Kloareg B, Hervé C (2017) A review about brown algal cell walls and fucose-containing sulfated polysaccharides: cell wall context, biomedical properties and key research challenges. Carbohyd Polym 175:395–408

    Article  Google Scholar 

  • Deniaud-Bouët E, Kervarec N, Michel G, Tonon T, Kloareg B, Hervé C (2014) Chemical and enzymatic fractionation of cell walls from Fucales: insights into the structure of the extracellular matrix of brown algae. Ann Bot 114:1203–1216

    Article  PubMed  PubMed Central  Google Scholar 

  • deNoyelles F, Smith VH, Kastens JH, Bennett L, Lomas JM, Knapp CW, Bergin SP, Dewey SL, Chapin BRK, Graham DW (2016) A 21-year record of vertically migrating subepilimnetic populations of Cryptomonas spp. Inland Waters 6:173–184

    Article  Google Scholar 

  • Denys L, De Smet W (2010) Epipellis oiketis (Bacillariophyta) on harbor porpoises from the North Sea Channel (Belgium). Polish Botan J 65:175–182

    Google Scholar 

  • Derelle R, López-García P, Timpano H, Moreira D (2016) A phylogenomic framework to study the diversity and evolution of Stramenopiles (=Heterokonts). Mol Biol Evol 33:2890–2898

    Article  CAS  PubMed  Google Scholar 

  • Deschamps P, Haferkamp I, Dauvillée D, Hachel S, Steup M, Buléon A, Putaux JL, Colleoni C, d’Hulst C, Plancke C, Gould S, Maier U, Neuhaus HE, Ball S (2006) Nature of the periplastidial pathway of starch synthesis in the cryptophyte Guillardia theta. Eukaryot Cell 5:954–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeYoe HR, Stockwell DA, Bidigare RR, Latasa M, Johnson PW, Hargraves PE, Suttle CA (1997) Description and characterization of the algal species Aureoumbra lagunensis gen. et sp. nov. and referral of Aureoumbra and Aureococcus to the Pelagophyceae. J Phycol 33:1042–1048

    Article  Google Scholar 

  • Di Franco A, Baurain D, Glöckner G, Melkonian M, Philippe H (2021) Lower statistical support with larger datasets: insights from the Ochrophyta radiation. Molecular Biology and Evolution msab300

    Google Scholar 

  • Diesing KM (1865) Revision der Prothelminthen. Abtheilung: Mastigophoren. Sitzungsberichte Der Akademie Der Wissenschaften Zu Wien 52:287–401

    Google Scholar 

  • Dietz C, Ehlers K, Wilhelm C, Gil-Rodriguez MC, Schnetter R (2003) Lotharella polymorpha sp. nov. (Chlorarachniophyta) from the coast of Portugal. Phycologia 42:582–593

    Article  Google Scholar 

  • Dietz C, Schnetter R (1996) Arrangement of F-actin and microtubules in the pseudopodia of Cryptochlora perforans (Chlorarachniophyta). Protoplasma 193:82–90

    Article  CAS  Google Scholar 

  • Dı́ez B, Pedrós-Alió C, Massana R (2001) Study of genetic diversity of Eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Appl Environ Microbiol 67:2932–2941

    Google Scholar 

  • Dittami SM, Heesch S, Olsen JL, Collén J (2017) Transitions between marine and freshwater environments provide new clues about the origins of multicellular plants and algae. J Phycol 53:731–745

    Article  PubMed  Google Scholar 

  • Dittami SM, Scornet D, Petit J-L, Ségurens B, Da Silva C, Corre E, Dondrup M et al (2009) Global expression analysis of the brown alga Ectocarpus siliculosus (Phaeophyceae) reveals large-scale reprogramming of the transcriptome in response to abiotic stress. Genome Biol 10:R66

    Article  PubMed  PubMed Central  Google Scholar 

  • Dobakova E, Flegontov P, Skalický T, Lukeš J (2015) Unexpectedly streamlined mitochondrial genome of the euglenozoan Euglena gracilis. Genome Biol Evol 7(12):3358–3367

    Article  PubMed  PubMed Central  Google Scholar 

  • Dobell C (1932) Antony van Leeuwenhoek and his “Little Animals.“ Being Some Account of the Father of Protozoology and Bacteriology and his Multifarious Discoveries in these Disciplines. Collected, Translated, and Edited, from his Printed Works, Unpublished Manuscripts, and Contemporary Records. Published on the 300th Anniversary of his Birth. John Bale, Sons & Danielsson, Ltd, 435

    Google Scholar 

  • Dobell C (1958) Antony van Leeuwenhoek and his "little animals.". Russell & Russell

    Google Scholar 

  • Dodge JD (1973) The fine structure of algal cells. Elsevier

    Google Scholar 

  • Dooijes D, Chaves I, Kieft R, Dirks-Mulder A, Martin W, Borst P (2000) Base J originally found in kinetoplastida is also a minor constituent of nuclear DNA of Euglena gracilis. Nucleic Acids Res 28(16):3017–3021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorantes-Aranda JJ, Seger A, Mardones JI, Nichols PD, Hallegraeff GM (2015) Progress in understanding algal bloom-mediated fish kills: the role of superoxide radicals, phycotoxins and fatty acids. PLoS ONE 10:e0133549

    Article  PubMed  PubMed Central  Google Scholar 

  • Dorrell RG, Bowler C (2017) Secondary plastids of Stramenopiles. In Advances in Botanical Research, pp 57–103. Elsevier

    Google Scholar 

  • Dorrell RG, Azuma T, Nomura M, Audren de Kerdrel G, Paoli L, Yang S, Bowler C et al (2019) Principles of plastid reductive evolution illuminated by nonphotosynthetic chrysophytes. Proc Natl Acad Sci 116:6914–6923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorrell RG, Smith AG (2011) Do red and green make brown?: perspectives on plastid acquisitions within chromalveolates. Eukaryot Cell 10(7):856–868

    Google Scholar 

  • Dorrell RG, Gile G, McCallum G, Méheust R, Bapteste EP, Klinger CM, Brillet-Guéguen L et al. (2017) Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome. eLife 6

    Google Scholar 

  • Dorrell RG, Villain A, Perez-Lamarque B, Audren de Kerdrel G, McCallum G, Watson AK, Ait-Mohamed O et al (2021) Phylogenomic fingerprinting of tempo and functions of horizontal gene transfer within ochrophytes. Proc Natl Acad Sci 118:e2009974118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douglas S, Zauner S, Fraunholz M, Beaton M, Penny S, Deng L-T, Wu X, Reith M, Cavalier- Smith T, Maier U-G (2001) The highly reduced genome of an enslaved algal nucleus. Nature (London) 410:1091–1096

    Article  CAS  PubMed  Google Scholar 

  • Douglas SE, Murphy CA, Spencer DF, Gray MW (1991) Cryptomonad algae are evolutionary chimaeras of two phylogenetically distinct unicellular eukaryotes. Nature 350:148–151

    Article  CAS  PubMed  Google Scholar 

  • Douglas SE, Penny SL (1999) The plastid genome of the cryptophyte alga, Guillardia theta: complete sequence and conserved synteny groups confirm its common ancestry with red algae. J Mol Evol 48:236–244

    Article  CAS  PubMed  Google Scholar 

  • Doust AB, van Stokkum IHM, Larsen DS, Wilk KE, Curmi PMG, van Grondelle R, Scholes GD (2005) Mediation of ultrafast light-harvesting by a central dimer in phycoerythrin 545 studied by transient absorption and global analysis. J Phys Chem 109:14219–14226

    Article  CAS  Google Scholar 

  • Doust AB, Wilk K, Curmi PMG, Scholes GD (2006) The photophysics of cryptophyte light- harvesting. J Photochem Photobiol, A 184:1–17

    Article  CAS  Google Scholar 

  • Draget KI, Smidsrød O, Skjåk-Bræk G (2005) Alginates from algae. In Steinbüchel A, Rhee SK (eds) Polysaccharides and polyamides in the food industry: properties, production, and patents. Wiley, Winheim

    Google Scholar 

  • Dragoş N, Péterfi LŞ, Popescu C (1997) Comparative fine structure of pellicular cytoskeleton in Euglena Ehrenberg. Arch Protistenk 148(3):277–285

    Article  Google Scholar 

  • Drobnitch ST, Jensen KH, Prentice P, Pittermann J (2015) Convergent evolution of vascular optimization in kelp (Laminariales). Proc Royal Soc b: Biol Sci 282:20151667

    Article  Google Scholar 

  • Ducreux G (1984) Experimental modification of the morphogenetic behavior of the isolated sub-apical cell of the apex of Sphacelaria cirrosa (Phaeophyceae). J Phycol 20:447–454

    Article  Google Scholar 

  • Duff KE, Zeeb BA, Dumont HJ (1995) Atlas of chrysophycean cysts. Springer, Netherlands, Dordrecht

    Book  Google Scholar 

  • Duggins DO, Simenstad CA, Estes JA (1989) Magnification of secondary production by kelp detritus in coastal marine ecosystems. Science 245:170–173

    Article  CAS  PubMed  Google Scholar 

  • Dujardin F (1841) Histoire naturelle des Zoophytes-infusoires. Roret, Paris, p 684

    Google Scholar 

  • Dunahay TG, Jarvis EE, Roessler PG (1995) Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila. J Phycol 31:1004–1012

    Article  CAS  Google Scholar 

  • Durmaz Y (2007) Vitamin E (α-tocopherol) production by the marine microalgae Nannochloropsis oculata (Eustigmatophyceae) in nitrogen limitation. Aquaculture 272:717–722

    Article  CAS  Google Scholar 

  • Durnford DG, Deane JA, Tan S, McFadden GI, Gantt E, Green B (1999) A phylogenetic assessment of the eukaryotic light-harvesting antenna proteins, with implications for plastid evolution. J Mol Evol 48:59–68

    Article  CAS  PubMed  Google Scholar 

  • Ebenezer TE, Carrington M, Lebert M, Kelly S, Field MC (2017) Euglena gracilis genome and transcriptome: organelles, nuclear genome assembly strategies and initial features. Euglena: biochemistry, cell and molecular biology. Springer, Cham, pp 125–140

    Chapter  Google Scholar 

  • Ebenezer TE, Zoltner M, Burrell A, Nenarokova A, Novák Vanclová AMG, Prasad B, Soukal P, Santana-Molina C, O’Neill E, Nankissoor NN, Vadakedath N, Daiker V, Obado S, Silva-Pereira S, Jackson AP, Devos DO, Lukeŝ J, Lebert M, Vaughan S, Hampl V, Carrington M, Ginger ML, Dacks JB, Kelly S, Field MC (2019) Transcriptome, proteome and draft genome of Euglena gracilis. BMC Microbiol 17(1):11

    Google Scholar 

  • Edvardsen B, Eikrem W, Shalchian-Tabrizi K, Riisberg I, Johnsen G, Naustvoll L, Throndsen J (2007) Verrucophora farcimen gen. et sp. nov. (Dictyochophyceae, Heterokonta) - a bloom-forming ichthyotoxic flagellate from the Skagerrak, Norway 1. J Phycol 43:1054–1070

    Article  CAS  Google Scholar 

  • Egeland ES (2016) Carotenoids. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer International Publishing, Cham, pp 507–563

    Chapter  Google Scholar 

  • Ehrenberg CG (1832) Über die Entwickelung und Lebensdauer der Infusionsthiere; nebst ferneren Beiträgen zu einer Vergleichung ihrer organischen systeme. Abhandlungen Der Königlichen Akademie Der Wissenschaften Berlin, Physikalische Klasse 1831:1–154

    Google Scholar 

  • Ehrenberg C (1834). Dritter Beitrag zur Erkenntniss grosser Organisation in der Richtung des kleinsten Raumes. Berlin: Konigl Akad d Wiss 1833:145–336

    Google Scholar 

  • Ehrenberg CG (1838) Die Infusionsthierchen als vollkommene Organismen. Ein Blick in das tiefere organische Leben der Natur

    Google Scholar 

  • Ehrenberg CG (1839) Über die Bildung der Kreidefelsen und des Kreidemergels durch unsichtbare Organismen. Abhandlungen Der Königlichen Akademie Der Wissenschaften Zu Berlin 1838:59–147

    Google Scholar 

  • Ehrenberg CG, ed (1831) Symbolae physicae seu icones et descriptiones animalium evertebratorum sepositis insectis quae ex itinere per Africanum Borealem et Asiam Occidentalem Friderici Guilelmi Hemprich et Christiani Godofredi Ehrenberg medicinae et chirurgiae doctorum studio novae aut illustratae redierunt. Mittler, Berlin

    Google Scholar 

  • Eikrem W, Medlin LK, Henderiks J, Rokitta S, Rost B, Probert I, Throndsen J, Edvardsen B (2017) Haptophyta. In Archibald JM, Simpson AGB, Slomovits CH (eds) Handbook of the Protists 2nd ed, pp 893–963

    Google Scholar 

  • Eikrem W, Romari K, Latasa M, Gall FL, Throndsen J, Vaulot D (2004) Florenciella parvula gen. et sp. nov. (Dictyochophyceae, Heterokontophyta), a small flagellate isolated from the English Channel. Phycologia 43:658–668

    Article  Google Scholar 

  • Ejsmond MJ, Blackburn N, Fridolfsson E, Haecky P, Andersson A, Casini M, Belgrano A, Hylander S (2019) Modeling vitamin B1 transfer to consumers in the aquatic food web. Sci Rep 9:10045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eliáš M, Amaral R, Fawley KP, Fawley MW, Němcová Y, Neustupa J, Přibyl P et al (2017) Eustigmatophyceae. In: Archibald JM, Simpson AGB, Slamovits CH (eds) Handbook of the Protists. Springer International Publishing, Cham, pp 367–406

    Chapter  Google Scholar 

  • Erata M, Kubota M, Takahashi T, Inouye I, Watanabe M (1995) Ultrastructure and phototactic action spectra of two genera of cryptophyte flagellate algae, Cryptomonas and Chroomonas. Protoplasma 188:258–266

    Article  Google Scholar 

  • Erlandson JM, Braje TJ, Gill KM, Graham MH (2015) Ecology of the kelp highway: did marine resources facilitate human dispersal from Northeast Asia to the Americas? J Island Coastal Archaeol 10:392–411

    Article  Google Scholar 

  • Esson HJ, Leander BS (2008) Novel pellicle surface patterns on Euglena obtusa (Euglenophyta) from the marine benthic environment: implications for pellicle development and evolution. J Phycol 44(1):132–141

    Article  PubMed  Google Scholar 

  • Esson HJ, Leander BS (2006) A model for the morphogenesis of strip reduction patterns in phototrophic euglenids: evidence for heterochrony in pellicle evolution. Evol Dev 8(4):378–388

    Article  CAS  PubMed  Google Scholar 

  • Estes JA, Burdin A, Doak DF (2016) Sea otters, kelp forests, and the extinction of Steller’s sea cow. Proc Natl Acad Sci 113:880–885

    Article  CAS  PubMed  Google Scholar 

  • Ettl H, Gärtner G (1995) Syllabus der Boden-, Luft- und Flechtenalgen, p 721. Stuttgart: Gustav Fischer

    Google Scholar 

  • Ettl H (1978) Xanthophyceae, part 4. In Ettl H, Gerloff HJ, Heynig H (eds) Süsswasserflora von Mitteleuropa, Bd. 3, 1. Teil, Gustav Fischer Verlag, Stuttgart, Germany

    Google Scholar 

  • Evans KM, Chepurnov VA, Sluiman HJ, Thomas, SJ, Spears BM, Mann DG (2009) Highly differentiated populations of the freshwater diatom Sellaphora capitata suggest limited dispersal and opportunities for allopatric speciation. Protist 160(3):386–396

    Google Scholar 

  • Ewerts H, Barnard S, Swanepoel A (2016) Laboratory-scale simulations with hydrated lime and organic polymer to evaluate the effect of pre-chlorination on motile Ceratium hirundinella cells during conventional water treatment. Water SA 42:270–278

    Article  CAS  Google Scholar 

  • Falciatore A, Mock T (2022) The molecular life of diatoms, pp XXIII, 808. Cham, Springer International Publishing. https://doi.org/10.1007/978-3-030-92499-7

  • Falk H (1967) Zum Feinbau von Botrydium granulatum Grev. (Xanthophyceae). Archiv für Mikrobiologie 58:212–227

    Google Scholar 

  • Falkowski PG, Knoll AH (eds) (2007) Evolution of primary producers in the sea. Elsevier Academic Press, Amsterdam; Boston, p 441

    Google Scholar 

  • Fan X, Han W, Teng L, Jiang P, Zhang X, Xu D, Li C, Pellegrini M, Wu C, Wang Y, Kaczurowski MJS, Lin X, Tirichine L, Mock T, Ye N (2020) Single-base methylome profiling of the giant kelp Saccharina japonica reveals significant differences in DNA methylation to microalgae and plants. New Phytol 225:234–249

    Google Scholar 

  • FAO (2020) FAO yearbook. Fishery and aquaculture statistics 2018. FAO, Roma, Italy

    Google Scholar 

  • Farlow WG (1882) Notes on New England Algae. Bull Torrey Bot Club 9:65–68

    Article  Google Scholar 

  • Farmer MA (2011) Euglenozoa. In: Schaechter M (ed) Eucaryotic Microbes. Academic Press, pp 311–321

    Google Scholar 

  • Faust MA, Gantt E (1973) Effect of light intensity and glycerol on the growth, pigment composition, and ultrastructure of Chroomonas sp. J Phycol 9:489–495

    Article  CAS  Google Scholar 

  • Fawley MW, Fawley KP (2017) Rediscovery of Tetraëdriella subglobosa Pascher, a member of the Eustigmatophyceae. Fottea 17:96–102

    Article  Google Scholar 

  • Fawley MW, Jameson I, Fawley KP (2015) The phylogeny of the genus Nannochloropsis (Monodopsidaceae, Eustigmatophyceae), with descriptions of N. australis sp. nov. and Microchloropsis gen. nov. Phycologia 54:545–552

    Article  CAS  Google Scholar 

  • Fawley KP, Eliáš M, Fawley MW (2014) The diversity and phylogeny of the commercially important algal class Eustigmatophyceae, including the new clade Goniochloridales. J Appl Phycol 26:1773–1782

    Article  CAS  Google Scholar 

  • Fawley MW, Fawley KP, Cahoon AB (2021) Finding needles in a haystack—Extensive diversity in the Eustigmatophyceae revealed by community metabarcode analysis targeting the rbcL gene using lineage-directed primers. J Phycol 57:1636–1647

    Google Scholar 

  • Ferreira M, Coutinho P, Seixas P, Fábregas J, Otero A (2009) Enriching rotifers with “premium” microalgae, Nannochloropsis gaditana. Mar Biotechnol 11:585–595

    Article  CAS  Google Scholar 

  • Fensome RA, Taylor FJR, Norris G, Sarjeant WAS, Wharton DI, Williams GL (1993) A classification of living and fossil dinoflagellates. American Museum of Natural History, Micropaleontology special publication number 7:1–351

    Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240. https://doi.org/10.1126/science.281.5374.237

  • Figueroa RI, Rengefors K (2006) Life cycle and sexuality of the freshwater raphidophyte Gonyostomum semen (Raphidophyceae). J Phycol 42:859–871

    Article  Google Scholar 

  • Filbee-Dexter K, Wernberg T (2018) Rise of turfs: a new battlefront for globally declining kelp forests. Bioscience 68:64–76

    Article  Google Scholar 

  • Findenig BM, Chatzinotas A, Boenigk J (2010) Taxonomic and ecological characterization of stomatocysts of Spumella-like flagellates (Chrysophyceae). J Phycol 46:868–881

    Article  Google Scholar 

  • Finkel ZV (2016) Silicification in the microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer International Publishing, Cham, pp 289–300

    Chapter  Google Scholar 

  • Finkel ZV, Beardall J, Flynn KJ, Quigg A, Rees TAV, Raven JA (2010) Phytoplankton in a changing world: cell size and elemental stoichiometry. J Plankton Res 32:119–137

    Article  CAS  Google Scholar 

  • Fiorendino JM, Smith JL, Campbell L (2020) Growth response of Dinophysis, Mesodinium, and Teleaulax cultures to temperature, irradiance, and salinity. Harmful Algae 98:101896

    Article  CAS  PubMed  Google Scholar 

  • Firsova AD, Kuzmina AE, Tomberg IV, Potemkina TG, Likhoshway YE (2008) Seasonal dynamics of chrysophyte stomatocyst formation in the plankton of Southern Baikal. Biol Bull 35(5):507–514

    Article  Google Scholar 

  • Fitton JH (2011) Therapies from fucoidan; multifunctional marine polymers. Mar Drugs 9:1731–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleming LE, Kirkpatrick B, Backer LC, Walsh CJ, Nierenberg K, Clark J, Reich A, Hollenbeck J, Benson J, Cheng YS, Naar J, Pierce R, Bourdelais AJ, Abraham WM, Kirkpatrick G, Zaias J, Wanner A, Mendes E, Gaden DG (2011) Review of Florida red tide and human health effects. Harmful Algae 10:224–233

    Article  PubMed  PubMed Central  Google Scholar 

  • Flöthe CR, Molis M, John U (2014) Induced resistance to periwinkle grazing in the brown seaweed Fucus vesiculosus (Phaeophyceae): molecular insights and seaweed-mediated effects on herbivore interactions. J Phycol 50:564–576

    Article  PubMed  Google Scholar 

  • Forster D, Dunthorn M, Mahé F, Dolan JR, Audic S, Bass D, Bittner L, Boutte C, Christen R, Claverie JM, Decelle J, Edvardsen B, Egge E, Eikrem W, Gobet A, Kooistra WHCF, Logares R, Massana R, Montresor M, Not F, Ogata H, Pawlowski J, Pernice MC, Romac S, Shalchian-Tabrizi K, Simon N, Richards TA, Santini S, Sarno D, Siano R, Vaulot D, Wincker P, Zingone A, de Vargas C, Stoeck T (2016). Benthic protists: the under-charted majority. FEMS Microb Ecol 92(8):fiw120

    Google Scholar 

  • Forster RM, Dring MJ (1994) Influence of blue light on the photosynthetic capacity of marine plants from different taxonomic, ecological and morphological groups. Eur J Phycol 29:21–27

    Article  Google Scholar 

  • Foster KW, Smyth RD (1980) Light Antennas in phototactic algae. Microbiol Rev 44:572–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fott B (1959) Zur Frage der Sexualität bei den Chrysomonaden. Nova Hedwigia 1:115–129

    Google Scholar 

  • Fott B (1971) Algenkunde. Gustav Fischer Verlag Jena, p 581

    Google Scholar 

  • Fraser CI, Nikula R, Spencer HG, Waters JM (2009) Kelp genes reveal effects of subantarctic sea ice during the Last Glacial Maximum. Proc Natl Acad Sci 106:3249–3253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fritsch FE (1935) The structure and reproduction of the algae, vol 1. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Froehlich HE, Afflerbach JC, Frazier M, Halpern BS (2019) Blue growth potential to mitigate climate change through seaweed offsetting. Curr Biol 29:3087-3093.e3

    Article  CAS  PubMed  Google Scholar 

  • Frost T, Graham L, Elias J, Haase M, Kretchmer D, Kranzfelder J (1997) A yellow-green algal symbiont in the freshwater sponge, corvomeyenia everetti: convergent evolution of symbiotic associations. Freshw Biol 38:395–399

    Article  Google Scholar 

  • Fry WL, Banks HP (1955) Three new genera of algae from the upper devonian of New York. J Paleontol 29:37–44

    Google Scholar 

  • Fu G, Nagasato C, Yamagishi T, Kawai H, Okuda K, Takao Y, Horiguchi T et al (2016) Ubiquitous distribution of helmchrome in phototactic swarmers of the stramenopiles. Protoplasma 253:929–941

    Article  CAS  PubMed  Google Scholar 

  • Fukuda S, Iwamoto K, Atsumi M, Yokoyama A, Nakayama T, Ishida K, Inouye I et al (2014) Global searches for microalgae and aquatic plants that can eliminate radioactive cesium, iodine and strontium from the radio-polluted aquatic environment: a bioremediation strategy. J Plant Res 127:79–89

    Article  CAS  PubMed  Google Scholar 

  • Fukuda Y, Suzaki T (2015) Unusual features of dinokaryon, the enigmatic nucleus of dinoflagellates. In Marine Protists: Diversity and Dynamics. Ohtsuka S, Suzaki T, Horiguchi T, Suzuki N,Not F (eds) Tokyo: Springer Japan, pp 23–45. https://doi.org/10.1007/978-4-431-55130-0_2

  • Fulton CJ, Abesamis RA, Berkström C, Depczynski M, Graham NAJ, Holmes TH, Kulbicki M et al (2019) Form and function of tropical macroalgal reefs in the Anthropocene. Funct Ecol 33:989–999

    Article  Google Scholar 

  • Gabrielson PW, Lindstrom SC (2018) Keys to the seaweeds and seagrasses of southeast Alaska, British Columbia, Washington, and Oregon. Phycological Contribution 9, Publisher. Lindstrom, University of British Columbia, p 180

    Google Scholar 

  • Gall EA, Yann L, Asensi A, Marie D, Kloareg B (1996) Parthenogenesis and apospory in the Laminariales: A flow cytometry analysis. Eur J Phycol 31:369–380

    Article  Google Scholar 

  • Gantt E (1971) Micromorphology of the periplast of Chroomonas sp. (Cryptophyceae). J Phycol 7:177–184

    Article  Google Scholar 

  • Gantt E, Edwards MR, Provasoli L (1971) Chloroplast structure of the Cryptophyceae. J Cell Biol 48(2):280–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao K, Beardall J, Häder D-P, Hall-Spencer JM, Gao G, Hutchins DA (2019) Effects of ocean acidification on marine photosynthetic organisms under the concurrent influences of warming, UV radiation, and deoxygenation. Front Marine Sci 6

    Google Scholar 

  • Garcia-Cuetos L, Moestrup Ø, Hansen PJ, Daugbjerg N (2010) The toxic dinoflagellate Dinophysis acuminata harbors permanent chloroplasts of cryptomonad origin, not kleptochloroplasts. Harmful Algae 9(1):25–38

    Google Scholar 

  • Gasol JM, García-Cantizano J, Massana R, Guerrero R, Pedrós-Alió C (1993) Physiological ecology of a metalimnetic Cryptomonas population: relationships to light, sulfide and nutrients. J Plankton Res 15:255–275

    Article  CAS  Google Scholar 

  • Gast RJ, Moran DM, Dennett MR, Caron DA (2007) Kleptoplasty in an Antarctic dinoflagellate: caught in evolutionary transition? Environ Microbiol 9:39–45. https://doi.org/10.1111/j.1462-2920.2006.01109.x

  • Gattuso J-P, Gentili B, Duarte CM, Kleypas JA, Middelburg JJ, Antoine D (2006) Light availability in the coastal ocean: impact on the distribution of benthic photosynthetic organisms and their contribution to primary production. Biogeosciences 3:489–513

    Article  Google Scholar 

  • Gavelis GS, White III RA, Suttle CA, Keeling PJ, Leander PS (2015) Single cell transcriptomics using spliced leader PCR: evidence for multiple losses of photosynthesis in polykrikoid dinoflagellates. BMC Genomics 16:528

    Google Scholar 

  • Gaylord B, Reed DC, Washburn L, Raimondi PT (2004) Physical-biological coupling in spore dispersal of kelp forest macroalgae. J Mar Syst 49:19–39

    Article  Google Scholar 

  • Gayral P, Billard C (1977a) Chrysophycées et Haptophycées des côtes franç̧aises: Mise au point systématique et nouvelles observations sur Ruttnera chadefaudii Bourrelly et Magne (Haptophycées). Bulletin De La Société Phycologique De France 22:135–149

    Google Scholar 

  • Gayral P, Haas C (1969) Étude comparée des genres Chrysomeris Carter et Giraudyopsis P Dang. position systématique des Chrysomeridaceae (Chrysophyceae). Revue Générale De Botanie 76:659–666

    Google Scholar 

  • Gayral MP, Billard MC (1977b) Synopsis du nouvel ordre des Sarcinochrysidales (Chrysophyceae). Taxon 26:241–245

    Article  Google Scholar 

  • Geisen M, Billard C, Broerse ATC, Cros L, Probert I, Young JR (2002) Life-cycle associations involving pairs of holococcolithophorid species: intraspeci®c variation or cryptic speciation ? Eur J Phycol 37:531–550

    Article  Google Scholar 

  • Geisen M, Young JR, Probert I, Sáez AG, Baumann KH, Sprengel C, Bollmann J, Cross L, de Vargas C, Medlin LK (2004) Species level variation in coccolithophores. In Thierstein HR, Young JR (eds) Coccolithophores. From Molecular Processes to Global Impact. Springer, Berlin, pp 327–366

    Google Scholar 

  • Geitler L (1924) Chroomonas caudata, nova spec. Österreichische Botanische Zeitschrift 73:246–247

    Article  Google Scholar 

  • Geitler L (1930) Ein grünes Filarplasmodium und andere neue Protisten. Arch Protistenk 69:614–636

    Google Scholar 

  • Geitler L (1932) Rabenhorst’s Kryptogamenflora von Deutschland, Österreich und der Schweiz. Cyanophyceae. Akademische Verlagsgesellschaft, Leipzig, Germany, Vierzehnter Band, p 1196

    Google Scholar 

  • Gerea M, Pérez GL, Unrein F, Soto Cárdenas C, Morris D, Queimaliños C (2017) CDOM and the underwater light climate in two shallow North Patagonian lakes: Evaluating the effects on nano and microphytoplankton community structure. Aquat Sci 79:231–248

    Article  CAS  Google Scholar 

  • Gerea M, Saad J, Izaguirre I, Queimaliños C, Gasol J, Unrein F (2016) Presence, abundance and bacterivory of the mixotrophic algae Pseudopedinella (Dictyochophyceae) in freshwater environments. Aquat Microb Ecol 76:219–232

    Article  Google Scholar 

  • Gervais F (1997a) Light-dependent growth, dark survival, and glucose uptake by cryptophytes isolated from a freshwater chemocline. J Phycol 33:18–25

    Article  CAS  Google Scholar 

  • Gervais F (1997b) Diel vertical migration of Cryptomonas and Chromatium in the deep chlorophyll maximum of a eutrophic lake. J Plankton Res 19:533–550

    Article  Google Scholar 

  • Gervais F (1998) Ecology of cryptophytes coexisting near a freshwater chemocline. Freshw Biol 39:61–78

    Article  Google Scholar 

  • Gibbs SP (1978) The chloroplasts of Euglena may have evolved from symbiotic green algae. Can J Bot 56(22):2883–2889

    Article  Google Scholar 

  • Gieskes WWC, Kraay GW (1983) Dominance of Cryptophyceae during the phytoplankton spring bloom in the central North Seq detected by HPLC analysis of pigments. Mar Biol 75:179–185

    Article  CAS  Google Scholar 

  • Gilbert W (1978) Why genes in pieces? Nature 271(5645):501

    Article  CAS  PubMed  Google Scholar 

  • Gillott M, Gibbs SP (1980) The cryptomonad nucleomorph: Its ultrastructure and evolutionary significance. J Phycol 16:558–568

    Article  Google Scholar 

  • Gillott M, Gibbs SP (1983) Comparison of the flagellar rootlets and periplast in two marine cryptomonads. Can J Bot 61:1964–1978

    Article  Google Scholar 

  • Gilson P, McFadden G (1999) Molecular, morphological and phylogenetic characterization of six chlorarachniophyte strains. Phycol Res 47:7–19

    Article  Google Scholar 

  • Giroldo D, Vieira AAH (2002) An extracellular sulfated fucose-rich polysaccharide produced by a tropical strain of Cryptomonas obovata (Cryptophyceae). J Appl Phycol 14:185–191

    Article  CAS  Google Scholar 

  • Giroldo D, Vieira AAH, Paulsen BS (2005) Extracellular polysaccharides produced by a tropical cryptophyte as a carbon source for natural bacterial populations. Eur J Phycol 40:241–249

    Article  CAS  Google Scholar 

  • Glazer AN, Wedemayer GJ (1995) Cryptomonad biliproteins – an evolutionary perspective. Photosynth Res 46:93–105

    Article  CAS  PubMed  Google Scholar 

  • Gobler CJ, Berry DL, Dyhrman ST, Wilhelm SW, Salamov A, Lobanov AV, Zhang Y et al (2011) Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics. Proc Natl Acad Sci 108:4352–4357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gobler CJ, Lonsdale DJ, Boyer GL (2005) A review of the causes, effects, and potential management of harmful brown tide blooms caused by Aureococcus anophagefferens (Hargraves et Sieburth). Estuaries 28:726–749

    Article  Google Scholar 

  • Gockel G, Hachtel W (2000) Complete gene map of the plastid genome of the non-photosynthetic euglenoid flagellate Astasia longa. Protist 151(4):347–351

    Article  CAS  PubMed  Google Scholar 

  • Godhe A, Egardt J, Kleinhans D, Sundqvist L, Hordoir R, Jonsson PR (2013) Seascape analysis reveals regional gene flow patterns among populations of a marine planktonic diatom. Proc Royal Soc b: Biol Sci 280:20131599

    Article  Google Scholar 

  • Gojdics M (1953) Genus Euglena. The University of Wisconsin Press

    Google Scholar 

  • Goldstein SF (1992) Flagellar Beat Patterns in Algae. In Melkonian M (ed) Algal Cell Motility. Springer US, Boston, MA, pp 99–153

    Google Scholar 

  • Gómez F (2012) A quantitative review of the lifestyle, habitat and trophic diversity of dinoflagellates (Dinoflagellata, Alveolata). System Biodiv 10:267–275. https://doi.org/10.1080/14772000.2012.721021

  • Gong WD, Hall N. Paerl H, Marchetti A (2020) Phytoplankton composition in a eutrophic estuary: comparison of multiple taxonomic approaches and influence of environmental factors. Environ Microb 22:4718–4731

    Google Scholar 

  • Goodenough U, Roth R, Kariyawasam T, He A, Lee J-H (2018) Epiplasts: membrane skeletons and epiplastin proteins in euglenids, glaucophytes, cryptophytes, ciliates. Dinoflagellates, and apicomplexans. Molec Biol Physiol 9(5):e02020–18

    Google Scholar 

  • Gottlieb J (1850) Ueber eine neue, mit Stärkemehl isomere Substanz. Justus Liebigs Ann Chem 75(1):51–61

    Article  Google Scholar 

  • Gould SB, Fan E, Hempel F, Maier UG, Klösgen RB (2007) Translocation of a phycoerythrin α subunit across five biological membranes. J Biol Chem 282:30295–30302

    Article  CAS  PubMed  Google Scholar 

  • Gould SB, Sommer MS, Kroth PG, Gile GH, Keeling PJ, Maier UG (2006) Nucleus-to- nucleus gene transfer and protein retargeting into a remnant cytoplasm of cryptophytes and diatoms. Genome Biol Evol 23:2413–2422

    Article  CAS  Google Scholar 

  • Govorunova EG, Sineshchekov OA, Janz R, Liu X, Spudich JL (2015) Natural light-gated anion channels: A family of microbial rhodopsins for advanced optogenetics. Science 349:647–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Govorunova EG, Sineshchekov OA, Rodarte E, Janz R, Morelle O, Melkonian M, Wong GKS, Spudich JL (2017) The expanding family of natural anion channelrhodopsins reveals large variations in kinetics, conductance, and spectral sensitivity. Sci Rep 7:43358

    Article  PubMed  PubMed Central  Google Scholar 

  • Graf L, Kim YJ, Cho GY, Miller KA, Yoon HS (2017) Plastid and mitochondrial genomes of Coccophora langsdorfii (Fucales, Phaeophyceae) and the utility of molecular markers. PLoS ONE 12:e0187104

    Article  PubMed  PubMed Central  Google Scholar 

  • Graf L, Shin Y, Yang JH, Choi JW, Hwang IK, Nelson W, Bhattacharya D et al (2021) A genome-wide investigation of the effect of farming and human-mediated introduction on the ubiquitous seaweed Undaria pinnatifida. Nat Ecol Evol 5:360–368

    Article  PubMed  PubMed Central  Google Scholar 

  • Graf L, Shin Y, Yang JH, Hwang IK, Yoon HS (2022) Transcriptome analysis reveals the spatial and temporal differentiation of gene expression in the sporophyte of Undaria pinnatifida. Algal Res 68:102883

    Google Scholar 

  • Graf L, Yang EC, Boo GH, Andersen RA, Yoon HS (2020a) Further investigations on the Phaeothamniophyceae using a multigene phylogeny, with descriptions of five new species. J Phycol 56:358–379

    Article  PubMed  Google Scholar 

  • Graf L, Yang EC, Han KY, Küpper FC, Benes KM, Oyadomari JK, Herbert RJH et al (2020b) Multigene phylogeny, morphological observation and re-examination of the literature lead to the description of the Phaeosacciophyceae classis nova and four new species of the Heterokontophyta SI clade. Protist 171:125781

    Article  PubMed  Google Scholar 

  • Graham LE, Graham JM, Wilcox LW, Cook ME (2016) Algae. Third Edition. LJLM Press, p 683

    Google Scholar 

  • Graham MH (2004) Effects of local deforestation on the diversity and structure of Southern California giant kelp forest food webs. Ecosystems 7

    Google Scholar 

  • Graham MH, Dayton PK, Erlandson JM (2003) Ice ages and ecological transitions on temperate coasts. Trends Ecol Evol 18:33–40

    Article  Google Scholar 

  • Graham MH, Kinlan BP, Grosberg RK (2010) Post-glacial redistribution and shifts in productivity of giant kelp forests. Proc Royal Soc b: Biol Sci 277:399–406

    Article  Google Scholar 

  • Grant B, Waller RF, Clementson LA, Wetherbee R (2013) Psammamonas australis gen. et sp. nov. (Raphidophyceae), a new dimorphic, sand-dwelling alga. Phycologia 52:57–64

    Article  Google Scholar 

  • Gray J, Boucot AJ (1989) Is Moyeria a euglenoid? Lethaia 22(4):447–456

    Article  Google Scholar 

  • Greenwood AD (1959) Observations on the structure of the zoospores of Vaucheria, II. J Experim Botany 10:55–68

    Article  Google Scholar 

  • Greenwood AD, Manton I, Clarke B (1957) Observations on the structure of the zoospores of Vaucheria. J Exp Bot 8:71–86

    Article  Google Scholar 

  • Greenwood SJ, Schnare MN, Cook JR, Gray MW (2001) Analysis of intergenic spacer transcripts suggests ‘read-around’ transcription of the extrachromosomal circular rDNA in Euglena gracilis. Nucleic Acids Res 29(10):2191–2198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grell KG (1990) Some light microscope observations on Chlorarachnion reptans Geitler. Arch Protistenk 138:271–290

    Article  Google Scholar 

  • Grim JN, Staehelin LA (1982) The ejectisomes of the flagellate Chilomonas paramecium: Visualization by Freeze-fracture and isolation techniques. J Protozool 31:259–267

    Article  Google Scholar 

  • Gromov BV, Mamkaeva KA, Gavrilova OV (1998) Ultrastructure of the flagella of Campylomonas reflexa (Cryptophyceae = Cryptomonadea). Nova Hedwigia 66:197–204

    Article  Google Scholar 

  • Grossmann L, Bock C, Schweikert M, Boenigk J (2016) Small but manifold - Hidden diversity in “ Spumella-like flagellates.” J Eukaryot Microbiol 63:419–439

    Article  PubMed  PubMed Central  Google Scholar 

  • Guillou L, Chrétiennot-Dinet M-J, Medlin LK, Claustre H, Goër SL, Vaulot D (1999) Bolidomonas: a new genus with two species belonging to a new algal class, the Bolidophyceae (Heterokonta). J Phycol 35:368–381

    Article  Google Scholar 

  • Guiry MD, Guiry GM (2021) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org

  • Gustafson DE Jr, Stoecker DK, Johnson MD, Van Heukelem WF, Sneider K (2000) Cryptophyte algae are robbed of their organelles by the marine ciliate Mesodinium rubrum. Nature 405:1049–1052

    Article  CAS  PubMed  Google Scholar 

  • Hachtel W (1998) A plastid genome in the heterotrophic flagellate Astasia longa. Endocytobiosis Cell Res 12:191–193

    Google Scholar 

  • Hackett JD, Maranda L, Yoon HS, Bhattacharya D (2003) Phylogenetic evidence for the cryptophyte origin of the plastid of Dinophysis (Dinophysiales, Dinophyceae). J Phycol 39:440–448. https://doi.org/10.1046/j.1529-8817.2003.02100.x

  • Hajdu S, Höglander H, Larsson U (2007) Phytoplankton vertical distributions and composition in Baltic Sea cyanobacterial blooms. Harmful Algae 6:189–205

    Article  Google Scholar 

  • Hajós M, Stradner H (1975) Late Cretaceous Archaeomonadaceae, Diatomaceae, and Silicoflagellatae from the South Pacific Ocean, Deep Sea Drilling Project, Leg 29, Site 275. Init Rep Deep Sea Drilling Proj 29:913–1009

    Google Scholar 

  • Hallick RB, Hong L, Drager RG, Favreau MR, Monfort A, Orsat B, Spielmann A, Stutz E (1993) Complete sequence of Euglena gracilis chloroplast DNA. Nucleic Acids Res 21(15):3537–3544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halm H, Lüder UH, Wiencke C (2011) Induction of phlorotannins through mechanical wounding and radiation conditions in the brown macroalga Laminaria hyperborea. Eur J Phycol 46:16–26

    Article  CAS  Google Scholar 

  • Hammer A, Schumann R, Schubert H (2002) Light and temperature acclimation of Rhodomonas salina (Cryptophyceae): photosynthetic performance. Aquat Microb Ecol 29:287–296

    Article  Google Scholar 

  • Hammond MJ, Nenarokova A, Butenko A, Zoltner M, Dobáková EL, Field MC, Lukeš J (2020) A uniquely complex mitochondrial proteome from Euglena gracilis. Mol Biol Evol 37(8):2173–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AG, Roger AJ (2009) Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups.” Proc Natl Acad Sci 106(10):3859–3864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han KY, Maciszewski K, Graf L, Yang JH, Andersen RA, Karnkowska A, Yoon HS (2019) Dictyochophyceae plastid genomes reveal unusual variability in their organization. J Phycol 55:1166–1180

    Article  CAS  PubMed  Google Scholar 

  • Han KY, Graf L, Reyes CP, Melkonian B, Andersen RA, Yoon HS, Melkonian M (2018) A re-investigation of Sarcinochrysis marina (Sarcinochrysidales, Pelagophyceae) from its type locality and the descriptions of Arachnochrysis, Pelagospilus, Sargassococcus and Sungminbooa genera nov. Protist 169:79–106

    Article  CAS  PubMed  Google Scholar 

  • Händeler K, Grzymbowski YP, Krug PJ, Wägele H (2009) Functional chloroplasts in metazoan cells - a unique evolutionary strategy in animal life. Front Zool 6:28. https://doi.org/10.1186/1742-9994-6-28

  • Hansen PJ (1991) Dinophysis - a planktonic dinoflagellate genus which can act both as a prey and a predator of a ciliate. Mar Ecol Prog Ser 69:201–204

    Article  Google Scholar 

  • Hansgirg A (1885) Anhang zu meiner Abhandlung „Ueber den Polymorphismus der Algen“. Bot Centralbl 23:229–233

    Google Scholar 

  • Hanssen LA, Ekvall MK, He L, Li Z, Svensson M, Urrutia-Cordero PZH (2020) Different climate scenarios alter dominance patterns among aquatic primary producers in temperate systems. Limnol Oceanog 65:2328–2336

    Google Scholar 

  • Hara Y, Chihara M (1985) Ultrastructure and taxonomy of Fibrocapsa japonica (class Raphidophyceae). Arch Protistenk 130(1–2):133–141

    Article  Google Scholar 

  • Hara Y, Chihara M (1987) Morphology, ultrastructure and taxonomy of the raphidophycean alga Heterosigma akashiwo. Botanical Mag Tokyo 100:151–163

    Article  Google Scholar 

  • Hara Y, Inouye I, Chihara M (1985) Morphology and ultrastructure of Olisthodiscus luteus (Raphidophyceae) with special reference to the taxonomy. Botan Mag Tokyo 98:251–262

    Article  Google Scholar 

  • Harper JT, Waanders E, Keeling PJ (2005) On the monophyly of chromalveolates using a six- protein phylogeny of eukaryotes. Int J Syst Evol Microbiol 55:487–496

    Article  CAS  PubMed  Google Scholar 

  • Harwood DM, Nikolaev VA, Winter DM (2007) Cretaceous records of diatom evolution, radiation, and expansion. Paleontol Soc Papers 13:33–59

    Article  Google Scholar 

  • Hauth AM, Maier UG, Lang BF, Burger G (2005) The Rhodomonas salina mitochondrial genome: bacteria-like operons, compact gene arrangement and complex repeat region. Nucleic Acids Res 33:4433–4442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Havskum H, Riemann B (1996) Ecological importance of bacterivorous, pigmented flagellates (mixotrophs) in the Bay of Aarhus, Denmark. Marine Ecol Progress Series 137:251–263

    Article  Google Scholar 

  • Hay WW (2004) Carbonate fluxes and calcareous nannoplankton. Coccolithophores: from molecular processes to global impact. In: Thierstein H, Young JR (eds) Springer, pp 509–527

    Google Scholar 

  • Hayashi Y, Ueda K (1989) The shape of mitochondria and the number of mitochondrial nucleoids during the cell cycle of Euglena gracilis. J Cell Sci 93(3):565–570

    Article  Google Scholar 

  • Heath IB (1980) Variant mitoses in lower eukaryotes: indicators of the evolution of mitosis? Intern Rev Cytol Academic Press 64:1–80

    Article  CAS  Google Scholar 

  • Heesch S, Serrano-Serrano M, Barrera-Redondo J, Luthringer R, Peters AF, Destombe C, Cock MJ, Valero M, Roze D, Salamin N, Coelho SM (2021) Evolution of life cycles and reproductive traits: insights from the brown algae. J Evol Biol 34:992–1009

    Google Scholar 

  • Hehenberger E, Gast RJ, Keeling PJ (2019) A kleptoplastidic dinoflagellate and the tipping point between transient and fully integrated plastid endosymbiosis. Proc Nat Acad Sci 116:17934. https://doi.org/10.1073/pnas.1910121116

  • Heiden H, Kolbe RW (1928) Die marinen Diatomeen der Deutschen Südpolar-Expedition 1901–03. Deutsche Südpolar Exp 8(5):450–714

    Google Scholar 

  • Heimann K, Andersen RA, Wetherbee R (1995) The flagellar development cycle of the uniflagellate Pelagomonas calceolata (Pelagophyceae). J Phycol 31:577–583

    Article  Google Scholar 

  • Heinrich S, Valentin K, Frickenhaus S, John U, Wiencke C (2012) Transcriptomic analysis of acclimation to temperature and light stress in Saccharina latissima (Phaeophyceae). PLoS ONE 7:e44342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinrich S, Valentin K, Frickenhaus S, Wiencke C (2015) Temperature and light interactively modulate gene expression in Saccharina latissima (Phaeophyceae). J Phycol 51:93–108

    Article  CAS  PubMed  Google Scholar 

  • Helmchen TA, Bhattacharya D, Melkonian M (1995) Analyses of ribosomal RNA sequences from glaucocystophyte cyanelles provide new insights into the evolutionary relationships. J Mol Evol 41:203–210

    Article  CAS  PubMed  Google Scholar 

  • Henriksen P, Knipschildt F, Moestrup Ø, Thomsen HA (1993) Autecology, life history and toxicology of the silicoflagellate Dictyocha speculum (Silicoflagellata, Dictyochophyceae). Phycologia 32:29–39

    Article  Google Scholar 

  • Henry BE, Van Alstyne KL (2004) Effects of UV radiations on growth and phlorotannins in Fucus gardneri (Phaeophyceae) juveniles and embryos. J Phycol 40:527–533

    Article  CAS  Google Scholar 

  • Hermann TN (1981) Nitchatye mikroorganizmy Lakhandinskoi svity reki Mai. Paleontol Zh 2:126–131

    Google Scholar 

  • Herth W, Kuppel A, Schnepf E (1977) Chitinous fibrils in the lorica of the flagellate chrysophyte Poteriochromonas stipitata (syn. Ochromonas malhamensis). J Cell Biol 73:311–321

    Article  CAS  PubMed  Google Scholar 

  • Heywood P (1990) Phylum Raphidophyta. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of Protoctista. Jones and Bartlett Publishers, Boston, Massachusetts, USA, pp 318–325

    Google Scholar 

  • Heywood P, Leedale GF (2002) Order Raphidomonadida. In: Lee JJ, Leedale GF, Bradbury P (eds) An illustrated guide to the protozoa, vol 2, 2nd edn. Society of Protozoologists, Lawrence, Kansas, USA, pp 744–751

    Google Scholar 

  • Hibberd DJ (1970) Observations on the cytology and ultrastructure of Ochromonas tuberculatus sp. nov. (Chrysophyceae), with special reference to the discobolocysts. Br Phycol J 5(2):119–143

    Google Scholar 

  • Hibberd DJ (1973) Observations on the ultrastructure of flagellar scales in the genus Synura (chrysophyceae). Arch Mikrobiol 89:291–304

    Article  CAS  PubMed  Google Scholar 

  • Hibberd DJ (1974) Observations on the cytology and ultrastructure of Chlorobotrys regularis (West) Bohlin with special reference to its position in the Eustigmatophyceae. Brit Phycol J 9:37–46

    Article  Google Scholar 

  • Hibberd DJ (1976) The ultrastructure and taxonomy of the Chrysophyceae and Prymnesiophyceae (Haptophyceae): a survey with some new observations on the ultrastructure of the Chrysophyceae. Bot J Linn Soc 72:55–80

    Article  Google Scholar 

  • Hibberd DJ (1979) The structure and phylogenetic significance of the flagellar transition region in the chlorophyll c-containing algae. Biosystems 11:243–261

    Article  CAS  PubMed  Google Scholar 

  • Hibberd DJ (1980) Xanthophytes. In ER Cox (Ed.), Phytoflagellates: form and function. New York/Amsterdam/Oxford: Elsevier/North Holland, pp 243–271

    Google Scholar 

  • Hibberd DJ (1981) Notes on the taxonomy and nomenclature of the algal classes Eustigmatophyceae and Tribophyceae (synonym Xanthophyceae). Bot J Linn Soc 82:93–119

    Article  Google Scholar 

  • Hibberd DJ (1990a) Phylum Xanthophyta. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of Protoctista. Jones and Bartlett Publishers, Boston, Massachusetts, USA, pp 686–697

    Google Scholar 

  • Hibberd DJ (1990b) Phylum Eustigmatophyta. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of Protoctista. Jones and Bartlett Publishers, Boston, Massachusetts, USA, pp 326–333

    Google Scholar 

  • Hibberd DJ, Chretiennot-Dinet MJ (1979) The ultrastructure and taxonomy of Rhizochromulina marina gen. et ap. nov., an amoeboid marine chrysophyte. J Mar Biol Assoc UK 59:179–193

    Google Scholar 

  • Hibberd DJ, Greenwood AD, Griffiths HB (1971) Observations on the ultrastructure of the flagella and periplast in the Cryptophyceae. Brit Phycol J 6:61–72

    Article  Google Scholar 

  • Hibberd DJ, Leedale GF (1970) Eustigmatophyceae - a new algal class with unique organization of the motile cell. Nature 225:758–760

    Article  CAS  PubMed  Google Scholar 

  • Hibberd DJ, Leedale GF (1971) Cytology and ultrastructure of the Xanthophyceae. II. The zoospore and vegetative cell of coccoid forms, with special reference to Ophiocytium majus Naegeli. Brit Phycol J 6:1–23

    Article  Google Scholar 

  • Hibberd DJ, Leedale GF (1972) Observations on the cytology and ultrastructure of the new algal class, Eustigmatophyceae. Ann Botany 36:49–71

    Article  Google Scholar 

  • Hibberd DJ, Norris RE (1984) Cytology and ultrastructure of Chlorarachnion reptans (Chlorarachniophyta divisio nova, Chlorarachniophyceae classis nova). J Phycol 20:310–330

    Article  Google Scholar 

  • Hildebrand M, Lerch SJL, Shrestha RP (2018) Understanding diatom cell wall silicification - Moving forward. Front Marine Sci 5

    Google Scholar 

  • Hilenski LL, Walne PL (1983) Ultrastructure of Mucocysts in Peranema trichophorum (Euglenophyceae) 1. J Protozool 30(3):491–496

    Article  Google Scholar 

  • Hill DRA (1991a) A revised circumscription of Cryptomonas (Cryptophyceae) based on examination of Australian strains. Phycologia 30:170–188

    Article  Google Scholar 

  • Hill DRA (1991b) Chroomonas and other blue-green cryptomonads. J Phycol 27:133–145

    Article  Google Scholar 

  • Hill DRA, Rowan KS (1989) The biliproteins of the Cryptophyceae. Phycologia 28:455–463

    Article  Google Scholar 

  • Hill DRA, Wetherbee R (1986) Proteomonas sulcata gen. et sp. nov. (Cryptophyceae), a cryptomonad with two morphologically distinct and alternating forms. Phycologia 25:521–543

    Article  Google Scholar 

  • Hill DRA, Wetherbee R (1988) The structure and taxonomy of Rhinomonas pauca gen. et sp. nov. (Cryptophyceae). Phycologia 27:355–365

    Article  Google Scholar 

  • Hill DRA, Wetherbee R (1989) A reappraisal of the genus Rhodomonas (Cryptophyceae). Phycologia 28:143–158

    Article  Google Scholar 

  • Hill DRA, Wetherbee R (1990) Guillardia theta gen. et sp. nov. (Cryptophyceae). Can J Bot 68:1873–1876

    Article  Google Scholar 

  • Hindák F, Wolowski K, Hindáková A (2000) Cysts and their formation in some neustonic Euglena species. Annal Limnol Intern J Limnol EDP Sci 36(2):83–93

    Article  Google Scholar 

  • Hirakawa Y (2017) Chlorarachniophytes with complex secondary plastids of green algal origin. Adv Botan Res 84:359–393

    Article  CAS  Google Scholar 

  • Hirakawa Y, Howe A, James ER, Keeling PJ (2011) Morphological diversity between culture strains of a Chlorarachniophyte, Lotharella globosa. PLoS One 6(8):e23193

    Google Scholar 

  • Hirakawa Y, Ishida KI (2014) Polyploidy of endosymbiotically derived genomes in complex algae. Genome Biol Evol 6:974–980

    Article  PubMed  PubMed Central  Google Scholar 

  • Hiroishi S, Okada H, Imai I, Yoshida T (2005) High toxicity of the novel bloom-forming species Chattonella ovata (Raphidophyceae) to cultured fish. Harmful Algae 4:783–787

    Article  Google Scholar 

  • Hirose Y, Shiozaki T, Otani M, Kudoh S, Imura S, Eki T, Harada N (2020) Investigating algal communities in lacustrine and hydro-terrestrial environments of east Antarctica using deep amplicon sequencing. Microorganisms 8:497

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoef-Emden K (2005) Multiple independent losses of photosynthesis in the genus Cryptomonas (Cryptophyceae)—combined phylogenetic analyses of DNA sequences of the nuclear and the nucleomorph ribosomal operons. J Mol Evol 60:183–195

    Article  CAS  PubMed  Google Scholar 

  • Hoef-Emden K (2007) Revision of the genus Cryptomonas (Cryptophyceae) II: incongruences between the classical morphospecies concept and molecular phylogeny in smaller pyrenoid-less cells. Phycologia 46:402–428

    Article  Google Scholar 

  • Hoef-Emden K (2008) Molecular phylogeny of the phycocyanin-containing cryptophytes: evolution of biliproteins and geographical distribution. J Phycol 44:985–993

    Article  PubMed  Google Scholar 

  • Hoef-Emden K (2012) Pitfalls of establishing DNA barcoding systems in protists: the cryptophyceae as a test case. PLoS ONE 7(8):e43652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoef-Emden K (2014) Osmotolerance in the Cryptophyceae: Jacks-of-all-trades in the Chroomonas clade. Protist 165:123–143

    Article  CAS  PubMed  Google Scholar 

  • Hoef-Emden K (2018) Revision of the genus Chroomonas Hansgirg: the benefits of DNA- containing specimens. Protist 169:662–681

    Article  CAS  PubMed  Google Scholar 

  • Hoef-Emden K, Marin B, Melkonian M (2002) Nuclear and nucleomorph SSU rDNA phylogeny in the Cryptophyta and the evolution of cryptophyte diversity. J Mol Evol 55:161–179

    Article  CAS  PubMed  Google Scholar 

  • Hoef-Emden K, Melkonian M (2003) Revision of the genus Cryptomonas (Cryptophyceae): a combination of molecular phylogeny and morphology provides insights into a long-hidden dimorphism. Protist 154: 371–409. Corrigenda: Hoef-Emden K, Melkonian M (2008) Protist 159:507; Hoef-Emden K, Melkonian M (2017) Protist 168:467

    Google Scholar 

  • Hoef-Emden K, Tran H-D, Melkonian M (2005) Lineage-specific variations of congruent evolution among DNA sequences from three genomes, and relaxed selective constraints on rbcL in Cryptomonas (Cryptophyceae). BMC Evolol Biol 5:56

    Article  Google Scholar 

  • Hoegh Guldberg O, Chopin T, Gaines S, Haugan P, Hemer M, Howard J, Konar M (2019) The ocean as a solution to climate change: five opportunities for action. World Resources Institute, Washington, DC, USA

    Google Scholar 

  • Hoffmann L, Billard C, Janssens M, Leruth M, Demoulin V (2000) Mass development of marine benthic Sarcinochrysidales (Chrysophyceae s.l.) in Corsica. Botanica Marina, p 43

    Google Scholar 

  • Hoham RW, Blinn DW (1979) Distribution of cryophilic algae in an arid region, the American Southwest. Phycologia 18(2):133–145

    Article  Google Scholar 

  • Holbrook SJ, Carr MH, Schmitt RJ, Coyer JA (1990) Effect of giant kelp on local abundance of reef fishes: the importance of ontogenetic resource requirements. Bull Mar Sci 47:104–114

    Google Scholar 

  • Holen DA, Boraas ME (1995) Mixotrophy in chrysophytes. In: Sandgren CD, Smol JP, Kristiansen J (eds) Chrysophyte Algae, 1st edn. Cambridge University Press, pp 119–140

    Chapter  Google Scholar 

  • Honda D, Inouye I (1995) Ultrastructure and reconstruction of the flagellar apparatus architecture in Ankylochrysis lutea (Chrysophyceae, Sarcinochrysidales). Phycologia 34:215–227

    Article  Google Scholar 

  • Honda D, Inouye I (2002) Ultrastructure and taxonomy of a marine photosynthetic stramenopile Phaeomonas parva gen. et sp. nov. (Pinguiophyceae) with emphasis on the flagellar apparatus architecture. Phycol Res 50:75–89

    Article  Google Scholar 

  • Honda D, Shono T, Kimura K, Fujita S, Iseki M, Makino Y, Murakami A (2007) Homologs of the sexually induced gene 1 (sig1) product constitute the Stramenopile mastigonemes. Protist 158:77–88

    Article  CAS  PubMed  Google Scholar 

  • Honigberg BM (1963) Evolutionary and systematic relationships in the flagellate order Trichomonadida Kirby. J Protozool 10(1):20–63

    Google Scholar 

  • Hopkins JF, Spencer DF, Laboissiere S, Neilson JAD, Eveleigh RJM, Durnford DG, Gray MW, Archibald JM (2012) Proteomics reveals plastid- and periplastid-targeted proteins in the chlorarachniophyte alga Bigelowiella natans. Genome Biol Evol 4(12):1391–1406

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoppenrath M (2017) Dinoflagellate taxonomy—a review and proposal of a revised classification. Marine Biodiv 47:381–403. https://doi.org/10.1007/s12526-016-0471-8

  • Hoppenrath M, Chomérat N, Horiguchi T, Schweikert M, Nagahama Y, Murray S (2013) Taxonomy and phylogeny of the benthic Prorocentrum species (Dinophyceae)—A proposal and review. Harmful Algae 27:1–28. https://doi.org/10.1016/j.hal.2013.03.006

  • Hoppenrath M, Elbrächter M, Drebes G (2009) Marine Phytoplankton. Selected microphytoplankton species from the North Sea around Helgoland and Sylt. Stuttgart, Germany: E. Schweizerbart’sche Verlagsbuchhandlung (Nägele u. Obermiller), p 264

    Google Scholar 

  • Hoppenrath M, Murray SA, Chomérat N, Horiguchi T (2014) Marine benthic dinoflagellates - unveiling their worldwide biodiversity. Kleine Senckenberg-Reihe 54. Stuttgart, Germany: E. Schweizerbart’sche Verlagsbuchhandlung (Nägele u. Obermiller), p 276

    Google Scholar 

  • Hoppenrath M, Saldarriaga J, Tillmann U (2018) Dinoflagellaten – ein Dauerexperiment der Evolution? Biol Unserer Zeit 48:228–238

    Article  Google Scholar 

  • Horiguchi T (1996) Haramonas dimorpha gen. et sp. nov. (Raphidophyceae), a new marine raphidophyte from Australian mangrove. Phycol Res 44:143–150

    Article  Google Scholar 

  • Horiguchi T (2017) Raphidophyceae (Raphidophyta). In: Archibald JM, Simpson AGB, Slamovits CH (eds) Handbook of the protists. Springer International Publishing, Cham, pp 305–330

    Chapter  Google Scholar 

  • Horiguchi T, Hoppenrath M (2003) Haramonas viridis sp. nov. (Raphidophyceae, Heterokontophyta), a new sand-dwelling raphidophyte from cold temperate waters. Phycol Res 51:61–67

    Google Scholar 

  • Horn S, Ehlers K, Fritzsch G, Gil-Rodríguez MC, Wilhelm C, Schnetter R (2007) Synchroma grande spec. nov. (Synchromophyceae class. nov., Heterokontophyta): an amoeboid marine alga with unique plastid complexes. Protist 158:277–293

    Article  CAS  PubMed  Google Scholar 

  • Hosoi-Tanabe S, Honda D, Fukaya S, Otake I, Inagaki Y, Sako Y (2007) Proposal of Pseudochattonella verruculosa gen. nov., comb. nov. (Dictyochophyceae) for a former raphidophycean alga Chattonella verruculosa, based on 18S rDNA phylogeny and ultrastructural characteristics. Phycol Res 55:185–192

    Google Scholar 

  • Howe CJ, Barbrook AC, Nisbet RER, Lockhart PJ and Larkum AWD (2008). The origin of plastids. Philos Trans Royal Soc B. Biol Sci 363(1504):2675–2685

    Google Scholar 

  • Hrdá Š, Fousek J, Szabová J, Hampl V and Vlček Č (2012). The plastid genome of Eutreptiella provides a window into the process of secondary endosymbiosis of plastid in euglenids. PLoS One 7(3):e33746. https://www.nature.com/articles/nature05496#supplementary-information

  • Hu Z, Li Z, Deng Y, Iwataki M, Luo Z, Wang J, Sun Y, Zhao Z, Gu H, Shin HH, Tang YZ (2020) Morphology, ultrastructure, and molecular phylogeny of the unarmoured dinoflagellate Kirithra sigma sp. nov. (Ceratoperidiniaceae, Dinophyceae). Phycologia 59:385–396. https://doi.org/10.1080/00318884.2020.1771660

  • Huang W, Daboussi F (2017) Genetic and metabolic engineering in diatoms. Philosop Trans Royal Soc b: Biol Sci 372:20160411

    Article  Google Scholar 

  • Hwang EK, Boo GH, Graf L, Yarish C, Yoon HS, Kim JK (2022) Kelps in Korea: from population structure to aquaculture to potential carbon sequestration. Algae 37(2):85–103

    Google Scholar 

  • Huber-Pestalozzi G (1955). Das Phytoplankton des Süsswassers. Systematik und Biologie. 4. Teil: Euglenophyceen. Die Binnengewässer 16(4):1–1135

    Google Scholar 

  • Huber-Pestalozzi G (1968) Das Phytoplankton des Süßwassers. 3. Teil. Cryptophyceae, Chloromonadophyceae, Dinophyceae. In Elster H-J, Ohle W (eds) Die Binnengewässer

    Google Scholar 

  • Huttenlauch I, Stick R (2003) Occurrence of Articulins and epiplasmins in protists. J Eukaryot Microbiol 50(1):15–18

    Article  CAS  PubMed  Google Scholar 

  • Hwang EK, Yotsukura N, Pang SJ, Su L, Shan TF (2019) Seaweed breeding programs and progress in eastern Asian countries. Phycologia 58:484–495

    Article  CAS  Google Scholar 

  • Ichinomiya M, dos Santos AL, Gourvil P, Yoshikawa S, Kamiya M, Ohki K, Audic S et al (2016) Diversity and oceanic distribution of the Parmales (Bolidophyceae), a picoplanktonic group closely related to diatoms. ISME J 10:2419–2434

    Article  PubMed  PubMed Central  Google Scholar 

  • Ichinomiya M, Yoshikawa S, Kamiya M, Ohki K, Takaichi S, Kuwata A (2011) Isolation and characterization of Parmales (Heterokonta/Heterokontophyta/Stramenopiles) from the Oyashio region, Western North Pacific. J Phycol 47:144–151

    Article  PubMed  Google Scholar 

  • Ikävalko J (2001) On the presence of some selected Heterokontophyta (Chrysophyceae, Dictyochophyceae, Bicocoecidae) and cysts (“archaeomonads”) from sea ice—a synopsis. Nova Hedwig Beih 122:41–54

    Google Scholar 

  • Imai I, Itoh K (1987) Annual life cycle of Chattonella spp., causative flagellates of noxious red tides in the Inland Sea of Japan. Mar Biol 94:287–292

    Article  Google Scholar 

  • Imanian B, Pombert J-F, Dorrell RG, Burki F, Keeling PJ (2012) Tertiary endosymbiosis in two dinotoms has generated little change in the mitochondrial genomes of their dinoflagellate hosts and diatom endosymbionts. PLOS One 7:e43763. https://doi.org/10.1371/journal.pone.0043763

  • Imanian B, Pombert J-F, Keeling PJ (2010) The complete plastid genomes of the two ‘dinotoms’ Durinskia baltica and Kryptoperidinium foliaceum. PLOS One 5:e10711. https://doi.org/10.1371/journal.pone.0010711

  • Inagaki Y, Dacks JB, Doolittle WF, Watanabe KI, Ohama T (2000) Evolutionary relationship between dinoflagellates bearing obligate diatom endosymbionts: insight into tertiary endosymbiosis. Intern J Syst Evolut Microbiol 50:2075–2081. https://doi.org/10.1099/00207713-50-6-2075

  • Inouye I, Hara Y, Chihara M (1992) Further observations on Olithodiscus luteus (Raphidophyceae, Chromophyta): The flagellar apparatus ultrastructure. Jpn J Phycol 40:333–348

    Google Scholar 

  • Inouye I, Kawachi M (1994) The haptonema. In: Green JC, Leadbeater BSC (eds) The haptophyte Algae, vol 51. Clarendon, Oxford, pp 73–89

    Chapter  Google Scholar 

  • International Commission on Zoological Nomenclature (2012) Amendment of Articles 8, 9, 10, 21 and 78 of the International Code of Zoological Nomenclature to expand and refine methods of publication. Zootaxa 3450:1–7

    Article  Google Scholar 

  • Inui H, Ishikawa T, Tamoi M (2017) Wax ester fermentation and its application for biofuel production. In: Euglena: biochemistry, cell and molecular biology, pp 269–283

    Google Scholar 

  • Inui H, Miyatake K, Nakano Y, Kitaoka S (1982) Wax ester fermentation in Euglena gracilis. FEBS Lett 150:89–93

    Article  CAS  Google Scholar 

  • Inui H, Miyatake K, Nakano Y, Kitaoka S (1992) Synthesis of reserved polysaccharide from wax esters accumulated as the result of anaerobic energy generation in Euglena gracilis returned from anaerobic to aerobic conditions. Int J Biochem 24:799–803

    Article  CAS  Google Scholar 

  • Ishida K, Endo H, Koike S (2011) Partenskyella glossopodia (Chlorarachniophyceae) possesses a nucleomorph genome of approximately 1 Mbp. Phycol Res 59:120–122

    Article  CAS  Google Scholar 

  • Ishida K, Green BR, Cavalier-Smith T (1999) Diversification of a chimaeric algal group, the chlorarachniophytes: phylogeny of nuclear and nucleomorph small-subunit rRNA genes. Mol Biol Evol 16:321–333

    Article  CAS  Google Scholar 

  • Ishida K, Hara Y (1994) Taxonomic studies on the Chlorarachniophyta. I. Chlorarachnion globosum sp. nov. Phycologia 33:351–358

    Google Scholar 

  • Ishida K, Ishida N, Hara Y (2000) Lotharella amoeboformis sp. nov.: a new species of chlorarachniophyte from Japan. Phycol Res 48:221–229

    Article  Google Scholar 

  • Ishida K, Nakayama T, Hara Y (1996) Taxonomic studies on the Chlorarachniophyta. II. Generic delimination of the chlorarachniophytes and description of Gynmochlora stellata gen. et sp. nov. Phycol Res 44:37–45

    Article  Google Scholar 

  • Ishida K-i, Green BR (2002) Second- and third-hand chloroplasts in dinoflagellates: Phylogeny of oxygen-evolving enhancer 1 (PsbO) protein reveals replacement of a nuclear-encoded plastid gene by that of a haptophyte tertiary endosymbiont. Proc Nat Acad Sci 99:9294. https://doi.org/10.1073/pnas.142091799

  • Ishida KI, Yabuki A, Ota S (2007) The chlorarachniophytes: evolution and classification. Systematics association special volume, vol 75, p 171

    Google Scholar 

  • Ishimatsu A, Oda T, Yoshida M, Ozaki M (1996) Oxygen radicals are probably involved in the mortality of yellowtail by Chattonella marina. Fish Sci 62:836–837

    Article  CAS  Google Scholar 

  • Jackson C, Knoll AH, Chan CX, Verbruggen H (2018) Plastid phylogenomics with broad taxon sampling further elucidates the distinct evolutionary origins and timing of secondary green plastids. Sci Rep 8:1523

    Article  PubMed  PubMed Central  Google Scholar 

  • Janouškovec J, Gavelis GS, Burki F, Dinh D, Bachvaroff TR, Gornik SG, Bright KJ, Imanian B, Strom SL, Delwiche CF, Waller RF, Fensome RA, Leander BS, Rohwer FL, Saldarriaga JF (2017) Major transitions in dinoflagellate evolution unveiled by phylotranscriptomics. Proc Nat Acad Sci 114:E171-E180. https://doi.org/10.1073/pnas.1614842114

  • Janouškovec J, Horák A, Oborník M, Lukeš J, Keeling PJ (2010) A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc Nat Acad Sci 107:10949–10954. https://doi.org/10.1073/pnas.1003335107

  • Javornický P, Hindák F (1970) Cryptomonas frigoris spec. nova (Cryptophyceae), the new cyst-forming flagellate from the snow of the High Tatras. Biologia, Series A 25:241–250

    Google Scholar 

  • Jeffrey SW, Wright SW, Zapata M (2011) Microalgal classes and their signature pigments. In: Roy S, Llewellyn C, Egeland ES, Johnsen G (eds) Phytoplankton Pigments. Cambridge University Press, Cambridge, pp 3–77

    Chapter  Google Scholar 

  • Jékely G (2009) Evolution of phototaxis. Philos Trans R Soc B 364:2795–2808

    Article  Google Scholar 

  • Jeong HJ (2011) Mixotrophy in red tide algae raphidophytes. J Eukaryot Microbiol 58:215–222

    Article  PubMed  Google Scholar 

  • Jeppesen E, Søndergaard M, Jensen JP, Havens KE, Anneville O, Carvalho L, Coveney MF, Deneke R, Dokulil MT, Foy B, Gerdeaux D, Hampton SE, Hilt S, Kangur K, Köhler J, Lammens EHHR, Lauridsen TL, Manca M, Miracle MR, Moss B, Nöges P, Persson G, Phillips G, Portielje R, Romo S, Schelske CL, Straile D, Tatrai I, Willén E, Winder M (2005) Lake responses to reduced nutrient loading—an analysis of contemporary long-term data from 35 case studies. Freshw Biol 50:1747–1771

    Article  CAS  Google Scholar 

  • Jepsen PM, Thoisen CV, Carron-Cabaret T, Pinyol-Gallemí A, Nielsen SL, Hansen BW (2019) Effects of salinity, commercial salts, and water type on cultivation of the cryptophyte microalgae Rhodomonas salina and the calanoid copepod Acartia tonsa. J World Aquaculture Soc 50:104–118

    Article  CAS  Google Scholar 

  • Jezbera J, Horňák K, Šimek K (2005) Food selection by bacterivorous protists: insight from the analysis of the food vacuole content by means of fluorescence in situ hybridization. FEMS Microbiol Ecol 52:351–363

    Article  CAS  PubMed  Google Scholar 

  • Jin J-O, Chauhan PS, Arukha AP, Chavda V, Dubey A, Yadav D (2021) The therapeutic potential of the anticancer activity of fucoidan: current advances and hurdles. Mar Drugs 19:265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jo BY, Kim JI, Škaloud P, Siver PA, Shin W (2016) Multigene phylogeny of Synura (Synurophyceae) and descriptions of four new species based on morphological and DNA evidence. Eur J Phycol 51(4):413–430

    Article  Google Scholar 

  • Jo BY, Shin W, Kim HS, Siver PA, Andersen RA (2013) Phylogeny of the genus Mallomonas (Synurophyceae) and descriptions of five new species on the basis of morphological evidence. Phycologia 52:266–278

    Article  Google Scholar 

  • John U, Lu Y, Wohlrab S, Groth M, Janouškovec J, Kohli GS, Mark FC, Bickmeyer U, Farhat S, Felder M, Frickenhaus S, Guillou L, Keeling PJ, Moustafa A, Porcel BM, Valentin K, Glöckner G (2019) An aerobic eukaryotic parasite with functional mitochondria that likely lacks a mitochondrial genome. Sci Adv 5:eaav1110. https://doi.org/10.1126/sciadv.aav1110

  • Johnston AM, Raven JA (1990) Effects of culture in high CO2 on the photosynthetic physiology of Fucus serratus. Br Phycol J 25(1):75–82

    Google Scholar 

  • Johnson MD (2011) Acquired phototrophy in ciliates: A review of cellular interactions and structural adaptations. J Eukaryot Microbiol 58:185–195

    Article  PubMed  Google Scholar 

  • Johnson MD, Beaudoin DJ, Frada MJ, Brownlee EF, Stoecker DK (2018) High grazing rates on cryptophyte algae in Chesapeake Bay. Front Mar Sci 5:241

    Article  Google Scholar 

  • Johnson MD, Oldach D, Delwiche CF, Stoecker DK (2007) Retention of transcriptionally active cryptophyte nuclei by the ciliate Myrionecta rubra. Nature 445:426. https://doi.org/10.1038/nature05496

  • Jones DT (1944) Two protozoans from the Great Salt Lake. Bulletin of the University of Utah Biological Series 8:3–10

    Google Scholar 

  • Jones RI (1988) Vertical distribution and diel migration of flagellated phytoplankton in a small humic lake. Hydrobiologia 161:75–87

    Article  Google Scholar 

  • Joyon L (1963) Sur la présence d’un leucoplaste chez la cryptomonadine décolorée Chilomonas paramecium Ehrenberg. Comptes Rendues Des Scéances De L’académie Des Sciences, Paris 256:3502–3503

    Google Scholar 

  • Jumper CC, van Stokkum IHM Mirkovic T, Scholes GD (2018) Vibronic wavepackets and energy transfer in cryptophyte light-harvesting complexes. J Phys Chem B 122:6328–6340

    Google Scholar 

  • Kai A, Yoshii Y, Nakayama T, Inouye I (2008) Aurearenophyceae classis nova, a new class of Heterokontophyta based on a new marine unicellular alga Aurearena cruciata gen. et sp. nov. Inhabiting sandy beaches. Protist 159:435–457

    Article  CAS  PubMed  Google Scholar 

  • Kamikawa R, Masuda I, Oyama K, Yoshimatsu S, Sako Y (2007) Genetic variation in mitochondrial genes and intergenic spacer region in harmful algae Chattonella species. Fish Sci 73:871–880

    Article  CAS  Google Scholar 

  • Kamikawa R, Tanifuji G, Kawachi M, Miyashita H, Hashimoto T, Inagaki Y (2015) Plastid genome-based phylogeny pinpointed the origin of the green-colored plastid in the dinoflagellate Lepidodinium chlorophorum. Genome Biol Evol 7:1133–1140. https://doi.org/10.1093/gbe/evv060

  • Kamikawa R, Moog D, Zauner S, Tanifuji G, Ishida KI, Miyashita H, Mayama S, Hashimoto T, Maier UG, Archibald JM, Inagaki Y (2017) A non-photosynthetic diatom reveals early steps of reductive evolution in plastids. Mol Biol Evol 34:2355–2366

    Google Scholar 

  • Kaňa R, Kotabová E, Sobotka R, Prášil O (2012) Non-photochemical quenching in cryptophyte alga Rhodomonas salina Is located in chlorophyll a/c antennae. PLoS ONE 7(1):e29700

    Article  PubMed  PubMed Central  Google Scholar 

  • Karnkowska A, Bennett MS, Triemer RE (2018) Dynamic evolution of inverted repeats in Euglenophyta plastid genomes. Sci Rep 8(1):1–10

    Article  CAS  Google Scholar 

  • Karsten G (1898) Rhodomonas baltica, n. g. et sp. Wissenschaftliche Meeresuntersuchungen, Abteilung Kiel, NF 3:15–16

    Google Scholar 

  • Karsten G (1912) Über die Reduktionsteilung bei der Auxosporenbildung von Surirella saxonica. Zeitschrift Für Botanik 4:417–426

    Google Scholar 

  • Kasiborski BA, Bennett MS, Linton EW (2016) The chloroplast genome of Phacus orbicularis (Euglenophyceae): an initial datum point for the Phacaceae. J Phycol 52(3):404–411

    Article  CAS  PubMed  Google Scholar 

  • Kawachi M, Inouye I, Honda D, O’Kelly CJ, Bailey JC, Bidigare RR, Andersen RA (2002a) The Pinguiophyceae classis nova, a new class of photosynthetic stramenopiles whose members produce large amounts of omega-3 fatty acids. Phycol Res 50:31–47

    Article  CAS  Google Scholar 

  • Kawachi M, Noel M-H, Andersen RA (2002b) Re-examination of the marine “chrysophyte” Polypodochrysis teissieri (Pinguiophyceae). Phycol Res 50:91–100

    Article  Google Scholar 

  • Kawai H, Henry EC (2017) Phaeophyta. In: Archibald JM, Simpson AGB, Slamovits CH (eds) Handbook of the protists. Springer International Publishing, Cham, pp 267–304

    Chapter  Google Scholar 

  • Kawai H, Inouye I (1989) Flagellar autofluorescence in forty-four chlorophyll c -containing algae. Phycologia 28:222–227

    Article  Google Scholar 

  • Kawai H, Hanyuda T, Draisma SGA, Wilce RT, Andersen RA (2015) Molecular phylogeny of two unusual brown algae, Phaeostrophion irregulare and Platysiphon glacialis, proposal of the Stschapoviales ord. nov. and Platysiphonaceae fam. nov., and a re-examination of divergence times for brown algal orders. J Phycol 51:918–928

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawai H, Kreimer G (2000) Sensory mechanisms. Phototaxes and light perception in algae. In Leadbeater BSC, Green JC (eds) The flagellates. Unity, diversity and evolution, pp 124–146. Taylor and Francis, London, UK

    Google Scholar 

  • Kawai H, Maeba S, Sasaki H, Okuda K, Henry EC (2003) A new filamentous marine Chromophyte belonging to a new class. Schizocladiophyceae Protist 154:211–228

    Article  CAS  PubMed  Google Scholar 

  • Kayama M, Maciszewski K, Yabuki A, Miyashita H, Karnkowska A, Kamikawa R (2020) Highly reduced plastid genomes of the non-photosynthetic Dictyochophyceans Pteridomonas spp. (Ochrophyta, SAR) are retained for tRNA-Glu-based organellar heme biosynthesis. Front Plant Sci 11

    Google Scholar 

  • Keeling PJ (2004) Diversity and evolutionary history of plastids and their hosts. Am J Bot 91(10):1481–1493

    Article  PubMed  Google Scholar 

  • Keeling PJ (2010) The endosymbiotic origin, diversification and fate of plastids. Philosophical transactions of the royal society B. Biol Sci 365:729–748

    Article  CAS  Google Scholar 

  • Keeling PJ (2017) Chlorarachniophytes. In Archibald JM, Simpson AGB, Slomovits CH (eds) Handbook of the Protists 2nd ed, pp 765–781

    Google Scholar 

  • Kereïche S, Kouřil R, Oostergetel GT, Fusetti F, Boekema EJ, Doust AB, van der Weij-de Wit CD, Dekker JP (2008) Association of chlorophyll a/c 2 complexes to photosystem I and photosystem II in the cryptophyte Rhodomonas CS24. Biochem Biophys Acta 1777:1122–1128

    PubMed  Google Scholar 

  • Key T, McCarthy A, Campbell DA, Six C, Roy S, Finkel ZV (2010) Cell size trade-offs govern light exploitation strategies in marine phytoplankton. Environ Microbiol 12:95–104

    Article  CAS  PubMed  Google Scholar 

  • Khan H, Parks N, Kozera C, Curtis BA, Parsons BJ, Bowman S, Archibald JM (2007) Plastid genome sequence of the cryptophyte alga Rhodomonas salina CCMP1319: Lateral transfer of putative DNA replication machinery and a test of chromist plastid phylogeny. Mol Biol Evol 24:1832–1842

    Article  CAS  PubMed  Google Scholar 

  • Khan S, Arakawa O, Onoue Y (1997) Neurotoxins in a toxic red tide of Heterosigma akashiwo (Raphidophyceae) in Kagoshima Bay, Japan. Aquacult Res 28:9–14

    Article  Google Scholar 

  • Kim E, Archibald JM (2013) Ultrastructure and molecular phylogeny of the cryptomonad Goniomonas avonlea sp. nov. Protist 164:160–182

    Article  CAS  PubMed  Google Scholar 

  • Kim E, Lane CE, Curtis BA, Kozera C, Bowman S, Archibald JM (2008) Complete sequence and analysis of the mitochondrial genome of Hemiselmis andersenii CCMP644 (Cryptophyceae). BMC Genomics 9:215

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim GH, Han JH, Kim B, Han JW, Nam SW, Shin W, Park JW, Yih W (2016) Cryptophyte gene regulation in the kleptoplastidic, karyokleptic ciliate Mesodinium rubrum. Harmful Algae 52:23–33

    Article  CAS  PubMed  Google Scholar 

  • Kim JI, Jeong M, Archibald JM, Shin W (2020) Comparative plastid genomics of non-photosynthetic chrysophytes: genome reduction and compaction. Front Plant Sci 11

    Google Scholar 

  • Kim JI, Shin W, Triemer RE (2010) Multigene analyses of photosynthetic euglenoids and new family, Phacaceae (Euglenales) 1. J Phycol 46(6):1278–1287

    Google Scholar 

  • Kim JI, Shin H, Škaloud P, Jung J, Yoon HS, Archibald JM, Shin W (2019) Comparative plastid genomics of Synurophyceae: inverted repeat dynamics and gene content variation. BMC Evolut Biol 19

    Google Scholar 

  • Kim M, Nam SW, Shin W, Coats DW, Park MG (2012) Dinophysis caudata (Dinophyceae) sequesters and retains plastids from the mixotrophic ciliate prey Mesodinium rubrum. J Phycol 48:569–579. https://doi.org/10.1111/j.1529-8817.2012.01150.x

  • Kiss JZ, Vasoconcelos AC, Triemer RE (1986) Paramylonsynthesis and chloroplast structure with nutrient levels in Euglena (Euglenophyceae). J Phycol 22(3):327–333

    Article  CAS  Google Scholar 

  • Kiss JZ, Vasconcelos AC, Triemer RE (1987) Structure of the euglenoid storage carbohydrate, paramylon. Am J Bot 74(6):877–882

    Google Scholar 

  • Kiss JZ, Vasconcelos AC, Triemer RE (1988) The intramembranous particle profile of the paramylon membrane during paramylon synthesis in euglena (EUGLENOPHYCEAE) 1. J Phycol 24(2):152–157

    Google Scholar 

  • Kitada S, Nakajima K, Hamasaki K, Shishidou H, Waples RS, Kishino H (2019) Rigorous monitoring of a large-scale marine stock enhancement program demonstrates the need for comprehensive management of fisheries and nursery habitat. Sci Rep 9

    Google Scholar 

  • Kivic PA, Vesk M (1972) Structure and function in the euglenoid eyespot apparatus: the fine structure, and response to environmental changes. Planta 105(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Kjellman FR (1891) Phaeophyceae, pp 176–290. In Engler A, Prantl K (eds) Die nature lichen Pflanzenfamilien. Teil I, Abt. 2. W. Engelmann, Leipzig

    Google Scholar 

  • Klaveness D (1982) The Cryptomonas-Caulobacter consortium: facultative ectocommensalism with possible taxonomic consequences? Nord J Bot 2:183–188

    Article  Google Scholar 

  • Klaveness D (1988) Ecology of the Cryptomonadida: A First Review. In: Sandgren CD (ed) Growth and reproductive strategies of freshwater phytoplankton. Cambridge University Press, Cambridge, pp 105–133

    Google Scholar 

  • Klaveness D (1989) Biology and ecology of the cryptophyceae: status and challenges. Biol Oceanogr 6:257–270

    Google Scholar 

  • Klebs G (1883) Über die Organisation einiger Flagellaten-Gruppen und ihre Beziehungen zu Algen und Infusorien (Vol. 1). Untersuchungen Aus Dem Botanischen Institut Zu Tübingen 1:233–362

    Google Scholar 

  • Klebs GA (1892a) Flagellatenstudien. Theil i. Zeitschrift Für Wissenschaftliche Zoologie 55:265–351

    Google Scholar 

  • Klebs GA (1892b) Flagellatenstudien. Theil II. Zeitschrift Für Wissenschaftliche Zoologie 55:353–445

    Google Scholar 

  • Klöpper S, John U, Zingone A, Mangoni O, Kooistra WHCF, Cembella AD (2013) Phylogeny and morphology of a Chattonella (Raphidophyceae) species from the Mediterranean Sea: what is C. subsalsa? Eur J Phycol 48:79–92

    Article  Google Scholar 

  • Knapp JM, Lowe RL (2009) Spatial distribution of epiphytic diatoms on lotic bryophytes. Southeast Nat 8:305–316

    Article  Google Scholar 

  • Knoll AH (2003) Biomineralization and evolutionary history. Rev Mineral Geochem 54:329–356

    Article  CAS  Google Scholar 

  • Kolkwitz R (1926) Zur Ökologie und Systematic von Botrydium granulatum (L) Grev. Berichte Der Deutschen Botanischen Gesellschaft. 44:533–540

    Article  Google Scholar 

  • Konno S, Ohira R, Komuro C, Harada N, Jordan RW (2007) Six new taxa of subarctic Parmales (Chrysophyceae)

    Google Scholar 

  • Kooistra WHCF, Gersonde R, Medlin LK, Mann DG (2007) The origin and evolution of the diatoms: Their adaptation to a planktonic existence. In Falkowski PG, Knoll AH (eds) Evolution of Primary Producers in the Sea, pp 207–249. Elsevier

    Google Scholar 

  • Krasnova ED, Pantyulin AN, Matorin DN, Todorenko DA, Belevich TA, Milyutina IA, Voronov DA (2014) Cryptomonad alga Rhodomonas sp. (Cryptophyta, Pyrenomonadaceae) bloom in the redox zone of the basins separating from the White Sea. Microbiology 83:270–277

    Article  CAS  Google Scholar 

  • Krause-Jensen D, Duarte CM (2016) Substantial role of macroalgae in marine carbon sequestration. Nat Geosci 9:737–742

    Article  CAS  Google Scholar 

  • Krause-Jensen D, Lavery P, Serrano O, Marbà N, Masque P, Duarte CM (2018) Sequestration of macroalgal carbon: the elephant in the Blue Carbon room. Biol Let 14:20180236

    Article  Google Scholar 

  • Kreimer G (2008) The green algal eyespot apparatus: a primordial visual system and more? Curr Genet 55:19–43

    Article  PubMed  Google Scholar 

  • Kretschmann J, Žerdoner Čalasan A, Meyer B, Gottschling M (2020) Zero intercalary plates in Parvodinium (Peridiniopsidaceae, Peridiniales) and phylogenetics of P. elpatiewskyi, comb. nov. Protist 171:125700. https://doi.org/10.1016/j.protis.2019.125700

  • Krings M, Klavins SD, Barthel M, Lausberg S, Serbet R, Taylor TN, Taylor EL (2007) Perissothallus, a new genus for Late Pennsylvanian-Early Permian noncalcareous algae conventionally assigned to Schizopteris (aphleboid foliage). Bot J Linn Soc 153:477–488

    Article  Google Scholar 

  • Kristiansen J, Preisig HR (eds) (2001) Encyclopedia of Chrysophyte genera. Cramer in der Gebrüder-Borntraeger-Verl.-Buchh, Berlin Stuttgart, p 260

    Google Scholar 

  • Kristiansen J, Škaloud P (2017) Chrysophyta. In Archibald JM, Simpson AGB, Slamovits CH (eds) 9 Handbook of the Protists, pp 331–366. Springer International Publishing, Cham

    Google Scholar 

  • Krumhansl K, Scheibling R (2012) Production and fate of kelp detritus. Mar Ecol Prog Ser 467:281–302

    Article  Google Scholar 

  • Kryvenda A, Rybalka N, Wolf M, Friedl T (2018) Species distinctions among closely related strains of Eustigmatophyceae (Stramenopiles) emphasizing ITS2 sequence-structure data: Eustigmatos and Vischeria. Eur J Phycol 53(4):471–491

    Article  CAS  Google Scholar 

  • Kuda T, Enomoto T, Yano T (2009) Effects of two storage β-1, 3-glucans, laminaran from Eicenia bicyclis and paramylon from Euglena gracilis, on cecal environment and plasma lipid levels in rats. J Funct Foods 1(4):399–404

    Article  CAS  Google Scholar 

  • Kugrens P, Lee RE (1987) Ultrastructure of fertilization in a cryptomonad. J Phycol 24:385–393

    Google Scholar 

  • Kugrens P, Lee RE (1990) Ultrastructural evidence for bacterial incorporation and myxotrophy in the photosynthetic cryptomonad Chroomonas pochmanni Huber-Pestalozzi (Cryptomonadida). J Protozool 37:263–267

    Article  Google Scholar 

  • Kugrens P, Lee RE (1991) 15. Organization of Cryptomonads. In: The Biology of Free-Living Heterotrophic Flagellates. Patterson DJ, Larsen J (eds) Systematics Association Special Volume No. 45, pp 219–233, Clarendon Press, Osxford

    Google Scholar 

  • Kugrens P, Lee RE, Andersen RA (1987) Ultrastructural variations in cryptomonad flagella. J Phycol 23:511–518

    Article  Google Scholar 

  • Kumar A, Castellano I, Patti FP, Delledonne M, Abdelgawad H, Beemster GTS, Asard H et al (2017) Molecular response of Sargassum vulgare to acidification at volcanic CO2 vents: insights from de novo transcriptomic analysis. Mol Ecol 26:2276–2290

    Article  CAS  PubMed  Google Scholar 

  • Küpper FC, Carpenter LJ, McFiggans GB, Palmer CJ, Waite TJ, Boneberg E- M, Woitsch S et al. (2008) Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry. Proc Nat Academy Sci 105:6954-8

    Google Scholar 

  • Kützing FT (1849) Species algarum Lipsiae. F.A. Brockhaus, Leipzig

    Google Scholar 

  • Kützing FT (1844) Die kieselschaligen Bacillarien oder Diatomeen. Nordhausen: W. Köhne

    Google Scholar 

  • Kuwata A, Yamada K, Ichinomiya M, Yoshikawa S, Tragin M, Vaulot D, Lopes dos Santos A (2018) Bolidophyceae, a sister picoplanktonic group of diatoms. Rev Front Marine Sci 5

    Google Scholar 

  • La Barre S, Potin P, Leblanc C, Delage L (2010) The halogenated metabolism of brown algae (Phaeophyta), its biological importance and its environmental significance. Mar Drugs 8:988–1010

    Article  PubMed  PubMed Central  Google Scholar 

  • Lagerheim G (1884) Über Phaeothamnion, eine neue Gattung unter den Süsswasseralgen. Bihang Till Kongl Svenska Vet Acad Handlingar 9:3–13

    Google Scholar 

  • LaJeunesse TC (2005) “Species” radiations of symbiotic dinoflagellates in the Atlantic and indo-pacific since the miocene-pliocene transition. Molec Biol Evol 22:570–581. https://doi.org/10.1093/molbev/msi042

  • Larsen J, Patterson DJ (1990) Some flagellates (Protista) from tropical marine sediments. J Nat Hist 24(4):801–937

    Google Scholar 

  • Lambowitz AM, Zimmerly S (2004) Mobile group II introns. Annu Rev Genet 38:1–35

    Article  CAS  PubMed  Google Scholar 

  • Lamouroux JVF (1813) Essai sur les genres de la famille des thalassiophytes non articulées. Ann Mus Hist Nat (Paris) 20:21–47, 115–139, 267–293

    Google Scholar 

  • Lane CE, Archibald JM (2008) New marine members of the genus Hemiselmis (Cryptomonadales, Cryptophyceae). J Phycol 44:439–450

    Article  CAS  PubMed  Google Scholar 

  • Lane CE, Khan H, MacKinnon M, Fong A, Theophilou S, Archibald JM (2006) Insight into the diversity and evolution of the cryptomonad nucleomorph genome. Mol Biol Evol 23:856–865

    Article  CAS  PubMed  Google Scholar 

  • Lara E, Mitchell EAD, Moreira D, López García P (2011) Highly diverse and seasonally dynamic protist community in a pristine peat bog. Protist 162:14–32

    Article  PubMed  Google Scholar 

  • Lassus P, Chomérat N, Hess P, Nézan E (2016) Toxic and harmful microalgae of the World Ocean. Intergovernmental Oceanographic Commission of UNESCO (IOC) Manuals and guides, 68. International Society for the study of Harmful Algae (ISSHA), Copenhagen, p 523

    Google Scholar 

  • Lax G, Simpson AG (2020) The molecular diversity of phagotrophic euglenids examined using single-cell methods. Protist 171(5):125757

    Article  CAS  PubMed  Google Scholar 

  • Lax G, Lee WJ, Eglit Y, Simpson A (2019) Ploeotids represent much of the phylogenetic diversity of euglenids. Protist 170(2):233–257

    Article  CAS  PubMed  Google Scholar 

  • Lax G, Kolisko M, Eglit Y, Lee WJ, Yubuki N, Karnkowska A, Simpson AGB et al (2021) Multigene phylogenetics of euglenids based on single-cell transcriptomics of diverse phagotrophs. Mol Phylogenet Evol 159:107088

    Google Scholar 

  • Laza-Martínez (2012) Urgorri complanatus gen. et sp. nov. (Cryptophyceae), a red-tide- forming species in brackish waters. J Phycol 48:423–435

    Google Scholar 

  • Laza-Martínez A, Fernández-Marín B, García-Plazaola JI (2019) Rapid colour changes in Euglena sanguinea (Euglenophyceae) caused by internal lipid globule migration. Eur J Phycol 54(1):91–101

    Article  Google Scholar 

  • Le Corguillé G, Pearson G, Valente M, Viegas C, Gschloessl B, Corre E, Bailly X et al (2009) Plastid genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus: further insights on the evolution of red-algal derived plastids. BMC Evol Biol 9:253

    Article  PubMed  PubMed Central  Google Scholar 

  • Leander BS (2004) Did trypanosomatid parasites have photosynthetic ancestors? Trends Microbiol 12(6):251–258

    Article  CAS  PubMed  Google Scholar 

  • Leander BS, Farmer MA (2000) Comparative morphology of the euglenid pellicle. I. Patterns of strips and pores. J Eukaryotic Microbiol 47(5):469–479

    Google Scholar 

  • Leander BS, Farmer MA (2001) Comparative morphology of the euglenid pellicle. II. Diversity of strip substructure. J Eukaryotic Microbiol 48(2):202–217

    Google Scholar 

  • Leander BS, Esson HJ, Breglia SA (2007) Macroevolution of complex cytoskeletal systems in euglenids. BioEssays 29(10):987–1000

    Article  PubMed  Google Scholar 

  • Leander BS, Lax G, Karnkowska A and Simpson AGB (2017). Euglenida. In: Handbook of the Protists (2nd edition of the Handbook of Protoctista by Margulis et al.). Archibald JM, Simpson AGB, Slamovits C (eds). Springer

    Google Scholar 

  • Leander BS, Triemer RE, Farmer MA (2001) Character evolution in heterotrophic euglenids. Eur J Protistol 37(3):337–356

    Article  Google Scholar 

  • Leblanc C, Colin C, Cosse A, Delage L, La Barre S, Morin P, Fiévet B et al (2006) Iodine transfers in the coastal marine environment: the key role of brown algae and of their vanadium-dependent haloperoxidases. Biochimie 88:1773–1785

    Article  CAS  PubMed  Google Scholar 

  • Ledermann B, Schwan M, Sommerkamp JA, Hofmann E, Béjà O, Frankenberg-Dinkel N (2018) Evolution and molecular mechanism of four-electron reducing ferredoxin-dependent bilin reductases from oceanic phages. FEBS J 285:339–356

    Article  CAS  PubMed  Google Scholar 

  • Lee KW, Bold HC (1973) Pseudocharaciopsis texensis gen. et sp. nov., a new member of the Eustigmatophyceae. Brit Phycol J 8:31–37

    Article  Google Scholar 

  • Lee RE (2018) Phycology, 5th edn. Cambridge University Press, New York, NY, p 535

    Book  Google Scholar 

  • Lee RE, Kugrens P (1986) The occurrence and structure of flagellar scales in some freshwater cryptophytes. J Phycol 22:549–552

    Article  Google Scholar 

  • Lee RE, Kugrens P (1991) Kathablepharis ovalis, a colorless flagellate with interesting cytological characteristics. J Phycol 27:505–513

    Article  Google Scholar 

  • Lee WJ, Simpson AG (2014). Ultrastructure and molecular phylogenetic position of Neometanema parovale sp. nov.(Neometanema gen. nov.), a marine phagotrophic euglenid with skidding motility. Protist 165(4):452–472

    Google Scholar 

  • Leedale GF (1967) Euglenida/euglenophyta. Annual Reviews in Microbiology 21(1):31–48

    Article  CAS  Google Scholar 

  • Leipe DD, Wainright PO, Gunderson JH, Porter D, Patterson DJ, Valois F, Himmerich S et al (1994) The stramenopiles from a molecular perspective: 16S-like rRNA sequences from Labyrinthuloides minuta and Cafeteria roenbergensis. Phycologia 33:369–377

    Article  Google Scholar 

  • Lemmermann E (1913) Eugleninae. Die Süßwasser-Flora Deutschlands, Österreichs Und Der Schweiz 2(2):115–174

    Google Scholar 

  • Lemmermann E (1899) Das Phytoplankton sächsischer Teiche. Forschungsberichte Aus Des Biologischen Station Zu Plön 7:96–135

    Google Scholar 

  • Levasseur W, Perré P, Pozzobon V (2020) A review of high value-added molecules production by microalgae in light of the classification. Biotechnol Adv 41:107545

    Article  CAS  PubMed  Google Scholar 

  • Lewin J, Norris RE, Jeffrey SW, Pearson BE (1977) An aberrant chrysophycean alga Pelagococcus subviridis gen. nov. from the North Pacific ocean. J Phycol 13:259–266

    Article  CAS  Google Scholar 

  • Lewitus AJ, Caron DA, Miller KR (1991) Effects of light and glycerol on the organization of the photosynthetic apparatus in the facultative heterotroph Pyrenomonas salina (Cryptophyceae). J Phycol 27:578–587

    Article  Google Scholar 

  • Lewitus AJ, Glasgow HB Jr, Burkholder JM (1999) Kleptoplastidy in the toxic dinoflagellate Pfiesteria piscicida (Dinophyceae). J Phycol 35:303–312

    Article  Google Scholar 

  • Lewitus E, Bittner L, Malviya S, Bowler C, Morlon H (2018) Clade-specific diversification dynamics of marine diatoms since the Jurassic. Nat Ecol Evol 2:1715–1723

    Article  PubMed  PubMed Central  Google Scholar 

  • Li A, Stoecker DK, Coats DW, Adam EJ (1996) Ingestion of fluorescently labeled and phycoerythrin-containing prey by mixotrophic dinoflagellates. Aquat Microb Ecol 10:139–147

    Article  Google Scholar 

  • Li B, Lu F, Wei X, Zhao R (2008) Fucoidan: Structure and bioactivity. Molecules 13:1671–1695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Ding J, Li F, Wang T, Yang Y, Li Y, Campbell DA et al (2019) Functional responses of smaller and larger diatoms to gradual CO2 rise. Sci Total Environ 680:79–90

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Shin H (2019) Morphology, phylogeny and life cycle of Fragilidium mexicanum Balech (Gonyaulacales, Dinophyceae). Phycologia 58:419–432. https://doi.org/10.1080/00318884.2019.1620582

  • Lichtlé C (1979) Effects of nitrogen deficiency and light of high intensity on Cryptomonas rufescens (Cryptophyceae). I. Cell and photosynthetic transformations and encystment. Protoplasma 101:283–299

    Article  Google Scholar 

  • Lichtlé C (1980) Effects of nitrogen deficiency and light of high intensity on Cryptomonas rufescens (Cryptophyceae). II. Excystment. Protoplasma 102:11–19

    Article  Google Scholar 

  • Lim EL, Dennett MR, Caron DA (1999) The ecology of Paraphysomonas imperforata based on studies employing oligonucleotide probe identification in coastal water samples and enrichment cultures. Limnol Oceanogr 44:37–51

    Article  Google Scholar 

  • Linares C, Vidal M, Canals M, Kersting DK, Amblas D, Aspillaga E, Cebrián E et al (2015) Persistent natural acidification drives major distribution shifts in marine benthic ecosystems. Proc Royal Soc b: Biol Sci 282:20150587

    Article  CAS  Google Scholar 

  • Linnaeus C (1753) Species Plantarum. Stockholm

    Google Scholar 

  • Linton EW, Triemer RE (1999) Reconstruction of the feeding apparatus in Ploeotia costata (Euglenophyta) and its relationship to other euglenoid feeding apparatuses. J Phycol 35(2):313–324

    Article  Google Scholar 

  • Linton EW, Hittner D, Lewandowski C, Auld T, Triemer RE (1999) A molecular study of euglenoid phylogeny using small subunit rDNA. J Eukaryot Microbiol 46(2):217–223

    Article  CAS  PubMed  Google Scholar 

  • Lipinska AP, Toda NRT, Heesch S, Peters AF, Cock JM, Coelho SM (2017) Multiple gene movements into and out of haploid sex chromosomes. Genome Biol 18

    Google Scholar 

  • Lipinska A, Cormier A, Luthringer R, Peters AF, Corre E, Gachon CMM, Cock JM et al (2015) Sexual dimorphism and the evolution of sex-biased gene expression in the brown alga Ectocarpus. Mol Biol Evol 32:1581–1597

    Article  CAS  PubMed  Google Scholar 

  • Lipinska AP, Serrano-Serrano ML, Cormier A, Peters AF, Kogame K, Cock JM, Coelho SM (2019) Rapid turnover of life-cycle-related genes in the brown algae. Genome Biol 20

    Google Scholar 

  • Lipps JH (1979) Silicoflagellates. Paleontology. Kluwer Academic Publishers, Dordrecht, pp 753–757

    Chapter  Google Scholar 

  • Liu F, Wang W, Sun X, Liang Z, Wang F (2014) RNA-Seq revealed complex response to heat stress on transcriptomic level in Saccharina japonica (Laminariales, Phaeophyta). J Appl Phycol 26:1585–1596

    Article  CAS  Google Scholar 

  • Liu F, Wang W, Sun X, Liang Z, Wang F (2015) Conserved and novel heat stress-responsive microRNAs were identified by deep sequencing in Saccharina japonica (Laminariales, Phaeophyta): Heat stress-responsive microRNA in Saccharina. Plant, Cell Environ 38:1357–1367

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Probert I, Uitz J, Claustre H, Aris-Brosou S, Frada M, Not F, de Vargas C (2009) Extreme diversity in noncalcifying haptophytes explains a major pigment paradox in open oceans. Proc Natl Acad Sci USA 106:12803–12808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Johnson MG, Cox CJ, Medina R, Devos N, Vanderpoorten A, Hedenäs L, Bell NE, Shevock JR, Aguero B, Quandt D, Wickett NJ, Shaw AJ, Goffinet B (2019) Resolution of the backbone phylogeny of mosses using targeted exons from organellar and nuclear genomes. Nat Commun 10:1485

    Article  PubMed  PubMed Central  Google Scholar 

  • Lobban CS, Honda D, Chihara M, Schefter M (1995) Chrysocystis fragilis gen. nov., sp. nov. (Chrysophyceae, Sarcinochrysidales), with notes on other macroscopic chrysophytes (golden algae) on Guam reefs. Micronesia 28:91–102

    Google Scholar 

  • Louime C, Fortune J, Gervais G (2017) Sargassum invasion of coastal environments: a growing concern. Am J Environ Sci 13:58–64

    Article  Google Scholar 

  • Ludwig M, Gibbs SP (1989) Evidence that the nucleomorphs of Chlorarachnion reptans (chlorarachniophyceae) are vestigial nuclei: Morphology, division and DNA-DAPI fluorescence. J Phycol 25:385–394

    Article  Google Scholar 

  • Lukešová S, Karlicki M, Tomečková Hadariová L, Szabová J, Karnkowska A, Hampl V (2020) Analyses of environmental sequences and two regions of chloroplast genomes revealed the presence of new clades of photosynthetic euglenids in marine environments. Environ Microbiol Reports 12(1):78–91

    Article  Google Scholar 

  • Łukomska‐Kowalczyk M, Karnkowska A, Krupska M, Milanowski R, Zakryś B (2016) DNA barcoding in autotrophic euglenids: evaluation of COI and 18S rDNA. J Phycol 52(6):951–960

    Google Scholar 

  • Lund JWG (1949) Studies on Asterionella. I. The origin and nature of the cells producing seasonal maxima. J Ecol 37:389–419

    Article  Google Scholar 

  • Lund JWG (1950) Studies on Asterionella formosa Hass. II. Nutrient depletion and the spring maximum. J Ecol 38:15–35

    Article  Google Scholar 

  • Luo Z, Wang N, Mohamed HF, Liang Y, Pei L, Huang S, Gu H (2021) Amphidinium stirisquamtum sp. nov. (Dinophyceae), a new marine sand-dwelling dinoflagellate with a novel type of body scale. Algae 36:241–261. https://doi.org/10.4490/algae.2021.36.8.27

  • Luther A (1899) Über Chlorosaccus, eine neue Gattung der Süsswasseralgen, nebst einigen Bemerkungen zur Systematik verwandter Algen. Bihang till Kongl. Svenska vetenskaps-akademiens handlingar 24, Afd. Ill, No 13, p 16

    Google Scholar 

  • Lynn DH (2017) Ciliophora. In: Archibald JM, Simpson AGB, Slamovits CH (eds) Handbook of the Protists. Springer International Publishing, Cham, pp 679–730

    Chapter  Google Scholar 

  • Ma X-N, Chen T-P, Yang B, Liu J, Chen F (2016) Lipid production from Nannochloropsis. Mar Drugs 14:61

    Article  PubMed  PubMed Central  Google Scholar 

  • Maberly SC, Ball LA, Raven JA, Sültemeyer D (2009) Inorganic carbon acquisition by chrysophytes. J Phycol 45:1052–1061

    Article  CAS  PubMed  Google Scholar 

  • Macaisne N, Liu F, Scornet D, Peters AF, Lipinska A, Perrineau M-M, Henry A et al. (2017) The Ectocarpus immediate upright gene encodes a member of a novel family of cysteine-rich proteins that have an unusual distribution across the eukaryotes. Development

    Google Scholar 

  • MacDonald JD (1869) On the structure of the diatomaceous frustule and its genetic cycle. Ann Mag Nat Hist 3:1–8

    Article  Google Scholar 

  • Machado Monteiro CM, Li H, Bischof K, Bartsch I, Valentin KU, Corre E, Collén J et al. (2019) Is geographical variation driving the transcriptomic responses to multiple stressors in the kelp Saccharina latissima? BMC Plant Biol 19

    Google Scholar 

  • Mackey DJ, Higgins HW, Mackey MD, Holdsworth D (1998) Algal class abundances in the western equatorial Pacific: Estimation from HPLC measurements of chloroplast pigments using CHEMTAX. Deep-Sea Research Part I - Oceanographic Research Papers 45:1441–1468

    Article  CAS  Google Scholar 

  • Maier UG (1992) The four genomes of the alga Pyrenomonas salina (Cryptophyta). BioSystems 28:69–73

    Article  CAS  PubMed  Google Scholar 

  • Maistro S, Broady P, Andreoli C, Negrisolo E (2017) Xanthophyceae. In: Archibald JM, Simpson AGB, Slamovits CH (eds) Handbook of the Protists. Springer International Publishing, Cham, pp 407–434

    Chapter  Google Scholar 

  • Maistro S, Broady PA, Andreoli C, Negrisolo E (2007) Molecular phylogeny and evolution of the order Tribonematales (Heterokonta, Xanthophyceae) based on analysis of plastidial genes rbcL and psaA. Mol Phylogenet Evol 43:407–417

    Article  CAS  PubMed  Google Scholar 

  • Maistro S, Broady PA, Andreoli C, Negrisolo E (2009) Phylogeny and taxonomy of Xanthophyceae (Stramenopiles, Chromalveolata). Protist 160:412–426

    Article  PubMed  Google Scholar 

  • Majda S, Boenigk J, Beisser D (2019) Intraspecific variation in protists: clues for microevolution from Poteriospumella lacustris (Chrysophyceae). Genome Biol Evol 11:2492–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majewska R, Santoro M, Bolaños F, Chaves G, De Stefano M (2015) Diatoms and other epibionts associated with olive ridley (Lepidochelys olivacea) sea turtles from the Pacific coast of Costa Rica. PLoS ONE 10:e0130351

    Article  PubMed  PubMed Central  Google Scholar 

  • Malviya S, Scalco E, Audic S, Vincent F, Veluchamy A, Poulain J, Wincker P et al (2016) Insights into global diatom distribution and diversity in the world’s ocean. Proc Natl Acad Sci 113:E1516–E1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mann DG (1999) The species concept in diatoms. Phycologia 38:437–495

    Article  Google Scholar 

  • Mann DG, Crawford RM, Round FE (2017) Bacillariophyta. In: Archibald JM, Simpson AGB, Slamovits CH (eds) Handbook of the Protists. Springer International Publishing, Cham, pp 205–266

    Chapter  Google Scholar 

  • Mann KH (1973) Seaweeds: their productivity and strategy for growth: the role of large marine algae in coastal productivity is far more important than has been suspected. Science 182:975–981

    Article  CAS  PubMed  Google Scholar 

  • Mann KH (1982) Ecology of coastal waters: a systems approach. University of California Press, Berkeley, p 322

    Google Scholar 

  • Manning SR, La Claire JW (2010) Prymnesins: Toxic metabolites of the golden alga, Prymnesium parvum Carter (Haptophyta). Mar Drugs 8:678–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manton I, Clarke B, Greenwood AD, Flint EA (1952) Further observations on the structure of plant cilia, by a combination of visual and electron microscopy. J Exp Bot 3:204–215

    Article  Google Scholar 

  • Marin B, Palm A, Klingberg MAX, Melkonian M (2003) Phylogeny and taxonomic revision of plastid-containing euglenophytes based on SSU rDNA sequence comparisons and synapomorphic signatures in the SSU rRNA secondary structure. Protist 154(1):99–145

    Google Scholar 

  • Markel R, Lotterhos K, Robinson C (2017) Temporal variability in the environmental and geographic predictors of spatial-recruitment in nearshore rockfishes. Mar Ecol Prog Ser 574:97–111

    Article  Google Scholar 

  • Markey DR, Wilce RT (1975) The ultrastructure of reproduction in the brown alga Pylaiella littoralis. I. Mitosis and cytokinesis in the plurilocular gametangia. Protoplasma 85:219–241

    Article  CAS  PubMed  Google Scholar 

  • Marrs JA, Bouck B (1992) The two major membrane skeletal proteins (articulins) of Euglena gracilis define a novel class of cytoskeletal proteins. J Cell Biol 118:1465–1475

    Article  CAS  PubMed  Google Scholar 

  • Marshall J-A, Nichols PD, Hallegraeff GM (2002) Chemotaxonomic survey of sterols and fatty acids in six marine raphidophyte algae. J Appl Phycol 14:255–265

    Article  CAS  Google Scholar 

  • Marshall J-A, Nichols PD, Hamilton B, Lewis RJ, Hallegraeff GM (2003) Ichthyotoxicity of Chattonella marina (Raphidophyceae) to damselfish (Acanthochromis polycanthus): the synergistic role of reactive oxygen species and free fatty acids. Harmful Algae 2:273–281

    Article  CAS  Google Scholar 

  • Martin-Cereceda M, Roberts EC, Wootton EC, Bonaccorso E, Dyal P, Guinea A, Rogers D, Wright CJ, Novarino G (2010) Morphology, ultrastructure, and small subunit rDNA phylogeny of the marine heterotrophic flagellate Goniomonas aff. amphinema. J Eukaryot Microbiol 57:159–170

    Article  CAS  PubMed  Google Scholar 

  • Martins MJF, Mota CF, Pearson GA (2013) Sex-biased gene expression in the brown alga Fucus vesiculosus. BMC Genomics 14:294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruyama S, Suzaki T, Weber AP, Archibald JM, Nozaki H (2011) Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids. BMC Evol Biol 11:105

    Article  PubMed  PubMed Central  Google Scholar 

  • Massana R, Balagué V, Gouillou L, Pedrós-Alió C (2004) Picoeukaryotic diversity in an oligotrophic coastal site studied by molecular and culturing approaches. FEMS Microbiol Ecol 50:231–243

    Article  CAS  PubMed  Google Scholar 

  • Massana R, Gobet A, Audic S, Bass D, Bittner L, Boutte C, Chambouvet A, Christen R, Claverie JM, Decelle J, Dolan JR, Dunthorn M, Edvardsen B, Forn I, Forster D, Gouillou L, Jaillon O, Kooistra WHCF, Logares R, Mahé F, Not F, Ogata H, Pawlowski J, Pernice MC, Probert I, Romac S, Richards T, Santini S, Shalchian-Tabrizi K, Siano R, Simon N, Stoeck T, Vaulot D, Zingone A, de Vargas C (2015) Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing. Environ Microbiol 17:4035–4049

    Article  CAS  PubMed  Google Scholar 

  • Mautner HG (1954) The chemistry of brown algae. Econ Bot 8:174–192

    Article  CAS  Google Scholar 

  • McCandless EL (1981) Polysaccharides of the seaweeds. In: Lobban CS, Wynne MJ (eds) The biology of Seaweeds. Blackwell Scientific Pubblications, Oxford, pp 559–588

    Google Scholar 

  • McCartney K (2013) A review of past and recent research on Cretaceous silicoflagellates. Phytotaxa 127:190

    Article  Google Scholar 

  • McCartney K, Witkowski J (2016) Cenozoic silicoflagellate skeletal morphology: a review and suggested terminology. J Micropalaeont 35:179–189

    Article  Google Scholar 

  • McCartney K, Witkowski J, Harwood DM (2014a) New insights into skeletal morphology of the oldest known silicoflagellates: Variramus, Cornua and Gleserocha gen. nov. Rev Micropaléontol 57:75–91

    Article  Google Scholar 

  • McCartney K, Witkowski J, Jordan RW, Daugbjerg N, Malinverno E, van Wezel R, Kano H et al (2014b) Fine structure of silicoflagellate double skeletons. Mar Micropaleontol 113:10–19

    Article  Google Scholar 

  • McCauley LAR, Wehr JD (2007) Taxonomic reappraisal of the freshwater brown algae Bodanella, Ectocarpus, Heribaudiella, and Pleurocladia (Phaeophyceae) on the basis of rbcL sequences and morphological characters. Phycologia 46:429–439

    Article  Google Scholar 

  • McFadden GI, Gilson PR, Douglas SE (1994a) The photosynthetic endosymbiont in cryptomonad cells produces both chloroplast and cytoplasmic-type ribosomes. J Cell Sci 107:649–657

    Article  CAS  PubMed  Google Scholar 

  • McFadden GI, Gilson PR, Hill DRA (1994b) Goniomonas: rRNA sequences indicate that this phagotrophic flagellate is a close relative of the host component of cryptomonads. Eur J Phycol 29:29–32

    Article  Google Scholar 

  • McFadden GI, Gilson PR, Sims IM (1997) Preliminary characterization of carbohydrate stores from chlorarachniophytes (Division: Chlorarachniophyta). Phycol Res 45(3):145–151

    Google Scholar 

  • McKerracher L, Gibbs SP (1982) Cell and nucleomorph division in the alga Cryptomonas. Can J Bot 60:2440–2452

    Article  Google Scholar 

  • Medlin L, Zingone A (2007) A taxonomic review of the genus Phaeocystis. Biogeochemistry 83:3–18

    Article  Google Scholar 

  • Medlin LK (2011) The Permian-Triassic mass extinction forces the radiation of the modern marine phytoplankton. Phycologia 50:684–693

    Article  Google Scholar 

  • Medlin LK (2015) A timescale for diatom evolution based on four molecular markers: reassessment of ghost lineages and major steps defining diatom evolution. Vie Et Milieu. 65:219–238

    Google Scholar 

  • Medlin LK (2016) Evolution of the diatoms: major steps in their evolution and a review of the supporting molecular and morphological evidence. Phycologia 55:79–103

    Article  CAS  Google Scholar 

  • Medlin LK, Kooistra WHCF, Potter D, Saunders GW, Andersen RA (1997) Phylogenetic relationships of the ‘golden algae’ (haptophytes, heterokont chromophytes) and their plastids. In: Bhattacharya D (ed) The origins of algae and their plastids, vol 11. Springer, Vienna, pp 187–219

    Chapter  Google Scholar 

  • Melkonian M (ed.) (1992) Centrin-mediated cell motility in Algae. In Algal Cell Motility, pp 179–221. Chapman and Hall, New York

    Google Scholar 

  • Melkonian M, Beech PL, Katsaros C and Schulze D (1992) Centrin-mediated cell motility in algae. In Algal cell motility, pp 179–221. Springer, Boston, MA

    Google Scholar 

  • Mendez-Tejeda R, Rosado Jiménez GA (2019) Influence of climatic factors on Sargassum arrivals to the coasts of the Dominican Republic. J Oceanogr Mar Sci 10(2):22–32

    Google Scholar 

  • Merežkowsky C (1879) Studien über Protozoen des norlichen Russland. Arch Mikrosk Anat 16:153–248

    Article  Google Scholar 

  • Meslet-Cladière L, Delage L, Leroux CJ, Goulitquer S, Leblanc C, Creis E, Gall EA, Stiger-Pouvreau V, Czjzek M, Potin P (2013) Structure/function analysis of a type iii polyketide synthase in the brown alga Ectocarpus siliculosus reveals a biochemical pathway in phlorotannin monomer biosynthesis. Plant Cell 25(8):3089–3103

    Google Scholar 

  • Meyer SR, Pienaar RN (1984a) Mitosis and cytokinesis in Chroomonas africana Meyer & Pienaar (Cryptophyceae). S Afr J Bot 3:320–330

    Article  Google Scholar 

  • Meyer SR, Pienaar RN (1984b) The microanatomy of Chroomonas africana sp. nov. (Cryptophyceae) South African J Botany 3:306–319

    Google Scholar 

  • Michel F, Kazuhiko U, Haruo O (1989) Comparative and functional anatomy of group II catalytic introns—a review. Gene 82(1):5–30

    Article  CAS  PubMed  Google Scholar 

  • Mignot JP (1962) Study of the cell nucleus of the euglenoid Scytomonas pusilla (Stein) during division and copulation. Comptes Rendus Hebdomadaires Des Seances De L’academie Des Sci 254:1864

    CAS  Google Scholar 

  • Mignot JP (1963) Quelques particularités de l’ultrastructure d’Entosiphon sulcatum (Duj.) Stein, flagellé euglénien. Comptes Rendus Hebdomadaires Des Seances De L’academie Des Sci 257:2530–2533

    Google Scholar 

  • Mignot JP (1965) Étude ultrastructurale de Cyathomonas truncata From. (flagellé cryptomonadine). J De Microsc 4:239–252

    Google Scholar 

  • Mignot JP, Joyon L, Pringsheim EG (1968) Compléments à l’étude cytologique des cryptomonadines. Protistologica 4:493–506

    Google Scholar 

  • Mignot J-P, Brugerolle G (1982) Scale formation in chrysomonad flagellates. J Ultrastruct Res 81:13–26

    Article  CAS  PubMed  Google Scholar 

  • Milledge JJ, Nielsen BV, Bailey D (2016) High-value products from macroalgae: the potential uses of the invasive brown seaweed, Sargassum muticum. Rev Environ Sci Bio/technol 15:67–88

    Article  CAS  Google Scholar 

  • Mineur F, Arenas F, Assis J, Davies AJ, Engelen AH, Fernandes F, Malta E et al (2015) European seaweeds under pressure: Consequences for communities and ecosystem functioning. J Sea Res 98:91–108

    Article  Google Scholar 

  • Mitra A, Flynn KJ, Tillmann U, Raven JA, Caron D, Stoecker DK, Not F et al (2016) Defining planktonic protist functional groups on mechanisms for energy and nutrient acquisition: incorporation of diverse mixotrophic strategies. Protist 167:106–120

    Article  CAS  PubMed  Google Scholar 

  • Mock T, Otillar RP, Strauss J, McMullan M, Paajanen P, Schmutz J, Salamov A et al (2017) Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus. Nature 541:536–540

    Article  CAS  PubMed  Google Scholar 

  • Moeller HV, Johnson MD (2017) Preferential plastid retention by the acquired phototroph Mesodinium chamaeleon. J Eukaryotic Microbiol 265:148–158

    Google Scholar 

  • Moestrup Ø (1970) On the fine structure of the spermatozoids of Vaucheria sescuplicaria and on the later stages of spermatogenesis. J Mar Biol Ass UK 50:513–523

    Google Scholar 

  • Moestrup Ø (1995) Current status of chrysophyte “splinter groups”: synurophytes, pedinellids, silicoflagellates. In: Sandgren CD, Smol JP, Kristiansen J (eds) Chrysophyte Algae, 1st edn. Cambridge University Press, pp 75–92

    Chapter  Google Scholar 

  • Moestrup Ø, Andersen RA (1991) Organization of heterotrophic heterokonts. In: Patterson DJ, Larsen J (eds) The biology of free-living heterotrophic flagellates, vol 45. Published for the Systematics Association by Clarendon Press; Oxford University Press, England, pp 333–360

    Google Scholar 

  • Moestrup Ø, Calado AJ (2018) Dinophyceae. Süßwasserflora von Mitteleuropa, Bd 6 - Freshwater Flora of Central Europe, Vol 6, p 561, Dinophyceae. Berlin, Heidelberg: Springer Berlin Heidelberg

    Google Scholar 

  • Moestrup Ø, Daugbjerg N (2007) On dinoflagellate phylogeny and classification. In Brodie J, Lewis J (eds) Unravelling the Algae: the past, present and future of algae systematics. Boca Raton, London, New York: CRC Press, Taylor & Francis

    Google Scholar 

  • Moestrup Ø, O’Kelly CJ (2002) Class Silicoflagellata. In: Lee JJ, Leedale GF, Bradbury P (eds) An illustrated guide to the protozoa, vol 2, 2nd edn. Society of Protozoologists, Lawrence, Kansas, USA, pp 775–782

    Google Scholar 

  • Moestrup Ø, Sengco M (2001) Ultrastructural studies on Bigelowiella natans, gen. et sp. nov., a chlorarachniophyte flagellate. J Phycol 37:624–646

    Article  Google Scholar 

  • Moestrup Ø, Thomsen HA (1990) Dictyocha speculum (Silicoflagellata, Dictyochophyceae), studies on armoured and unarmoured stages. Kongelige Danske Videnskabernes Selskak. Biologiske Skrifter 37:1–57

    Google Scholar 

  • Moeys S, Frenkel J, Lembke C, Gillard JTF, Devos V, Van den Berge K, Bouillon B et al. (2016) A sex-inducing pheromone triggers cell cycle arrest and mate attraction in the diatom Seminavis robusta. Sci Rep 6

    Google Scholar 

  • Mokranjac D, Neupert W (2009). Thirty years of protein translocation into mitochondria: unexpectedly complex and still puzzling. Biochimica et Biophys Acta (BBA)-Mol Cell Res 1793(1):33–41

    Google Scholar 

  • Moline MA, Claustre H, Frazer TK, Schofield O, Vernet M (2004) Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Glob Change Biol 10:1973–1980

    Article  Google Scholar 

  • Monfils AK, Triemer RE, Bellairs EF (2011) Characterization of paramylon morphological diversity in photosynthetic euglenoids (Euglenales, Euglenophyta). Phycologia 50(2):156–169

    Article  Google Scholar 

  • Moon-van der Staay SY, De Wachter R, Vaulot D (2001) Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409:607–610

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Garrido I, Codd GA, Gadd GM, Lubián LM (2002) Cu and Zn accumulation by calcium alginate immobilized marine microalgal cells of Nannochloropsis gaditana (Eustigmatophyceae). Ciencias Marinas 28:107–119

    Google Scholar 

  • Moriya M, Nakayama T, Inouye I (2002) A new class of the stramenopiles, Placididea classis nova: description of Placidia cafeteriopsis gen. et sp. nov. Protist 153:143–156

    Article  CAS  PubMed  Google Scholar 

  • Morozov AA, Galachyants YP (2019) Diatom genes originating from red and green algae: implications for the secondary endosymbiosis models. Mar Genomics 45:72–78

    Article  CAS  PubMed  Google Scholar 

  • Morrall S, Greenwood AD (1980) A comparison of the periodic substructures of the trichocysts of the Cryptophyceae and Prasinophyceae. Biosystems 12:71–83

    Article  CAS  PubMed  Google Scholar 

  • Morya VK, Kim J, Kim E-K (2012) Algal fucoidan: structural and size-dependent bioactivities and their perspectives. Appl Microbiol Biotechnol 93:71–82

    Article  CAS  PubMed  Google Scholar 

  • Motomura T (1991) Immunofluorescence microscopy of fertilization and parthenogenesis in Laminaria angustata (Phaeophyta). J Phycol 27:248–257

    Article  Google Scholar 

  • Motomura T, Ichimura T, Melkonian M (1997) Coordinative nuclear and chloroplast division in unilocular sporangia of Laminaria angustata (Laminariales, Phaeophyceae). J Phycol 33:266–271

    Article  Google Scholar 

  • Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K, Bhattacharya D (2009) Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science 324:1724–1726

    Article  CAS  PubMed  Google Scholar 

  • Mueller OF (1786) Animalcula infusoria fluviatilia et marina. Hafniae, 367

    Google Scholar 

  • Müller KM, Oliveira MC, Sheath RG, Bhattacharya D (2001) Ribosomal DNA phylogeny of the Bangiophycidae (Rhodophyta) and the origin of secondary plastids. Am J Bot 88:1390–1400

    Article  PubMed  Google Scholar 

  • Müller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu RY, van der Giezen M, Tielens AGM, Martin WF (2012) Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev 76(2):444–495

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller OF (1773) Vermium terrestrium et fluviatilium, vol 1 (1). Hauniae, Copenhagen

    Google Scholar 

  • Müller OF (1783) Om et besønderligt Vaesen i Strandvandet. Nye Samling af det Kongelige Danske Videnskabers Selskabs Skrifter , Copenhagen

    Google Scholar 

  • Müller OF (1786) Animalcula Infusoria Fluviatilia et Marina. Hauniae, Copenhagen

    Google Scholar 

  • Murray JM (1981) Control of cell shape by calcium in the Euglenophyceae. J Cell Sci 49:99–117

    Article  CAS  PubMed  Google Scholar 

  • Nabout JC, Nogueira IS, Oliveira LG (2006) Phytoplankton community of floodplain lakes of the Araguaia River, Brazil, in the rainy and dry seasons. J Plankton Res 28:181–193

    Article  Google Scholar 

  • Nagai S, Nitshitani G, Tomaru Y, Sakiyama S (2008) Predation by the toxic dinoflagellate Dinophysis fortii on the ciliate Myrionecta rubra and observation of sequestration of ciliate chloroplasts. J Phycol 44:909–922

    Article  PubMed  Google Scholar 

  • Nakajima N, Ohki K, Kamiya M (2015) Defense mechanisms of sargassacean species against the epiphytic red alga Neosiphonia harveyi. J Phycol 51:695–705

    Article  CAS  PubMed  Google Scholar 

  • Nakashima A, Yamada K, Iwata O, Sugimoto R, Atsuji K, Ogawa T, Ishibashi-Ohgo N, Suzuki K (2018) β-Glucan in foods and its physiological functions. J Nutr Sci Vitaminol 64(1):8–17

    Article  CAS  PubMed  Google Scholar 

  • Nakayama T, Nakamura A, Yokoyama A, Shiratori T, Inouye I, Ishida K (2015) Taxonomic study of a new eustigmatophycean alga, Vacuoliviride crystalliferum gen. et sp. nov. J Plant Res 128:249–257

    Article  PubMed  Google Scholar 

  • Nam SW, G D, Son M, Shin W (2013) Ultrastructure of the flagellar apparatus in Rhinomonas reticulata. var. atrorosea (Cryptophyceae, Cryptophyta). Algae 28:331–341

    Google Scholar 

  • Nam SW, Shin W (2016) Ultrastructure of the flagellar apparatus in cryptomorphic Cryptomonas curvata (Cryptophyceae) with an emphasis on taxonomic and phylogenetic implications. Algae 31:117–128

    Article  Google Scholar 

  • Nasworthy KC, Scofield AE, Rudstam LG (2020) Feeding ecology of Limnocalanus macrurus in the Laurentian Great Lakes. J Great Lakes Res 46:891–898

    Article  CAS  Google Scholar 

  • Negrisolo E, Maistro S, Incarbone M, Moro I, Dalla Valle L, Broady PA, Andreoli C (2004) Morphological convergence characterizes the evolution of Xanthophyceae (Heterokontophyta): evidence from nuclear SSU rDNA and plastidial rbcL genes. Mol Phylogenet Evol 33:156–170

    Article  CAS  PubMed  Google Scholar 

  • Neustupa J, Němcová Y (2001) Morphological and taxonomic study for three terrestrial eustigmatophycean species. Nova Hedwigia 123:373–386

    Google Scholar 

  • Neustupa J, Škaloud P (2010) Diversity of subaerial algae and cyanobacteria growing on bark and wood in the lowland tropical forests of Singapore. Plant Ecol Evol 143(1):51–62

    Article  Google Scholar 

  • Nicholls KH (1995) Chrysophyte blooms in the plankton and neuston of marine and freshwater systems. In: Sandgren CD, Smol JP, Kristiansen J (eds) Chrysophyte algae, ecology, phylogeny and development. Cambridge University Press, Cambridge, pp 181–213

    Chapter  Google Scholar 

  • Nicholls KH, Wujek DE (2015) Chrysophyceae and Phaeothamniophyceae. In Freshwater Algae of North America, pp 537–586. Elsevier

    Google Scholar 

  • Nichols PD, Volkman JK, Hallegraeff GM, Blackburn SI (1987) Sterols and fatty acids of the red tide flagellates Heterosigma akashiwo and Chattonella antiqua (Raphidophyceae). Phytochemistry 26:2537–2541

    Article  CAS  Google Scholar 

  • Nisbet B (1974) An ultrastructural study of the feeding apparatus of Peranema trichophorum. J Protozool 21(1):39–48

    Article  Google Scholar 

  • Nishitsuji K, Arimoto A, Higa Y, Mekaru M, Kawamitsu M, Satoh N, Shoguchi E (2019) Draft genome of the brown alga, Nemacystus decipiens, Onna-1 strain: Fusion of genes involved in the sulfated fucan biosynthesis pathway. Sci Rep 9

    Google Scholar 

  • Nishitsuji K, Arimoto A, Iwai K, Sudo Y, Hisata K, Fujie M, Arakaki N et al (2016) A draft genome of the brown alga, Cladosiphon okamuranus, S-strain: a platform for future studies of “mozuku” biology. DNA Res 23:561–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nomura M, Atsuji K, Hirose K, Shiba K, Yanase R, Nakayama T, Ishida K-I, Inaba K (2019) Microtubule stabilizer reveals requirement of Ca2+-dependent conformational changes of microtubules for rapid coiling of haptonema in haptophyte algae. Biol Open 8:bio036590. https://doi.org/10.1242/bio.036590

  • Not F, Probert I, Gerikas Ribeiro C, Crenn K, Guillou L, Jeanthon C, Vaulot D (2016) Photosymbiosis in marine pelagic environments. In Stal LJ, Cretoiu MS (eds) The marine microbiome: an untapped source of biodiversity and biotechnological potential, pp 305–332. Cham, Springer International Publishing. https://doi.org/10.1007/978-3-319-33000-6_11

  • Not F, Valentin K, Romari K, Lovejoy C, Massana R, Tobe K, Vaulot D, Medlin LK (2007) Picobiliphytes: a marine picoplanktonic algal group with unknown affinities to other eukaryotes. Science 315:253–255

    Article  CAS  PubMed  Google Scholar 

  • Novarino G (2003) A companion to the identification of cryptomonad flagellates (Cryptophyceae = Cryptomonadea). Hydrobiologia 502:225–270

    Article  Google Scholar 

  • Novarino G, Lucas IAN, Morrall S (1994) Observations on the genus Plagioselmis (Cryptophyceae). Cryptogamie Algol 15:87–107

    Google Scholar 

  • O’Kelly CJ (2002) Glossomastix chrysoplasta n. gen., n. sp. (Pinguiophyceae), a new coccoidal, colony-forming golden alga from southern Australia. Phycol Res 50:67–74

    Article  Google Scholar 

  • O’Neill EC, Trick M, Henrissat B, Field RA (2015) Euglena in time: evolution, control of central metabolic processes and multi-domain proteins in carbohydrate and natural product biochemistry. Perspect Sci 6:84–93

    Article  Google Scholar 

  • Oakley BR, Dodge JD (1976) The ultrastructure of mitosis in Chroomonas salina. Protoplasma 88:241–254

    Article  Google Scholar 

  • Ogawa T, Tamoi M, Kimura A, Mine A, Sakuyama H, Yoshida E, Maruta T, Suzuki K, Ishikawa T, Shigeoka S (2015) Enhancement of photosynthetic capacity in Euglena gracilis by expression of cyanobacterial fructose-1, 6-/sedoheptulose-1, 7-bisphosphatase leads to increases in biomass and wax ester production. Biotechnol Biofuels 8(1):80

    Article  PubMed  PubMed Central  Google Scholar 

  • Okamoto N, Chantangsi C, Horák A, Leander BS, Keeling PJ (2009) Molecular phylogeny and description of the novel katablepharid Roombia truncata gen. et sp. nov., and establishment of the Hacrobia taxon nov. PLoS One 4:e7080

    Google Scholar 

  • Okamoto N, Inouye I (2005a) The katablepharids are a distant sister group of the Cryptophyta: A proposal for Katablepharidophyta divisio nova/Kathablepharida phylum novum based on SSU rDNA and beta-tubulin phylogeny. Protist 156:163–179

    Article  CAS  PubMed  Google Scholar 

  • Okamoto N, Inouye I (2005b) A secondary symbiosis in progress? Science 310:287

    Article  CAS  PubMed  Google Scholar 

  • Okamoto N, Inouye I (2006) Hatena arenicola gen. et sp. nov., a katablepharid undergoing probable plastid acquisition. Protist 157:401–419

    Article  PubMed  Google Scholar 

  • Okuda K, Sekida S, Yoshinaga S, Suetomo Y (2004) Cellulose-synthesizing complexes in some chromophyte algae. Cellulose 11:365–376

    Article  CAS  Google Scholar 

  • Olrik K (1998) Ecology of mixotrophic flagellates with special reference to Chrysophyceae in Danish lakes. Hydrobiologia 369:329–338

    Article  Google Scholar 

  • Onuma R, Hirooka S, Kanesaki Y, Fujiwara T, Yoshikawa H, Miyagishima S (2020) Changes in the transcriptome, ploidy, and optimal light intensity of a cryptomonad upon integration into a kleptoplastic dinoflagellate. ISME J 14:2407–2423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ota S, Ueda K, Ishida K (2007a) Taxonomic study of Bigelowiella longifila sp. nov. (Chlorarachniophyta) and time-lapse video observation of the unique migration of amoeboid cells. J Phycol 43:333–343

    Article  Google Scholar 

  • Ota S, Ueda K, Ishida K-I (2005) Lotharella vacuolata sp. nov., a new species of chlorarachniophyte algae, and time-lapse video observations on its unique post-cell division behavior. Phycol Res 53(4):275–286

    Google Scholar 

  • Ota S, Ueda K, Ishida K-I (2007b) Norrisiella sphaerica gen. et sp. nov., a new coccoid chlorarachniophyte from Baja California, Mexico. J Plant Res 120:661–670

    Article  PubMed  Google Scholar 

  • Ota S, Vaulot D (2012) Lotharella reticulosa sp. nov.: A highly reticulated network forming chlorarachniophyte from the Mediterranean Sea. Protist 163:91–104

    Article  PubMed  Google Scholar 

  • Ota S, Vaulot D, Le Gall F, Yabuki A, Ishida KI (2009) Partenskyella glossopodia gen. et sp. nov., the first report of a chlorarachniophyte that lacks a pyrenoid. Protist 160(1):137–150

    Google Scholar 

  • Ott DW, Brown RM (1974) Developmental cytology of the genus Vaucheria II. Sporogenesis in V. fontinalis (L.) Christensen. Brit Phycol J 9:333–351

    Article  Google Scholar 

  • Ott DW, Hommersand MH (1974) Vaucheriae of North Carolina. I. Marine and brackish water species. J Phycol 10:373–385

    Article  Google Scholar 

  • Ott DW, Oldham-Ott CK, Rybalka N, Friedl T (2015) Xanthophyte, eustigmatophyte, and raphidophyte algae. In Freshwater Algae of North America, pp 485–536. Elsevier

    Google Scholar 

  • Overkamp KE, Gasper R, Kock K, Herrmann C, Hofmann E, Frankenberg-Dinkel N (2014) Insights into the biosynthesis and assembly of cryptophycean phycobiliproteins. J Biol Chem 289:26691–26707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paerschke S, Vollmer AH, Preisfeld A (2017) Ultrastructural and immunocytochemical investigation of paramylon combined with new 18S rDNA-based secondary structure analysis clarifies phylogenetic affiliation of Entosiphon sulcatum (Euglenida: Euglenozoa). Org Divers Evol 17:509–520

    Google Scholar 

  • Page FC, Blanton RL (1985) The Heterolobosea (Sarcodina: Rhizopoda), a new class uniting the Schizopyrenida and the Acrasidae (Acrasida). Protistologica (Paris. 1965) 21(1):121–132

    Google Scholar 

  • Painter TJ (1983) Algal polysaccharides. In: Aspinall GO (ed) Polysaccharides. Academic Press, New York, pp 195–285

    Chapter  Google Scholar 

  • Palmer JD (2003) The symbiotic birth and spread of plastids: How many times and whodunit? J Phycol 39:4–12. https://doi.org/10.1046/j.1529-8817.2003.02185.x

  • Palmer JD, Round FE (1967) Persistent, vertical-migration rhythms in benthic microflora. VI. The tidal and diurnal nature of the rythm in the diatom Hantzschia virgata. Biol Bull 132:44–55

    Article  Google Scholar 

  • Papenfuss GF (1955) Classification of the Algae. In A century of progress in the Natural Sciences (Californian Academy of Sciences), pp 115–224

    Google Scholar 

  • Parfrey LW, Lahr DJG, Knoll AH, Katz LA (2011) Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc Natl Acad Sci 108:13624–13629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parke M (1949) Studies on marine flagellates. J Marine Biol Assoc 28:255–268, + 2 plates

    Google Scholar 

  • Pascher A (1913) Chrysomonadinae. In Pascher A (ed.) Die Süsswasserflora Deutschlands Österreichs und der Schweiz (vol 2, pp 7–95). Gustav Fischer Verlag, Stuttgart, Germany

    Google Scholar 

  • Pascher A (1914) Über Flagellaten und Algen. Berichte Der Deutschen Botanischen Gesellschaft 32:136–160

    Article  Google Scholar 

  • Pascher A (1921) Über die Übereinstimmung zwischen den Diatomeen Heterokonten und Chrysomonaden. Berichte Der Deutschen Botanischen Gesellschaft 39:236–248

    Article  Google Scholar 

  • Pascher A (1925) Die braune Algenreihe der Chrysophyceen. Arch Protistenk 52:489–564

    Google Scholar 

  • Pascher A (1937–1939) Heterokonten. In L Rabenhorst’s Kryptogamen-Flora von Deutschland, Österreich und der Schweiz (2. Aufl., Bd. XI). Leipzig, Akademische Verlagsgesellschaft m.b.h

    Google Scholar 

  • Patil S, Moeys S, von Dassow P, Huysman MJJ, Mapleson D, De Veylder L, Sanges, R et al. (2015) Identification of the meiotic toolkit in diatoms and exploration of meiosis-specific SPO11 and RAD51 homologs in the sexual species Pseudo-nitzschia multistriata and Seminavis robusta. BMC Gen 16

    Google Scholar 

  • Patil V, Källqvist T, Olsen E, Vogt G, Gislerød HR (2007) Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquacult Int 15:1–9

    Article  CAS  Google Scholar 

  • Patron NJ, Waller RF, Keeling PJ (2006) A tertiary plastid uses genes from two endosymbionts. J Mol Biol 357:1373–1382. https://doi.org/10.1016/j.jmb.2006.01.084

  • Patterson DJ (1989) Stramenopiles: chromophytes from a protistan perspective. In Green JC, Leadbeater BSC, Diver WL (eds.) The chromophyte algae: problems and perspectives, systematics Aasociation special volume, No 38, pp 357–379. Clarendon Press, Oxford

    Google Scholar 

  • Patterson DJ, Larsen J (1992) A perspective on protistan nomenclature. J Protozool 39(1):125–131

    Article  Google Scholar 

  • Patterson DJ, Hausmann K (1981) The behaviour of contractile vacuole complexes of cryptophycean flagellates. Brit Phycol J 16:429–439

    Article  Google Scholar 

  • Patterson GW, Tsitsa-Tzardis E, Wikfors GH, Ghosh P, Smith BC, Gladu PK (1994) Sterols of eustigmatophytes. Lipids 29:661–664

    Article  CAS  PubMed  Google Scholar 

  • Paulsen BS, Viera AAH, Klaveness D (1992) Structure of extracellular polysaccharides produced by a soil Cryptomonas sp. (Cryptophyceae) J Phycol 28:61–63

    Google Scholar 

  • Pavia H, Toth GB, Lindgren A, Åberg P (2003) Intraspecific variation in the phlorotannin content of the brown alga Ascophyllum nodosum. Phycologia 42:378–383

    Article  Google Scholar 

  • Pedrós-Alió C, Gasol JM, Guerrero R (1987) On the ecology of a Cryptomonas phaseolus population forming a metalimnetic bloom in Lake Cisó, Spain: annual distribution and loss factors. Limnol Oceanogr 32:285–298

    Article  Google Scholar 

  • Pellegrini M (1980) Three-dimensional reconstruction of organelles in Euglena gracilis Z.: I. Qualitative and quantitative changes of chloroplasts and mitochondrial reticulum in synchronous photoautotrophic culture. J Cell Sci 43(1):137–166

    Google Scholar 

  • Pelletreau KN, Bhattacharya D, Price DC, Worful JM, Moustafa A, Rumpho ME (2011) Sea slug kleptoplasty and plastid maintenance in a metazoan. Plant Phys 155:1561–1565. https://doi.org/10.1104/pp.111.174078

  • Penard E (1890) Über einige neue oder wenig bekannte Protozoen. Jahrbücher Des Nassauischen Vereins Für Naturkunde 43:73–91

    Google Scholar 

  • Perasso L, Brett SJ, Wetherbee R (1993) Pole reversal and the development of cell asymmetry during division in cryptomonad flagellates. Protoplasma 174:19–24

    Article  Google Scholar 

  • Perasso L, Hill DRA, Wetherbee R (1992) Transformation and development of the flagellar apparatus of Cryptomonas ovata (Cryptophyceae) during cell division. Protoplasma 170:53–67

    Article  Google Scholar 

  • Perch-Nielsen K (1985) Cenozoic calcareous nannofossils. In: Bolli HM, Sanders JB, Perch-Nielsen K (eds) Plankton Stratigraphy. Cambridge University Press, Cambridge, pp 427–554

    Google Scholar 

  • Pereira MJ, Rino J (2001) Ecology of some Euglenophyta taxa. Intern Vereinigung Für Theoretische Und Angewandte Limnologie: Verhandlungen 27(7):3825–3828

    Google Scholar 

  • Perty M (1849). Über verticale Verbreitung mikroskopischer Lebensformen. Mitth. Naturf. Gesellsch. Bern, 17–45

    Google Scholar 

  • Peters AF, Scornet D, Ratin M, Charrier B, Monnier A, Merrien Y, Corre E et al (2008) Life-cycle-generation-specific developmental processes are modified in the immediate upright mutant of the brown alga Ectocarpus siliculosus. Development 135:1503–1512

    Article  CAS  PubMed  Google Scholar 

  • Peters MC, Andersen RA (1993) The flagellar apparatus of Chrysolepidomonas dendrolepidota (Chrysophyceae), a single-celled monad coved with organic scales. J Phycol 29:476–485

    Article  Google Scholar 

  • Peters MC, Andresen RA (1993) The fine structure and scale formation of Chrysolepidomonas dendrolepidota gen. et nov. (Chrysolepidomadaceae fam. nov. Chrysophyceae). J Phycol 29:469–475

    Article  Google Scholar 

  • Petrou K, Baker KG, Nielsen DA, Hancock AM, Schulz KG, Davidson AT (2019) Acidification diminishes diatom silica production in the Southern Ocean. Nat Clim Chang 9:781–786

    Article  CAS  Google Scholar 

  • Pfeiffer TJ, Ludwig GM (2007) Small-scale system for the mass production of rotifers using algal paste. N Am J Aquac 69:239–243

    Article  Google Scholar 

  • Pfister CA, Altabet MA, Weigel BL (2019) Kelp beds and their local effects on seawater chemistry, productivity, and microbial communities. Ecology 100

    Google Scholar 

  • Pfitzer E (1869) Über Bau und Zelltheilung der Diatomaceen. Sitzungsberichte Der Niederrheinischen Gesellschaft Für Natur- Und Heilkunde Zu Bonn 1869:86–89

    Google Scholar 

  • Pienaar RN (1976) Virus-like particles in three species of phytoplankton from San Juan Island, Washington. Phycologia 15:185–190

    Article  Google Scholar 

  • Pithart D (1997) Diurnal vertical migration study during a winter bloom of Cryptophyceae in a floodplain pool. Intern Revue Der Gesamten Hydrobiologie Und Hydrographie 82:33–46

    Article  CAS  Google Scholar 

  • Pombert JF, James ER, Janouškovec J, Keeling PJ (2012) Evidence for transitional stages in the evolution of euglenid group II introns and twintrons in the Monomorphina aenigmatica plastid genome. PLoS ONE 7(12):e53433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponce-Toledo RI, Moreira D, López-García P, Deschamps P (2018) Secondary plastids of euglenids and chlorarachniophytes function with a mix of genes of red and green algal ancestry. Mol Biol Evol 35:2198–2204

    Article  CAS  PubMed  Google Scholar 

  • Porter ME, Sale WS (2000) The 9 + 2 axoneme anchors multiple inner arm dyneins and a network of kinases and phosphatases that control motility. J Cell Biol 151(5):F37-42

    Article  CAS  PubMed  Google Scholar 

  • Posch T, Eugster B, Pomati F, Pernthaler J, Pitsch G, Eckert EM (2015) Network of interactions between ciliates and phytoplankton during spring. Front Microbiol 6:1289

    Article  PubMed  PubMed Central  Google Scholar 

  • Potter D, Saunders G, Andersen RA (1997) Phylogenetic relationships of the Raphidophyceae and Xanthophyceae as inferred from nucleotide sequences of the 18S ribosomal RNA gene. Am J Bot 84:966

    Article  CAS  PubMed  Google Scholar 

  • Poulíčková A, Mayama S, Chepurnov VA, Mann DG (2007) Heterothallic auxosporulation, incunabula and perizonium in Pinnularia (Bacillariophyceae). Eur J Phycol 42(4):367–390

    Google Scholar 

  • Preisfeld A (2009) A course in Protozoology. Chapter. Euglenida (Euglenophytes) (eds. Röttger R, Knight R and Foissner W) Protozoological Monographs. Shaker-Publishers 4:47–60

    Google Scholar 

  • Preisfeld A, Berger S, Busse I, Liller S, Ruppel HG (2000) Phylogenetic analyses of various euglenoid taxa based on 18S rDNA sequence data. J Phycol 36:220–226

    Article  CAS  Google Scholar 

  • Preisfeld A, Busse I, Klingberg M, Talke S, Ruppel HG (2001) Phylogenetic position and inter-relationships of the osmotrophic euglenids based on SSU rDNA data, with emphasis on the Rhabdomonadales (Euglenozoa). Int J Syst Evol Microbiol 51:751–758

    Article  CAS  PubMed  Google Scholar 

  • Preisig HR (1994) Siliceous structures and silicification in flagellated protists. Protoplasma 181:29–42

    Article  Google Scholar 

  • Preisig HR, Hibberd DJ (1983) Ultrastructure and taxonomy of Paraphysomonas (Chrysophyceae) and related genera 3. Nord J Bot 3:695–723

    Article  Google Scholar 

  • Přibyl P, Eliáš M, Cepák V, Lukavský J, Kaštánek P (2012) Zoosporogenesis, morphology, ultrastructure, pigment composition, and phylogenetic position of Trachydiscus minutus (Eustigmatophyceae, Heterokontophyta). J Phycol 48:231–242

    Article  PubMed  Google Scholar 

  • Pringsheim EG (1936) Zur Kenntnis saprotropher Algen und Flagellaten. Arch Protistenk 87:43–96

    CAS  Google Scholar 

  • Pringsheim EG (1968) Zur Kenntnis der Cryptomonaden des Süßwassers. Nova Hedwigia 16:367–401

    Google Scholar 

  • Pusztai M, Škaloud P (2019) Elucidating the evolution and diversity of Uroglena-like colonial flagellates (Chrysophyceae): polyphyletic origin of the morphotype. Eur J Phycol 54:404–416

    Article  CAS  Google Scholar 

  • Pusztai M, Škaloud P (2021) Species delimitation within the colonial flagellates Uroglena, Uroglenopsis and Urostipulosphaera (Chrysophyceae). Eur J Phycol 1–17

    Google Scholar 

  • Quillet M (1955) Sur la nature chimique de la leucosine, polysaccharide de réserve caractéristique des Chrysophycées, extraite d’Hydrurus joetidus. Comptes rendus Hebdomadaires des séances de l’Académie des Sciences. Paris 240:1001–1003

    CAS  Google Scholar 

  • Radakovits R, Jinkerson RE, Fuerstenberg SI, Tae H, Settlage RE, Boore JL, Posewitz MC (2012) Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropsis gaditana. Nat Commun 3

    Google Scholar 

  • Ragan MA, Chapman DJ (1978) A biochemical phylogeny of the Protists. Elsevier

    Google Scholar 

  • Raikov IB (1994) The diversity of forms of mitosis in protozoa: a comparative review. Eur J Protistol 30(3):253–269

    Article  Google Scholar 

  • Rajanikanth A (1989) A fossil marine brown alga from the Gangapur formation, Pranhita-Godavari Garben. Curr Sci 58:78–80

    Google Scholar 

  • Raux E, Schubert HI, Warren MJ (2000) Biosynthesis of cobalamin (vitamin B 12): a bacterial conundrum. Cell Mol Life Sci 57:1880–1893

    Article  CAS  PubMed  Google Scholar 

  • Ravel-Chapuis P (1988) Nuclear rDNA in Euglena gracilis: paucity of chromosomal units and replication of extrachromosomal units. Nucleic Acids Res 16(11):4801–4810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raven JA (2003) Long-distance transport in non-vascular plants: Long-distance transport in non-vascular plants. Plant, Cell Environ 26:73–85

    Article  Google Scholar 

  • Raven JA (1995) Comparative aspects of chrysophytes nutrition with emphasis on carbon, phosphorous and nitrogen. In: Sandgren CD, Smol JP, Kristiansen J (eds) Chrysophyte algae: ecology, phylogeny and development. Cambridge University Press, Cambridge, UK, pp 95–118

    Chapter  Google Scholar 

  • Raven JA (2010) Inorganic carbon acquisition by eukaryotic algae: four current questions. Photosynth Res 106:123–134

    Article  CAS  PubMed  Google Scholar 

  • Raven JA, Giordano M (2017) Acquisition and metabolism of carbon in the Ochrophyta other than diatoms. Philos Trans Royal Society b: Biol Sci 372:20160400

    Article  Google Scholar 

  • Raven JA, Waite AM (2004) The evolution of silicification in diatoms: inescapable sinking and sinking as escape? New Phytologistogist 162:45–61

    Article  Google Scholar 

  • Reguera B, Velo-Suárez L, Raine R, Park MG (2012) Harmful Dinophysis species: A review. Harmful Algae 14:87–106

    Article  Google Scholar 

  • Reith A (1980) Xanthophyceae, part 4. In: Ettl H, Gerloff HJ, Heynig H (eds) Süsswasserflora von Mitteleuropa, vol 3. Teil 2. Stuttgart, Germany, Gustav Fischer Verlag, pp 1–147

    Google Scholar 

  • Reize IB, Melkonian M (1989) A new way to investigate living flagellated/ciliated cells in the light microscope: immobilization of cells in agarose. Botanica Acta 102:145–151

    Article  Google Scholar 

  • Remias D, Procházková L, Nedbalová L, Andersen RA, Valentin K (2020) Two new Kremastochrysopsis species, K. austriaca sp. nov. and K. americana sp. nov. (Chrysophyceae). J Phycol 56:135–145

    Article  CAS  PubMed  Google Scholar 

  • Renaud SM, Parry DL, Thinh L-V, Kuo C, Padovan A, Sammy N (1991) Effect of light intensity on the proximate biochemical and fatty acid composition of Isochrysis sp. and Nannochloropsis oculata for use in tropical aquaculture. J Appl Phycol 3:43–53

    Article  CAS  Google Scholar 

  • Renaudie J (2016) Quantifying the Cenozoic marine diatom deposition history: links to the C and Si cycles. Biogeosciences 13:6003–6014

    Article  CAS  Google Scholar 

  • Riaux-Gobin C, Stumm K (2006) Modern Archaeomonadaceae from the land-fast ice off Adélie Land, East Antarctica: a preliminary report. Antarct Sci 18:51–60

    Article  Google Scholar 

  • Richards TA, Vepritskiy AA, Gouliamova DE, Nierzwicki-Bauer SA (2005) The molecular diversity of freshwater picoeukaryotes from an oligotrophic lake reveals diverse, distinctive and globally dispersed lineages. Environ Microbiol 7:1413–1425

    Article  CAS  PubMed  Google Scholar 

  • Richier S, Achterberg EP, Humphreys MP, Poulton AJ, Suggett DJ, Tyrrell T, Moore CM (2018) Geographical CO2 sensitivity of phytoplankton correlates with ocean buffer capacity. Glob Change Biol 24:4438–4452

    Article  Google Scholar 

  • Riisberg I, Orr RJS, Kluge R, Shalchian-Tabrizi K, Bowers HA, Patil V, Edvardsen B et al (2009) Seven gene phylogeny of heterokonts. Protist 160:191–204

    Article  CAS  PubMed  Google Scholar 

  • Ritchie RJ (2008) Fitting light saturation curves measured using modulated fluorometry. Photosynth Res 96:201–215

    Article  CAS  PubMed  Google Scholar 

  • Rizouli A, Küpper FC, Louizidou P, Mogg AOM, Azzopardi E, Sayer MDJ, Kawai H et al (2020) The minute alga Schizocladia ischiensis (Schizocladiophyceae, Ochrophyta) isolated by germling emergence from 24 m depth off Rhodes (Greece). Diversity 12:102

    Article  CAS  Google Scholar 

  • Roberts EC, Laybourn-Parry J (1999) Mixotrophic cryptophytes and their predators in the Dry Valley lakes of Antarctica. Freshw Biol 41:737–746

    Article  Google Scholar 

  • Roberts KR (1984) Structure and significance of the cryptomonad flagellar apparatus. I. Cryptomonas ovata (Cryptophyta). J Phycol 20:590–599

    Article  Google Scholar 

  • Roberts KR, Stewart KD, Mattox KR (1981) The flagellar apparatus of Chilomonas paramecium Cryptophyceae and its comparison with certain zooflagellates. J Phycol 17:159–167

    Article  Google Scholar 

  • Robertson DL, Tartar A (2006) Evolution of glutamine synthetase in heterokonts: evidence for endosymbiotic gene transfer and the early evolution of photosynthesis. Mol Biol Evol 23:1048–1055

    Article  CAS  PubMed  Google Scholar 

  • Rogers MB, Gilson PR, Su V, McFadden GI, Keeling PJ (2007) The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: Evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts. Mol Biol Evol 24:54–62

    Article  CAS  PubMed  Google Scholar 

  • Roleda MY, Hurd CL (2012) Seaweed responses to ocean acidification. In: Wiencke C, Bischof K (eds) Seaweed biology. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 407–431

    Chapter  Google Scholar 

  • Rosati G, Verni F, Barsanti L, Passarelli V, Gualtieri P (1991) Ultrastructure of the apical zone of Euglena gracilis: photoreceptors and motor apparatus. Electron Microsc Rev 4(2):319–342

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg M (1930) Die geschlechtliche Fortpflanzung von Botrydium granulatum Grev. Oesterreichiche Botanische Zeitschrift 79:289–296

    Article  Google Scholar 

  • Roshchin AM (1994) Zhiznennye tsikly diatomovykh vodoroslej. Naukova Dumka, Kiev

    Google Scholar 

  • Rosiere TK, Marrs JA, Bouck GB (1990) A 39-kD plasma membrane protein (IP39) is an anchor for the unusual membrane skeleton of Euglena gracilis. J Cell Biol 110(4):1077

    Article  CAS  PubMed  Google Scholar 

  • Rostanfinski I (1882) L'Hydrurus et ses affinités. Ann Sci Nat Bot VI 14:1–25

    Google Scholar 

  • Rostafiński J, Woronin M (1877) Über Botrydium granulatum. Bot Zig 35:649-671

    Google Scholar 

  • Rothhaupt KO (1996) Laboratorary experiments with a mixotrophic chrysophyte and obligately phagotrophic and photographic competitors. Ecology 77:716–724

    Article  Google Scholar 

  • Rothpletz A (1900) Über einen neuen jurassischen Hornschwämme und die darin eingeschlossenen Diatomeen. Zeitschrift Der Deutschen Geologischen Gesellschaft 52:154–160

    Google Scholar 

  • Round FE (1971) The taxonomy of the Chlorophyta. II, Brit Phycol J 6(2):235–264

    Article  Google Scholar 

  • Round FE (1981) The ecology of algae, p 653. Cambridge University Press, Cambridge [Eng.], New York

    Google Scholar 

  • Round FE, Crawford RM (1981) The lines of evolution of the Bacillariophyta. I. Origin. Proceedings of the Royal Society of London. Series B. Biol Sci 211:237–620

    Google Scholar 

  • Round FE, Crawford RM (1984) The lines of evolution of the Bacillariophyta - II. The centric series. Proceedings of the Royal Society of London. Series B. Biol Sci 221:169–188

    Google Scholar 

  • Round FE, Crawford RM, Mann DG (1990) The diatoms: biology & morphology of the genera, p 747. Cambridge University Press, Cambridge [England], New York

    Google Scholar 

  • Rowan KS (1989) Photosynthetic pigments of algae, p 334. Cambridge University Press, Cambridge [England]; New York

    Google Scholar 

  • Roy J, Faktorová D, Lukeš J, Burger G (2007) Unusual mitochondrial genome structures throughout the Euglenozoa. Protist 158(3):385–396

    Article  CAS  PubMed  Google Scholar 

  • Ruban AV (2016) Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiol 170:1903–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruggiero MA, Gordon DP, Orrell TM, Bailly N, Bourgoin T, Brusca RC, Cavalier-Smith T et al (2015) A higher level classification of all living organisms. PLoS ONE 10:e0119248

    Article  PubMed  PubMed Central  Google Scholar 

  • Rugiu L, Panova M, Pereyra RT, Jormalainen V (2020) Gene regulatory response to hyposalinity in the brown seaweed Fucus vesiculosus. BMC Genom 21

    Google Scholar 

  • Rumpho ME, Worful JM, Lee J, Kannan K, Tyler MS, Bhattacharya D, Moustafa A, Manhart JR (2008) Horizontal gene transfer of the algal nuclear gene psbO to the photosynthetic sea slug Elysia chlorotica. Proc Nat Academy Sci 105:17867–17871. https://doi.org/10.1073/pnas.0804968105

  • Rusterholz PM, Hansen PJ, Daugbjerg N (2017) Evolutionary transition towards permanent chloroplasts? - Division of kleptochloroplasts in starved cells of two species of Dinophysis (Dinophyceae). PlosOne. https://doi.org/10.1371/journal.pone.0177512

  • Rybalka N, Andersen RA, Kostikov I, Mohr KI, Massalski A, Olech M, Friedl T (2009) Testing for endemism, genotypic diversity and species concepts in Antarctic terrestrial microalgae of the Tribonemataceae (Stramenopiles, Xanthophyceae). Environ Microbiol 11:554–565

    Article  CAS  PubMed  Google Scholar 

  • Sahoo D, Kumar S (2015) Xanthophyceae, Euglenophyceae and Dinophyceae. In Sahoo D, Seckbach J (eds) The Algae World. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 26. Springer, Dordrecht

    Google Scholar 

  • Saito A, Suetomo Y, Arikawa M, Omura G, Mostafa Kamal Khan SM, Kakuta S, Suzaki E, Kataoka K, Suzaki T (2003) Gliding movement in Peranema trichophorum is powered by flagellar surface motility. Cell Motil Cytoskelet 55(4):244–253

    Article  Google Scholar 

  • Saldarriaga JF, Taylor FJR (2017) Dinoflagellata. In Handbook of the Protists. Archibald JM, Simpson AGB, Slamovits CH, Margulis L, Melkonian M, Chapman DJ,Corliss JO (eds), pp 1–54. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-32669-6_22-1

  • Sánchez-Baracaldo P, Raven JA, Pisani D, Knoll AH (2017) Early photosynthetic eukaryotes inhabited low-salinity habitats. Proc Natl Acad Sci 114(37):E7737–E7745. https://doi.org/10.1073/pnas.1620089114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Puerta MV, Delwiche CF (2008) A hypothesis for plastid evolution in chromalveolates. J Phycol 44:1097–1107. https://doi.org/10.1111/j.1529-8817.2008.00559.x

  • Sanders RW, Porter KG (1988) Phagotrophic phytoflagellates. In: Marshall KC (ed) Advances in microbial ecology. Springer, US, Boston, MA, pp 167–192

    Chapter  Google Scholar 

  • Sandgren CD (1981) Characteristics of sexual and asexual resting cyst (statospore) formation in Dinobryon cylindricum Imhof (Chrysophyta). J Phycol 17:199–210

    Article  Google Scholar 

  • Sandgren CD (1983) Survival strategies of chrysophyte flagellates: Reproduction and formation of resistant spores. In: Fryxell G (ed) Survival strategies in the algae. Cambridge University Press, Cambridge/London/New York, pp 23–48

    Google Scholar 

  • Sandgren CD, Flanagin J (1986) Heterothallic sexuality and density dependent encystment in the chrysophycean alga Synura petersenii Korsh. J Phycol 22:206–216

    Google Scholar 

  • Santelices B (1990) Patterns of reproduction, dispersal and recruitment in seaweeds. Oceanog Marine Biol Annual Rev 28(1990):177–276

    Google Scholar 

  • Santore UJ (1977) Scanning electron microscopy and comparative micromorphology of the periplast of Hemiselmis rufescens, Chroomonas sp., Chroomonas salina and members of the genus Cryptomonas (Cryptophyceae). Brit Phycol J 12:255–270

    Article  Google Scholar 

  • Santore UJ (1982) The ultrastructure of Hemiselmis brunnescens and Hemiselmis virescens with additional observations on Hemiselmis rufescens and comments on the Hemiselmidaceae as a natural group of the Cryptophyceae. Brit Phycol J 17:81–99

    Article  Google Scholar 

  • Santore UJ (1984) Some aspects of taxonomy in the Cryptophyceae. New Phytol 98:627–646

    Article  Google Scholar 

  • Santore UJ, Greenwood AD (1977) The mitochondrial complex in cryptophyceae. Arch Microbiol 112:207–218

    Article  CAS  PubMed  Google Scholar 

  • Sarai C, Tanifuji G, Nakayama T, Kamikawa R, Takahashi K, Yazaki E, Matsuo E, Miyashita H, Ishida K-i, Iwataki M, Inagaki Y (2020) Dinoflagellates with relic endosymbiont nuclei as models for elucidating organellogenesis. Proc Nat Acad Sci 117:5364–5375. https://doi.org/10.1073/pnas.1911884117

  • Sarthou G, Timmermans KR, Blain S, Tréguer P (2005) Growth physiology and fate of diatoms in the ocean: a review. J Sea Res 53:25–42

    Article  CAS  Google Scholar 

  • Sato T, Nagasato C, Hara Y, Motomura T (2014) Cell cycle and nucleomorph division in Pyrenomonas helgolandii (Cryptophyta). Protist 165:113–122

    Article  CAS  PubMed  Google Scholar 

  • Saunders GW, Potter D, Paskind MP, Andersen RA (1995) Cladistic analyses of combined traditional and molecular data sets reveal an algal lineage. Proc Natl Acad Sci 92:244–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saunders GW, Potter D, Andersen RA (1997) Phylogenetic affinities of the Sarcinochrysidales and Chrysomeridales (Heterokonta) based on analyses of molecular and combined data. J Phycol 33:310–318

    Article  CAS  Google Scholar 

  • Savoca MS, Nevitt GA (2014) Evidence that dimethyl sulfide facilitates a tritrophic mutualism between marine primary producers and top predators. Proc Natl Acad Sci 111(11):4157–4161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiel DR, Foster MS (2006) The population biology of large brown seaweeds: ecological consequences of multiphase life histories in dynamic coastal environments. Annu Rev Ecol Evol Syst 37:343–372

    Article  Google Scholar 

  • Schmidt M, Horn S, Ehlers K, Wilhelm C, Schnetter R (2015) Guanchochroma wildpretii gen. et spec. nov. (Ochrophyta) provides new insights into the diversification and evolution of the algal class Synchromophyceae. PLOS One 10:e0131821

    Google Scholar 

  • Schmidt M, Horn S, Flieger K, Ehlers K, Wilhelm C, Schnetter R (2012) Synchroma pusillum sp. nov. and other new algal isolates with chloroplast complexes confirm the Synchromophyceae (Ochrophyta) as a widely distributed group of amoeboid algae. Protist 163:544–559

    Article  CAS  PubMed  Google Scholar 

  • Schmitz K, Srivastava LM (1976) The fine structure of the sieve elements of Nereocystis lütkeana. Am J Bot 63:679–693

    Article  Google Scholar 

  • Schmitz K (1981) Translocation. In: Lobban CS, Wynne MJ (eds) The biology of Seaweeds. Blackwell Scientific, Oxford, UK, pp 534–558

    Google Scholar 

  • Schnare MN, Gray MW (1990) Sixteen discrete RNA components in the cytoplasmic ribosome of Euglena gracilis. J Mol Biol 215(1):73–83

    Google Scholar 

  • Schnare MN, Gray MW (2011) Complete modification maps for the cytosolic small and large subunit rRNAs of Euglena gracilis: functional and evolutionary implications of contrasting patterns between the two rRNA components. J Mol Biol 413(1):66–83

    Article  CAS  PubMed  Google Scholar 

  • Schnepf E, Deichgräber G (1969) Über die Feinstruktur von Synura petersenii unter besonderer Berücksichtigung der Morphogenese ihrer Kieselschuppen. Protoplasma 68:85–106

    Article  Google Scholar 

  • Schnepf E, Elbrächter M (1988) Cryptophycean-like double membrane-bound chloroplast in the dinoflagellate, Dinophysis Ehrenb.: Evolutionary, phylogenetic and toxicological implications. Botanica Acta 101:196–203. https://doi.org/10.1111/j.1438-8677.1988.tb00033.x

  • Schnepf E, Elbrächter M (1992) Nutritional strategies in dinoflagellates: a review with emphasis on cell biological aspects. Eur J Protistol 28:3–24. https://doi.org/10.1016/S0932-4739(11)80315-9

  • Schnepf E, Elbrächter M (1999) Dinophyte chloroplasts and phylogeny - a review. Grana 38:81–97. https://doi.org/10.1080/00173139908559217

  • Schnepf E, Feith R (1992) Experimental studies to modify the number of endocytic bacteria in Cryptomonas strain SAG-2580 (Cryptophyceae) and their lysis by bacteriophages. Arch Protistenk 142:95–100

    Article  Google Scholar 

  • Schnepf E, Melkonian M (1990) Bacteriophage-like particles in endocytic bacteria of Cryptomonas (Cryptophyceae). Phycologia 29:338–343

    Article  Google Scholar 

  • Schnepf E, Winter S, Mollenhauer D (1989) Gymnodinium aeruginosum (Dinophyta): a blue-green dinoflagellate with a vestigial, anucleate, cryptophycean endosymbiont. Plant Syst Evol 164:75–91

    Article  Google Scholar 

  • Schoenichen W, Eyferth B (1925) Einfachste Lebensformen des Tier-und Pflanzenreiches: Naturgeschichte der mikroskopischen Süßwasserbewohner. Bermühler

    Google Scholar 

  • Schoenwaelder MEA (2002) The occurrence and cellular significance of physodes in brown algae. Phycologia 41:125–139

    Article  Google Scholar 

  • Scholz MJ, Weiss TL, Jinkerson RE, Jing J, Roth R, Goodenough U, Posewitz MC et al (2014) Ultrastructure and composition of the Nannochloropsis gaditana cell wall. Eukaryot Cell 13:1450–1464

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwartzbach SD, Shigeoka S (eds) (2017) Euglena: Biochemistry, cell and molecular biology (Vol. 979). Springer, Berlin

    Google Scholar 

  • Schweikert M, Elbrächter M (2004) First ultrastructural investigations of the consortium between a phototrophic eukaryotic endocytobiont and Podolampas bipes (Dinophyceae). Phycologia 43:614–623. https://doi.org/10.2216/i0031-8884-43-5-614.1

  • Seckbach J (ed) (2019) Diatoms: fundamentals and applications, p 1. Wiley; Scrivener, Hoboken, New Jersey : Salem, Massachusetts

    Google Scholar 

  • Seckbach J, Kociolek P (eds) (2011) The diatom world. Springer, Netherlands, Dordrecht

    Google Scholar 

  • Seeleuthner Y, Mondy S, Lombard V, Carradec Q, Pelletier E, Wessner M, Leconte J et al. (2018) Single-cell genomics of multiple uncultured stramenopiles reveals underestimated functional diversity across oceans. Nat Commun 9

    Google Scholar 

  • Seenivasan R, Sausen N, Medlin LK, Melkonian M (2013) Picomonas judraskeda gen. et sp. nov.: the first identified member of the Picozoa phylum nov., a widespread group of picoeukaryotes, formerly known as ‘picobiliphytes’. PLoS ONE 8(3):e59565

    Google Scholar 

  • Sekiguchi H, Kawachi M, Nakayama T, Inouye I (2003) A taxonomic re-evaluation of the Pedinellales (Dictyochophyceae), based on morphological, behavioural and molecular data. Phycologia 42:165–182

    Article  Google Scholar 

  • Sekiguchi H, Moriya M, Nakayama T, Inouye I (2002) Vestigial chloroplasts in heterotrophic stramenopiles Pteridomonas danica and Ciliophrys infusionum (Dictyochophyceae). Protist 153:157–167

    Article  CAS  PubMed  Google Scholar 

  • Semchonok DA, Mondal J, Cooper CJ, Schlum K, Li M, Amin M, Soranzo COS, Ramírez-Aportela E, Kastritis PL, Boekema EJ, Guskov A, Bruce BD (2021) Cryo-EM structure of a tetrameric photosystem I from Chroococcidiopsis TS-821, a thermophilic, unicellular, non-heterocyst-forming cyanobacterium. Plant Commun. https://doi.org/10.1016/j.xplc.2021.100248

    Article  PubMed  PubMed Central  Google Scholar 

  • Senn G (1900). Flagellata. In Engler A, Prantl K (eds), Die Natürlichen Pflanzenfamilien, Teil 1, Abt. 1

    Google Scholar 

  • Senthilkumar K, Ramajayam G, Venkatesan J, Kim S –K, Ahn B –C (2017) Biomedical applications of fucoidan, seaweed polysaccharides. In Seaweed Polysaccharides, pp 269–281. Elsevier

    Google Scholar 

  • Sepsenwol S (1973) Leucoplast of the cryptomonad Chilomonas paramecium. Exp Cell Res 76:395–409

    Article  CAS  PubMed  Google Scholar 

  • Ševčíková T, Horák A, Klimeš V, Zbránková V, Demir-Hilton E, Sudek S, Jenkins J et al. (2015) Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte? Sci Rep 5

    Google Scholar 

  • Ševčíková T, Klimeš V, Zbránková V, Strnad H, Hroudová M, Vlček Č, Eliáš M (2016) A comparative analysis of mitochondrial genomes in eustigmatophyte algae. Genome Biol Evol 8:705–722

    Article  PubMed  PubMed Central  Google Scholar 

  • Ševčíková T, Yurchenko T, Fawley KP, Amaral R, Strnad H, Santos LMA, Fawley MW et al (2019) Plastid genomes and proteins illuminate the evolution of eustigmatophyte algae and their bacterial endosymbionts. Genome Biol Evol 11:362–379

    Article  PubMed  PubMed Central  Google Scholar 

  • Shalchian-Tabrizi K, Bråte J, Logares R, Klaveness D, Berney C, Jakobsen KS (2008) Diversification of unicellular eukaryotes: cryptomonad colonizations of marine and fresh waters inferred from revised 18S rRNA phylogeny. Environ Microbiol 10:2635–2644

    Article  CAS  PubMed  Google Scholar 

  • Shalchian-Tabrizi K, Eikrem W, Klaveness D, Vaulot D, Minge MA, LeGall F, Romari K, Throndsen J, Botnen A, Massana R, Thomsen HA, Jakobsen KS (2006) Telonemia, a new protist phylum with affinity to chromist lineages. Proc R Soc B 273:1833–1842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheath RG, Hellebust JA, Sawa T (1975) The statospore of Dinobryon divergens Imhof: formation and germination in a subarctic lake. J Phycol 11:131–138

    Article  Google Scholar 

  • Sheveleva EV, Hallick RB (2004) Recent horizontal intron transfer to a chloroplast genome. Nucleic Acids Res 32(2):803–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibata T, Fujimoto K, Nagayama K, Yamaguchi K, Nakamura T (2002a) Inhibitory activity of brown algal phlorotannins against hyaluronidase. Int J Food Sci Technol 37:703–709

    Article  CAS  Google Scholar 

  • Shibata T, Yamaguchi K, Nagayama K, Kawaguchi S, Nakamura T (2002b) Inhibitory activity of brown algal phlorotannins against glycosidases from the viscera of the turban shell Turbo cornutus. Eur J Phycol 37:493–500

    Article  Google Scholar 

  • Shiratori T, Ishida K (2016) A new heterotrophic cryptomonad: Hemiarma marina n. g., n. sp. J Eukaryot Microbiol 63:804–812

    Article  CAS  PubMed  Google Scholar 

  • Sibbald SJ, Archibald JM (2020) Genomic insights into plastid evolution. Genome Biol Evol 12:978–990. https://doi.org/10.1093/gbe/evaa096

  • Sieburth JM, Johnson PW, Hargraves PE (1988) Ultrastructure and ecology of Aureococcus anophageferens gen. et sp. nov. (Chrysophyceae): the dominant picoplankter during a bloom in Narragansett Bay, Rhode Island, summer 1985. J Phycol 24:416–425

    Article  Google Scholar 

  • Siemińska J (2015) On the age of fossil diatoms. Acta Palaeobot 55:115–117. https://doi.org/10.1515/acpa-2015-0007

  • Silberfeld T, Leigh JW, Verbruggen H, Cruaud C, de Reviers B, Rousseau F (2010) A multi-locus time-calibrated phylogeny of the brown algae (Heterokonta, Ochrophyta, Phaeophyceae): Investigating the evolutionary nature of the “brown algal crown radiation.” Mol Phylogenet Evol 56:659–674

    Article  CAS  PubMed  Google Scholar 

  • Silva PC (1980) Names of classes and families of living algae: with special reference to their use in the Index nominum genericorum (plantarum). Bohn, Scheltema & Holkema; Junk, Utrecht; The Hague, p 156

    Google Scholar 

  • Silver MW, Mitchell JG, Ringo DL (1980) Siliceous nanoplankton. II. Newly discovered cysts and abundant choanoflagellates from the Weddell Sea, Antarctica. Marine Biol 58:211–217

    Article  Google Scholar 

  • Simpson AG (1997) The identity and composition of the Euglenozoa. Arch Protistenk 148(3):318–328

    Article  Google Scholar 

  • Sims PA, Mann DG, Medlin LK (2006) Evolution of the diatoms: insights from fossil, biological and molecular data. Phycologia 45:361–402

    Article  Google Scholar 

  • Sineshchekov OA, Govorunova EG, Jung KH, Zauner S, Maier UG, Spudich JL (2005) Rhodopsin-mediated photoreception in cryptophyte flagellates. Biophys J 89:4310–4319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sineshchekov OA, Govorunova EG, Li H, Wang Y, Melkonian M, Wong GKS, Brown LS, Spudich JL (2020) Conductance mechanisms of rapidly desensitizing cation channelrhodopsins from Cryptophyte Algae. mBio 11(2):e00657–20

    Google Scholar 

  • Singh UB, Ahluwalia AS (2013) Microalgae: a promising tool for carbon sequestration. Mitig Adapt Strat Glob Change 18:73–95

    Article  Google Scholar 

  • Siver PA, Hamer JS (1990) Use of extant populations of scaled shrysophytes for the inference of Lakewater pH. Can J Fish Aquat Sci 47:1339–1347

    Article  Google Scholar 

  • Siver PA, Jo BY, Kim JI, Shin W, Lott AM, Wolfe AP (2015) Assessing the evolutionary history of the class Synurophyceae (Heterokonta) using molecular, morphometric, and paleobiological approaches. Am J Bot 102:921–941

    Article  PubMed  Google Scholar 

  • Siver PA, Lott AM (2012) Fossil species of Mallomonas from an Eocene Maar Lake with recessed dome structures: early attempts at securing bristles to the cell covering? Nova Hedwigia 95:517–529

    Article  Google Scholar 

  • Siver PA, Lott AM, Wolfe AP (2009) Taxonomic significance of asymmetrical helmet and lance bristles in the genus Mallomonas (Synurophyceae) and their discovery in Eocene lake sediments. Eur J Phycol 44:447–460

    Article  Google Scholar 

  • Siver PA, Lott AM, Wolfe AP (2013) A summary of Synura taxa in early Cenozoic deposits from Northern Canada. Nova Hedwig Beih 142:181–190

    Google Scholar 

  • Siver PA, Marsicano L (1996) Inferring lake trophic status using scaled chrysophytes. Nova Hedwig Beih 114:233–246

    Google Scholar 

  • Siver PA, Wolfe AP (2005) Scaled chrysophytes in Middle Eocene lake sediments from Northwestern Canada, including descriptions of six new species. Nova Hedwig Beih 128:295–308

    Google Scholar 

  • Škaloud P, Kalina T, Nemjová K, De Clerck O, Leliaert L (2013) Morphology and phylogenetic position of the freshwater green microalgae Chlorochytrium (Chlorophyceae) and Scotinosphaera (Scotinosphaerales, ord. nov., Ulvophyceae). J Phycol 49:115–129

    Article  PubMed  Google Scholar 

  • Sleigh MA (1974) The biology of cilia and flagella. Pergamon, London, UK

    Google Scholar 

  • Sleigh MA (1989) Protozoa and other protists. Edward Arnold, London, UK

    Google Scholar 

  • Sleigh MA (1991) Mechanisms of flagellar propulsion. Protoplasma 164:45–53

    Article  Google Scholar 

  • Smol JP, Stoermer EF (eds) (2010) The diatoms: applications for the environmental and earth sciences, 2 ed. Cambridge University Press, Cambridge New York Melbourne Madrid Cape Town Singepore São Paulo Dehli Dubai Tokyo Mexico City, p 667

    Google Scholar 

  • Smol JP, Charles DF, Whitehead DR (1984) Mallomonadacean (Chrysophyceae) assemblages and their relationships with limnological characteristics in 38 Adirondack (New York) lakes. Can J Bot 62:911–923

    Article  Google Scholar 

  • Smolander U, Arvola L (1988) Seasonal variation in the diel vertical distribution of the migratory alga Cryptomonas marssonii (Cryptophyceae) in a small, highly humic lake. Hydrobiologia 161:89–98

    Article  CAS  Google Scholar 

  • Sommer MS, Gould SB, Lehmann P, Gruber A, Przyborski JM, Maer UG (2007) Der1- mediated pre-protein import into the periplastid compartment of chromalveolates? Mol Biol Evol 24:918–928

    Article  CAS  PubMed  Google Scholar 

  • Sorhannus U (2007) A nuclear-encoded small-subunit ribosomal RNA timescale for diatom evolution. Mar Micropaleontol 65:1–12

    Article  Google Scholar 

  • Spencer DF, Gray MW (2011) Ribosomal RNA genes in Euglena gracilis mitochondrial DNA: fragmented genes in a seemingly fragmented genome. Molec Gen Genom 285(1):19–31

    Article  CAS  Google Scholar 

  • Spencer DF, Collings JC, Schnare MN, Gray MW (1987) Multiple spacer sequences in the nuclear large subunit ribosomal RNA gene of Crithidia fasciculata. EMBO J 6(4):1063–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stancheva R, Škaloud P, Pusztai M, Loflen CL, Sheath RG (2019) First record of the rare freshwater alga Tetrasporopsis fuscescens (Chrysomerophyceae, Ochrophyta) in North America. Fottea 19(2):163–174

    Google Scholar 

  • Starko S, Bringloe TT, Gomez MS, Darby H, Graham SW, Martone PT (2021) Genomic rearrangements and sequence evolution across brown algal organelles. Gen Biol Evol 13(7). https://doi.org/10.1093/gbe/evab124

  • Starko S, Soto Gomez M, Darby H, Demes KW, Kawai H, Yotsukura N, Lindstrom SC et al (2019) A comprehensive kelp phylogeny sheds light on the evolution of an ecosystem. Mol Phylogenet Evol 136:138–150

    Article  PubMed  Google Scholar 

  • Starmach K (1985) Chrysophyceae und Haptophyceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa, vol 1. Gustav Fischer Verlag, Stuttgart, Germany, pp 1–515

    Google Scholar 

  • Stein F (1878) Der Organismus der Flagellaten. Verlag von Wilhelm Engelmann

    Google Scholar 

  • Steneck RS, Graham MH, Bourque BJ, Corbett D, Erlandson JM, Estes JA, Tegner MJ (2002) Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ Conserv 29:436–459

    Article  Google Scholar 

  • Stephens T, Hepburn C (2014) Mass-transfer gradients across kelp beds influence Macrocystis pyrifera growth over small spatial scales. Mar Ecol Prog Ser 515:97–109

    Article  Google Scholar 

  • Stewart KD, Mattox KR (1980) Phylogeny of phytoflagellates. In: Cox ER (ed) Phytoflagellates. Elsevier, Amsterdam, Netherlands, pp 433–462

    Google Scholar 

  • Stiller JW, Huang J, Ding Q, Tian J, Goodwillie C (2009) Are algal genes in nonphotosynthetic protists evidence of historical plastid endosymbioses? BMC Genomics 10:484

    Article  PubMed  PubMed Central  Google Scholar 

  • Stiller JW, Schreiber J, Yue J, Guo H, Ding Q, Huang J (2014) The evolution of photosynthesis in chromist algae through serial endosymbioses. Nat Commun 5:5764

    Article  CAS  PubMed  Google Scholar 

  • Stock C, Grønlien HK, Allen RD, Naitoh Y (2002) Osmoregulation in Paramecium: in situ ion gradients permit water to cascade through the cytosol to the contractile vacuole. J Cell Sci 115:2339–2348

    Article  CAS  PubMed  Google Scholar 

  • Stoebe B, Maier UG (2002) One, two, three: nature´s tool box for building plastids. Protoplasma 219:123–130

    Article  PubMed  Google Scholar 

  • Stone BA, Clarke AE (1992) Chemistry and boilogy of (1→3)-β-glucans. La Trobe University Press, Bundoora

    Google Scholar 

  • Stradner H, Allram F (1982) Notes on an enigmatic siliceous cyst, Middle America Trench, Deep Sea Drilling Project Hole 490. Deep Sea Drilling. Initial Rep Deep Sea Drill Proj 66(4):641–642

    Google Scholar 

  • Strain HH (1951) The pigments of algae. In: Smith GM (ed) Manual of phycology: an introduction to the algae and their biology. Chronica Botanica, Waltham, Massachussetts, USA, pp 243–262

    Google Scholar 

  • Strassert JFH, Irisarri I, Williams TA, Burki F (2021) A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids. Nat Commun 12:1879. https://doi.org/10.1038/s41467-021-22044-z

  • Strassert JFH, Jamy M, Mylnikov AP, Tikhonenkov DV, Burki F (2019) New phylogenomic analysis of the enigmatic phylum Telonemia further resolves the Eukaryote tree of life. Mol Biol Evol 36:757–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strother PK, Taylor WA, Van De Schootbrugge B, Leander BS, Wellman CH (2020) Pellicle ultrastructure demonstrates that Moyeria is a fossil euglenid. Palynology 44(3):461–471

    Article  Google Scholar 

  • Sunday JM, Fabricius KE, Kroeker KJ, Anderson KM, Brown NE, Barry JP, Connell SD et al (2017) Ocean acidification can mediate biodiversity shifts by changing biogenic habitat. Nat Clim Chang 7:81–85

    Article  CAS  Google Scholar 

  • Surek B, Melkonian M (1986) A cryptic cytostome is present in Euglena. Protoplasma 133:39–49

    Google Scholar 

  • Suutari M, Majaneva M, Fewer DP, Voirin B, Aiello A, Friedl T, Chiarello AG, Blomster J (2010) Molecular evidence for a diverse green algal community growing in the hair of sloths and a specific association with Trichophilus welckeri (Chlorophyta, Ulvophyceae). BMC Evol Biol 10(1):1–12

    Article  Google Scholar 

  • Suzuki S, Hirakawa Y, Kofuji R, Sugita M, Ishida K (2016) Plastid genome sequences of Gymnochlora stellata, Lotharella vacuolata, and Partenskyella glossopodia reveal remarkable structural conservation among chlorarachniophyte species. J Plant Res 129:581–590

    Article  CAS  PubMed  Google Scholar 

  • de Széchy MTM, Guedes PM, Baeta-Neves MH, Oliveira EN (2012) Verification of Sargassum natans (Linnaeus) Gaillon (Heterokontophyta: Phaeophyceae) from the Sargasso Sea off the coast of Brazil, western Atlantic Ocean. Check List 8:638

    Article  Google Scholar 

  • Szczepocka E, Żelazna-Wieczorek J (2018) Diatom biomonitoring – scientific foundations, commonly discussed issues and frequently made errors. Oceanol. Hydrobiol Stud 47(3):313–325

    Google Scholar 

  • Taggart RE, Parker LR (1976) A new fossil alga from the Silurian of Michigan. Am J Bot 63:1390–1392

    Article  Google Scholar 

  • Talke S, Preisfeld A (2002) Molecular evolution of euglenozoan paraxonemal rod genes par1 and par2 coincides with phylogenetic reconstruction based on small subunit rDNA data. J Phycol 38(5):995–1003

    Article  CAS  Google Scholar 

  • Tamaki S, Tanno Y, Kato S, Ozasa K, Wakazaki M, Sato M, Toyooka K, Maoka T, Ishikawa T, Maeda M, Shinomura T (2020) Carotenoid accumulation in the eyespot apparatus required for phototaxis is independent of chloroplast development in Euglena gracilis. Plant Sci 298:110564

    Article  CAS  PubMed  Google Scholar 

  • Tanabe Y, Shitara T, Kashino Y, Hara Y, Kudoh S (2011) Utilizing the effective xanthophyll cycle for blooming of Ochromonas smithii and O. itoi (Chrysophyceae) on the snow surface. PLoS One 6:e14690

    Google Scholar 

  • Tanifuji G, Archibald JM, Hashimoto T (2016) Comparative genomics of mitochondria in chlorarachniophyte algae: endosymbiotic gene transfer and organellar genome dynamics. Sci Rep 6:21016. https://doi.org/10.1038/srep21016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tappan H (1980) The paleobiology of plant protists. W. H. Freeman and Company, San Francisco

    Google Scholar 

  • Taylor DL, Lee CC (1971) A new cryptomonad from antarctica: Cryptomonas cryophila sp. nov. Arch Mikrobiol 75:269–280

    Article  Google Scholar 

  • Taylor FJR (1976) Flagellate phylogeny: a study in conflicts. J Protozool 23:28–40

    Article  Google Scholar 

  • Taylor FJR (1992) The taxonomy of harmful marine phytoplankton. G Bot Ital 126:209–219

    Article  Google Scholar 

  • Taylor FJR, Hoppenrath M, Saldarriaga JF (2008) Dinoflagellate diversity and distribution. Biodivers Conserv 17:407–418

    Article  Google Scholar 

  • Teagle H, Hawkins SJ, Moore PJ, Smale DA (2017) The role of kelp species as biogenic habitat formers in coastal marine ecosystems. J Exp Mar Biol Ecol 492:81–98

    Article  Google Scholar 

  • Teas J, Vena S, Cone DL, Irhimeh M (2013) The consumption of seaweed as a protective factor in the etiology of breast cancer: proof of principle. J Appl Phycol 25:771–779. https://doi.org/10.1007/s10811-012-9931-0

  • Telford WG, Moss MW, Morseman JP, Allnutt FCT (2001) Cryptomonad algal phycobiliproteins as fluorochromes for extracellular and intracellular antigen detection by flow cytometry. Cytometry 44:16–23

    Article  CAS  PubMed  Google Scholar 

  • Tengs T, Dahlberg OJ, Shalchian-Tabrizi K, Klaveness D, Rudi K, Delwiche CF, Jakobsen KS (2000) Phylogenetic analyses indicate that the 19′hexanoyloxy-fucoxanthin-containing dinoflagellates have tertiary plastids of haptophyte origin. Mole Biol Evol 17:718–729. https://doi.org/10.1093/oxfordjournals.molbev.a026350

  • Terauchi M, Nagasato C, Inoue A, Ito T, Motomura T (2016) Distribution of alginate and cellulose and regulatory role of calcium in the cell wall of the brown alga Ectocarpus siliculosus (Ectocarpales, Phaeophyceae). Planta 244:361–377

    Article  CAS  PubMed  Google Scholar 

  • Terauchi M, Nagasato C, Motomura T (2015) Plasmodesmata of brown algae. J Plant Res 128:7–15

    Article  CAS  PubMed  Google Scholar 

  • Tester PA, Feldman RL, Nau AW, Kibler SR, Wayne Litaker R (2010) Ciguatera fish poisoning and sea surface temperatures in the Caribbean Sea and the West Indies. Toxicon 56:698–710. https://doi.org/10.1016/j.toxicon.2010.02.026

  • Thakur R, Shiratori T, Ishida K (2019) Taxon-rich multigene phylogenetic analyses resolve the phylogenetic relationship among deep-branching stramenopiles. Protist 170:125682

    Article  PubMed  Google Scholar 

  • Thangaraj S, Sun J (2021) Transcriptomic reprogramming of the oceanic diatom Skeletonema dohrnii under warming ocean and acidification. Environ Microbiol 23:980–995

    Article  CAS  PubMed  Google Scholar 

  • Thomas DN, Dieckmann G (eds) (2003) Sea ice: an introduction to its physics, chemistry, biology, and geology p 402. Blackwell Science, Oxford, UK ; Malden, MA, USA

    Google Scholar 

  • Thomas F, Cosse A, Le Panse S, Kloareg B, Potin P, Leblanc C (2014) Kelps feature systemic defense responses: insights into the evolution of innate immunity in multicellular eukaryotes. New Phytol 204:567–576

    Article  CAS  PubMed  Google Scholar 

  • Thompson MD, Copertino DW, Thompson E, Favreau MR, Hallick RB (1995) Evidence for the late origin of introns in chloroplast genes from an evolutionary analysis of the genus Euglena. Nucleic Acids Res 23(23):4745–4752

    Google Scholar 

  • Thwaites GHK (1847) On conjugation in the Diatomaceae. Ann Mag Nat History, ser. 1, 20, 9–11, 343–344

    Google Scholar 

  • Tian Y, Gao L, Deng J, Li M (2020) Characterization of phytoplankton community in a river ecosystem using pigment composition: a feasibility study. Environ Sci Pollut Res 27(34):42210–42220

    Article  CAS  Google Scholar 

  • Toriumi S, Takano H (1973) Fibrocapsa, a new genus in chloromonadophyceae from Atsumi Bay, Japan. Bull Tokai Reg Fisher Res Lab 76:25–35

    Google Scholar 

  • Torres-Machorro AL, Hernández R, Cevallos AM, López-Villaseñor I (2010) Ribosomal RNA genes in eukaryotic microorganisms: witnesses of phylogeny? FEMS Microbiol Rev 34(1):59–86

    Article  CAS  PubMed  Google Scholar 

  • Tovey DJ, Moss BL (1978) Attachment of the haptera of Laminaria digitata (Huds.) Lamour. Phycologia 17:17–22

    Article  Google Scholar 

  • Trainer VL, Bates SS, Lundholm N, Thessen AE, Cochlan WP, Adams NG, Trick CG (2012) Pseudo-nitzschia physiological ecology, phylogeny, toxicity, monitoring and impacts on ecosystem health. Harmful Algae 14:271–300

    Article  Google Scholar 

  • Tranvik LJ, Porter KG, Sieburth JMcN (1989) Occurrence of bacterivory in Cryptomonas, a common freshwater phytoplankter. Oecologia 78:473–476

    Google Scholar 

  • Triemer RE (1997) Feeding in Peranema trichophorum revisited (Euglenophyta). J Phycol 33(4):649–654

    Article  Google Scholar 

  • Triemer RE, Farmer MA (1991a) An ultrastructural comparison of the mitotic apparatus, feeding apparatus, flagellar apparatus and cytoskeleton in euglenoids and kinetoplastids. Protoplasma 164(1–3):91–104

    Article  Google Scholar 

  • Triemer RE, Farmer MA (1991b) The ultrastructural organization of the heterotrophic euglenids and its evolutionary implications. The biology of free-living heterotrophic flagellates, pp 185–204

    Google Scholar 

  • Triemer RE, Farmer MA (2007) A decade of euglenoid molecular phylogenetics. In Brodie J, Lewis J (eds) Unravelling the algae: the past, present, and future of algal systematics, pp 315–330

    Google Scholar 

  • Triemer RE, Fritz L (1987) Structure and Operation of the Feeding Apparatus in a Colorless Euglenoid, Entosiphon sulcatum 1. J Protozool 34(1):39–47

    Article  Google Scholar 

  • Trzcinska M, Pawlik-Skowronska B, Krokowski D, Watanabe S (2014) Genetic and morphological characteristics of two ecotypes of Eustigmatos calaminaris sp. nov. (Eustigmatophyceae) inhabiting Zn- and Pb-loaded calamine mine spoils. Fottea 14:1–13

    Article  Google Scholar 

  • Tsuji Y, Yoshida M (2017) Biology of Haptophytes: complicated cellular processes driving global carbon cycle. Adv Bot Res 84:219–261

    Article  CAS  Google Scholar 

  • Turland NJ, Wiersema JH, Barrie FR, Greuter W, Hawksworth DL, Herendeen PS, Smith G et al (2018) International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. Koeltz Botanical Books

    Google Scholar 

  • Turmel M, Gagnon MC, O’Kelly CJ, Otis C, Lemieux C (2009) The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids. Mol Biol Evol 26(3):631–648

    Article  CAS  PubMed  Google Scholar 

  • Turner S, Pryer KM, Miao VPW, Palmer JD (1999) Investigating deep phylogenetic relationships among Cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 46:327–338

    Article  CAS  PubMed  Google Scholar 

  • Tyrrell T, Merico A (2004) Emiliania huxleyi: Bloom observations and the conditions that induce them. In: Thierstein HR, Young JR (eds) Coccolithophores from molecular processes to global impact. Springer-Verlag, Berlin, pp 481–508

    Google Scholar 

  • Upadhyay AK, Singh NK, Singh R, Rai UN (2016) Amelioration of arsenic toxicity in rice: Comparative effect of inoculation of Chlorella vulgaris and Nannochloropsis sp. on growth, biochemical changes and arsenic uptake. Ecotoxicol Environ Saf 124:68–73

    Article  CAS  PubMed  Google Scholar 

  • Urabe J, Gurung TB, Yoshida T, Sekino T, Nakanishi M, Maruo M, Nakayama E (2000) Diel changes in phagotrophy by Cryptomonas in Lake Biwa. Limnol Oceanog 45:1558–1563

    Article  Google Scholar 

  • van den Hoek C (1978) Algen: Einführung in die Phykologie. Georg Thieme Verlag Stuttgart, p 481

    Google Scholar 

  • van den Hoff J, Bell E, Whittock L (2020) Dimorphism in the antarctic cryptophyte Geminigera cryophila (Cryptophyceae). J Phycol 56:1028–1038

    Google Scholar 

  • van der Weij-De Wit CD, Doust AB, van Stokkum IHM, Dekker JP, Wilk KE, Curmi PMG, Scholes GD, van Grondelle R (2006) How energy funnels from the phycoerythrin antenna complex to photosystem I and photosystem II in cryptophyte Rhodomonas CS24 cells. J Phys Chem 110:25066–25073

    Article  Google Scholar 

  • van Leeuwe MA, Webb AL, Venables HJ, Visser RJW, Meredith MP, Elzenga JTM, Stefels J (2020) Annual patterns in phytoplankton phenology in Antarctic coastal waters explained by environmental drivers. Limnol Oceanogr 65:1651–1668

    Article  Google Scholar 

  • Van Weelden G, Bobiński M, Okła K, Van Weelden WJ, Romano A, Pijnenborg JMA (2019) Fucoidan structure and activity in relation to anti-cancer mechanisms. Mar Drugs 17:32

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanclová AM, Hadariová L, Hrdá Š, Hampl V (2017) Secondary plastids of euglenophytes. Academic press. Adv Botan Res 84:321–358

    Article  Google Scholar 

  • Vanormelingen P, Evans KM, Mann DG, Lance S, Debeer A-E, D’Hondt S, Verstraete T et al (2015) Genotypic diversity and differentiation among populations of two benthic freshwater diatoms as revealed by microsatellites. Mol Ecol 24:4433–4448

    Article  PubMed  Google Scholar 

  • Vásquez JA, Zuñiga S, Tala F, Piaget N, Rodríguez DC, Vega JMA (2014) Economic valuation of kelp forests in northern Chile: values of goods and services of the ecosystem. J Appl Phycol 26:1081–1088

    Article  Google Scholar 

  • Veluchamy A, Rastogi A, Lin X, Lombard B, Murik O, Thomas Y, Dingli F, Rivarola M, Ott S, Liu X, Sun Y, Rabinowicz PD, McCarthy J, Allen AE, Loew D, Bowler C, Tirichine L (2015) An integrative analysis of post-translational histone modifications in the marine diatom Phaeodactylum tricornutum. Genome Biol 16:102. https://doi.org/10.1186/s13059-015-0671-8

  • Veluchamy A, Lin X, Maumus F, Rivarola M, Bhavsar J, Creasy T, O’Brien K, Sengamalay NA, Tallon LJ, Smith AD, Rayko E, Ahmed I, Crom SL, Farrant GK, Sgro J-Y, Olson SA, Bondurant SS, Allen AE, Rabinowicz PD, Sussman MR, Bowler C, Tirichine L (2013) Insights into the role of DNA methylation in diatoms by genome-wide profiling in Phaeodactylum tricornutum. Nat Commun 4:2091. https://doi.org/10.1038/ncomms3091

  • Verhaeghe EF, Fraysse A, Guerquin-Kern J-L, Wu T-D, Devès G, Mioskowski C, Leblanc C et al (2008) Microchemical imaging of iodine distribution in the brown alga Laminaria digitata suggests a new mechanism for its accumulation. J Biol Inorg Chem 13:257–269

    Article  CAS  PubMed  Google Scholar 

  • Vesk M, Dwarte D, Fowler S, Hiller RG (1992) Freeze fracture immunocytochemistry of light- harvesting pigment complexes in a cryptophyte. Protoplasma 170:166–176

    Article  Google Scholar 

  • Vesk M, Moestrup Ø (1987) The flagellar root system in Heterosigma akashiwo (Raphidophyceae). Protoplasma 137:15–28

    Article  Google Scholar 

  • Vieira C (2020) Lobophora-coral interactions and phase shifts: summary of current knowledge and future directions. Aquat Ecol 54:1–20

    Article  CAS  Google Scholar 

  • Vischer W (1945) Heterokonten aus Alpinen Boden, Speziell dem Schweizerischen Nationalpark. Ergebnisse Der Wissenschaftlichen Untersuchung Der Schweizerischen Nationalparks 1:481–511

    Google Scholar 

  • von der Heyden S, Chao EE, Cavalier-Smith T (2004) Genetic diversity of goniomonads: an ancient divergence between marine and freshwater species. Eur J Phycol 39:343–350

    Article  Google Scholar 

  • Von Stosch HA (1950) Oogamy in a centric diatom. Nature 165:531–532

    Article  Google Scholar 

  • Votta JJ, Jahn TL, Griffith DL, Fonseca JR (1971) Nature of the flagellar beat in Trachelomonas volvocina, Rhabdomonas spiralis, Menoidium cultellus, and Chilomonas paramecium. Trans Am Microsc Soc 90:404–412

    Article  CAS  PubMed  Google Scholar 

  • Votýpka J, Modrý D, Oborník M, Šlapeta J, Lukeš J (2017) Apicomplexa. In: Archibald JM, Simpson AGB, Slamovits CH (eds) Handbook of the Protists. Springer International Publishing, Cham, pp 567–624

    Chapter  Google Scholar 

  • Vu MTT, Douëtte C, Rayner TA, Thoisen C, Nielsen SL, Hansen BW (2016) Optimization of photosynthesis, growth, and biochemical composition of the microalga Rhodomonas salina—an established diet for live feed copepods in aquaculture. J Appl Phyol 28:1485–1500

    CAS  Google Scholar 

  • Vysotskii AV (1887) Les mastigophores et rhizopodes trouvés dans les lacs Weissowo et Repnoie (près Slaviansk, Gouvern. Kharkov). Trudy Obshchestva Ispytatelei Prirody Pri Imperatorskom Kharkovskom Universitetie 21:119–140

    Google Scholar 

  • Wada M, Hara Y, Kato M, Yamada M, Fujii T (1987) Diurnal appearance, fine structure, and chemical composition of fatty particles in Heterosigma akashiwo (Raphidophyceae). Protoplasma 137:134–139

    Google Scholar 

  • Walne PL, Kivic PA (1990) Phylum euglenida. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of protoctista. Jones & Bartlett Publishers, Boston, pp 270–287 (Chapter 15)

    Google Scholar 

  • Wang D, Ning K, Li J, Hu J, Han D, Wang H, Zeng X et al (2014) Nannochloropsis genomes reveal evolution of microalgal oleaginous traits. PLoS Genet 10:e1004094

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang DZ (2008) Neurotoxins from marine dinoflagellates: a brief review. Mar Drugs 6:349–371

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Chen Z, Li Q, Zhang J, Liu S, Duan D (2018) High-density SNP-based QTL mapping and candidate gene screening for yield-related blade length and width in Saccharina japonica (Laminariales, Phaeophyta). Sci Rep 8:13591

    Google Scholar 

  • Wang S, Li L, Li H, Sahu SK, Wang H, Xu Y, Xian W, Song B, Liang H, Cheng S, Chang Y, Song Y, Çebi Z, Wittek S, Reder T, Peterson M, Yang H, Wang J, Melkonian B, Van De Peer Y, Xu X, Wong GK-S, Melkonian M, Liu H, Liu X (2020) Genomes of early-diverging streptophyte algae shed light on plant terrestrialization. Nat Plants 6:95–106. https://doi.org/10.1038/s41477-019-0560-3

  • Wang Y, Joly S, Morse D (2008) Phylogeny of dinoflagellate plastid genes recently transferred to the nucleus supports a common ancestry with red algal plastid genes. J Molec Evolut 66:175–184. https://doi.org/10.1007/s00239-008-9070-z

  • Warming E (1884) Haandbog i den systematiske botanik. Anden gjennemsete udgave. Købnhaven

    Google Scholar 

  • Watanabe MM, Suda S, Inouya I, Sawaguchi T, Chihara M (1990) Lepidodinium viride gen. et sp. nov. (Gymnodinaiales, Dinophyta), a green dinoflagellate with a chlorophyll a- and b-containing endosymbiont. J Phycol 26:741–751. https://doi.org/10.1111/j.0022-3646.1990.00741.x

  • Watanabe MM, Takeda Y, Sasa T, Inouye I, Suda S, Sawaguchi T, Chihara M (1987) A green dinoflagellate with chlorophylls a and b: Morphology, fine structure of the chloroplast and chlorophyll composition. J Phycol 23:382–389. https://doi.org/10.1111/j.1529-8817.1987.tb04148.x

  • Wawrik F (1969) Sexualität bei Cryptomonas sp. und Chlorogonium maximum. Nova Hedwigia 8:283–292

    Google Scholar 

  • Wawrik F (1971) Zygoten und Cysten bei Stenocalyx klarnetii (Bourr.) Fott, Stenocalyx inkonstans Schmid und Chroomonas acuta Uterm. Nova Hedwigia 21:599–604

    Google Scholar 

  • Wawrik F (1972) Isogame Hologamie in der Gattung Mallomonas Perty. Nova Hedwigia 23:353–362

    Google Scholar 

  • Wawrik F (1979) Eisschluß und Eisbruchvegetation in den Teichen des nördlichen Waldviertels 1977/1978. Arch Protistenk 122:247–266

    Article  Google Scholar 

  • Wedemayer GJ, Wemmer DE, Glazer AN (1991) Phycobilins of cryptophycean algae. Structures of novel bilins with acryloyl substituents from phycoerythrin 566. J Biol Chem 266:4731–4741

    Article  CAS  PubMed  Google Scholar 

  • Wegener Parfrey L, Grant J, Tekle YI, Lasek-Nesselquist E, Morrison HG. Sogin ML, Patterson DJ, Katz LA (2010) Broadly sampled multigene analyses yield a well-resolved eukaryotic tree of life. Syst Biol 59:518–533

    Google Scholar 

  • Weisberg RH, Liu Y, Lembke C, Hu C, Hubbard K, Garrett M (2019) The coastal ocean circulation influence on the 2018 West Florida Shelf K. brevis red tide bloom. J Geophy Res Oceans 124:2501–2512

    Article  Google Scholar 

  • Wernberg T, Krumhansl K, Filbee-Dexter K, Pedersen MF (2019) Status and trends for the world’s kelp forests. In World Seas: An Environmental Evaluation, pp 57–78. Elsevier

    Google Scholar 

  • Wetherbee R, Andersen RA (1992) Flagella of a chrysophycean alga play an active role in prey capture and selection: direct observations on Epipyxis pulchra using image enhanced video microscopy. Protoplasma 166:1–7

    Article  Google Scholar 

  • Wetherbee R, Bringloe TT, Costa JF, Meene A, Andersen RA, Verbruggen H (2021) New pelagophytes show a novel mode of algal colony development and reveal a perforated theca that may define the class. J Phycol 57:396–411

    Article  CAS  PubMed  Google Scholar 

  • Wetherbee R, Gornik SG, Grant B, Waller RF (2015) Andersenia, a genus of filamentous, sand-dwelling Pelagophyceae from southeastern Australia. Phycologia 54:35–48

    Article  Google Scholar 

  • Wetherbee R, Jackson CJ, Repetti SI, Clementson LA, Costa JF, Meene A, Crawford S et al (2019) The golden paradox - a new heterokont lineage with chloroplasts surrounded by two membranes. J Phycol 55:257–278

    Article  CAS  PubMed  Google Scholar 

  • Whittle SJ, Casselton PJ (1975a) The chloroplast pigments of the algal classes Eustigmatophyceae and Xanthophyceae. I. Eustigmatophyceae. British Phycol J 10:179–191

    Article  Google Scholar 

  • Whittle SJ, Casselton PJ (1975b) The chloroplast pigments of the algal classes Eustigmatophyceae and Xanthophyceae II Xanthophyceae. British Phycol J 10:192–204

    Article  Google Scholar 

  • Whittle SJ, Casselton PJ (1969) The chloroplast pigments of some green and yellow-green algae. Brit Phycol J 4:55–64

    Article  Google Scholar 

  • Wiech H, Geier BM, Paschke T, Spang A, Grein K, Steinkötter J, Melkonian M, Schiebel E (1996) Characterization of green alga, yeast, and human centrins specific subdomain features determine functional diversity. J Biol Chem 271(37):22453–22461

    Article  CAS  PubMed  Google Scholar 

  • Wiegert KE, Bennett MS, Triemer RE (2012) Evolution of the chloroplast genome in photosynthetic euglenoids: a comparison of Eutreptia viridis and Euglena gracilis (Euglenophyta). Protist 163(6):832–843

    Article  CAS  PubMed  Google Scholar 

  • Wiegert KE, Bennett MS, Triemer RE (2013) Tracing patterns of chloroplast evolution in euglenoids: contributions from Colacium vesiculosum and Strombomonas acuminata (Euglenophyta). J Eukaryot Microbiol 60(2):214–221

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm C, Rudolph I, Renner W (1991) A quantitative method based on HPLC-aided pigment analysis to monitor structure and dynamics of the phytoplankton assemblage – a study from lake Meerfelder Maar (Eifel, Germany). Arch Hydrobiol 123:21–35

    Article  CAS  Google Scholar 

  • Wilk KE, Harrop SJ, Jankova L, Edler D, Keenan G, Sharples F, Hiller RG, Curmi PMG (1999) Evolution of a light-harvesting protein by addition of new subunits and rearrangement of conserved elements: crystal structure of a cryptophyte phycoerythrin at 1.63-Å resolution. Proc Nat Acad Sci USA 96:8901–8906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willey JM (1972) The damselfly (Odonata) hindgut as host organ for the euglenoid flagellate Colacium. Trans Am Microsc Soc 91:583–593

    Article  Google Scholar 

  • Willey RL, Wibel RG (1985) A cytostome/cytopharynx in green euglenoid flagellates (Euglenales) and its phylogenetic implications. BioSystems 18(3–4):369–376

    Article  CAS  PubMed  Google Scholar 

  • Williams DM (1991) Phylogenetic relationships among the Chromista: a review and preliminary analysis. Cladistics 7:141–156

    Article  PubMed  Google Scholar 

  • Williams DM (2020) Diatom classifications: what purpose do they serve?. In Cristóbal G, Blanco S, Bueno G (eds) Modern trends in diatom identification. Developments in Applied Phycology, vol 10, pp 11–24. Springer, Cham

    Google Scholar 

  • Wood BJB (1988) Lipids of algae and protozoa. In: Ratledge C, Wilkinson SG (eds) Microbial lipids. Academic Press, London, pp 807–867

    Google Scholar 

  • Wood G, Marzinelli EM, Vergés A, Campbell AH, Steinberg PD, Coleman MA (2020) Using genomics to design and evaluate the performance of underwater forest restoration. J Appl Ecol 57:1988–1998

    Article  Google Scholar 

  • Wright SW, Jeffrey SW, Mantoura RFC, Llewellyn CA, Bjørnland T, Repeta D, Welschmeyer N (1991) Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Mar Ecol Prog Ser 77:183–196

    Article  CAS  Google Scholar 

  • Wright SW, van den Enden RL (2000) Phytoplankton community structure and stocks in the East Antarctic marginal ice zone (BROKE survey, January}March 1996) determined by CHEMTAX analysis of HPLC pigment signatures. Deep-Sea Res II 47:2363–2400

    Google Scholar 

  • Wu Y, Campbell DA, Irwin AJ, Suggett DJ, Finkel ZV (2014) Ocean acidification enhances the growth rate of larger diatoms. Limnol Oceanogr 59:1027–1034

    Article  CAS  Google Scholar 

  • Wujek DE, Kristiansen J (1978) Observations on bristle- and scale-production in Mallomonas caudata (Chrysophyceae). Arch Protistenk 120:213–221

    Article  Google Scholar 

  • Wynne MJ, Andersen RA, Graf L, Yoon HS (2014) Aureoscheda, a new genus of marine pelagophyceae from the Bahamas, Caribbean Sea. Phycologia 53:513–522

    Article  Google Scholar 

  • Xiao S, Knoll AH, Yuan X (1998) Morphological reconstruction of Miaohephyton bifurcatum, a possible brown alga from the Neoproterozoic Doushantuo Formation, South China. J Paleont 72:1072–1086. https://doi.org/10.1017/S0022336000027414

  • Yabuki A, Inagaki Y, Ishida K (2010) Palpitomonas bilix gen. et sp. nov.: a novel deep- branching heterotroph possibly related to Archaeplastida or Hacrobia. Protist 161:523–538

    Article  PubMed  Google Scholar 

  • Yabuki A, Kamikawa R, Ishikawa SA, Koliska M, Kim E, Tanabe AS, Kume K, Ishida K, Inagaki Y (2014) Palpitomonas bilix represents a basal cryptist lineage: insight into the character evolution in Cryptista. Sci Rep 4:4641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada N, Bolton JJ, Trobajo R, Mann DG, Dąbek P, Witkowski A, Onuma R, Horiguchi T, Kroth PG (2019) Discovery of a kleptoplastic ‘dinotom’ dinoflagellate and the unique nuclear dynamics of converting kleptoplastids to permanent plastids. Sci Rep 9:10474. https://doi.org/10.1038/s41598-019-46852-y

  • Yamada N, Sakai H, Onuma R, Kroth PG, Horiguchi T (2020) Five non-motile dinotom dinoflagellates of the genus Dinothrix. Front Plant Sci 11. https://doi.org/10.3389/fpls.2020.591050

  • Yamada N, Sym SD, Horiguchi T (2017) Identification of highly divergent diatom-derived chloroplasts in dinoflagellates, including a description of Durinskia kwazulunatalensis sp. nov. (Peridiniales, Dinophyceae). Mol Biol Evol 34:1335–1351. https://doi.org/10.1093/molbev/msx054

  • Yamaguchi A, Yubuki N and Leander BS (2012) Morphostasis in a novel eukaryote illuminates the evolutionary transition from phagotrophy to phototrophy: description of Rapaza viridis n. gen. et sp. (Euglenozoa, Euglenida). BMC Evolut Biol 12(1):29

    Google Scholar 

  • Yamaguchi H, Hoppenrath M, Takishita K, Horiguchi T (2008) Haramonas pauciplastida sp. nov. (Raphidophyceae, Heterokontophyta) and phylogenetic analyses of Haramonas species using small subunit ribosomal RNA gene sequences. Phycol Res 56:127–138

    Article  Google Scholar 

  • Yamaguchi H, Nakayama T, Kal A, Inouye I (2011) Taxonomy and phylogeny of a new kleptoplastidal dinoflagellate, Gymnodinium myriopyrenoides sp. nov. (Gymnodiniales, Dinophyceae), and its cryptophyte symbiont. Protist 162:650–667

    Article  PubMed  Google Scholar 

  • Yamaguchi H, Nakayama T, Murakami A, Inouye I (2010) Phylogeny and taxonomy of the Raphidophyceae (Heterokontophyta) and Chlorinimonas sublosa gen. et sp. nov., a new marine sand-dwelling raphidophyte. J Plant Res 123:333–342

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi M, Imai I (1994) A microfluorometric analysis of nuclear DNA at different stages in the life history of Chattonella antiqua and Chattonella marina (Raphidophyceae). Phycologia 33:163–170

    Article  Google Scholar 

  • Yang EC, Boo GH, Kim HJ, Cho SM, Boo SM, Andersen RA, Yoon HS (2012) Supermatrix data highlight the phylogenetic relationships of photosynthetic Stramenopiles. Protist 163:217–231

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Wang X, Yao J, Duan D (2021) Genome-wide mapping of cytosine methylation revealed dynamic DNA methylation patterns associated with sporophyte development of Saccharina japonica. Int J Mol Sci 22:9877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye N, Zhang X, Miao M, Fan X, Zheng Y, Xu D, Wang J et al. (2015). Saccharina genomes provide novel insight into kelp biology. Nat Commun 6

    Google Scholar 

  • Yip ZT, Quek RZB, Huang D (2020) Historical biogeography of the widespread macroalga Sargassum (Fucales, Phaeophyceae). J Phycol 56:300–309

    Article  PubMed  Google Scholar 

  • Yoon HS, Hackett JD, Ciniglia C, Pinto G, Bhattacharya D (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21:809–818

    Article  CAS  PubMed  Google Scholar 

  • Yoon HS, Hackett JD, Van Dolah FM, Nosenko T, Lidie KL, Bhattacharya D (2005) Tertiary endosymbiosis driven genome evolution in dinoflagellate algae. Mol Biol Evol 22:1299–1308. https://doi.org/10.1093/molbev/msi118

  • Yoon HS, Price DC, Stepanauskas R, Rajah VD, Sieracki ME, Wilson WH, Yang EC, Duffy S, Bhattacharya D (2011) Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science 332:714–716

    Article  CAS  PubMed  Google Scholar 

  • Yoon HS, Hackett JD, Pinto G, Bhattacharya D (2002) The single, ancient origin of chromist plastids. Proc Natl Acad Sci 99:15507–15512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu M, Ashworth MP, Hajrah NH, Khiyami MA, Sabir MJ, Alhebshi AM, Al-Malki AL et al. (2018) Evolution of the plastid genomes in diatoms. In Advances in Botanical Research, pp 129–155. Elsevier

    Google Scholar 

  • Yubuki N, Edgcomb VP, Bernhard JM, Leander BS (2009) Ultrastructure and molecular phylogeny of Calkinsia aureus: cellular identity of a novel clade of deep-sea euglenozoans with epibiotic bacteria. BMC Microbiol 9(1):16

    Article  PubMed  PubMed Central  Google Scholar 

  • Yubuki N, Leander BS (2012) Reconciling the bizarre inheritance of microtubules in complex (euglenid) microeukaryotes. Protoplasma 249(4):859–869

    Article  PubMed  Google Scholar 

  • Yubuki N, Leander BS (2018) Diversity and evolutionary history of the Symbiontida (Euglenozoa). Front Ecol Evol 6:100

    Google Scholar 

  • Yubuki N, Simpson AG, Leander BS (2013) Reconstruction of the feeding apparatus in Postgaardi mariagerensis provides evidence for character evolution within the Symbiontida (Euglenozoa). Eur J Protistol 49(1):32–39

    Article  PubMed  Google Scholar 

  • Zakryś B (1986) The nuclear behaviour during abnormal cell division in Euglena viridis Ehrbg. Nova Hedwigia 42:591–596

    Google Scholar 

  • Zakryś B, Milanowski R, Karnkowska A (2017). Evolutionary origin of Euglena. In Schwartzbach SD, Shigeoka S (eds), Euglena: Biochemistry, Cell and Molecular Biology, pp 3–17. Berlin: Springer, Cham

    Google Scholar 

  • Zhang J, Yao J, Hu Z, Jueterbock A, Yotsukura N, Krupnova TN, Nagasato C et al (2019) Phylogeographic diversification and postglacial range dynamics shed light on the conservation of the kelp Saccharina japonica. Evol Appl 12:791–803

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Tan S, Gong J (2016a). Protist communities in water and sediment of a Sea cucumber farming system. Protistology 10(2)

    Google Scholar 

  • Zhang W, Yang H, Xia X, Xie L, Xie G (2016b) Triassic chrysophyte cyst fossils discovered in the Ordos Basin, China. Geology 44:1031–1034. https://doi.org/10.1130/G38527.1

  • Zhang X, Fan X, Wang Y, Xu D, Zhang J, Ye N (2021) Exploring core response mechanisms to multiple environmental stressors via a genome-wide study in the brown alga Saccharina japonica (Laminariales, Phaeophyceae). J Phycol 57:345–354

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Kan J, Wang J, Gu H, Hu J, Zhao Y, Sun J (2015) First record of a large-scale bloom-causing species Nannochloropsis granulata (Monodopsidaceae, Eustigmatophyceae) in China Sea waters. Ecotoxicology 24:1430–1441

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Watanabe MM (2001) Grazing and growth of the mixotrophic chrysomonad Poterioochromonas malhamensis (Chrysophyceae) feeding on algae. J Phycol 37:738–743

    Article  Google Scholar 

  • Zhao X, Hoguin A, Chaumier T, Tirichine L (2022) Epigenetic control of diatom genomes: an overview from in silico characterization to functional studies. In The Molecular Life of Diatoms. Falciatore A, Mock T (eds), pp 179–202. Cham, Springer International Publishing. https://doi.org/10.1007/978-3-030-92499-7_7

  • Zhukova NV, Aizdaicher NA (1995) Fatty acid composition of 15 species of marine microalgae. Phytochemistry 39:351–356

    Article  CAS  Google Scholar 

  • Zimmermann J, Abarca N, Kusber W-H, Skibbe O, Jahn R (2021) Kieselalgen – winzig aber wichtig. Biol Unserer Zeit 51:132–141

    Google Scholar 

  • Zimorski V, Rauch C, van Hellemond JJ, Tielens AGM, Martin WF (2017) The mitochondrion of Euglena gracilis. In: Schwartzbach SD, Shigeoka S (eds), Euglena: Biochemistry, Cell and Molecular Biology, pp 19–37. Berlin, Springer, Cham

    Google Scholar 

  • Zobel HF (1988) Molecules to granules: a comprehensive starch review. Starch/staerke 40(2):44–50

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Friedl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Der/die Autor(en), exklusiv lizenziert durch Springer-Verlag GmbH, DE, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Friedl, T. (2024). Algae from Secondary Endosymbiosis. In: Büdel, B., Friedl, T., Beyschlag, W. (eds) Biology of Algae, Lichens and Bryophytes. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-65712-6_5

Download citation

Publish with us

Policies and ethics