Skip to main content

Bryophytes

  • Chapter
  • First Online:
Biology of Algae, Lichens and Bryophytes
  • 255 Accesses

Abstract

This chapter contains detailed information on life cycle, morphology and classification of the three divisions of Bryophytes: Marchantiophyta (liverworts), Bryophyta (mosses) and Anthocerotophyta (hornworts). Additional sections cover the importance of asexual reproduction in Bryophytes, central aspects of their physiology and physiological ecology and the essentials of Bryophyte ecology (autecology, population/community ecology and systems ecology).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    All photographs of Hermann Schachner in chapter 7 are taken from his huge collection of excellent photographs in the internet (https://de.wikipedia.org/wiki/Benutzer:HermannSchachner/Moosbilder).

References

  • Abel WO (1956) Die Austrocknungsresistenz der Laubmoose. Sitzungsberichte - Österreichische Akademie der Wissenschaften. Mathematisch-naturwissenschaftliche Klasse. Abteilung I 165:619–707

    Google Scholar 

  • Adam P (1976) The occurrence of bryophytes on British saltmarshes. J Bryol 9:265–274

    Google Scholar 

  • Adamson E, Post A, Adamson H (1990) Photosynthesis in Grimmia antarctici, an endemic, antarctic bryophyte, is limited by carbon dioxide. Curr Res Photosynth 4:639–642

    Google Scholar 

  • Aerts R, Wallen B, Malmer N (1992) Growth-limiting nutrients in sphagnum-dominated bogs subject to low and high atmospheric nitrogen supply. J Ecol 80:131–140

    Google Scholar 

  • Ah-Peng C, Williamson Cardoso A, Flores O, West A, Wilding N, Strasberg D, Hedderson TAJ (2017) The role of epiphytic bryophytes in interception, storage, and the regulated release of atmospheric moisture in a tropical montane cloud forest. J Hydrol 548:665–673

    Google Scholar 

  • Allen CE (1935a) The genetics of bryophytes. Bot Rev 1:269–291

    Google Scholar 

  • Allen CE (1935b) The occurrence of polyploidy in Sphaerocarpos. Am J Bot 22:664–680

    Google Scholar 

  • Allen CE (1945) The genetics of Bryophytes II. Botan Rev 11:260–287

    Google Scholar 

  • Allison KW, Child J (1996) The liverworts of New Zealand. University of Otago Press, Dunedin, NZ, p 304

    Google Scholar 

  • Alpert P (1985) Distribution quantified by microtopography in an assemblage of saxicolous mosses. Vegetatio 64:131–139

    Google Scholar 

  • Alpert P (1988) Survival of a desiccation-tolerant moss, Grimmia laevigata, beyond its observed microdistributional limits. J Bryol 15:219–227

    Google Scholar 

  • Alpert P (1991) Microtopography as habitat structure for mosses on rocks. In: Bell SS, McCoy ED, Mushinsky HR (eds) Habitat structure. Population and community biology series, vol 8. Springer, Dordrecht, pp 120–140

    Google Scholar 

  • Alpert P (2000) The discovery, scope, and puzzle of desiccation tolerance in plants. Plant Ecol 151:5–17

    Google Scholar 

  • Alpert P (2005) The limits and frontiers of desiccation-tolerant life. Integr Comp Biol 45:685–695

    Google Scholar 

  • Alpert P, Oliver MJ (2002) Drying without dying. In: Black M, Pritchard HW (eds) Desiccation and survival in plants: drying without dying. CABI Publishing, Wallingford, pp 3–43

    Google Scholar 

  • Andersson K (2002) Dispersal of spermatozoids from splash-cups of the moss Plagiomnium affine. Lindbergia 27:90–96

    Google Scholar 

  • Anthony PA, Holtum JAM, Jackes BR (2002) Shade acclimation of rainforest leaves to colonization by lichens. Funct Ecol 16:808–816

    Google Scholar 

  • Apel K, Hurt H (2004) Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Google Scholar 

  • Asakawa Y, Toyota M, Takemoto T, Fujiki H, Sugimura T (1980) Biologically active substances isolated from liverworts. Plant Med 39:233–254

    Google Scholar 

  • Atkin OK, Bruhn D, Hurry VM, Tjoelker MG (2005) The hot and the cold: unravelling the variable response of plant respiration to temperature. Funct Plant Biol 32:87–105

    Google Scholar 

  • Atkin OK, Tjoelker MG (2003) Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci 8:343–351

    Google Scholar 

  • Aude E, Ejrnaes R (2005) Bryophyte colonisation in experimental microcosms: the role of nutrients, defoliation and vascular vegetation. Oikos 109:323–330

    Google Scholar 

  • Austin KA, Wieder RK (1987) Effects of elevated H+, SO42-, NO3- and NH4+ in simulated acid precipitation on the growth and chlorophyll content of 3 North American Sphagnum species. Bryologist 90:221–229

    Google Scholar 

  • Bakken S (1994) Growth and nitrogen dynamics of Dicranum majus under two contrasting nitrogen deposition regimes. Lindbergia 19:63–72

    Google Scholar 

  • Badacsonyi A, Bates JW, Tuba Z (2000) Effects of desiccation on phosphorus and potassium acquisition by a desiccation-tolerant moss and lichen. Ann Bot 86:621–627

    Google Scholar 

  • Badger MR, Price GD (1992) The CO2 concentrating mechanism in cyanobacteria and microalgae. Physiol Plant 84:606–615

    Google Scholar 

  • Bain J, Proctor MCF (1980) The requirement of aquatic bryophytes for free CO2 as an inorganic carbon source: some experimental evidence. New Phytol 86:393–400

    Google Scholar 

  • Baird AJ, Belyea LR, Comas X, Reeve AS, Slater LD (eds) (2009) Carbon cycling in Northern Peatlands. American Geophysical Union, Washington, p 300

    Google Scholar 

  • Banerjee RD, Sen SP (1979) Antibiotic activity of bryophytes. Bryologist 82:141–153

    Google Scholar 

  • Barbé M, Chavel EE, Fenton NJ, Imbeau I, Mazerolle MJ, Drapeau P, Bergeron Y (2016) Dispersal of bryophytes and ferns is facilitated by small mammals in the boreal forest. Ecoscience 23:67–76

    Google Scholar 

  • Barbour MM, McDowell NG, Tcherkez G, Bickford CP, Hanson DT (2007) A new measurement technique reveals rapid post-illumination changes in the carbon isotope composition of leaf-respired CO2. Plant Cell Environ 30:469–482

    Google Scholar 

  • Barger NN, Weber B, Garcia-Pichel F, Zaady E, Belnap J (2016) Patterns and controls on nitrogen cycling of biological soil crusts. In: Weber B, Büdel B, Belnap J (eds) Biological soil crusts: an organizing principle in drylands, ecological studies 226. Springer, Berlin, pp 257–285

    Google Scholar 

  • Barkman JJ (1958) Phytosociology and ecology of cryptogamic epiphytes. Van Gorcum & Co., Assen. 628p (reprinted 1969)

    Google Scholar 

  • Barthlott W, Fischer E, Frahm JP, Seine R (2000) First experimental evidence for zoophagy in the hepatic Colura. Plant Biol 2:1–5

    Google Scholar 

  • Bartholomew-Began SE (1990) Classification of the Haplomitriales and Metzgeriales into the subclass Metzgeriidae, subclass nov. (Hepatophyta, Jungermanniopsida). Phytologia 69:464–466

    Google Scholar 

  • Basile A, Cogoni AE, Bassi P, Fabrizi E, Sorbo S, Giordano S, Castoldo Cobianchi R (2001) Accumulation of Pb and Zn in gametophytes and sporophytes of the moss Funaria hygrometrica (Funariales). Ann Bot 87:537–543

    Google Scholar 

  • Basile A, Giordano S, Lopez-Saez JA, Castaldo Cobianchi R (1999) Antibacterial activity of pure flavonoids isolated from mosses. Phytochemistry 52:1479–1482

    Google Scholar 

  • Bastow Wilson J, Steel JB, Newman JE, Tangney RS (1995) Are bryophyte communities different? J Bryol 18:689–705

    Google Scholar 

  • Bates JW (1975) A quantitative investigation of the saxicolous bryophyte and lichen vegetation of Cape Clear Island, County Cork. J Ecol 63:143–162

    Google Scholar 

  • Bates JW (1976) Cell permeability and regulation of intracellular sodium concentration in a halophytic and a glycophytic moss. New Phytol 77:15–23

    Google Scholar 

  • Bates JW (1978) The influence of metal availability on the bryophyte and macro-lichen vegetation of four types on Skye and Rhum. J Ecol 66:457–482

    Google Scholar 

  • Bates JW (1979) The relationship between physiological vitality and age in shoot segments of Pleurozium schreberi (Brid.) Mitt. J Bryol 10:339–351

    Google Scholar 

  • Bates JW (1982) The role of exchangeable calcium in saxicolous calcicole and calcifuge mosses. New Phytol 90:239–252

    Google Scholar 

  • Bates JW (1987) Nutrient retention by Pseudoscleropodium purum and its relation to growth. J Bryol 14:565–580

    Google Scholar 

  • Bates JW (1989a) Retention of added K, Ca and P by Pseudoscleropodium purum growing under an oak canopy. J Bryol 15:589–605

    Google Scholar 

  • Bates JW (1989b) Interception of nutrients in wet deposition by Pseudoscleropodium purum: an experimental study of uptake and retention of potassium and phosphorus. Lindbergia 15:93–98

    Google Scholar 

  • Bates JW (1992) Influence of chemical and physical factors on Quercus and Fraxinus epiphytes at Loch Sunart, western Scotland: a multivariate analysis. J Ecol 80:163–179

    Google Scholar 

  • Bates JW (1994) Responses of the mosses Brachythecium rutabulum and Pseudoscleropodium purum to a mineral nutrient pulse. Funct Ecol 8:686–692

    Google Scholar 

  • Bates JW (2004) Schistidium maritimum revisited: salt tolerance and survival. Field Bryol 82:39–41

    Google Scholar 

  • Bates JW (2009) Mineral nutrition and substratum ecology. In: Goffinet B, Shaw AJ (eds) Bryophyte biology, 2nd edn. Cambridge University Press, Cambridge, pp 299–356

    Google Scholar 

  • Bates JW, Bakken S (1998) Nutrient retention, desiccation and redistribution in mosses. In: Bates JW, Ashton NW, Duckett JG (eds) Bryology for the twenty-first century. Maney and British Bryological Society, Leeds, pp 293–304

    Google Scholar 

  • Bates JW, Brown DH (1974) The control of cation levels in seashore and inland mosses. New Phytol 73:483–495

    Google Scholar 

  • Bates JW, Preston CD (2011) Can the effects of climate change on British bryophytes be distinguished from those resulting from other environmental changes? In: Tuba Z, Slack NG, Stark LR (eds) Bryophyte ecology and climate change. Cambridge University Press, Cambridge, pp 371–408

    Google Scholar 

  • Bates JW, Proctor MCF, Preston CD, Hodgetts NG, Perry AR (1997) Occurrence of epiphytic bryophytes in a ‘tetrad’ transect across southern Britain. 1. Geographical trends in abundance and evidence of recent change. J Bryol 19:685–714

    Google Scholar 

  • Bates JW, Wibbelmann MH, Proctor MCF (2009) Salinity responses of halophytic and non-halophytic bryophytes determined by chlorophyll fluorometry. J Bryol 31:11–19

    Google Scholar 

  • Bauer L (1956) Über vegetative Sporogonbildung bei einer diploiden Sippe von Georgia pellucida. Planta 46:604–618

    Google Scholar 

  • Bauer L (1959) Auslösung apogamer Sporogonbildung am Regenerationsprotonema von Laubmoosen durch einen vom Muttersporogon abgegebenen Faktor. Naturwissenschaften 46:154–155

    Google Scholar 

  • Bayley SE, Vitt DH, Newbury RW, Beaty KG, Behr R, Miller C (1987) Experimental acidification of a Sphagnum-dominated peatland: first year results. Can J Fish Aquat Sci 44:194–205

    Google Scholar 

  • Beckett RP, Minibayeva FV, Lüthje S, Böttger M (2004) Reactive oxygen species metabolism in desiccation-stressed thalli of the liverwort Dumortiera hirsute. Physiol Plant 122:3–10

    Google Scholar 

  • Beckert S, Muhle H, Pruchner D, Knoop V (2001) The mitochondrial nad2 gene as a novel marker locus for phylogenetic analysis of early land plants: a comparative analysis in mosses. Mol Phylogeny Evol 18:117–126

    Google Scholar 

  • Becquerel P (1951) La suspension de la vie des alges, lichens, mousses au zero absolu et role de la synèrése reversible pour l’existence de la flore polaire et des hautes altitudes. Les Comptes Rendus de l‘Académie Des Sciences. Paris 232:22–25

    Google Scholar 

  • Begon M, Townsend CR, Harper JL (2006) Ecology. From individuals to ecosystems, 4th edn. Blackwell Science, Oxford, 750 pp

    Google Scholar 

  • Bell NE, Boore JL, Mishler BD, Hyvönen J (2014) Organellar genomes of the four-toothed moss, Tetraphis pellucida. BMC Genomics 15:383(11pp)

    Google Scholar 

  • Bell NE, Newton AE (2005) The paraphyly of Hypnodendron and the phylogeny of related non-Hypnanean pleurocarpous mosses inferred from chloroplast and mitochondrial sequence data. Syst Bot 30:34–51

    Google Scholar 

  • Bell NE, Newton AE, Hyvönen J (2012) Epiphytism and generic endemism in the Hypnodendrales: Cyrtopodendron. Franciella and Macro-Morphol Plast Taxon 61:498–514

    Google Scholar 

  • Bell NE, Quandt D, O’Brien TJ, Newton AE (2007) Taxonomy and phylogeny in the earliest diverging pleurocarps: square holes and bifurcating pegs. Bryologist 110:533–560

    Google Scholar 

  • Bell NJ, Hyvönen J (2010) Phylogeny of the moss class Polytrichopsida (Bryophyta): generic-level structure and incongruent gene trees. Mol Phyl Evol 55:381–398

    Google Scholar 

  • Bell PR (1992) Apospory and apogamy: implications for understanding the plant life cycle Int. J Plant Sci 153:S123–S136

    Google Scholar 

  • Belnap J (2003) The world at your feet: desert biological soil crusts. Front Ecol Environ 1:181–189

    Google Scholar 

  • Belnap J, Lange OL (eds) (2003) Biological soil crusts: structure, function and management. Ecological studies, 2nd edn, vol 150. Springer, Heidelberg, 524 p

    Google Scholar 

  • Belnap J, Phillips SL, Miller ME (2004) Response of desert biological soil crusts to alterations in precipitation frequency. Oecologia 141:306–316

    Google Scholar 

  • Belnap J, Weber B, Büdel B (2016) Biological soil crusts as an organizing principle in drylands. In: Weber B, Büdel B, Belnap J (eds) (2016) Biological soil crusts: an organizing principle in drylands, ecological studies, vol 226. Springer, Berlin, pp 3–13

    Google Scholar 

  • Bengtsson F, Rydin H, Baltzer JL, Bragazza L, Bu Z-J, Caporn SJM, Dorrepaal E, Flatberg KI, Galanina OV, Gałka M, Ganeva A, Goia I, Goncharova NN, Hajek M, Haraguchi A, Harris LI, Humphreys E, Jirousek M, Kajukało K, Karofeld E, Koronatova NG, Kosykh NP, Laine AM, Lamentowicz M, Lapshina YD, Limpens J, Linkosalmi M, Ma J-Z, Mauritz M, Mitchell EAD, Munir TM, Natali SM, Natcheva R, Payne RJ, Philippov DA, Rice SK, Robinson SC, Robroek BJM, Rochefort L, Singer D, Stenøien HK, Tuittila E-S, Vellak K, Waddington JM, Granath G (2021) Environmental drivers of Sphagnum growth in peatlands across the Holarctic region. J Ecol 109:417–431

    Google Scholar 

  • Berendse F, v. Breemen N, Rydin H, Buttler A, Heijmans MMPD, Hoonsbeek MR, Lee JA, Mitchell AD, Saarinen T, Vasander H, Wallén B (2001) Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production of Sphagnum bogs. Global Change Biol 7:591–598

    Google Scholar 

  • Berg B (1984) Decomposition of moss litter in a mature Scotch pine forest. Pedobiologia 26:301–308

    Google Scholar 

  • Bergamini A, Pauli D, Peintinger M, Schmid B (2001) Relationships between productivity, number of shoots and number of species in bryophytes and vascular plants. J Ecol 89:920–929

    Google Scholar 

  • Bergamini A, Peintinger M (2002) Effects of light and nitrogen on morphological plasticity of the moss Calliergonella cuspidata. Oikos 96:355–363

    Google Scholar 

  • Berrie GK, Eze JMO (1975) The relationship between an epiphyllous liverwort and host leaves. Ann Bot 39:955–963

    Google Scholar 

  • Best GN (1901) Vegetative reproduction of mosses. Bryologist 4:1–3

    Google Scholar 

  • Bewley JD (1973) The effect of liquid nitrogen temperatures on protein and RNA synthesis in the moss Tortula ruralis. Plant Sci Let 1:303–308

    Google Scholar 

  • Bewley JD (1979) Physiological aspects of desiccation tolerance. Ann Rev Plant Physiol 30:195–238

    Google Scholar 

  • Bewley JD, Halmer P, Krochko JE, Winner WE (1978) Metabolism of a drought-tolerant and a drought-sensitive moss: respiration, ATP synthesis and carbohydrate status. In: Crowe JH, Clegg JS (eds) Dry biological systems. Academic Press, London, pp 185–203

    Google Scholar 

  • Bewley JD, Krochko JE (1982) Desiccation-Tolerance. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology II. Water relations and carbon assimilation. Springer, Berlin Heidelberg New York, pp 325–378

    Google Scholar 

  • Bewley JD, Oliver MJ (1992) Desiccation-tolerance in vegetative plant tissues and seeds: protein synthesis in relation to desiccation and a potential role for protection and repair mechanisms. In: Osmond CB, Somero G (eds) Water and life: a comparative analysis of water relationships at the organismic, cellular and molecular levels. Springer, Berlin Heidelberg New York, pp 141–160

    Google Scholar 

  • Bewley JD, Reynolds TL, Oliver MJ (1993) Evolving strategies in the adaptation to desiccation. In: Close TJ, Bray EA (eds) Plant responses to cellular dehydration during environmental stress. Current topics in plant physiology: American association of plant physiologists series, vol 10. American Association of Plant Physiologists, Rockville, pp 193–201

    Google Scholar 

  • Bidartondo MI, Bruns TD, Weiß M, Sergio C, Read DJ (2003) Specialised cheating of the ectomycorrhizal symbiosis by an epiparasitic liverwort. Proc R Soc Lond B 270:835–842

    Google Scholar 

  • Bidartondo MI, Duckett JG (2010) Conservative ecological and evolutionary patterns in liverwort—fungal symbioses. Proc R Soc Lond B 277:485–492

    Google Scholar 

  • Bisang I (1995) The diaspore bank of hornworts (Anthocerotae, Bryophyta) and its role in the maintenance of populations in cultivated fields. Cryptogam Helv 18:107–116

    Google Scholar 

  • Bisang I (1996) Tracing a hornwort consuming beast. Bryol times 86:1–2

    Google Scholar 

  • Bisang I, Ehrlén J, Hedenäs L (2004) Mate limited reproductive success in two dioicous mosses. Oikos 104:291–298

    Google Scholar 

  • Bischler H (1998) Systematics and evolution of the genera of the Marchantiales. Bryophyt Bibl 51:1–201

    Google Scholar 

  • Bliss LC (1962) Caloric and lipid content in alpine tundra plants. Ecology 43:753–757

    Google Scholar 

  • Bliss LC (1979) Vascular plant vegetation of the Southern Circumpolar Region in relation to antarctic, alpine, and arctic vegetation. Can J Bot 57:2167–2178

    Google Scholar 

  • Bliss LC, Courtin GM, Pattie DL, Riewe RR, Whitfield DWA, Widden P (1973) Arctic tundra ecosystems. Annu Rev Ecol Syst 4:359–399

    Google Scholar 

  • Bliss LC, Svoboda J, Bliss DI (1984) Polar deserts, their plant cover and plant production in the Canadian high arctic. Holarct Ecol 7:305–324

    Google Scholar 

  • Boch S, Fischer M, Knop E, Allan E (2015) Endozoochory by slugs can increase bryophyte establishment and species richness. Oikos 124:331–336

    Google Scholar 

  • Boerner RE, Forman RTT (1975) Salt spray and coastal dune mosses. Bryologist 78:57–63

    Google Scholar 

  • Boehm EWA, McLaughlin DJ (1988) Eocronartium muscicola: a basidiomycetous moss parasite exploiting gametophytic transfer cells. Can J Bot 66:762–770

    Google Scholar 

  • Bonine ML (2004) Growth, reproductive phenology, and population structure in Syntrichia caninervis. MSc thesis, University of Nevada, Las Vegas, USA.

    Google Scholar 

  • Booth RK, Zygmunt JR (2005) Biogeography and comparative ecology of testate amoebae inhabiting Sphagnum-dominated peatlands in the Great Lakes and Rocky Mountain regions of North America. Divers Distrib 11:577–590

    Google Scholar 

  • Bopp M (1954) Untersuchungen über Wachstum und Kapselentwicklung normaler und isolierter Laubmoossporogone. Zeitschrift Für Botanik 42:331–352

    Google Scholar 

  • Bopp M (1956) Die Bedeutung der Kalyptra für die Entwicklung der Laubmoossporogone. Berichte Der Deutschen Botanischen Gesellschaft 69:455–468

    Google Scholar 

  • Bopp M (1961) Morphogenese der Laubmoose. Biol Rev 36:237–280

    Google Scholar 

  • Bopp M (1980) The hormonal regulation of morphogenesis in mosses. In: Skoog F (ed) Plant growth substances. Springer, Berlin Heidelberg New York, pp 351–361

    Google Scholar 

  • Bopp M, Werner O (1993) Abscisic acid and desiccation tolerance in mosses. Botanica Acta 106:103–106

    Google Scholar 

  • Bortoluzzi E, Epron D, Siegenthaler A, Gilbert D, Buttler A (2006) Carbon balance of a European mountain bog at contrasting stages of regeneration. New Phytol 172:708–178

    Google Scholar 

  • Boullard B (1988) Observations on the coevolution of fungi with hepatics. In: Pyrozynski KA, Hawksworth DL (eds) Coevolution of fungi with plants and animals. Academic Press, London, pp 107–124

    Google Scholar 

  • Boullard B, Lemoigne Y (1971) Les champignons endophytes du Rhynia Gwynne-Vaughanii: étude morphologique et déductions sur leur biologie. Le Botaniste 54:49–89

    Google Scholar 

  • Bramley-Alves J, King DH, Robinson SA, Miller RE (2014) Dominating the antarctic environment: bryophytes in a time of change. In: Hanson DT, Rice SK (eds) Photosynthesis in bryophytes and early land plants. Springer, Berlin Heidelberg New York, pp 309–324

    Google Scholar 

  • Brantley S, Shepherd U (2002) Microarthropods on different types of cryptobiotic crusts in pinyon-juniper habitat. In: Abstracts of the 87th annual meeting of the ecological society of america and the 14th annual international conference of the society for ecological restoration, 4–9 August 2002, Tucson, AZ

    Google Scholar 

  • Breeuwer A, Heijmans MMPD, Robroek BJM, Berendse F (2008) The effect of temperature on growth and competition between Sphagnum species. Oecologia 156:155–167

    Google Scholar 

  • Bresinsky A, Körner C, Kadereit JW, Neuhaus G, Sonnewald U (2008) Strasburger—Lehrbuch der Botanik, 36th edn. Spektrum Akademischer Verlag, Heidelberg, p 1176

    Google Scholar 

  • Bresinsky A, Körner C, Kost B, Sonnewald U (2014) Strasburger – Lehrbuch der Botanik, 37th edn. Spektrum Akademischer Verlag, Heidelberg, p 919

    Google Scholar 

  • Brinda JC, Fernando C, Stark LR (2011) Ecology of bryophytes in Mojave desert biological soil crusts: effects of elevated CO2 on sex expression, stress tolerance, and productivity in the moss Syntrichia caninervis Mitt. In: Tuba Z, Slack NG, Stark LR (eds) Bryophyte ecology and climate change. Cambridge University Press, Cambridge, pp 169–190

    Google Scholar 

  • Brodie HJ (1951) The splash-cup dispersal mechanism in plants. Can J Bot 29:224–234

    Google Scholar 

  • Brown CM, Strack M, Price JS (2017) The effects of water management on the CO2 uptake of Sphagnum moss in a reclaimed peatland. Mires Peat 20:1–15

    Google Scholar 

  • Brown DH (1982) Mineral Nutrition. In: Smith AJE (ed) Bryophyte ecology. Chapman & Hall, London, pp 383–444

    Google Scholar 

  • Brown DH (1992) Impact of agriculture on bryophytes and lichens. In: Bates JW, Farmer AM (eds) Bryophytes and lichens in a changing environment. Clarendon Press, Oxford, pp 259–283

    Google Scholar 

  • Brown DH, Bates JW (1990) Bryophytes and nutrient cycling. Bot J Linnean Soc 104:129–147

    Google Scholar 

  • Brown DH, Buck GW (1979) Desiccation effects and cation distribution in bryophytes. New Phytol 82:115–125

    Google Scholar 

  • Brown DH, Wells JM (1990) Physiological Effects of Heavy Metals on the Moss Rhytidiadelphus squarrosus. Ann Bot 66:641–647

    Google Scholar 

  • Brown RC, Lemmon BE (1980) Ultrastructure of sporogenesis in a moss, Ditrichum pallidum. III. Spore wall formation. Am J Bot 67:918–934

    Google Scholar 

  • Brown RC, Lemmon BE (1990) Sporogenesis in bryophytes. In: Blackmore S, Knox RB (eds) Microspores. Evolution and Ontogeny, Academic Press, London, pp 55–94

    Google Scholar 

  • Brown RC, Lemmon BE (2013) Sporogenesis in bryophytes: patterns and diversity in meiosis. Bot Rev 79:178–280

    Google Scholar 

  • Bryan VS (2001) Apospory in mosses discovered by Nathanael Pringsheim in a brilliant epoch of botany. Bryologist 104:40–46

    Google Scholar 

  • Bu ZJ, Rydin H, Chen X (2011) Direct and interaction-mediated effects of environmental changes on peatland bryophytes. Oecologia 166:555–563

    Google Scholar 

  • Buch H (1945) Über die Wasser- und Mineralstoffversorgung der Moose I. Commentationes Biologicae 9(16):1–44

    Google Scholar 

  • Buch H (1947) Über die Wasser- und Mineralstoffversorgung der Moose II. Commentat Biol 9(20):1–61

    Google Scholar 

  • Buchanan A (2008) The rare endemic moss Ambuchanania leucobryoides—a tale of discovery. Australas Bryol Newsl 55:7–8

    Google Scholar 

  • Buchloh G (1951) Symmetrie und Verzweigung der Lebermoose. Ein Beitrag zur Kenntnis ihrer Wuchsformen. Sitzungsber Heidelberger Akad Wiss, Math-Nat Kl, pp 211–279

    Google Scholar 

  • Buck WR (2007) The history of pleurocarp classification: Two steps forward, one step back. In: Newton AE, Tangney RS (ed) Pleurocarpous Mosses: systematics and evolution. Boca Raton, Taylor & Francis, pp 1–18

    Google Scholar 

  • Buck WR, Goffinet B, Shaw AJ (2000) Testing morphological concepts of orders of pleurocarpous mosses (Bryophyta) using phylogenetic reconstructions based on trnL-trnF and rps4 sequences. Mol Phylogenet Evol 16:180–198

    Google Scholar 

  • Buck WR, Vitt DH (1986) Suggestions for a new familial classification of pleurocarpous mosses. Taxon 35:21–60

    Google Scholar 

  • Budke JM (2019) The moss calyptra: a maternal structure influencing offspring development. Bryologist 122:471–491

    Google Scholar 

  • Budke JM, Goffinet B (2006) Phylogenetic analyses of Timmiaceae (Bryophyta: Musci) based on nuclear and chloroplast sequence data. Syst Bot 31:633–641

    Google Scholar 

  • Buitink J, Hoekstra FA, Leprince O (2002) Biochemistry and biophysics of tolerance systems. In: Black M, Pritchard HW (eds) Desiccation and survival in plants: drying without dying. CABI Publishing, Wallingford, pp 293–318

    Google Scholar 

  • Büscher P, Koedam N, van Spreybroeck D (1990) Cation-exchange properties and adaptation to soil acidity in bryophytes. New Phytol 115:177–186

    Google Scholar 

  • Butterfass TH (1992) The patterns of cell division and chloroplast reproduction in young leaflets of Sphagnum. J Bryol 17:143–153

    Google Scholar 

  • Buwalda JG (1991) A mathematical model of carbon acquisition and untilization by kiwifruit vines. Ecol Model 57:43–64

    Google Scholar 

  • Cable JM, Ogle K, Williams DG, Weltzin JF, Huxman TE (2008) Soil texture drives responses of soil respiration to precipitation pulses in the Sonoran Desert: implications for climate change. Ecosystems 11:961–979

    Google Scholar 

  • Callaghan DA, Farr G (2018) The inter-tidal niche of the rare moss Bryum marratii Wilson. J Bryol 40:371–376

    Google Scholar 

  • Cameron RG, Troili D (1982) Fly-mediated spore dispersal in Splachnum ampullaceum (Musci). Mich Bot 21:59–65

    Google Scholar 

  • Campbell C, Vitt DH, Halsey LA, Campbell ID, Thormann MN, Bayley SE (2000) Net primary production and standing biomass in northern continental wetlands. Northern Forestry Centre Information Report NOX -X-369. Canadian Forest Service, Ottawa, 57 p

    Google Scholar 

  • Campos LV, ter Steege H, Uribe J (2015) The epiphytic bryophyte flora of the Colombian Amazon. Caldasia 37:47–59

    Google Scholar 

  • Capesius I, Bopp M (1997) New classification of liverworts based on molecular and morphological data. Plant Syst Evol 207:87–97

    Google Scholar 

  • Carafa A, Duckett JG, Ligrone R (2003) Subterranean gametophytic axes in the primitive liverwort Haplomitrium harbour a unique type of endophytic association with aseptate fungi. New Phytol 160(1):185–197

    Google Scholar 

  • Cargill DC, Duff RJ, Villarreal JC, Renzaglia KS (2005) Generic concepts in hornworts: historical review, contemporary insights and future directions. Austral Syst Bot 18:7–16

    Google Scholar 

  • Carleton TJ, Read DJ (1991) Ectomycorrhizas and nutrient transfer in conifer-feather moss ecosystems. Can J Bot 69:778–785

    Google Scholar 

  • Carter BE, Nosratinia S, Shevock JR (2014) A revisitation of species circumscriptions and evolutionary relationships in Scouleria (Scouleriaceae). Syst Bot 39:4–9

    Google Scholar 

  • Carter DW, Arocena JM (2000) Soil formation under two moss species in sandy materials of central British Columbia (Canada). Geoderma 98:157–176

    Google Scholar 

  • Caruso A, Rudolphi J (2009) Influence of substrate age and quality on species diversity of lichens and bryophytes on stumps. Bryologist 112:520–531

    Google Scholar 

  • Caswell H (2001) Matrix population models: construction, analyses, and interpretation, 2nd edn. Sunderland, MA, Sinauer, 722 p

    Google Scholar 

  • Cavers F (1903) On asexual reproduction and regeneration in Hepaticae. New Phytol 2(121–133):155–165

    Google Scholar 

  • Chambers FM, Booth RK, DeVleeschouwer F, Lamentowicz M, LeRoux G, Mauquoy D, Nichols JE, van Geel B (2012) Development and refinement of proxy-climate indicators from peats. Quatern Int 268:21–33

    Google Scholar 

  • Chang ES, Edwards J, Cha JH, Strassman S, Hard C, Whitaker DL (2010) Vortex rings from Sphagnum moss capsules. arXiv 1010.4266. https://arxiv.org/pdf/1010.4266.pdf)

  • Charman D (2002) Peatlands and environmental change. John Wiley & Sons, Chichester, p 301

    Google Scholar 

  • Charman DJ (2001) Biostratigraphic and palaeoenvironmental applications of testate amoebae. Quatern Sci Rev 20:1753–1764

    Google Scholar 

  • Chazdon RL, Fetcher N (1984) Photosynthetic light environments in a lowland tropical rain forest in Costa Rica. J Ecol 72:553–564

    Google Scholar 

  • Chazdon RL, Pearcy RW, Lee DW, Fetcher N (1996) Photosynthetic responses of tropical forest plants to contrasting light environments. In: Mulkey SS, Chazdon RL, Smith AP (eds) Tropical forest plant ecophysiology. Springer, New York, NY, pp 5–55

    Google Scholar 

  • Chevalier D, Nurit F, Pesey H (1977) Orthophosphate absorption by the sporophyte of Funaria hygrometrica during maturation. Ann Bot 41:527–531

    Google Scholar 

  • Chopra RN (1988) In vitro production of apogamy and apospory in bryophytes and their significance. J Hattori Lab 64:169–175

    Google Scholar 

  • Churchill SP (1985) The systematics an biogeography of Scouleria (musci: Scouleriaceae). Lindbergia 11:59–71

    Google Scholar 

  • Clark DB, Clark DA, Grayum MH (1992) Leaf demography of a neotropical rain forest cycad, Zamia skinneri (Zamiaceae). Am J Bot 79:28–33

    Google Scholar 

  • Clark KL, Nadkarni NM, Gholz HL (1998) Growth, net production, litter decomposition, and net nitrogen accumulation by epiphytic bryophytes in a tropical montane forest. Biotropica 30:12–23

    Google Scholar 

  • Clarke LJ, Robinson S (2008) Cell wall-bound ultravioletscreening compounds explain the high ultraviolet tolerance of the Antarctic moss, Ceratodon purpureus. New Phytol 179:776–783

    Google Scholar 

  • Cleavitt N (2001) Disentangling moss species limitations: the role of physiologically base substrate specificity for six species occurring on substrates with varying pH and percent organic matter. Bryologist 104:59–68

    Google Scholar 

  • Clee DA (1937) Leaf arrangement in relation to water conduction in the foliose Hepaticae. Ann Bot 1:325–328

    Google Scholar 

  • Clymo RS (1963) Ion exchange in Sphagnum and its relation to bog ecology. Ann Bot 27:309–324

    Google Scholar 

  • Clymo RS (1967) Control of cation concentrations, and in particular of pH, in Sphagnum dominated communities. In: Golterman HL, Clymo RS (ed) Chemical environment in the aquatic habitat, Amsterdam, North Holland, pp 273–284

    Google Scholar 

  • Clymo RS (1973) The growth of Sphagnum: some effects of environment. J Ecol 61:849–869

    Google Scholar 

  • Clymo RS, Hayward PM (1982) The ecology of Sphagnum. In: Smith AJE (ed) Bryophyte ecology. Chapman & Hall, London, pp 229–289

    Google Scholar 

  • Coe KK, Sparks JP, Belnap J (2014) Physiological ecology of dryland biocrust mosses. In: Hanson DT, Rice SK (eds) Photosynthesis in bryophytes and early land plants. Springer, Berlin Heidelberg New York, pp 291–308

    Google Scholar 

  • Cole T, Hilger H, Goffinet B (2019) Bryophyte Phylogeny Poster (BPP), PeerJ Preprints 7:e27571v3. (This resource will ultimately be available in 12 languages through ResearchGate. A preprint version is also available through PeerJ.)

    Google Scholar 

  • Coley PD, Kursar TA, Machado JL (1993) Colonization of tropical rain forest leaves by epiphylls: effects of site and host plant leaf lifetime. Ecology 74:619–623

    Google Scholar 

  • Collins NJ (1976) Growth and population dynamics of the moss Polytrichum alpestre in the maritime Antarctic. Strategies of growth and population dynamics of tundra plants 2. Oikos 27:389–401

    Google Scholar 

  • Convey P (1994) Photosynthesis and dark respiration in Antarctic mosses—an initial comparative study. Pol Biol 14:65–69

    Google Scholar 

  • Cornelissen JHC, Lang SI, Soudzilovskaia NA, During HJ (2007) Comparative cryptogam ecology: a review of bryophyte and lichen traits that drive biogeochemistry. Ann Bot 99:987–1001

    Google Scholar 

  • Cornelissen JHC, ter Steege H (1989) Distribution and ecology of epiphytic bryophytes and lichens in dry evergreen forest of Guyana. J Trop Ecol 5:131–150

    Google Scholar 

  • Correns C (1899) Über Vermehrung der Laubmoose durch Brutorgane und Stecklinge. Gustav Fischer, Jena, 472 p

    Google Scholar 

  • Cowan IR (1982) Regulation of water use in relation to carbon gain in higher plants In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology II. Water relations and carbon assimilation. Springer, Berlin Heidelberg New York, pp 589–614

    Google Scholar 

  • Cowan IR (1986) Economics of carbon fixation in higher plants. In: Givnish TJ (ed) On the economy of plant form and function. Cambridge University Press, Cambridge, UK, pp 133–170

    Google Scholar 

  • Cox CJ, Goffinet B, Newton AE, Shaw AJ, Hedderson TAJ (2000) Phylogenetic relationships among the diplolepidous-alternate mosses (Bryidae) inferred from nuclear and chloroplast DNA sequences. Bryologist 103:224–241

    Google Scholar 

  • Cox CJ, Goffinet B, Wickett NJ, Boles SA, Shaw AJ (2010) Moss diversity: a molecular phylogenetic analysis of genera. Phytotaxa 9:175–195

    Google Scholar 

  • Cox CJ, Henderson TAJ (2003) Phylogenetic relationships within the moss family Bryaceae based on chloroplast DNA evidence. J Bryol 25:31–40

    Google Scholar 

  • Cox CJ, Li B, Foster PG, Embley TM, Civan P (2014) Conflicting phylogenies for early land plants are caused by composition biases among synonymous substitutions. Syst Biol 63:272–279

    Google Scholar 

  • Coxson DS (1991) Nutrient release from epiphytic bryophytes in tropical montane forest (Guadeloupe). Can J Bot 69:2122–2129

    Google Scholar 

  • Coxson DS, McIntyre DD, Vogel HJ (1992) Pulse release of sugars and polyols from canopy bryophytes in Tropical Montane Rain Forest (Guadeloupe, French West Indies). Biotropica 24:121–133

    Google Scholar 

  • Craigie JS, Maass WSG (1966) The cation exchanger in Sphagnum. Ann Bot 30:153–154

    Google Scholar 

  • Crandall-Stotler B (1981) Morphology/anatomy of hepatics and anthocerotes. Adv Bryol 1:315–398

    Google Scholar 

  • Crandall-Stotler BJ, Forrest LL, Stotler RE (2005) Evolutionary trends in the simple thalloid liverworts (Marchantiophyta, Jungermanniopsida subclass Metzgeriidae). Taxon 54:299–316

    Google Scholar 

  • Crandall-Stotler B, Stotler RE (2000) Morphology and classification of the Marchantiophyta. In: Shaw AJ, Goffinet B (eds) Bryophyte biology. Cambridge University Press, Cambridge, pp 21–70

    Google Scholar 

  • Crandall-Stotler B, Stotler RE, Long DG (2009a) Morphology and classification of the marchantiophyta. In: Goffinet B, Shaw AJ (eds) Bryophyte Biology, 2nd edn. Cambridge University Press, Cambridge, pp 1–54

    Google Scholar 

  • Crandall-Stotler B, Stotler RE, Long DG (2009b) Morphology and classification of the Marchantiophyta. Edinburgh J Bot 66:155–198

    Google Scholar 

  • Crawford M, Jesson LK, Garnock-Jones PJ (2009) Correlated evolution of sexual system and life-history traits in mosses. Evolution 63:1129–1142

    Google Scholar 

  • Cremer KW, Mount AB (1965) Early stages of plant succession following the complete felling and burning of Eucalyptus regnans forest in the Florentine Valley, Tasmania. Aust J Bot 13:303–322

    Google Scholar 

  • Cronberg N (1993) Reproductive biology of Sphagnum. Lindbergia 17:69–82

    Google Scholar 

  • Cronberg N (2002) Colonization dynamics of the clonal moss Hylocomium splendens on islands in a Baltic land uplift area: reproduction, genet distribution and genetic variation. J Ecol 90:925–935

    Google Scholar 

  • Cronberg N (2012) Animal-mediated fertilization in bryophytes—parallel or precursor to insect pollination in angiosperms? Lindbergia 35:76–85

    Google Scholar 

  • Cronberg N (2004) Genetic differentiation between populations of the moss Hylocomium splendens (Hedw.) Schimp. from low versus high elevation in the Scandinavian mountain range. Lindbergia 29:64–72

    Google Scholar 

  • Cronberg N, Molau U, Sonesson M (1997) Genetic variation in the clonal bryophyte Hylocomium splendens at hierarchical geographical scales in Scandinavia. Heredity 78:293–301

    Google Scholar 

  • Cronberg N, Natcheva R, Hedlund K (2006) Microarthropods mediate sperm transfer in mosses. Science 313:1255

    Google Scholar 

  • Crowe JH, Carpenter JF, Crowe LM (1998) The role of vitrification in anhydrobiosis. Ann Rev Physiol 60:73–103

    Google Scholar 

  • Crum H, Seppelt RD (1999) Sphagnum leucobryoides reconsidered. Contr Univ Michigan Herb 22:29–31

    Google Scholar 

  • Cruz de Carvalho R, Bernardes da Silva A, Soares R, Almeida AM, Coelho AV, Marques da Silva J, Branquinho C (2014) Differential proteomics of dehydration and rehydration in bryophytes: evidence towards a common desiccation tolerance mechanism. Plant Cell Environ 37:1499–1515

    Google Scholar 

  • Csintalan Z, Proctor MCF, Tuba Z (1999) Chlorophyll fluorescence during drying and rehydration in the mosses Rhytidiadelphus loreus (Hedw.) Warnst., Anomodon viticulosus (Hedw.) Hook. & Tayl. and Grimmia pulvinata (Hedw.) Sm. Ann Bot 84:235–244

    Google Scholar 

  • Cuming AC (1999) LEA proteins. In: Shewry PR, Casey R (eds) Seed proteins. Kluwer Academic Publishers, Dordrecht, pp 753–780

    Google Scholar 

  • Daniels RE, Eddy A (1985) Handbook of European Sphagna. Abbots Ripton, Huntington. National Environment Research Council, Institute of Terrestrial Ecology, p 265

    Google Scholar 

  • Danin A, Gaynor E (1991) Trapping of airborne dust by mosses in the Negev Desert, Israel. Earth Surf Process Landf 16:153–162

    Google Scholar 

  • Darby BJ, Neher DA (2016) Microfauna within biological soil crusts. In: Weber B, Büdel B, Belnap J (eds) Biological soil crusts: an organizing principle in drylands, ecological studies, vol 226. Springer, Berlin, pp 139–157

    Google Scholar 

  • Davey MC (1999) The elemental and biochemical composition of bryophytes from the maritime Antarctic. Antarctic Sci 11:157–159

    Google Scholar 

  • Davey MC, Rothery P (1996) Seasonal variation in respiratory and photosynthetic parameters in three mosses from the maritime Antarctic. Ann Bot 78:719–728

    Google Scholar 

  • Davidson AJ, Harborne JB, Longton RE (1990) The acceptability of mosses as food for generalist herbivores, slugs in the Arionidae. Bot J Linn Soc 104:99–113

    Google Scholar 

  • Davis RC (1981) Structure and function of two Antarctic terrestrial moss communities. Ecol Monogr 51:125–143

    Google Scholar 

  • Deben S, Aboal JR, Carballeira A, Cesa M, Fernandez JA (2017) Monitoring river water quality with transplanted bryophytes: a methodological review. Ecol Indic 81:461–470

    Google Scholar 

  • Degenkolbe W (1937) Brutorgane bei beblätterten Lebermoosen. Annals Bryol 10:43–96

    Google Scholar 

  • De Luna E (1995) The circumscription and phylogenetic relationships of the Hedwigiaceae (Musci). Syst Bot 20:347–373

    Google Scholar 

  • Deltoro VI, Calatayud A, Gimeno C, Abadia A, Barreno E (1998) Changes in chlorophyll a fluorescence, photosynthetic CO2 assimilation and xanthophyll cycle interconversions during dehydration in desiccation-tolerant and intolerant liverworts. Planta 207:224–228

    Google Scholar 

  • Desiro A, Duckett JG, Pressel S, Villarreal JC, Bidartondo MI (2013) Fungal symbioses in hornworts: a chequered history. Proc R Soc B 280: 20130207

    Google Scholar 

  • De Vargas MVM, Minozzo MM, Victoria PAB, FC (2017) Growth and development of halophyte Funaria hygrometrica HEDW. (Funariaceae) under salt stress. Biosci J Uberlandia 33:1617–1621

    Google Scholar 

  • Dhindsa R (1987) Glutathione status and protein synthesis during drought and subsequent rehydration of Tortula ruralis. Plant Physiol 83:816–819

    Google Scholar 

  • Dieleman CM, Lindo Z, McLaughlin JW, Craig AE, Branfireun BA (2016) Climate change effects on peatland decomposition and porewater dissolved organic carbon biogeochemistry. Biogeochemistry 128:385–396

    Google Scholar 

  • Dierßen K (2001) Distribution, ecological amplitude and phytosociological characterization of European bryophytes. Bryophytorum Bib, vol 56. Berlin, Stuttgart; Cramer i. d. Gebr.- Borntraeger-Verl.-Buchh, 289 p

    Google Scholar 

  • Dilks TJK, Proctor MCF (1975) Comparative experiments on temperature responses of bryophytes: assimilation, respiration and freezing damage. J Bryol 8:317–336

    Google Scholar 

  • Dilks TJK, Proctor MCF (1976a) Effects of intermittent desiccation on bryophytes. J Bryol 9:249–264

    Google Scholar 

  • Dilks TJK, Proctor MCF (1976b) Seasonal variation in desiccation tolerance in some British bryophytes. J Bryol 9:239–247

    Google Scholar 

  • Dilks TJK, Proctor MCF (1979) Photosynthesis, respiration, and water content in bryophytes. New Phytol 82:97–114

    Google Scholar 

  • Döbbeler P (1978) Moosbewohnende Ascomyceten I. Die pyrenocarpen, den Gametophyten besiedelnden Arten—Mitt. Bot Staatssamml München 14:1–360

    Google Scholar 

  • Döbbeler P (1979a) Moosbewohnende Ascomyceten II. Acrospermum adeanum—Mitt. Bot Staatssamml München 15:175–191

    Google Scholar 

  • Döbbeler P (1979b) Moosbewohnende Ascomyceten III. Einige neue Arten der Gattungen Nectria, Epibryon und Punctillum—Mitt. Bot Staatssamml München 15:193–221

    Google Scholar 

  • Döbbeler P (1980) Moosbewohnende Ascomyceten IV. Zwei neue Arten der Gattung Octosporella (Pezizales)—Mitt. Bot Staatssamml München 16:471–484

    Google Scholar 

  • Döbbeler P (1981) Moosbewohnende Ascomyceten V. Die auf Dawsonia vorkommenden Arten der Botanischen Staatssammlung München—Mitt. Bot Staatssamml München 17:393–473

    Google Scholar 

  • Döbbeler P (1982) Moosbewohnende Ascomyceten VI. Einige neue Pyrenomyceten—Mitt. Bot Staatssamml München 18:341–358

    Google Scholar 

  • Döbbeler P (1985) Moosbewohnende Ascomyceten VII. Neufunde einiger Arten der Gattung Epibryon.—Mitt. Bot Staatssamml München 21:757–773

    Google Scholar 

  • Döbbeler P (1997) Biodiversity of bryophilous ascomycetes. Biodiv Conserv 6:721–738

    Google Scholar 

  • Donath TW, Eckstein RL (2010) Effects of bryophytes and grass litter on seedling emergence vary by vertical seed position and seed size. Plant Ecol 207:257–268

    Google Scholar 

  • Drake P, Grimshaw-Surette H, Heim A, Lundholm JT (2018) Mosses inhibit germination of vascular plants on an extensive green roof. Ecol Eng 117:111–114

    Google Scholar 

  • Duckett JG, P’ng, KMY, Renzaglia KS, Pressel S, (2010) The function and evolution of stomata in bryophytes. Field Bryol 101:38–40

    Google Scholar 

  • Duckett JG, Prasad AKSK, Davies DA, Walker S (1977) A cytological analysis of the Nostoc-Bryophyte relationship. New Phytol 79:349–362

    Google Scholar 

  • Duckett JG, Pressel S, P’ng KMY, Renzaglia KS, (2009) Exploding a myth: the capsule dehiscence mechanism and the function of pseudostomata in Sphagnum. New Phytol 183:1053–1063

    Google Scholar 

  • Duckett JG, Read DJ (1995) Ericoid mycorrhizas and rhizoid–ascomycete associations in liverworts share the same mycobiont: isolation of the partners and resynthesis of the association in vitro. New Phytol 129:439–447

    Google Scholar 

  • Duckett JG, Renzaglia KS (1988) Ultrastructure and development of plastids in bryophytes. Adv Bryol 3:33–93

    Google Scholar 

  • Duckett JG, Renzaglia KS, Pell K (1991) A light and electron microscope study of rhizoid-ascomycete associations and flagelliform axes in British hepatics with observations on the effects of the fungi on host morphology. New Phytol 118:233–257

    Google Scholar 

  • Duff RJ, Cargill DC, Villarreal JC, Renzaglia KS (2004) Phylogenetic relationships of the hornworts based on rbcL sequence data: novel relationships and new insights. In: Goffinet B, Hollowell V, Magill R (eds) Molecular systematics of bryophytes. Monogr System Bot Missouri Bot Garden 98:41–58

    Google Scholar 

  • Duff RJ, Moore FBG (2005) Pervasive RNA editing among hornwort rbcL transcripts except Leiosporoceros. J Mol Evol 61:571–578

    Google Scholar 

  • Duff RJ, Villarreal JC, Cargill DC, Renzaglia KS (2007) Progress and challenges toward developing a phylogeny and classification of the hornworts. Bryologist 110:214–243

    Google Scholar 

  • Duncan D, Dalton PL (1982) Recolonisation by bryophytes following fire. J Bryol 12:53–63

    Google Scholar 

  • Du Rietz GE (1925) Gotländische Vegetationsstudien. Svenska Växtsociologiska Sällskapets Handlingar 2:1–65

    Google Scholar 

  • During HJ (1979) Life strategies of bryophytes: a preliminary review. Lindbergia 5:2–18

    Google Scholar 

  • During HJ (1987) Bryophyte diaspore banks. Adv Bryol 6:103–134

    Google Scholar 

  • During HJ (1990) Clonal growth patterns among bryophytes. In: van Groenendael J, de Kroon H (eds) Clonal growth in plants: regulation and function. SPB Academic Publishing, The Hague, pp 153–176

    Google Scholar 

  • During HJ (1992) Ecological classification of bryophytes and lichens. In: Bates JW, Farmer AM (eds) Bryophytes and Lichens in a changing environment. Oxford University Press, Oxford, pp 1–31

    Google Scholar 

  • During HJ (1997) Bryophyte diaspore banks. Adv Bryol 6:103–134

    Google Scholar 

  • During HJ (2001) Diaspore banks. Bryologist 104:92–97

    Google Scholar 

  • During HJ, ter Horst B (1983) The diaspore bank of bryophytes and ferns in chalk grassland. Lindbergia 9:57–64

    Google Scholar 

  • During HJ, van Tooren BF (1988) Patterns and dynamics in the bryophyte layer of a chalk grassland. In: During HJ, Werger MJ, Willems JH (eds) Diversity and pattern in plant communities, 1st edn. SPB Academic Publishing, The Hague, pp 195–208

    Google Scholar 

  • During HJ, van Tooren BF (1990) Bryophyte interactions with other plants. Bot J Linn Soc 104:79–98

    Google Scholar 

  • Eckstein J, Eckstein G (2009) Bryoparasitische Pezizales (Ascomycetes) der Gattungen Lamprospora, Octospora und Neottiella im Alten Botanischen Garten von Göttingen (Deutschland, Niedersachsen). Herzogia 22:213–228

    Google Scholar 

  • Eckstein RL, Karlsson PS (1999) Recycling of nitrogen among segments of Hylocomium splendens as compared with Polytrichum commune—implications for clonal integration in an ectohydric bryophyte. Oikos 86:87–96

    Google Scholar 

  • Edwards D, Duckett JG, Richardson JB (1995) Hepatic characters in the earliest land plants. Nature 374:635–636

    Google Scholar 

  • Ehrlen J, Bisang I, Hedenäs L (2000) Costs for sporophyte production in the moss Dicranum polysetum. Plant Ecol 149:207–217

    Google Scholar 

  • Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, Andreae MO, Pöschl U (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat Geosci 5:459–462

    Google Scholar 

  • Elumeeva TG, Soudzilovskaia NA, During HJ, Cornelissen JHC (2011) The importance of colony structure versus shoot morphology for the water balance of 22 subarctic bryophyte species. J Veg Sci 22:152–164

    Google Scholar 

  • Equihua M, Usher MB (1993) Impacts of carpets of the invasive moss Campylopus introflexus on Calluna vulgaris regeneration. J Ecol 81:359–365

    Google Scholar 

  • Eschrich W, Steiner M (1967) Autoradiographische Untersuchungen zum Stofftransport bei Polytrichum commune. Planta 74:330–349

    Google Scholar 

  • Escolar C, Martinez I, Bowker MA, Maestre FT (2012) Warming reduces the growth and diversity of biological soil crusts in a semi-arid environment: implications for ecosystem structure and functioning. Phil Trans R Soc B Biol Sci 367:3087–3099

    Google Scholar 

  • Esser K (1992) Kryptogamen 2: moose, farne. Springer, Berlin Heidelberg, 220 p

    Google Scholar 

  • Essl F, Steinbauer K, Dullinger S, Mang T, Moser D (2013) Telling a different story: a global assessment of bryophyte invasions. Biol Invasions 15:1933–1946

    Google Scholar 

  • Essl F, Steinbauer K, Dullinger S, Mang T, Moser D (2014) Little, but increasing evidence of impacts by alien bryophytes. Biol Invasions 16:1175–1184

    Google Scholar 

  • Ewald J (2000) The influence of coniferous canopies on understorey vegetation and soils in mountain forests of the northern Calcareous Alps. ApplVeg Sci 3:123–134

    Google Scholar 

  • Eze JMO, Berrie GK (1977) Further investigations into the physiological relationships between an epiphyllous liverwort and its host leaves. Ann Bot 41:351–358

    Google Scholar 

  • Favero-Longo SE, Worland MR, Convey P, Lewis Smith RI, Piervittori R, Guglielmin M, Cannone N (2012) Primary succession of lichen and bryophyte communities following glacial recession on Signy Island, South Orkney Islands, Maritime Antarctic. Antarct Sci 24:323–336

    Google Scholar 

  • Fenton NJ, Bergeron Y, Paré D (2010) Decomposition rates of bryophytes in managed boreal forests: influence of bryophyte species and forest harvesting. Plant Soil 336:499–508

    Google Scholar 

  • Fergus AJF, Gerighausen U, Roscher C (2017) Vascular plant diversity structures bryophyte colonization in experimental grassland. J Veg Sci 28:903–914

    Google Scholar 

  • Field KJ, Rimington WR, Bidartondo MI, Allinson KE, Beerling DJ, Cameron DD, Duckett JG, Leake JR, Pressel S (2015) First evidence of mutualism between ancient plant lineages (Haplomitriopsida liverworts) and Mucoromycotina fungi and its response to simulated Palaeozoic changes in atmospheric CO2. New Phytol 205:743–756

    Google Scholar 

  • Field KJ, Rimington WR, Bidartondo MI, Allinson KE, Beerling DJ, Cameron DD, Duckett JG, Leake JR, Pressel S (2016) Functional analysis of liverworts in dual symbiosis with Glomeromycota and Mucoromycotina fungi under a simulated Palaeozoic CO2 decline. ISME J 10:1514–1526

    Google Scholar 

  • Fife AJ (1985) A generic revision of the Funariaceae (Bryophyta: Musci) Part 1. J Hattori Bot Lab 58:149–196

    Google Scholar 

  • Fife AJ (2015) Gigaspermaceae. In: Heenan PB, Breitwieser I, Wilton AD (eds) Flora of New Zealand—Mosses. Fascicle 21. Manaaki Whenua Press, Lincoln. https://doi.org/10.7931/B1TG6K

  • Fife AJ, Seppelt RD (2012) Australian mosses Online. 67 Funariaceae. http://www.anbg.gov.au/abrs/Mosses_online/Funariaceae.pdf

  • Filzer P (1933) Experimentelle Beiträge zur Synökologie der Pflanzen. I. Jahrb Wiss Bot 79:9–130

    Google Scholar 

  • Flegel M, Becker H (2000) Characterization of the contents of oil bodies from the liverwort Radula complanata. Plant Biol 2:208–210

    Google Scholar 

  • Foote KG (1966) The vegetation of lichens and bryophytes on limestone outcrops in the driftless area of Wisconsin. Bryologist 69:265–292

    Google Scholar 

  • Forman RTT (1968) Caloric values of bryophytes. Bryologist 71:344–347

    Google Scholar 

  • Forrest LL, Crandall-Stotler BJ (2004) A phylogeny of the simple thalloid liverworts (Jungermanniopsida, subclass Metzgeriidae) as inferred from five chloroplast genes. In: Goffinet B, Hollowell V, Magill R (eds) Molecular systematics of bryophytes. Monogr System Bot Missouri Bot Garden 98:119–140

    Google Scholar 

  • Forrest LL, Crandall-Stotler BJ (2005) Progress towards a robust phylogeny for the liverworts, with particular focus on the simple thalloids. J Hattori Bot Lab 97:127–159

    Google Scholar 

  • Forrest LL, Davis EC, Long DG, Crandall-Stotler BJ, Clark A, Hollingsworth ML (2006) Unraveling the evolutionary history of the liverworts (Marchantiophyta): multiple taxa, genomes and analysis. Bryologist 109:303–334

    Google Scholar 

  • Frahm JP (1974) Moosgesellschaften an Küstenfelsen in West Island. Act Bot Islandica 3:89–96

    Google Scholar 

  • Frahm JP (1990) Bryophyte phytomass in tropical ecosystems. Bot J Linnean Soc 104:23–33

    Google Scholar 

  • Frahm JP (1997) Which function have the hyalocysts of the leaves of Dicranaceae? Crytogamie Bryol Lichenol 18:235–242

    Google Scholar 

  • Frahm JP (2001) Biologie der Moose. Spektrum Akademischer Verlag, Heidelberg, Berlin, p 357p

    Google Scholar 

  • Frahm JP (2005) The first record of a Fossil Hornwort (Anthocerotophyta) from dominican amber. Bryologist 108:139–141

    Google Scholar 

  • Frahm JP (2008) Diversity, dispersal and biogeography of bryophytes (mosses). Biodiv Conserv 17:277–284

    Google Scholar 

  • Frahm JP, Frey W (2004) Moosflora, 4th edn. Ulmer, Stuttgart, p 538

    Google Scholar 

  • Franco AMA, Hill JK, Kitschke C, Collingham YC, Roy DB, Fox R, Huntley B, Thomas CD (2006) Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Global Change Biol 12:1545–1553

    Google Scholar 

  • Frangedakis E, Shimamura M, Villarreal JC, Li FW, Tomaselli M, Waller M, Sakakibara K, Renzaglia KS, Szövenyi P (2020) The hornworts: morphology, evolution and development. New Phytol 229:735–754

    Google Scholar 

  • Fraser CJD, Roulet NT, Moore TR (2001) Hydrology and dissolved organic carbon biogeochemistry in an ombrotrophic bog. Hydrol Process 15:3151–3166

    Google Scholar 

  • Frego KA, Carleton TJ (1995) Microsites conditions and spatial pattern in a boreal bryophyte community. Can J Bot 73:544–551

    Google Scholar 

  • Frego KA, Carleton TJ (1998) Microsite tolerance of four bryophytes in a mature black spruce stand: reciprocal transplants. Bryologist 98:452–458

    Google Scholar 

  • Freiberg M, Freiberg E (2000) Epiphyte diversity and biomass in the canopy of lowland and montane forests in Ecuador. J Trop Ecol 16:673–688

    Google Scholar 

  • Frey W, Kürschner H (2011) Asexual reproduction, habitat colonization and habitat maintenance in bryophytes. A Review. Flora 206:173–184

    Google Scholar 

  • Frey W, Stech M (2005) A morpho-molecular classification of the Anthocerotophyta (hornworts). Nova Hedwigia 80:542–545

    Google Scholar 

  • Frey W, Stech M, Fischer E (eds) (2009) Part 3: bryophytes and seedless vascular plants. In: Frey W (ed) Syllabus of plant families—a Engler's syllabus der pflanzenfamilien. Schweizerbart Science Publishers, Stuttgart, Germany, 419 p

    Google Scholar 

  • Fridriksson S (1975) Surtsey: evolution of life on a Volcanic Island. Butterworth & Co., London, p 208

    Google Scholar 

  • Fritsch R (1991) Index to chromosome counts. Bryophytorum Bibliotheca 40:1–352

    Google Scholar 

  • Fritz C, Lamers LPM, Riaz M, van den Berg LJL, Elzenga JTM (2014) Sphagnum mosses—masters of efficient N uptake while avoiding intoxication. PLoS ONE 9(1):e79991 [1–11]. https://doi.org/10.1371/journal.pone.0079991

  • Furness SB, Grime JP (1982) Growth rate and temperature responses in bryophytes. II. A comparative study of species of contrasted ecology. J Ecol 70:525–536

    Google Scholar 

  • Gajewski K, Viau A, Sawada M, Atkinson D, Wilson S (2001) Sphagnum peatland distribution in North America and Eurasia during the past 21,000 years. Global Biogeochem Cycl 15:297–310

    Google Scholar 

  • Gałka M, Swindles GT, Szal M, Fulweber R, Feurdean A (2018) Response of plant communities to climate change during the late Holocene: palaeoecological insights from peatlands in the Alaskan Arctic. Ecol Ind 85:525–536

    Google Scholar 

  • Gams H (1932) Bryo-Cenology (Moss-Societies) In: Verdoon F (ed) Manual of bryology. Nijhoff, The Hague, pp 323–366

    Google Scholar 

  • Gao B, Zhang DY, Yang LXS, HL, Liang YQ, Chen MX, Zhang YM, Zhang JH, Wood AJ (2018) Desiccation tolerance in bryophytes: the rehydration proteomes of Bryum argenteum provide insights into the resuscitation mechanism. J Arid Land 10:152–167

    Google Scholar 

  • Garbary DJ, Miller AG, Scrosati R, Kim KY, Schofield WB (2008) Distribution and salinity tolerance of intertidal mosses from Nova Scotian salt marshes. Bryologist 111:282–291

    Google Scholar 

  • Garner DLB, Paolillo DJ Jr (1973) On the functioning of stomata in Funaria. Bryologist 76:423–427

    Google Scholar 

  • Gerdol R, Bonora A, Gualandri R, Pancaldi S (1996) CO2 exchange, photosynthetic pigment composition, and cell ultrastructure of Sphagnum mosses during dehydration and subsequent rehydration. Can J Bot 74:726–734

    Google Scholar 

  • Gerson U (1969) Moss-arthropod associations. Bryologist 72:495–500

    Google Scholar 

  • Gerson U (1982) Bryophytes and invertebrates. In: Ecology B (ed) Smith AJE. Chapman & Hall, London, pp 291–332

    Google Scholar 

  • Gignac LD (1993) Distribution of Sphagnum species, communities, and habitats in relation to climate. Adv Bryol 5:187–222

    Google Scholar 

  • Gignac LD, Vitt DH (1990) Habitat limitations of Sphagnum along climatic, chemical and physical gradients in mires of western Canada. Bryologist 93:7–22

    Google Scholar 

  • Gimingham CH, Birse EM (1957) Ecological studies on growth-form in bryophytes: I. Correlations between growth-form and habitat. J Ecol 45:533–545

    Google Scholar 

  • Gimingham CH, Robertson ET (1950) Preliminary investigations on the structure of bryophytic communities. Trans Br Bryol Soc 1:330–344

    Google Scholar 

  • Glenn-Lewin DC, van der Maarel E (1992) Patterns and processes of vegetation dynamics. In: Glenn-Lewin DC, Peet RK, Veblen TT (eds) Plant succession: theory and prediction. Chapman & Hall, London, pp 11–59

    Google Scholar 

  • Glime JM (2006–2017a) Bryophyte ecology vol. I physiological ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists (continuously updated). Available at www.bryoecol.mtu.edu

  • Glime JM (2006–2017b) Bryophyte ecology vol 2 bryological interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists (continuously updated). Available at www.bryoecol.mtu.edu

  • Glime JM (2014) Photosynthesis in aquatic bryophytes. In: Hanson D, Rice S (eds) Photosynthesis in bryophytes and early land plants. Advances in photosynthesis and respiration (including bioenergy and related processes), vol 37. Springer, Dordrecht, pp 201–231

    Google Scholar 

  • Glime JM (2017) Ecophysiology of development: spore germination. Chapt 5–2 In: Glime JM, Bryophyte Ecology. Volume 1 physiological ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Available at www.bryoecol.mtu.edu

  • Godinez-Vidal D, Lopez-Leal G, Covarrubias-Robles AA, Reyes JL (2020) Early events leading to water deficit responses in the liverwort Marchantia polymorpha. Environ Exp Bot 178:104172

    Google Scholar 

  • Goebel K (1898) Organographie der Pflanzen, insbesondere der Archegoniaten und Samenpflanzen. Zweiter Teil: Specielle Organographie. I Heft: Bryophyten. Gustav Fischer, Jena, pp 283–385

    Google Scholar 

  • Goebel K (1905) Organography of plants especially of the archegoniate and spermatophyta. Clarendon Press, Oxford, Part II. Special Organography

    Google Scholar 

  • Goffinet B (2003) Bibliography of systematic and population genetic studies of bryophytes based on DNA data II. Cryptogam Bryol 24:181–185

    Google Scholar 

  • Goffinet B (2012) Splachnaceae. In: McCarthy PM (ed) Australian mosses online. Aust Biol Resour Study

    Google Scholar 

  • Goffinet B, Buck WR (2004) Systematics of the Bryophyta (mosses): from molecules to a revised classification. In: Goffinet B, Hollowell V, Magill R (eds) Molecular systematics of bryophytes. Monographs in systematic botany from the Missouri Botanical Garden, vol 98. University of Chicago Press, Chicago, pp 205–239

    Google Scholar 

  • Goffinet B, Buck WR, Shaw AJ (2009a) Addenda to the classification of mosses. I. Andreaeophytina stat and Andreaeobryophytina stat. Nov Bryol 112:856–857

    Google Scholar 

  • Goffinet B, Buck WR, Shaw AJ (2009b) Morphology, anatomy, and classification of the Bryophyta. In: Goffinet B, Shaw AJ (eds) Bryophyte biology, 2nd edn. Cambridge University Press, Cambridge, pp 55–138

    Google Scholar 

  • Goffinet B, Hax NP (2001) Bibliography of ‘molecular systematic’ studies of Bryophytes I. 1985–2000. Cryptogam Bryol 22:149–155

    Google Scholar 

  • Goffinet B, Hollowell V, Magill R (eds) (2004a) Molecular systematics of bryophytes. Monographs in systematic botany from the Missouri botanical garden, vol 98. University of Chicago Press, Chicago, 448p

    Google Scholar 

  • Goffinet B, Shaw AJ (eds) (2009) Bryophyte biology, 2nd edn. Cambridge University Press, Cambridge, 334p

    Google Scholar 

  • Goffinet B, Shaw AJ, Cox CJ (2004b) Phylogenetic inferences in the dung-moss family Splachnaceae from analyses of cp DNA sequence data and implications for the evolution of entomophily. Am J Bot 91:748–759

    Google Scholar 

  • Goffinet B, Shaw AJ, Cox CJ, Wickett NJ, Boles SB (2004c) Phylogenetic inferences in the Orthotrichoideae (Orthotrichaceae, Bryophyta) based on variation in four loci from all genomes. Monogr Syst Bot Missouri Bot Gard 98:270–289

    Google Scholar 

  • Goffinet B, Vitt DH (1998) 10. Revised generic classification of the Orthotrichaceae based on a molecular phylogeny and comparative morphology. In: Bates W, Ashton NW, Duckett JG (eds) Bryology for the twenty-first century. maney publishing, leeds, pp 143–159; Goffinet B, Bayer RJ, Vitt DH (1998) Circumscription and phylogeny of the Orthotrichales (Bryopsida) inferred from rbcL sequence analyses. Am J Bot 85:1324–1337

    Google Scholar 

  • Gordon C, Wynn JM, Woodin SJ (2001) Impacts of increased nitrogen supply on High Arctic heath: the importance of bryophytes and phosphorus availability. New Phytol 149:461–471

    Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195

    Google Scholar 

  • Gornall JL, Woodin SJ, Jónsdóttir IS, van der Wal R (2011) Balancing positive and negative plant interactions: how mosses structure vascular plant communities. Oecologia 166:769–782

    Google Scholar 

  • Gorton BS, Eakin RE (1957) Development of the Gametophyte in the Moss Tortella caespitosa. Bot Gaz 119:31–38

    Google Scholar 

  • Gottsche CM (1843) Anatomisch-physiologische Untersuchungen über Haplomitrium Hookeri N.v.E., mit Vergleichung anderer Lebermoose. Acta Acad Caes Leop Carol 20:267–398

    Google Scholar 

  • Gradstein SR (1996) Corticolous bryophytes. Ecotropica 2:63–65

    Google Scholar 

  • Graglia E, Jonasson S, Michelsen A, Schmidt IK, Havstroim M, Gustavsson L (2001) Effects of environmental perturbations on abundance of subarctic plants after three, seven and ten years of treatments. Ecography 24:5–12

    Google Scholar 

  • Granath G, Strengbom J, Rydin H (2012) Direct physiological effects of nitrogen on Sphagnum: a greenhouse experiment. Funct Ecol 26:353–364

    Google Scholar 

  • Greene SW (1964) Plants of the land. In: Research A (ed) Priestly R, Adie, RJ, Robin G de Q. Butterworths, London, pp 240–253

    Google Scholar 

  • Greene SW (1968) Studies in antarctic bryology I. A basic checklist for mosses. Rev Bryol Lichenol 36:132–138

    Google Scholar 

  • Green TGA, Broady PA (2001) Biological soil crusts of Antarctica. In: Belnap J, Lange OL (eds) (2003) Biological soil crusts: structure, function and management, ecological studies 150, 2nd edn. Springer, Heidelberg, pp 133–139

    Google Scholar 

  • Green TGA, Lange OL (1994) Photosynthesis in poikilohydric plants: a comparison of lichens and bryophytes. In: Schulze ED, Caldwell MM (eds) Ecophysiology of Photosynthesis. Ecological studies, vol 100, Berlin Heidelberg New York. Springer, pp 319–341

    Google Scholar 

  • Green TGA, Proctor MCF (2016) Physiology of photosynthetic organisms within biological soil crusts: their adaptation, flexibility, and plasticity. In: Weber B, Büdel B, Belnap J (eds) Biological soil crusts: an organizing principle in drylands; Ecol Stud 226:347–381

    Google Scholar 

  • Green TGA, Sancho LG, Pintado A (2011) Ecophysiology of desiccation/rehydration cycles in mosses and lichens. In: Lüttge U, Beck E, Bartels D (eds) Plant desiccation tolerance. Ecological studiesm, vol 215, pp 89–120

    Google Scholar 

  • Gregory PH (1971) The leaf as a spore trap. In: Preece RF, Dickinson CH (eds) Ecology of leaf surface microorganisms. Academic Press, New York, NY, pp 239–244

    Google Scholar 

  • Griffin D III, Buck WR (1989) Taxonomic and phylogenetic studies on Bartramiaceae. Bryologist 92:368–380

    Google Scholar 

  • Grolle R (1972) The hepatics of the South Sandwich Islands and South Georgia. Br Antarctic Surv Bull 28:85–95

    Google Scholar 

  • Grubb PJ (1970) Observations on the structure and biology of Haplomitrium and Takakia, hepatics with roots. New Phytol 69:303–326

    Google Scholar 

  • Gullvag BM, Skaar H, Ophus EM (1974) An ultrastructural study of lead accumulation within leaves of Rhytidiadelphus squarrosus (Hedw.) Warnst. A comparison between experimental and environmental poisoning. J Bryol 8:117–122

    Google Scholar 

  • Gundale MJ, Deluca TH, Nordin A (2011) Bryophytes attenuate anthropogenic nitrogen inputs in boreal forests. Global Change Biol 17:2743–2753

    Google Scholar 

  • Gunnarsson U (2005) Global patterns of Sphagnum productivity. J Bryol 27:267–277

    Google Scholar 

  • Gupta RK (1977a) An artefact in studies of the responses of respiration of bryophytes to desiccation. Can J Bot 55:1195–1200

    Google Scholar 

  • Gupta RK (1977b) A study of photosynthesis and leakage of solutes in relation to the desiccation effects in bryophytes. Can J Bot 55:1186–1194

    Google Scholar 

  • Guschina IA, Harwood JL, Smith M, Beckett RP (2002) Abscisic acid modifies the changes in lipids brought about by water stress in the moss Atrichum androgynum. New Phytol 156:255–264

    Google Scholar 

  • Gustafsson L, Eriksson I (1995) Factors of importance for the epiphytic vegetation of aspen Populus tremula with special emphasis on bark chemistry and soil chemistry. J Appl Ecol 32:412–424

    Google Scholar 

  • Gwózdz EA, Bewley JD, Tucker EB (1974) Studies on protein synthesis in Tortula ruralis: polyribosome reformation following desiccation. J Exp Bot 25:599–608

    Google Scholar 

  • Haberlandt G (1886) Beiträge zur Anatomie und Physiologie der Laubmoose. Jahrb Wiss Bot 17:359–498

    Google Scholar 

  • Haeussler S, Tappeiner JC (1993) Effect of the light environment on seed germination of red alder (Alnus rubra). Can J for Res 23:1487–1491

    Google Scholar 

  • Haines WP, Renwick JAA (2009) Bryophytes as food: comparative consumption and utilization of mosses by a generalist insect herbivore. Entom Exp Appl 133:296–306

    Google Scholar 

  • Hajek T, Vicherova E (2014) Desiccation tolerance of Sphagnum revisited: a puzzle resolved. Plant Biol 16:765–773

    Google Scholar 

  • Halsey LA, Vitt DH, Zoltai SC (2000) The changing landscape of Canada’s western boreal forest: the dynamics of permafrost. Can J for Res 30:283–287

    Google Scholar 

  • Hanski I (1999) Metapopulation ecology. Oxford University Press, Oxford, p 324

    Google Scholar 

  • Hanson D, Andrews TJ, Badger MR (2002) Variability of the pyrenoid-based CO2 concentrating mechanism in hornworts (Anthocerotophyta). Funct Plant Biol 29:407–416

    Google Scholar 

  • Hanson DT, Franklin LA, Samuelsson G, Badger MR (2003) The Chlamydomonas reinhardtii cia3 mutant lacking a thylakoid lumen-localized carbonic anhydrase is limited by CO2 supply to Rubisco and not Photosystem II function in vivo. Plant Physiol 132:2267–2275

    Google Scholar 

  • Hanson DT, Renzaglia K, Villareal JC (2014) Diffusion limitation and CO2 concentrating mechanisms in bryophytes. In: Hanson DT, Rice SK (eds) Photosynthesis in bryophytes and early land plants. Springer, Dordrecht, Heidelberg, New York, London, pp 95–111

    Google Scholar 

  • Hanson DT, Rice SK (eds) (2014) Photosynthesis in bryophytes and early land plants. Springer, Berlin Heidelberg New York, p 342

    Google Scholar 

  • Harmens H, Norris DA, Steinnes E, Kubin E, Piispanen J, Alber R, Aleksiayenak Y, Blum O, Coskun M, v. Dam H, De Temmerman L, Fernández JA, Frolova M, Frontasyeva MV, González-Miqueo L, Grodzinska K, Jeran Z, Korzekwa S, Krmar M, Kvietkus K, Leblond S, Liiv S, Magnusson S, Mankovská B, Pesch R, Rühling A, Santamaria JM, Schröder W, Spiric Z, Suchara I, Thöni L, Urumov V, Yurukova LD, Zechmeister HG (2010) Mosses as biomonitors of atmospheric heavy metal deposition: spatial patterns and temporal trends in Europe. Environ Pollut 158:3144–3156

    Google Scholar 

  • Hartman EL (1969) The Ecology of the “Copper Moss” Mielichhoferia mielichhoferi in Colorado. Bryologist 72:56–59

    Google Scholar 

  • Hassel K, Söderström L (1999) Spore germination in the laboratory and spore establishment in the field in Pogonatum dentatum (Brid.) Brid. Lindbergia 24:3–10

    Google Scholar 

  • Hatanaka R, Furuki T, Shimizu T, Takezawa D, Kikawada T, Sakurai M, Sugawara Y (2014) Biochemical and structural characterization of an endoplasmic reticulum-localized late embryogenesis abundant (LEA) protein from the liverwort Marchantia polymorpha. Biochem Biophys Res Commun 454:588–593

    Google Scholar 

  • Hatanaka R, Sugawara Y (2010) Development of desiccation tolerance and vitrification by preculture treatment in suspension-cultured cells of the liverwort Marchantia polymorpha. Planta 231:965–976

    Google Scholar 

  • Hattaway RA (1984) A monograph of the Ptychomniaceae (Bryopsida) PhD thesis, Pennsylvania State University

    Google Scholar 

  • Hattori S, Inoue H (1958) Preliminary report on Takakia lepidozioides. J Hattori Bot Lab 18:133–137

    Google Scholar 

  • Hax NP (2006) Revision of the genus Bryoxiphium (Bryoxiphiaceae, Bryopsida). MSc thesis University of Connecticut USA. 45p

    Google Scholar 

  • Haynes WM (ed) (2015) CRC handbook of chemistry and physics, 6997 96th edn. CRC-Press, Boca Raton, p 2677

    Google Scholar 

  • Hayward PM, Clymo RS (1983) The growth of Sphagnum: experiments on, and simulation of, some effects of light flux and water-table depth. J Ecol 71:845–863

    Google Scholar 

  • He X, Sun Y, Zhu RL (2013) The oil bodies of liverworts: unique and important organelles in land plants. Crit Rev Plant Sci 32:293–302

    Google Scholar 

  • Hébant, C (1972) Observations sur les traces foliaires des Mousses s. str. (Bryopsida). II. Etude, chez quel-ques Polytrichales, des éléments à caractères phloémiens. Nova Hedw 23:735–766

    Google Scholar 

  • Hébant C (1977) The conducting tissues of bryophytes. Bryophytorum Bibliotheca 10:1–157

    Google Scholar 

  • Heber U, Bukhov NG, Shuvalov VA, Kobayashi Y, Lange OL (2001) Protection of the photosynthetic apparatus against damage by excessive illumination in homoihydric leaves and poikilohydric mosses and lichens. J Exp Bot 52:1999–2006

    Google Scholar 

  • Heber U, Lange OL, Shuvalov VA (2006) Conservation and dissipation of light energy as complementary processes: homoihydric and poikilohydric autotrophs. J Exp Bot 57:1211–1223

    Google Scholar 

  • Heber U, Lüttge U (2011) Lichens and bryophytes: light stress and photoinhibition in desiccation/rehydration cycles—mechanisms of photoprotection. In: Lüttge U, Beck E, Bartels D (eds) Plant Desiccation tolerance. Springer, Berlin Heidelberg, pp 121–137

    Google Scholar 

  • Hedderson TA, Brassard GR (1990) Microhabitat relationships of five co-occurring saxicolous mosses on cliffs and scree slopes in Eastern Newfoundland. Holarct Ecol 13:134–142

    Google Scholar 

  • Hedenäs L (1995) Higher taxonomic level relationships among diplolepidous pleurocarpous mosses—a cladistic overview. J Bryol 18:723–781

    Google Scholar 

  • Hedenäs L (1996) A cladistic overview oft the “Hookeriales“. Lindbergia 21:107–143

    Google Scholar 

  • Heinken T, Zippel E (2004) Natural re-colonization of experimental gaps by terricolous bryophytes in Central European pine forests. Nova Hedwigia 79:329–351

    Google Scholar 

  • Heinrichs J, Gradstein SR, Wilson R, Schneider H (2005) Towards a natural classification of liverworts (Marchantiophyta) based on the chloroplast gene rbcL. Cryptogam Bryol 26:131–150

    Google Scholar 

  • Heinrichs J, Hentschel J, Wilson R, Feldberg K, Schneider H (2007) Evolution of leafy liverworts (Jungermannniidae, Marchantiophyta): estimating divergence times from chloroplast DNA sequences using penalized likelihood with integrated fossil evidence. Taxon 56:31–44

    Google Scholar 

  • Hejcman M, Szakova J, Schellberg J, Srek P, Tlustos P, Balik J (2010) The Rengen Grassland experiment: bryophytes biomass and element concentrations after 65 years of fertilizer application. Environ Monit Assess 166:653–662

    Google Scholar 

  • Hellewege EM, Dietz KJ, Volk OH, Hartung W (1994) Abscisic acid and the induction of desiccation tolerance in the extremely xerophilic liverwort Exormotheca holstii. Planta 194:525–531

    Google Scholar 

  • Hemond HF (1980) Biogeochemistry of thoreau’s bog, concord, massachusetts. Ecol Monogr 50:507–526

    Google Scholar 

  • He-Nygrén X, Juslén A, Ahonen I, Glenny D, Piippo S (2006) Illuminating the evolutionary history of liverworts (Marchantiophyta)—towards a natural classification. Cladistics 22:1–31

    Google Scholar 

  • Herben T (1994) The role of reproduction for persistence of bryophyte populations in transient and stable habitats. J Hattori Bot Lab 76:115–126

    Google Scholar 

  • Herben T, Söderström L (1992) Which habitat parameters are most important for the persistence of a bryophyte species on patchy, temporary substrates? Biol Conserv 59:121–126

    Google Scholar 

  • Herzog T (1926) Geographie der Moose. Gustav Fischer, Jena 439p

    Google Scholar 

  • Hespanhol H, Séneca A, Figueira R, Sérgio C (2011) Microhabitat effects on bryophyte species richness and community distribution on exposed rock outcrops in Portugal. Plant Ecol Divers 4:251–264

    Google Scholar 

  • Hess S, Frahm JP, Theisen I (2005) Evidence of zoophagy in a second liverwort species, Pleurozia purpurea. Bryologist 108:212–218

    Google Scholar 

  • Hinshiri HM, Proctor MCF (1971) The effect of desiccation on subsequent assimilation and respiration oft the bryophytes Anomodon viticulosus and Porella platyphylla. New Phytol 70:527–538

    Google Scholar 

  • Hobbs VJ, Pritchard NM (1987) Population dynamics of the moss Polytrichum piliferum in north-east Scotland. J Ecol 75:177–192

    Google Scholar 

  • Hoekstra FA, Golvina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438

    Google Scholar 

  • Hoffman GR (1966) Observations on the mineral nutrition of Funaria hygrometrica Hedw. Bryologist 69:182–192

    Google Scholar 

  • Höfler K (1918) Eine plasmolytisch-volumetrische Methode zur Bestimmung des osmotischen Wertes von Pflanzenzellen. Denkschr Kais Akad Wiss Wien, Math-Nat Kl I Abt 95:99

    Google Scholar 

  • Hofmeister W (1851) Vergleichende Untersuchungen der Keimung, Entfaltung und Fruchtbildung höherer Kryptogamen (Moose, Farne, Equisetaceen, Rhizocarpeen und Lycopodiaceen) und der Samenbildung der Coniferen. F. Hofmeister, Leipzig

    Google Scholar 

  • Hofstede RGM, Wolf JHD, Benzing DH (1993) Epiphytic biomass and nutrient status of a Colombian Upper Montane Rain forest. Selbyana 14:37–45

    Google Scholar 

  • Holdgate MW (1964) Terrestrial ecology in the maritime antarctic. In: Carrick R, Holdgate MW, Prevost J (eds) Biologie antarctique. Herrmann, Paris, pp 181–194

    Google Scholar 

  • Hollister RD, Webber PJ, Tweedie CE (2005) The response of Alaskan arctic tundra to experimental warming: differences between short- and long-term responses. Global Change Biol 11:525–536

    Google Scholar 

  • Holyoak DT, Pedersen N (2007) Conflicting molecular and morphological evidence of evolution within the Bryaceae (Bryopsida) and its implications for generic taxonomy. J Bryol 29:111–124

    Google Scholar 

  • Horton DG (1982) A revision of the Encalyptaceae (Musci), with particular reference to the North American taxa. Part I. J Hattori Bot Lab 53:365–418

    Google Scholar 

  • Horton DG (1983) A revision of the Encalyptaceae (Musci), with particular reference to the North American taxa. Part II. J Hattori Bot Lab 54:353–532

    Google Scholar 

  • Horton DG (2012) Australian Mosses Online. 20. Encalyptaceae. http://www.anbg.gov.au/abrs/Mosses_online/Encalyptaceae.pdf.

  • Hübschmann A (1984) Überblick über die epilithischen Moosgesellschaften Zentraleuropas. Phytocoenologia 12:495–538

    Google Scholar 

  • Humphreys CP, Franks PJ, Rees M, Bidartondo MI, Leake JR, Beerling DJ (2010) Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants. Nat Commun 1:103. https://doi.org/10.1038/ncomms1105|www.nature.com/naturecommunications,7p

  • Huttunen S, Bell N, Bobrova VK, Buchbender V, Buck WR, Cox CJ, Goffinet B, Hedena L, Ho BC, Ignatov MS, Krug M, Kuznetsova O, Milyutina IA, Newton A, Olsson S, Pokorny L, Shaw JA, Stech M, Troitsky A, Vanderpoorten A, Quandt D (2012) Disentangling knots of rapid evolution: origin and diversification of the moss order Hypnales. J Bryol 34:187–211

    Google Scholar 

  • Hyvönen J, Hedderson TA, Smith Merrill GL, Gibbings JG, Koskinen S (1998) On phylogeny of the polytrichales. Bryologist 101:489–504

    Google Scholar 

  • Hyvönen J, Koskinen S, Smith Merrill GL, Hedderson TA, Stenroos S (2004) Phylogeny of the Polytrichales (Bryophyta) based on simultaneous analysis of molecular and morphological data. Mol Phylogenet Evol 31:915–928

    Google Scholar 

  • Hyyryläinen A, Turunen M, Rautio P, Huttunen S (2018) Sphagnum mosses in a changing UV-B environment: a review. Persp Plant Ecol Evol Syst 33:1–8

    Google Scholar 

  • Ignatov MS, Belousova IEA, AA, Sigaeva AO (2012) Additional observations on protonemata of Schistostega pennata (Bryophyta). Arctoa 21:1–20

    Google Scholar 

  • Ignatov MS, Ignatova EA (2001) On the zoochory of Schistostega pennata (Schistoostegaceae), Musci). Arctoa 10:83–96

    Google Scholar 

  • Ignatov MS, Ignatova EA, Cherdantseva VY (2006) Oedipodium griffithianum (Oedipodiopsida, Bryophyta)—new species and new class for Russian flora. Arctoa 15:211–214

    Google Scholar 

  • Ingimundardóttir GV, Weibull H, Cronberg N (2014) Bryophyte colonization history of the virgin volcanic island surtsey, Iceland. Biogeosciences 11:4415–4427

    Google Scholar 

  • Ingold CT (1939) Spore discharge in land plants. Clarendon Press, Oxford, p 178

    Google Scholar 

  • Ingold CT (1959) Peristome teeth and spore discharge in mosses. Trans Bot Soc Edinb 38:76–88

    Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Ann Rev Plant Physiol Plant Mol Biol 47:377–403

    Google Scholar 

  • Ireland RR (1971) Moss pseudoparaphyllia. Bryologist 74:312–330

    Google Scholar 

  • Ives CM (2016) Fire moss as a tool for post-wildfire ecosystem restoration. Northern Arizona University, MSc-Thesis

    Google Scholar 

  • Iwatsuki Z (1986) A peculiar new caledonian sphagnum with rhizoids. Bryologist 89:20–22

    Google Scholar 

  • Jácome J, Gradstein SR, Kessler M (2011) Responses of epiphytic bryophyte communities to simulated climate change in the tropics. In: Tuba Z, Slack NG, Stark LR (eds) Bryophyte ecology and climate change. Cambridge University Press, Cambridge, pp 191–208

    Google Scholar 

  • Jägerbrand AK, Kudo G, Alatalo JM, Molau U (2012) Effects of neighboring vascular plants on the abundance of bryophytes in different vegetation types. Polar Sci 6:200–208

    Google Scholar 

  • Janzen P (1916) Die Haube Der Laubmoose. Hedwigia 58:156–280

    Google Scholar 

  • Jasoni RL, Smith SD, Arnone JA (2005) Net ecosystem CO2 exchange in Mojave Desert shrublands during the eighth year of exposure to elevated CO2. Global Change Biol 11:749–756

    Google Scholar 

  • Jauhiainen J, Allen BW, Almer NM (1998) Potential NH4+ and NO3- uptake in seven Sphagnum species. New Phytol 138:287–293

    Google Scholar 

  • Jeffrey DW, Pigott CD (1973) The response of grasslands on sugar-limestone in Teesdale to application of Phosphorus and Nitrogen. J Ecol 61:85–92

    Google Scholar 

  • Jiang Y, Fan M, Hu R, Zhao J, Wu Y (2018) Mosses are better than leaves of vascular plants in monitoring atmospheric heavy metal pollution in urban areas. Int J Environ Res Public Health 15:1105–1118

    Google Scholar 

  • Johansson V, Lonnell N, Rannik U, Sundberg S, Hylander K (2016) Air humidity thresholds trigger active moss spore release to extend dispersal in space and time. Funct Ecol 30:1196–1204

    Google Scholar 

  • Johansson V, Ranius T, Snäll T (2012) Epiphyte metapopulation dynamics are explained by species traits, connectivity, and patch dynamics. Ecology 93:235–241

    Google Scholar 

  • Jones VAS, Dolan L (2012) The evolution of root hairs and rhizoids. Ann Bot 110:205–212

    Google Scholar 

  • Jonsdottir IS, Magnusson B, Gudmundsson J, Elmarsdottir A, Hjartarson H (2005) Variable sensitivity of plant communities in Iceland to experimental warming. Global Change Biol 11:553–563

    Google Scholar 

  • Jonsgard B, Birks HJB (1993) Quantitative studies on saxicolous bryophyte—environment relationships in Western Norway. J Bryol 17:579–611

    Google Scholar 

  • Jonsson BG (1993) The bryophyte diaspore bank and its role after small-scale disturbance in a boreal forest. J Veg Sci 4:819–826

    Google Scholar 

  • Jules ES, Shaw AJ (1994) Adaptation to metal-contaminated soils in populations of the moss Ceratodon purpureus—vegetative growth and reproductive expression. Am J Bot 81:791–797

    Google Scholar 

  • Kaiser K, Outlaw WH Jr, Ziegler H (1985) Sucrose content of receptive archegonia of the moss Bryum capillare Hedw. Naturwissenschaften 72:378–379

    Google Scholar 

  • Kallio P, Heinonen S (1975) CO2 exchange and growth of Rhacomitrium lanuginosum and Dicranum elongatum. In: Wiegolaski FE (ed) Fennoscandian tundra ecosystems. Springer, Berlin Heidelberg New York, pp 138–148

    Google Scholar 

  • Karuppanapandian T, Moon C, Kim C, Manoharan K, Wook K (2011) Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Aust J Crop Sci 5:709–725

    Google Scholar 

  • Kato H, Yasui Y, Ishizaki K (2020) Gemma cup and gemma development in Marchantia polymorpha. New Phytol 228:459–465

    Google Scholar 

  • Kawai I (1968) Taxonomic studies on the midrib in Musci. (1) Significance of the midrib in systematic Botany. Sci Rep Kanazawa Univ 13:127–157

    Google Scholar 

  • Kimmerer RW (1994) Ecological consequences of sexual versus asexual reproduction in Dicranum flagellare and Tetraphis pellucida. Bryologist 97:20–25

    Google Scholar 

  • Kimmerer RW (2005) Patterns of dispersal and establishment of bryophytes colonizing natural and experimental treefall mounds in northern hardwood forests. Bryologist 108:391–401

    Google Scholar 

  • Kimmerer RW, Young CC (1995) The role of slugs in dispersal of the asexual propagules of Dicranum flagellare. Bryologist 98:149–153

    Google Scholar 

  • Kiraly I, Nascimbene J, Tinya F, Odor P (2013) Factors influencing epiphytic bryophyte and lichen species richness at different spatial scales in managed temperate forests. Biodivers Conserv 22:209–223

    Google Scholar 

  • Klinger LF (1996) The myth of the classic hydrosere model of bog succession. Arct Alp Res 28:1–9

    Google Scholar 

  • Knapp E (1930) Untersuchungen über die Hüllorgane um Archegonien und Sporogonien der akrogynen Jungermanniaceen. Bot Abhandl 16:1–168

    Google Scholar 

  • Knight CD, Sehgal A, Atwal K, Wallace JC, Cove DC, Coates D, Quatrano RS, Bahadur S, Stockley PG, Cuming AC (1995) Molecular responses to abscisic acid and stress are conserved between moss and cereals. Plant Cell 7:499–506

    Google Scholar 

  • Koenig I, Feldmeyer-Christe E, Mitchell EAD (2015) Comparative ecology of vascular plant, bryophyte and testate amoeba communities in four Sphagnum peatlands along an altitudinal gradient in Switzerland. Ecol Indicators 54:48–59

    Google Scholar 

  • Kolton M, Marks A, Wilson RM, Chanton JP, Kostka JE (2019) Impact of warming on greenhouse gas production an microbial diversity in anoxic peat from a Sphagnum-dominated bog (Grand Rapids, Minnesota, United States). Front Microbiol 10:870 [1–13]

    Google Scholar 

  • Koponen AM (1978) The peristome and spores in Splachnaceae and their evolutionary and systematic significance. Bryophytorum Bibl 13:535–567

    Google Scholar 

  • Koponen T (1988) The phylogeny and classification of Mniaceae and Rhizogoniaceae (Musci). J Hattori Bot Lab 64:37–46

    Google Scholar 

  • Koponen A (1990) Entomophily in the splachnaceae. Bot J Linn Soc 104:115–127

    Google Scholar 

  • Koranda M, Kerschbaum S, Wanek W, Zechmeister H, Richter A (2007) Physiological responses of bryophytes Thuidium tamariscinum and Hylocomium splendens to increased Nitrogen deposition. Ann Bot 99:161–169

    Google Scholar 

  • Kost G (1984) Moosbewohnende Basidiomyceten i. Zeitschr f Mykol 50:215–240

    Google Scholar 

  • Koster KL (1991) Glass formation and desiccation tolerance in seeds. Plant Physiol 96:302–304

    Google Scholar 

  • Kottke I, Beiter A, Weiss M, Haug I, Oberwinkler F, Nebel M (2003) Heterobasidiomycetes form symbiotic associations with hepatics: Jungermanniales have sebacinoid mycobionts while Aneura pinguis (Metzgeriales) is associated with a Tulasnella species. Mycol Res 107:957–968

    Google Scholar 

  • Kuwahara Y (1978) Elaterophores observed in two new species of Metzgeria from Peru and consideration of the elaterophore in the Hepaticae. Bryologist 81:404–410

    Google Scholar 

  • Kowal J, Pressel S, Duckett JG, Bidartondo MI, Field KJ (2018) From rhizoids to roots? experimental evidence of mutualism between liverworts and ascomycete fungi. Ann Bot 121:221–227

    Google Scholar 

  • Kuzmina EY (2018) The diversity of mosses of the coastal areas of the Koryak Upland (Far East, Russia) Acta Zool Bulg Suppl 11:145–148

    Google Scholar 

  • Laaka-Lindberg S, Korpelainen H, Pohjamo M (2003) Dispersal of asexual propagules in bryophytes. J Hattori Bot Lab 93:319–330

    Google Scholar 

  • Ladrón de Guevara M, Gozalo B, Raggio J, Lafuente A, Prieto M, Maestre FT (2018) Warming reduces the cover, richness and evenness of lichen-dominated biocrusts but promotes moss growth: insights from an 8 yr experiment. New Phytol 220:811–823

    Google Scholar 

  • Ladron de Guevara M, Lazaro R, Quero JL, Ochoa V, Gozalo B, Berdugo M, Ucles O, Escolar C, Maestre FT (2014) Simulated climate change reduced the capacity of lichen-dominated biocrusts to act as carbon sinks in two semi-arid Mediterranean ecosystems. Biodivers Conserv 23:1787–1807

    Google Scholar 

  • Laine AM, Juurola E, Hajek T, Tuittila ES (2011) Sphagnum growth and ecophysiology during mire succession. Oecologia 167:1115–1125

    Google Scholar 

  • Lang D, Ullrich KK, Murat F, Fuchs J, Jenkins J, Haas FB, Piednoel M, Gundlach H, van Bel M, Meyberg R, Vives C, Morata J, Symeonidi A, Hiss M, Muchero W, Kamisugi Y, Saleh O, Blanc G, Decker EL, van Gessel N, Grimwood J, Hayes RD, Graham SW, Gunter LE, McDaniel S, Hoernstein SNW, Larsson A, Li FW, Perroud PF, Phillips J, Ranjan P, Rokshar DS, Rothfels CJ, Schneider L, Shu S, Stevenson DW, Thümmler F, Tillich M, Villarreal AJC, Widiez T, Wong GK, Wymore A, Zhang Y, Zimmer AD, Quatrano RS, Mayer KFX, Goodstein D, Casacuberta JM, Vandepoele K, Reski R, Cuming AC, Tuskan J, Maumus F, Salse J, Schmutz J, Rensing SA (2018) The P. patens chromosome-scale assembly reveals moss genome structure and evolution. The Plant J 93:515–533

    Google Scholar 

  • Lange OL (1955) Untersuchungen über die Hitzeresistenz der Moose in Beziehung zu ihrer Verbreitung I. Die Resistenz Stark Ausgetrockneter Moose. Flora 142:381–399

    Google Scholar 

  • Lange OL (1969) CO2-Gaswechsel von Moosen nach Wasserdampfaufnahme aus dem Luftraum. Planta 89:90–94

    Google Scholar 

  • Lange OL, Belnap J, Reichenberger H, Meyer A (1997) Photosynthesis of green algal soil crust lichens from arid lands in southern Utah, USA: role of water content on light and temperature responses of CO2 exchange. Flora 192:1–15

    Google Scholar 

  • Langhans TM, Storm C, Schwabe A (2010) Regeneration processes of biological soil crusts, macro-cryptogams and vascular plant species after fine-scale disturbance in a temperate region: Recolonization or successional replacement? Flora 205:46–60

    Google Scholar 

  • Lee JA (1999) The calcicole-calcifuge problem revisited. Adv Bot Res 29:2–30

    Google Scholar 

  • Leemans R (1991) Canopy gaps and establishment patterns of spruce (Picea abies (L.) Karst.) in two old-growth coniferous forests in central Sweden. Vegetatio 93:157–165

    Google Scholar 

  • Lenhart K, Weber B, Elbert W, Steinkamp J, Clough T, Crutzen P, Pöschl U, Keppler F (2015) Nitrous oxide and methane emissions from cryptogamic covers. Global Change Biol 21:3889–3900

    Google Scholar 

  • Leuschner C, Ellenberg H (2017) Epiphyte vegetation. In: Leuschner C, Ellenberg H: Ecology of Central European forests. Vegetation Ecology of Central Europe, vol I. Springer, Cham, pp 729–746

    Google Scholar 

  • Levins R (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull Entomol Soc Amer 15:237–240

    Google Scholar 

  • Lewinsky J (1993) Monographic studies on Orthotrichum (Musci). Bryobrothera 1:1–59

    Google Scholar 

  • Lewis LR, Behling E, Gousse H, Qian E, Elphick CS, Lamarre JF, Bety J, Liebezeit J, Rozzi R, Goffinet B (2014) First evidence of bryophyte diaspores in the plumage of transequatorial migrant birds. PeerJ 2:e424. https://doi.org/10.7717/peerj.424

  • Lewis LR, Ickert-Bond SM, Biersma EM, Convey P, Goffinet B, Hassel K, Kruijer HJD, La Farge C, Metzgar J, Stech M, Villarreal JC, McDaniel SF (2017) Future directions and priorities for Arctic bryophyte research. Arctic Sci 3:475–497

    Google Scholar 

  • Lewis Smith RI (1978) Summer and winter concentrations of sodium, potassium and calcium in some maritime antarctic cryptogams. J Ecol 66:891–909

    Google Scholar 

  • Lewis Smith RI (1987) The bryophyte propagule bank of Antarctic fellfield soils. Symp Biol Hung 35:233–245

    Google Scholar 

  • Li FW, Nishiyama T, Waller M, Frangedakis E, Keller J, Li Z, Fernandez-Pozo N, Barker MS, Bennett T, Blázquez MA, Cheng S, Cuming AC, de Vries J, de Vries S, Delaux PM, Diop IS, Harrison CJ, Hauser D, Hernández-García J, Kirbis A, Meeks JC, Monte I, Mutte SK, Neubauer A, Quandt D, Robison T, Shimamura M, Rensing SA, Villarreal JC, Weijers D, Wicke S, Wong GKS, Sakakibara SP (2020) Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts. Nat Plants 6:259–272

    Google Scholar 

  • Li FW, Villarreal JC, Szövényi P (2017) Hornworts: an overlooked window into carbon-concentrating mechanisms.Trends Plant Sci 22:275–277

    Google Scholar 

  • Li J, Li X, Chen C (2014) Degradation and reorganization of thylakoid protein complexes of Bryum argenteum in response to dehydration and rehydration. Bryologist 117:110–118

    Google Scholar 

  • Li Y, Glime JM, Liao C (1992) Responses of two interacting Sphagnum species to water level. J Bryol 17:59–70

    Google Scholar 

  • Li Y, Vitt DH (1997) Patterns of retention and utilization of aerially deposited nitrogen in boreal peatlands. Ecoscience 4:106–116

    Google Scholar 

  • Liepina L (2012) Occurrence of fungal structures in bryophytes of the boreo-nemoral zone. Environ Exp Biol 10:35–40

    Google Scholar 

  • Ligrone R (1988) Ultrastructure of a fungal endophyte in Phaeoceros laevis (L.) Prosk. (Anthocerotophyta). Bot Gaz 149:92–100

    Google Scholar 

  • Ligrone R, Duckett JG (2011) Morphology versus molecules in moss phylogeny: new insights (or controversies) from placental and vascular anatomy in Oedipodium griffithianum. Plant Syst Evol 296:275–282

    Google Scholar 

  • Ligrone R, Duckett JG, Renzaglia KS (1993) The gametophyte-sporophyte junction in land plants. Adv Bot Res 19:232–317

    Google Scholar 

  • Ligrone R, Renzaglia KS (1990) The sporophyte-gametophyte junction in the hornwort, Dendroceros tubercularis Hatt. (Anthocerotophyta). New Phytol 114:497–505

    Google Scholar 

  • Limpens J, Berendse F (2003) How litter quality affects mass loss and N loss from decomposing Sphagnum. Oikos 103:537–547

    Google Scholar 

  • Limpricht KG (1890) Die Laubmoose Deutschlands, Österreichs und der Schweiz, Vol 4 of Dr. L. Rabenhorst's Kryptogamen-Flora von Deutschland, Österreich und der Schweiz. Eduard Kummer Leipzig.

    Google Scholar 

  • Liu Y, Johnson MG, Cox CJ, Medina R, Devos N, Vanderpoorten A, Hedenäs L, Bell NE, Shevock JR, Aguero B, Quandt D, Wickett NJ, Shaw AJ, Goffinet B (2019) Resolution of the backbone phylogeny of mosses using targeted exons from organellar and nuclear genomes. Nature Communications 10:1485

    Google Scholar 

  • Lloret F (1991) Population dynamics of the coprophilous moss Tayloria tenuis in a Pyrenean forest. Holarct Ecol 14:1–8

    Google Scholar 

  • Lloret F (1994) Gap colonization by mosses on a forest floor: an experimental approach. Lindbergia 19:122–128

    Google Scholar 

  • Löbel S, Rydin H (2010) Trade-offs and habitat constraints in the establishment of epiphytic bryophytes. Funct Ecol 24:887–897

    Google Scholar 

  • Löbel S, Snäll T, Rydin H (2006) Metapopulation processes in epiphytes inferred from patterns of regional distribution and local abundance in fragmented forest landscapes. J Ecol 94:856–868

    Google Scholar 

  • Longton RE (1981) Physiological ecology of mosses. In: Taylor RJ, Leviton SE (eds) The mosses of North America, Washington, D.C., Pacific division, American Academy of Sciences, pp 77–113

    Google Scholar 

  • Longton RE (1982) Bryophyte vegetation in Polar Regions. In: Smith AJE (ed) Bryophyte ecology. Chapman & Hall, London, pp 123–165

    Google Scholar 

  • Longton RE (1988) The biology of polar bryophytes and lichens. Cambridge University Press, Cambridge, p 391

    Google Scholar 

  • Longton RE (1992) The role of bryophytes and lichens in terrestrial ecosystems. In: Bates JW, Farmer AM (eds) Bryophytes in a changing environment. Clarendon Press, Oxford, pp 32–76

    Google Scholar 

  • Longton RE (1997) Reproductive biology and life-history strategies. Adv Bryol 6:65–101

    Google Scholar 

  • Longton RE, Greene SW (1979) Experimental studies of growth and reproduction in the moss Pleurozium schreberi (Brid.) Mitt. J Bryol 10:321–338

    Google Scholar 

  • Longton RE, Schuster RM (1983) Reproductive biology. In: Schuster RM (ed) New manual of bryology, vol I, pp 386–462, Nichinan, Hattori Botanical Laboratory

    Google Scholar 

  • Lönnell N, Hylander K, Jonsson BG, Sundberg (2012) The Fate of the missing spores—Patterns of realized dispersal beyond the closest vicinity of a sporulating moss. PLoS ONE 7:e41987. https://doi.org/10.1371/journal.pone.0041987

  • Löve A, Löve D (1953) Studies on Bryoxiphium. Bryol 56:73–94 and 183–203

    Google Scholar 

  • Ludwiczuk A, Asakawa Y (2015) Chemotaxonomic value of essential oil components in liverwort species. A review. Flavour Fragr J 30:189–196

    Google Scholar 

  • Maciel-Silva AS, Calvacanti Porto K (2014) Reproduction in Bryophytes. In: Ramawat KG, Mérrillon JM, Shivanna KR (eds) Reproductive biology of plants. CRC Press, Boca Raton, pp 57–84

    Google Scholar 

  • Magombo ZLK (2003a) The phylogeny of basal peristomate mosses: evidence from cp DNA, and implications for peristome evolution. Syst Bot 28:24–38

    Google Scholar 

  • Magombo ZLK (2003b) Taxonomic revision of the moss family Diphysciaceae M. Fleisch. (Musci). J Hattori Lab 94:1–86

    Google Scholar 

  • Mahan JR, Oliver MJ, Sherman TD (1998) Nitrate reductase activity during desiccation and rehydration of the desiccation-tolerant moss Tortula ruralis. Environ Exp Bot 39:67–76

    Google Scholar 

  • Maier E, Price MJ (2005) In the footsteps of Lantzius-Beninga: investigating the peristome characters of Mosses. Bryologist 108:36–46

    Google Scholar 

  • Malloch DW, Pirozynski KA, Raven PH (1980) Ecological and evolutionary significance of mycorrhizal symbioses in vascular plants (A Review). Proc Natl Acad Sci USA 77:2113–2118

    Google Scholar 

  • Malmer N, Svensson BM, Wallen B (1994) Interactions between Sphagnum mosses and field layer vascular plants in the development of peat forming systems. Fol Geobot Phytotax 29:483–496

    Google Scholar 

  • Mälson K, Rydin H (2009) Competitive hierarchy, but no competitive exclusions in experiments with rich fen bryophytes. J Bryol 31:41–45

    Google Scholar 

  • Mansour KS, Hallet JN (1981) Effect of Desiccation on DNA Synthesis and the cell cycle of the moss Polytrichum formosum. New Phytol 87:315–332

    Google Scholar 

  • Marchal E, Marchal E (1911) Aposporie et sexualité chez les mousses. Bull Acad Roy Belgique 9–10:750–778

    Google Scholar 

  • Marcisz K, Colombaroli D, Jassey VEJ, Tinner W, Kołaczek P, Gałka K-K, Slowinski M, Lamentowicz M (2016) A novel testate amoebae trait-based approach to infer environmental disturbance in Sphagnum peatlands. Nat Sci Rep 6:33907. https://doi.org/10.1038/srep3390

  • Marino PC (1991) Dispersal and coexistence of mosses (Splachnaceae) in patchy habitats. J Ecol 79:1047–1060

    Google Scholar 

  • Marino PC (1997) Competition, dispersal and coexistence of Splachnaceae in patchy habitats. Adv Bryol 6(241):263

    Google Scholar 

  • Marino P, Raguso R, Goffinet B (2009) The ecology and evolution of fly dispersed dung mosses (Family Splachnaceae): manipulating insect behavior through odour and visual cues. Symbiosis 47:61–76

    Google Scholar 

  • Markert B, Weckert V (1989) Fluctuations of element concentrations during the growing season of Polytrichum formosum Hedw. Water Air Soil Poll 43:177–189

    Google Scholar 

  • Marschall M (1998) Nitrate reductase activity during desiccation and rehydration of the desiccation tolerant moss Tortula ruralis and the leafy liverwort Porella platyphylla. J Bryol 20: 273–285

    Google Scholar 

  • Marschall M, Proctor MCF (1999) Desiccation tolerance and recovery of the leafy liverwort Porella platyphylla (L.) Pfeiff.: chlorophyll fluorescence measurements. J Bryol 21:261–267

    Google Scholar 

  • Marschall M, Proctor MCF (2004) Are bryophytes shade plants? Photosynthetic light responses and proportions of chlorophyll a, chlorophyll b and total carotenoids. Ann Bot 94:593–603

    Google Scholar 

  • Martinez-Abaigar J, Garcia-Alvaro MA, Beaucourt N, Nunez-Olivera E (2002) Combined seasonal and longitudinal variations of element concentrations in two aquatic mosses (Fontinalis antipyretica and F. squamosa). Nova Hedwigia 74:349–364

    Google Scholar 

  • Matzke EB, Raudzens L (1968) Aposporous diploid gametophytes from sporophytes of the liverwort Blasia pusilla L. Proc Natl Acad Sci USA 59:752–755

    Google Scholar 

  • Mayaba N, Beckett RP, Csintalan Z, Tuba Z (2001) ABA increases the desiccation tolerance of photosynthesis in the Afromontane understory moss Atrichum androgynum. Ann Bot 86:1093–1100

    Google Scholar 

  • McCleary JA, Walkington DL (1966) Mosses and antibiosis. Rev Bryol Lichenol 34:309–314

    Google Scholar 

  • McHugh TA, Morrissey EM, Reed SC, Hungate BA, Schwartz E (2015) Water from air: an overlooked source of moisture in arid and semiarid regions. Sci Rep 5:13767

    Google Scholar 

  • McKay RML, Gibbs SP (1991) Composition and function of pyrenoids: cytochemical and immunocytochemical approaches. Can J Bot 69:1040–1052

    Google Scholar 

  • McKersie B (1991) The role of oxygen free radicals in mediating freezing and desiccation stress in plants. In: Pell E, Steffen K (eds) Active oxygen and oxidative stress and plant metabolism. Current topics in plant physiology: american association of plant physiologists series, vol 6. American Association of Plant Physiologists, Rockville. pp 107–118

    Google Scholar 

  • McMullen JA, Barber KE, Johnson B (2004) A paleoecological perspective of vegetation succession on raised bog microforms. Ecol Monogr 74:45–77

    Google Scholar 

  • McNeil P, Waddington JM (2003) Moisture controls on Sphagnum growth and CO2 exchange on a cutover bog. J Appl Ecol 40:354–367

    Google Scholar 

  • McQueen CB (1985) Spatial pattern and gene flow distances in Sphagnum subtile. Bryologist 88:333–336

    Google Scholar 

  • Medina NG, Albertos B, Lara F, Mazimpaka V, Garilleti R, Draper D, Hortal J (2014) Species richness of epiphytic bryophytes: drivers across scales on the edge of the Mediterranean. Ecography 37:80–93

    Google Scholar 

  • Medina NG, Bowker MA, Hortal J, Mazimpaka V, Lara F (2018) Shifts in the importance of the species pool and environmental controls of epiphytic bryophyte richness across multiple scales. Oecologia 186:805–816

    Google Scholar 

  • Medina NG, Draperand I, Lara F (2011) Biogeography of mosses and allies: does size matter? In: Fontaneto D (ed) Biogeography of microscopic organisms: is everything small everywhere? Cambridge University Press, Cambridge, pp 209–233

    Google Scholar 

  • Meeks JC (1998) Symbiosis between nitrogen-fixing cyanobacteria and plants. Bioscience 48:266–276

    Google Scholar 

  • Meeks JC (2003) Symbiotic interactions between Nostoc punctiforme, a multicellular cyanobacterium, and the hornwort Anthoceros punctatus. Symbiosis 35:55–71

    Google Scholar 

  • Meenu Krishnan VG, Manoj GS, Remya Krishnan, Murugan K. (2013) Physiological responses of Leucobryum bowringii and Rhodobryum giganteum to drought induced oxidative stress. In: Girish Kumar K (ed) Proceedings of 23rd Swadeshi science congress. Swadeshi Science Movement, Sastra Bhavan, pp 683–688

    Google Scholar 

  • Melick DR, Bölter M, Möller R (1994) Rates of soluble carbohydrate utilization in soils from the Windmill Islands Oasis, Wilkes Land, Continental Antarctica. Polar Biol 14:59–64

    Google Scholar 

  • Melick DR, Seppelt RD (1992) Loss of soluble carbohydrates and changes in freezing point of Antarctic bryophytes after leaching and repeated freeze-thaw cycles. Antarct Sci 4:339–404

    Google Scholar 

  • Merced A, Renzaglia KS (2017) Structure, function and evolution of stomata from a bryological perspective. Bry Div Evo 39:7–20

    Google Scholar 

  • Merget B, Wolf M (2010) A molecular phylogeny of Hypnales (Bryophyta) inferred from ITS2 sequence-structure data. BMC Res Notes 3:320 (8 p)

    Google Scholar 

  • Merino J (1987) The cost of growing and maintaining leaves of Mediterranean plants. In: Tenhunen JD, Cataerino FM, Lange OL, Oechel WC (eds) Plant response to stress. Springer, Berlin Heidelberg New York, pp 553–564

    Google Scholar 

  • Merrifield K (2000) Bryophytes on isolated Quercus garryana trunks in urban and agricultural settings in the Willamette Valley, Oregon. Bryologist 103:720–724

    Google Scholar 

  • Meyer H, Santarius KA (1998) Short-term thermal acclimation and heat tolerance of gametophytes of mosses. Oecologia 115:1–8

    Google Scholar 

  • Michaelis D (2019) The Sphagnum species of the world. Bibliotheca Botanica 162, 435 pp

    Google Scholar 

  • Michel P, Burritt DJ, Lee WG (2011) Bryophytes display allelopathic interactions with tree species in native forest ecosystems. Oikos 120:1272–1280

    Google Scholar 

  • Michel P, Lee WG, During HJ, Cornelissen JHC (2012) Species traits and their non-additive interactions control the water economy of bryophyte cushions. J Ecol 100:222–231

    Google Scholar 

  • Middleton BA (2018) Succession in Wetlands. In: Finlayson CM, Everard M, Irvine K, McInnes RJ, Middleton BA, van Dam AA, Davidson NC (eds) The Wetland Book I: Structure and function, management, and methods. Springer, Dordrecht, pp 17–34

    Google Scholar 

  • Mieczan T (2009) Ecology of testate amoebae (Protists) in Sphagnum peatlands of eastern Poland: vertical micro-distribution and species assemblages in relation to environmental parameters. Ann Limnol 45:41–49

    Google Scholar 

  • Miles CJ, Longton RE (1992) Deposition of moss spores in relation to distance from parent gametophytes. J Bryol 17:355–368

    Google Scholar 

  • Miller HA (1971) An overview of the Hookeriales. Phytologia 21:243–252

    Google Scholar 

  • Miller NG (ed) (1993) Biology of Sphagnum. Advances in bryology, vol 5, J. Cramer, Berlin, 338 pp

    Google Scholar 

  • Minibayeva F, Beckett RP (2001) High rates of extracellular superoxide production in bryophytes and lichens, and an oxidative burst in response to rehydration following desiccation. New Phytol 152:333–341

    Google Scholar 

  • Miranda JD, Padilla FM, Pugnaire FI (2009) Response of a Mediterranean semiarid community to changing patterns of water supply. Perspect Plant Ecol Evol Syst 11:255–266

    Google Scholar 

  • Mishler BD, Kelch DG (2009) Phylogenomics and early land plant evolution. In: Goffinet B, Shaw AJ (eds) Bryophyte biology, 2nd edn. Cambridge University Press, Cambridge, pp 103–114

    Google Scholar 

  • Mishler BD, Lewis LA, Buchheim MA, Renzaglia KS, Garbary DJ, Delwiche CF, Zechman F, Kantz TS, Chapman R (1994) Phylogenetic relationships of the “green algae” and “bryophytes.” Ann Missouri Bot Garden 81:451–483

    Google Scholar 

  • Mitchell EAD, Buttler A, Grosvernier P, Rydin H, Siegenthaler A, Gobat JM (2002) Contrasted effects of increased N and CO2 supply on two keystone species in peatland restoration and implications for global change. J Ecol 90:529–533

    Google Scholar 

  • Mitchell EAD, Charman DJ, Warner BG (2008) Testate amoebae analysis in ecological and paleoecological studies of wetlands: past, present and future. Biodiv Conserv 17:2115–2137

    Google Scholar 

  • Morgan JW (2006) Bryophyte mats inhibit germination of non-native species in burnt temperate native grassland remnants. Biol Invasions 8:159–168

    Google Scholar 

  • Mota de Oliveira S, ter Steege H (2015) Bryophyte communities in the Amazon forest are regulated by height on the host tree and site elevation. J Ecol 103:441–450

    Google Scholar 

  • Mueller UG, Wolf-Mueller B (1991) Epiphyll deterrence to the leafcutter ant Atta cephalotes. Oecologia 86:36–39

    Google Scholar 

  • Mues R (2000) Chemical constituents and biochemistry. In: Goffinet B, Shaw AJ (eds) Bryophyte biology, Cambridge University Press, Cambridge pp, pp 150–181

    Google Scholar 

  • Muggoch H, Walton J (1942) On the dehiscence of the antheridium and the part played by surface tension in the dispersal of spermatocytes in bryophyta. Proc Royal Soc Lond B130:448–461

    Google Scholar 

  • Muhle H, LeBlanc F (1975) Bryophyte and lichen succession on decaying logs. I. Analysis along an evaporational gradient in eastern Canada. J Hattori Bot Lab 39:1–33

    Google Scholar 

  • Mulder CPH, Uliassi DD, Doak DF (2001) Physical stress and diversity-productivity relationships: the role of positive interaction. Proc Nat Acad Sci USA 98:6704–6708

    Google Scholar 

  • Muller CH (1952) Plant succession in arctic heath and tundra in northern Scandinavia. Bull Torr Bot Club 79:296–309

    Google Scholar 

  • Müller J, Boch S, Blaser S, Fischer M, Prati D (2015) Effects of forest management on bryophyte communities on deadwood. Nova Hedwigia 100:423–438

    Google Scholar 

  • Murray BM (1988) Systematics of the Andreaeopsida (Bryophyta): two orders with links to Takakia. Nova Hedwigia Beih 90:289–336

    Google Scholar 

  • Nadkarni N (1984) Epiphyte biomass and nutrient capital of a Neotropical elfin forest. Biotropica 16:249–256

    Google Scholar 

  • Nagano I (1972) On the relations of the chemical composition of some mosses to their substrate rocks. J Hattori Bot Lab 35:391–398

    Google Scholar 

  • Nath V, Bansal P (2015) Reproductive strategies in bryophytes. In: Bahadur B, Venkat RM, Sahijram L, Krishnamurthy K (eds) Plant Biology and biotechnology. Springer, New Delhi, pp 335–347

    Google Scholar 

  • Naumov AV, Kosykh NP (2011) The structure and functional features of Sphagnum cover of the Northern West Siberian mires in connection with forecasting global environmental and climatic changes. In: Tuba Z, Slack NG, Stark LR (eds) Bryophyte ecology and climate change. Cambridge University Press, Cambridge, pp 299–316

    Google Scholar 

  • Nebel M, Kreier HP, Preußing M, Weiß M, Kottke I (2004) Symbiotic fungal associations of liverworts are the possible ancestors of mycorrhizae. In: Agerer R, Piepenbring M, Blanz P (eds) Frontiers in basidiomycote mycology. IHW-Verlag, Eching, pp 339–360

    Google Scholar 

  • Nehira K (1987) Some ecological correlations of spore germination patterns in liverworts. Bryologist 90:405–408

    Google Scholar 

  • Neubauer A, Waller M, Frangedakis E, Villarreal JC, Li FW, Szövéniy P (2019) [Abstract] Bryol Times 80–81

    Google Scholar 

  • Newton AE, Cox CJ, Duckett JG, Wheeler JA, Goffinet B, Hedderson TAJ, Mishler BD (2000) Evolution of the major moss lineages: Phylogenetic analyses based on multiple gene sequences and morphology. Bryologist 103:187–211

    Google Scholar 

  • Newton AE, Mishler BD (1994) The evolutionary significance of asexual reproduction in mosses. J Hattori Bot Lab 76:127–145

    Google Scholar 

  • Newton AE, Tangney RS (eds) (2007) Pleurocarpous mosses: systematics and evolution. CRC Press, Boca Raton, p 434p

    Google Scholar 

  • Nickrent DL, Parkinson CL, Palmer JD, Duff RJ (2000) Multigene phylogeny of land plants with special reference to bryophytes and the earliest land plants. Mol Biol Evol 17:1885–1895

    Google Scholar 

  • Niinemets Ü, Tobias M (2019) Canopy leaf area index at its higher end: dissection of structural controls from leaf to canopy scales in bryophytes. New Phytol 223:118–133

    Google Scholar 

  • Nobel PS (1977) Internal leaf area and cellular CO2 resistance: photosynthetic implications of variations with growth conditions and plant species. Physiol Plant 40:137–144

    Google Scholar 

  • Nobel PS (1983) Biophysical plant physiology and ecology. Freeman, San Francisco, p 608

    Google Scholar 

  • Nörr M (1974) Hitzeresistenz bei Moosen. Flora 163:388–397

    Google Scholar 

  • Oberbauer AF, Clark DB, Quesada M (1988) Crown light environments of saplings of two species of rain forest emergent trees. Oecologia 75:207–212

    Google Scholar 

  • Oberbauer SF, Clark DA, Clark DB, Quesada M (1989) Comparative-analysis of photosynthetic light environments within the crowns of juvenile rain-forest trees. Tree Physiol 5:13–23

    Google Scholar 

  • Ochi H (1960) Conocephalum conicum, as a food for a slug. Hikobia 2:154–155

    Google Scholar 

  • Ochi H (1992) A revised infrageneric classification of Bryum and related genera (Bryaceae, Musci). Bryobrothera 1:231–244

    Google Scholar 

  • Odor P, Kiraly I, Tinya F, Bortignon F, Nascimbene J (2014) Patterns and drivers of species composition of epiphytic bryophytes and lichens in managed temperate forests. Forest Ecol Manage 321:42–51

    Google Scholar 

  • Odu EA (1978) The adaptive importance of moss rhizoids for attachment to the substratum. J Bryol 10:163–181

    Google Scholar 

  • Oechel WC, Hastings SJ, Vourlitis G, Jenkins M, Riechers G, Grulke N (1993) recent change of Arctic tundra ecosystems from a net carbon dioxide sink to a source. Nature 361:520–523

    Google Scholar 

  • Oechel WC, van Cleve K (1986) The role of bryophytes in nutrient cycling in the Taiga. In: van Cleve K, Chapin III FS, Flanagan PW, Viereck LA, Dyrness CT (eds) Forest ecosystems in the alaskan taiga. A synthesis of structure and function. Ecological studies Vol 57. Springer, Berlin, pp 121–137

    Google Scholar 

  • Olden A, Halme P (2016) Grazers increase β-diversity of vascular plants and bryophytes in wood-pastures. J Veg Sci 27:1084–1093

    Google Scholar 

  • Olesen P, Mogensen GS (1978) Ultrastructure, histochemistry and notes on germination stages of spores in selected mosses. Bryologist 81:493–516

    Google Scholar 

  • Oliver MJ (1991) Influence of protoplasmic water loss on the control of protein synthesis in the desiccation-tolerant moss Tortula ruralis: ramifications for a repair-based mechanism of desiccation-tolerance. Plant Physiol 97:1501–1511

    Google Scholar 

  • Oliver MJ (2009) Biochemical and molecular mechanisms of desiccation tolerance in bryophytes. In: Goffinet B, Shaw AJ (eds) Bryophyte biology, 2nd edn. Cambridge University Press, Cambridge, pp 269–297

    Google Scholar 

  • Oliver MJ, Bewley JD (1997) Desiccation-tolerance of plant tissues: a mechanistic overview. Horticult Rev 18:171–213

    Google Scholar 

  • Oliver MJ, Dowd SE, Zaragoza J, Mauget SA, Payton PR (2004) The rehydration transcriptome of the desiccation-tolerant bryophyte Tortula ruralis: Transcript classification and analysis. BMC Genomics 5(89):1–19

    Google Scholar 

  • Oliver MJ, Tuba Z, Mishler BD (2000a) The evolution of vegetative desiccation tolerance in land plants. Plant Ecol 151:85–100

    Google Scholar 

  • Oliver MJ, Velten J, Mishler BD (2005) Desiccation tolerance in bryophytes: a reflection of the primitive strategy for plant survival in dehydrating habitats. Integr Comp Biol 45:788–799

    Google Scholar 

  • Oliver MJ, Velten J, Wood AJ (2000b) Bryophytes as experimental models for the study of environmental stress tolerance: Tortula ruralis and desiccation-tolerance in mosses. Plant Ecol 151:73–84

    Google Scholar 

  • Økland RH (1994) Patterns of bryophyte association at different scales in a Norwegian boreal spruce forest. J Veg Sci 5:127–138

    Google Scholar 

  • Økland RH (1995) Population biology of the clonal moss Hylocomium splendens in Norwegian boreal spruce forests I. Demogr J Ecol 83:697–712

    Google Scholar 

  • Økland RH (1997) Population biology of the clonal moss Hylocomium splendens in Norwegian boreal spruce forests. III. Six-year demographic variation in two areas. Lindbergia 22:49–68

    Google Scholar 

  • Økland RH (2000) Population biology of the clonal moss Hylocomium splendens in Norwegian boreal spruce forests. 5. Vertical dynamics of individual shoot segments. Oikos 88:449–469

    Google Scholar 

  • Økland RH, Økland T (1996) Population biology of the clonal moss Hylocomium splendens in Norwegian boreal spruce forests. II. Effects of density. J Ecol 84:63–69

    Google Scholar 

  • Oosting HJ, Anderson LE (1939) Plant succession on granite rock in eastern North Carolina. Bot Gaz 100:750–768

    Google Scholar 

  • Otsus M, Zobel M (2004) Moisture conditions and the presence of bryophytes determine fescue species abundance in a dry calcareous grassland. Oecologia 138:293–299

    Google Scholar 

  • Palmer MW (1986) Pattern in corticolous bryophyte communities of the North Carolina Piedmont: do mosses see the forest or the trees? Bryologist 89:59–65

    Google Scholar 

  • Pardow A, Lakatos M (2013) Desiccation tolerance and global change: implications for tropical bryophytes in lowland forests. Biotropica 45:27–36

    Google Scholar 

  • Patino J, Bisang I, Hedenäs L, Dirkse G, Bjarnason AH, Ah-Peng C, Vanderpoorten A (2013) Baker’s law and the island syndromes in bryophytes. J Ecol 101:1245–1255

    Google Scholar 

  • Patino J, Goffinet B, Sim-Sim M, Vanderpoorten A (2016) Is the sword moss (Bryoxiphium) a preglacial Tertiary relict? Mol Phylogenet Evol 96:200–206

    Google Scholar 

  • Paton JA (1956) Bryophyte succession on the wealden sandstone rocks. Trans Br Bryol Soc 3:103–114

    Google Scholar 

  • Paton JA (1957) The occurrence, structure and functions of the stomata in British bryophytes. I. Occurrence and structure. Trans Br Bryol Soc 3:228–242

    Google Scholar 

  • Paton JA, Pearce JV (1957) The occurrence, structure and functions of the stomata in British Bryophytes. II. Functions and physiology. Trans Br Bryol Soc 3:242–259

    Google Scholar 

  • Pedersen B, Hanslin HM, BakkenS, (2001) Testing for positive density-dependent performance in four bryophyte species. Ecology 82:70–88

    Google Scholar 

  • Pedersen N, Hedenäs L (2005) Taxonomic and nomenclatural implications of phylogenetic studies of the Bryaceae based on molecular data and morphology. Bryologist 108:123–128

    Google Scholar 

  • Pedersen N, Holyoak DT, Newton AE (2007) Systematics and molecular evolution within the moss family Bryaceae: a comparison between parsimony and Bayesian methods for reconstruction of ancestral character states. Mol Phyl Evol 43:891–907

    Google Scholar 

  • Pedersen N, Newton AE (2007) Phylogenetic and morphological studies within the Ptychomniales, with emphasis on the evolution of dwarf males. In: Newton AE, Tangney RS (eds) Pleurocarpous Mosses. Boca Raton, CRC Press, Systematics and Evolution, pp 367–392

    Google Scholar 

  • Perera-Castro AV, Waterman MJ, Turnbull JD, Ashcroft MB, McKinley E, Watling JR, Bramley-Alves J, Casanova-Katny A, Zuniga GE, Flexas J, Robinson SA (2020) It is hot in the sun: Antarctic mosses have high temperature optima for photosynthesis despite cold climate. Front Plant Sci 11:1178 [1–17]

    Google Scholar 

  • Persson H (1954) Neohodgesonia H. Perss., the new hepatic genus from New Zealand and Tristan da Cunha. Bot Notiser 1954:39–44

    Google Scholar 

  • Penuelas J (1985) HCO3 as an exogenous carbon source for aquatic bryophytes Fontinalis antipyretica and Fissidens grandifrons. J Exp Bot 36:441–448

    Google Scholar 

  • Pharo EJ, Kirkpatrick JB, Gilfedder L, Mendel L, Turner PAM (2005) Predicting bryophyte diversity in grassland and eucalypt-dominated remnants in subhumid Tasmania. J Biogeogr 32:2015–2024

    Google Scholar 

  • Philibert H (1883) Les fleurs mâles du Fissidens decipiens. Rev Bryol 10:65–67

    Google Scholar 

  • Philibert H (1884) De l’importance du péristome pour les affinités naturelles des mousses. 2e article. Revue Bryol 11:65–72

    Google Scholar 

  • Pichonet A, Gradstein SR (2012) Male Dwarfism in the Genus Dicranum (Dicranaceae)—a review. Cryptogam Bryol 33:299–311

    Google Scholar 

  • Pike LH, Denison WC, Tracy DM, Sherwood MA, Rhoades FM (1975) Floristic survey of epiphytic lichens and bryophytes growing on old-growth conifers in western oregon. Bryologist 78:389–402

    Google Scholar 

  • Pike LH, Rydell RA, Denison WC (1977) A 400-year-old Douglas fir tree and its epiphytes: biomass, surface area, and their distributions. Can J for Res 7:680–699

    Google Scholar 

  • Pickering DC, Puia IL (1969) Mechanism for the uptake of zinc by Fontinalis antipyretica. Physiol Plant 22:653–661

    Google Scholar 

  • Pinnola A, Cazzaniga S, Alboresi A, Nevo R, Levin-Zaidman S, Reich Z, Bassi R (2015) Light harvesting complex stress related proteins catalyze excess energy dissipation in both photosystems of Physcomitrella patens. Plant Cell 27:3213–3227

    Google Scholar 

  • Pirozynski KA, Malloch DW (1975) The origin of land plants: a matter of mycotrophism. Biosystems 6:153–164

    Google Scholar 

  • Platt KA, Oliver MJ, Thompson WW (1994) Membranes and organelles of dehydrated Selaginella and Tortula retain their normal configuration and structural integrity: freeze fracture evidence. Protoplasma 178:57–65

    Google Scholar 

  • Pócs T (1978) Epiphyllous communities and their distribution in East Africa. Bryophytorum Bibliotheca 13:681–713

    Google Scholar 

  • Pócs T (1982) Tropical forest bryophytes. In: Smith AJE (ed) Bryophyte ecology. Chapman & Hall, London, pp 59–104

    Google Scholar 

  • Pócs T (1996) Epiphyllous liverwort diversity at worldwide level and its threat and conservation. Anales Inst Biol Univ Nac Autón México, Ser Bot 67:109–127

    Google Scholar 

  • Poelt J (1985) Über auf Moosen parasitierende Flechten. Sydowia 38:241–254

    Google Scholar 

  • Pohjamo M, Laaka-Lindberg S (2003) Reproductive modes in the epixylic hepatic Anastrophyllum hellerianum. Persp Plant Ecol Evol Syst 6:159–168

    Google Scholar 

  • Pohjamo M, Laaka-Lindberg S, Ovaskainen O, Korpelainen H (2006) Dispersal potential of spores and asexual propagules in the epixylic hepatic Anastrophyllum hellerianum. Evol Ecol 20:415–430

    Google Scholar 

  • Pointing SB, Büdel B, Convey P, Gillman LN, Körner C, Leuzinger S, Vincent WF (2015) Biogeography of photoautotrophs in the high polar biome. Front Plant Sci 6:Article 6921

    Google Scholar 

  • Polunin N (1935) The vegetation of Akpotok Island Part II. J Ecol 23:161–209

    Google Scholar 

  • Porada P, Weber B, Elbert W, Pöschl U, Kleidon A (2013) Estimating global carbon uptake by lichens and bryophytes with a process-based model. Biogeosciences 10:6989–7033

    Google Scholar 

  • Porembski S, Barthlott W (2000) Granitic and gneissic outcrops (inselbergs) as centers of diversity for desiccation-tolerant vascular plants. Plant Ecol 151:19–28

    Google Scholar 

  • Press MC, Potter JA, Burke MJW, Callaghan TV, Lee JA (1998) Responses of a subarctic dwarf shrub heath community to simulated environmental change. J Ecol 86:315–327

    Google Scholar 

  • Pressel S, Bidartondo MI, Ligrone R, Duckett JG (2010) Fungal symbioses in bryophytes: new insights in the Twenty First Century. Phytotaxa 9:238–253

    Google Scholar 

  • Pressel S, Duckett JG (2010) Cytological insights into the desiccation biology of a model system: moss protonemata. New Phytol 185:944–963

    Google Scholar 

  • Pressel S, Duckett JG, Ligrone R, Proctor MCF (2009) Effects of de- and rehydration in desiccation-tolerant liverworts: a physiological and cytological study. Int J Plant Sci 170:182–199

    Google Scholar 

  • Pressel S, Goral T, Duckett JG (2014) Stomatal differentiation and abnormal stomata in hornworts. J Bryol 36:87–103

    Google Scholar 

  • Pressel S, Ligrone R, Duckett JG (2006) Effects of de- and rehydration on food-conducting cells in the moss Polytrichum formosum: a cytological study. Ann Bot 98:67–76

    Google Scholar 

  • Pressel S, Renzaglia KS, Clymo RS, Duckett J (2018) Hornwort stomata do not respond actively to exogenous and environmental cues. Ann Bot 122:45–57

    Google Scholar 

  • Proctor MCF (1979) Surface wax on the leaves of some mosses. J Bryol 10:531–538

    Google Scholar 

  • Proctor MCF (1980) Structure and eco-physiological adaptation in bryophytes. In: Clarke GCS, Duckett JG (eds) Bryophyte systematics. Academic Press London, pp 479–509

    Google Scholar 

  • Proctor MCF (1981) Physiological ecology of bryophytes. Adv Bryol 1:79–166

    Google Scholar 

  • Proctor MCF (1982) Physiological ecology: water relations, light and temperature responses, carbon balance. In: Smith AJE (ed) Bryophyte ecology. Chapman & Hall, London, pp 333–381

    Google Scholar 

  • Proctor MCF (1990) The physiological basis of bryophyte production. Bot J Linnean Soc 104:61–77

    Google Scholar 

  • Proctor MCF (1999) Water-relations parameters of some bryophytes evaluated by thermocouple psychrometry. J Bryol 21:263–270

    Google Scholar 

  • Proctor MCF (2000) The bryophyte paradox: tolerance of desiccation, evasion of drought. Plant Ecol 151:41–49

    Google Scholar 

  • Proctor MCF (2001) Patterns of desiccation tolerance and recovery in bryophytes. Plant Growth Regul 35:147–156

    Google Scholar 

  • Proctor MCF (2005) Why do Polytrichaceae have lamellae? J Bryol 27:221–229

    Google Scholar 

  • Proctor MCF (2009) Physiological ecology. In: Goffinet B, Shaw AJ (eds) Bryophyte biology, 2nd edn. Cambridge University Press, Cambridge, pp 237–268

    Google Scholar 

  • Proctor MCF (2010) Recovery rates of chlorophyll-fluorescence parameters in desiccation-tolerant plants: fitted logistic curves as a versatile and robust source of comparative data. Plant Growth

    Google Scholar 

  • Proctor MCF (2014) The diversification of bryophytes and vascular plants in evolving terrestrial environments. In: Hanson DT, Rice SK (eds) Photosynthesis in bryophytes and early land plants. Springer, Berlin Heidelberg New York, pp 59–77

    Google Scholar 

  • Proctor MCF, Bates JW (2018) Chlorophyll-fluorescence measurements in bryophytes: evidence for three main types of light-curve response. J Bryol 40:1–11

    Google Scholar 

  • Proctor MCF, Ligrone L, Duckett JG (2007b) Desiccation tolerance in the moss Polytrichum formosum: physiological and fine-structural changes during desiccation and recovery. Ann Bot 99:75–93

    Google Scholar 

  • Proctor MCF, Nagy Z, Csintalan Z, Takács Z (1998) Water-content components in bryophytes: analysis of pressure-volume relationships. J Exp Bot 49:1845–1854

    Google Scholar 

  • Proctor MCF, Oliver MJ, Wood AJ, Alpert P, Stark LR, Cleavitt NL, Mishler BD (2007a) Desiccation-tolerance in bryophytes: a review. Bryologist 110:595–621

    Google Scholar 

  • Proctor MCF, Pence VC (2002) Vegetative tissues: bryophytes, vascular resurrection plants and vegetative propagules. In: Black M, Pritchard HW (eds) Desiccation and survival in plants: drying without dying. CABI Publishing, Wallingford, pp 207–237

    Google Scholar 

  • Proctor MCF, Raven JA, Rice SK (1992) Stable carbon isotope discrimination measurements in Sphagnum and other bryophytes: physiological and ecological implications. J Bryol 17:193–202

    Google Scholar 

  • Proctor MCF, Smirnoff N (2000) Rapid recovery of photosystems on rewetting desiccation-tolerant mosses: chlorophyll fluorescence and inhibitor experiments. J Exp Bot 51:1695–1704

    Google Scholar 

  • Proctor MCFS, N, (2011) Ecophysiology of photosynthesis in bryophytes: major roles for oxygen photoreduction and non-photochemical quenching? Physiol Plant 141:130–140

    Google Scholar 

  • Proctor MCFS, N, (2015) Photoprotection in bryophytes: rate and extent of dark relaxation of non-photochemical quenching of chlorophyll fluorescence. J Bryol 37:171–177

    Google Scholar 

  • Przywara L, Kuta E (1995) Karyology of bryophytes. Polish Bot Stud 9:1–83

    Google Scholar 

  • Puglisi M, Kürschner H, Privitera M (2013) Saxicolous bryophyte communities of mountain areas of Greece—phytosociology, ecology, life forms and life strategies. Nova Hedwigia 97:159–178

    Google Scholar 

  • Pujos J (1994) Systèmes de croisement et fécondité chez le Sphagnum. Can J Bot 72:1528–1534

    Google Scholar 

  • Puttick MN, Morris JL, Williams TA, Cox CJ, Edwards D, Kenrick P, Pressel S, Wellman CH, Schneider H, Pisani D, Donoghue PCJ (2018) The interrelationships of land plants and the nature of the ancestral embryophyte. Curr Biol 28:733–745.e732. https://doi.org/10.1016/j.cub.2018.01.063

  • Pyysalo H, Koponen A, Koponen T (1983) Studies on entomophily in splachnaceae (Musci). II. Volatile compounds in the hypophysis. Annals Botany Fenn 21:335–388

    Google Scholar 

  • Qiu YL, Li L, Wang B, Chen Z, Dombrovska O, Lee J, Kent L, Li R, Jobson RW, Hendry TA, Taylor DW, Testa CM, Ambros M (2007) A nonflowering land plant phylogeny inferred from nucleotide sequences of seven chloroplast, mitochondrial, and nuclear genes. Int J Plant Sci 168:691–708

    Google Scholar 

  • Qiu YL, Li L, Wang B, Chen Z, Knoop V, Groth-Malonek M, Dombrovska O, Lee J, Kent L, Rest J, Estabrook GF, Hendry TA, Taylor DW, Testa CM, Ambros M, Crandall-Stotler B, Duff RJ, Stech M, Frey W, Quandt D, Davis CC (2006) The deepest divergences in land plants inferred from phylogenomic evidence. Proc Natl Acad Sci 103:15511–15516

    Google Scholar 

  • Qiu YL, Taylor AB, McManus HA (2012) Evolution of the life cycle in land plants. J Syst Evol 50:171–194

    Google Scholar 

  • Rai AN, Söderbäck E, Bergman B (2000) Cyanobacterium-plant symbioses. New Phytol 147:449–481

    Google Scholar 

  • Ramsay HP (1979) Anisospory and sexual dimorphism in the Musci. Clarke GCS. London, Academic Press, Duckett jg bryophyte systematics, pp 479–509

    Google Scholar 

  • Ramsay P, Cairns A (2004) Habitat, distribution and the phytogeographical affinities of mosses in the Wet Tropics bioregion, north–east Queensland, Australia. Cunninghamia 8:371–408

    Google Scholar 

  • Rasmussen S, Wolff C, Rudolph H (1995) Compartmentalization of phenolic constituents in Sphagnum. Phytochemistry 38:35–39

    Google Scholar 

  • Rastorfer JR (1970) Effects of light intensity and temperature on photosynthesis and respiration of two East Antarctic mosses, Bryum argenteum and Bryum antarcticum. Bryologist 73:544–556

    Google Scholar 

  • Raudzens L, Matzke EB (1968) Induced apospory in the liverwort Blasia pusilla. Am J Bot 55:1190–1196

    Google Scholar 

  • Raven JA (1977) The evolution of land plants in relation to supracellular transport processes. Adv Bot Res 5:153–219

    Google Scholar 

  • Raven JA (1999) The size of cells and organisms in relation to the evolution of embryophytes. Plant Biol 1:2–12

    Google Scholar 

  • Raven JA, Cockell CA, de La Rocha C (2008) The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Proc R Soc Biol Si Ser B 363:2641–2650

    Google Scholar 

  • Raven JA, Colmer TD (2016a) Life at the boundary: photosynthesis at the soil-fluid interface. A synthesis focusing on mosses. J Exp Bot 67:1613–1623

    Google Scholar 

  • Raven JA, Colmer TD (2016b) Corrigendum: life at the boundary: photosynthesis at the soil-fluid interface. A synthesis focusing on mosses. J Exp Bot 68:5247

    Google Scholar 

  • Raven JA, Griffiths H, Smith EC, Vaughn KC (1998). In: Bates JW, Ashton NW, Duckett JG (eds) New perspectives in the biophysics and physiology of bryophytes. Maney Publishing, Leeds, pp 261–275

    Google Scholar 

  • Raven JA, Johnston AM, Newman JR, Scrimgeour CM (1994) Inorganic carbon acquisition by aquatic photolithotrophs of the Dighty Burn, Angus, U.K.: uses and limitations of natural abundance measurements of carbon isotopes. New Phytol 127:271–286

    Google Scholar 

  • Read DJ, Duckett JG, Francis R, Ligrone R, Russell A (2000) Symbiotic fungal associations in ‘lower’ land plants. Phil Trans of the Royal Soc Lond B 355:815–831

    Google Scholar 

  • Rebsdorf A (1972) The carbon dioxide system of freshwater. A set of tables for easy computation of total carbon dioxide and other components of the carbon dioxide system. Freshwater Biological Laboratory, Hillerod, Denmark, Printed booklet

    Google Scholar 

  • Reed SC, Maestre FT, Ochoa-Hueso R, Kuske CR, Darrouzet-Nardi A, Oliver M, Darby B, Sancho LG, Sinsabaugh RL, Belnap J (2016) Biocrusts in the context of global change. In: Weber B, Büdel B, Belnap J (eds) (2016) Biological soil crusts: an organizing principle in drylands, ecol studies, vol 226. Springer, Berlin, pp 451–476

    Google Scholar 

  • Reed SC, Sparks CKK, JP, Housman DC, Zelikova TJ, Belnap J (2012) Changes to dryland rainfall result in rapid moss mortality and altered soil fertility. Nat Clim Chang. https://doi.org/10.1038/NCLIMATE1596

  • Redbo-Torstensson P (1994) The demographic consequences of nitrogen fertilization of a population of sundew, Drosera rotundifolia. Act Bot Neerl 43:175–188

    Google Scholar 

  • Renault S, Bonnemain JL, Faye L, Gaudillere JP (1992) Physiological aspects of sugar exchange between the gametophyte and the sporophyte of Polytrichum formosum. Plant Physiol 100:1815–1822

    Google Scholar 

  • Rensing SA (2018) Plant evolution: phylogenetic relationships between the earliest land plants. Curr Biol 28:R210–R213

    Google Scholar 

  • Rensing SA, Goffinet B, Meyberg R, Wu SZ, Bezanil M (2020) The moss Physcomitrium (Physcomitrella) patens: a model organism for non-seed plants. Plant Cell 32:1361–1376

    Google Scholar 

  • Renzaglia KS (1978) A comparative morphology and developmental anatomy of the Anthocerotophyta. J Hattori Bot Lab 44:31–90

    Google Scholar 

  • Renzaglia KS (1982) A comparative developmental investigation of the gametophyte generation in the Metzgeriales (Hepatophyta). Bryophyte Bib 24:1–253

    Google Scholar 

  • Renzaglia KS, Browning WB, Merced A (2020) With over 60 independent losses, stomata are expendable in mosses. Front Plant Sci 11:567 [1–14]

    Google Scholar 

  • Renzaglia KS, Duff RJ, Nickrent DL, Garbary DJ (2000) Vegetative and reproductive innovations of early land plants: implications for a unified phylogeny. Phil Trans Royal Soc B 355:769–793

    Google Scholar 

  • Renzaglia KS, McFarland KD (1999) Antheridial plants of Megaceros aenigmaticus in the Southern Appalachians: anatomy, ultrastructure and population distribution. Haussknechtia Beiheft 9:307–316

    Google Scholar 

  • Renzaglia KS, Schuette S, Duff RJ, Ligrone R, Shaw AJ, Mishler BD, Duckett JG (2007) Bryophyte phylogeny: advancing the molecular and morphological frontiers. Bryologist 110:179–213

    Google Scholar 

  • Renzaglia KS, Vaughn KC (2000) Anatomy, development and classification of hornworts. In: Shaw AJ, Goffinet B (eds) Bryophyte biology. Cambridge University Press, Cambridge, pp 1–35

    Google Scholar 

  • Renzaglia KS, Villarreal JC, Duff RJ (2009) New insights into morphology, anatomy, and systematics of hornworts. In: Goffinet B, Shaw AJ (eds) Bryophyte biology, 2nd edn. Cambridge University Press, Cambridge, pp 139–171

    Google Scholar 

  • Renzaglia KS, Villareal JC, Garbary DJ (2018) Morphology supports the setaphyte hypothesis: mosses plus liverworts form a natural group. Bryophyte Divers Evol 40:11–17

    Google Scholar 

  • Renzaglia KS, Villarreal JC, Piatkowski BT, Lucas JR, Merced A (2017) Hornwort stomata: architecture and fate shared with 400-million-year-old fossil plants without leaves. Plant Physiol 174:788–797

    Google Scholar 

  • Reynolds DN (1980) Gamete dispersal in Mnium ciliare. The Bryologist 83:73–77

    Google Scholar 

  • Rice SK, Cornelissen JHC (2014) Best practices for measuring photosynthesis at multiple scales. In: Hanson DT, Rice SK (eds) Photosynthesis in bryophytes and early land plants. Springer, Berlin Heidelberg New York, pp 79–93

    Google Scholar 

  • Rice SK, Schneider N (2004) Cushion size, surface roughness, and the control of water balance and carbon flux in the cushion moss Leucobryum glaucum. Am J Bot 91:1164–1172

    Google Scholar 

  • Richards PW (1984) The ecology of tropical forest bryophytes. In: Schuster RM (ed) New manual of bryology, vol 2. Nichinan. Miyazaki, The Hattori Botanical Laboratory, pp 1233–1270

    Google Scholar 

  • Richter C, Dainty J (1989a) Ion behavior in plant cell walls. I. Characterization of the Sphagnum russowii cell wall ion exchanger. Can J Bot 67:451–459

    Google Scholar 

  • Richter C, Dainty J (1989b) Ion behavior in plant cell walls. II. Measurement of the Donnan free space, anion-exclusion space, anion-exchange capacity, and cation-exchange capacity in delignified Sphagnum russowii cell walls. Can J Bot 67:460–465

    Google Scholar 

  • Ricklefs RE (1990) Ecology. Freeman, New York, p 896

    Google Scholar 

  • Rieley JO, Richards PW, Bebbington ADL (1979) The ecological role of bryophytes in a north Wales woodland. J Ecol 67:497–527

    Google Scholar 

  • Riis T, Olesen B, Katborg CK, Christoffersen KS (2010) Growth rate of an aquatic bryophyte (Warnstorfia fluitans (Hedw.) Loeske) from a high arctic lake: effect of nutrient concentration. Arctic 63:100–106

    Google Scholar 

  • Rimington WR, Duckett J, Field KJ, Bidartondo MI, Pressel S (2020) The distribution and evolution of fungal symbioses in ancient lineages of land plants. Mycorrhiza 30:23–49

    Google Scholar 

  • Rimington WR, Pressel S, Duckett JG, Field KJ, Read DJ (1888) Bidartondo MI (2018) Ancient plants with ancient fungi: liverworts associate with early-diverging arbuscular mycorrhizal fungi. Proc Royal Soc Lond B Biol Sci 285:20181600

    Google Scholar 

  • Rincón E (1990) Growth responses of Brachythecium rutabulum to different litter arrangements. J Bryol 16:120–122

    Google Scholar 

  • Rincón E (1988) The effect of herbaceous litter on bryophyte growth. J Bryol 15:209–217

    Google Scholar 

  • Risse S (1987) Rhizoid gemmae in mosses. Lindbergia 13:111–126

    Google Scholar 

  • Roberge JM, Bengtsson SBK, Wulff S, Snäll T (2011) Edge creation and tree dieback influence the patch-tracking metapopulation dynamics of a red-listed epiphytic bryophyte. J Appl Ecol 48:650–658

    Google Scholar 

  • Roberts NR, Dalton PJ, Jordan GJ (2005) Epiphytic ferns and bryophytes of Tasmanian tree-ferns: a comparison of diversity and composition between two host species. Austral Ecol 30:146–154

    Google Scholar 

  • Robinson S, Erickson DJ III (2015) Not just about sunburn—the ozone hole’s profound effect on climate has significant implications for Southern Hemisphere ecosystems. Global Change Biol 21:515–527

    Google Scholar 

  • Robinson SA, Waterman MJ (2014) Sunsafe Bryophytes: photoprotection from excess and damaging solar radiation. In: Hanson DT, Rice SK (eds) Photosynthesis in bryophytes and early land plants. Springer, Berlin Heidelberg New York, pp 113–130

    Google Scholar 

  • Robinson CH, Wookey PA, Lee JA, Callaghan TV, Press MC (1998) Plant community responses to simulated environmental change at a high arctic polar semi-desert. Ecology 79:856–866

    Google Scholar 

  • Robroek BJM, Schouten MGC, Limpens J, Berendse F, Poorter H (2009) Interactive effects of water table and precipitation on net CO2 assimilation of three co-occurring Sphagnum mosses differing in distribution above the water table. Global Change Biol 15:680–691

    Google Scholar 

  • Rochefort L, Vitt DH, Bayley SE (1990) Growth, production, and decomposition dynamics of sphagnum under natural and experimentally acidified conditions. Ecology 71:1986–2000

    Google Scholar 

  • Rosenstiel TN, Shortlidge EE, Menlychenko AN, Pankow JF, Eppley SM (2012) Sex-specific volatile compounds influence microarthropod-mediated fertilization of moss. Nature 489:431–433

    Google Scholar 

  • Rozema J, Björn LO, Bornman JF, Gaberscik A, Häder DP, Trost T, Germ M, Klisch M, Groniger A, Sinha RP, Lebert M, He YY, Buffoni-Hall R, de Bakker NVJ, van de Staaij J, Meijkamp BB (2002) The role of UV-B radiation in aquatic and terrestrial ecosystems—an experimental and functional analysis of the evolution of UV-absorbing compounds. J Photochem Photobiol B 66:2–12

    Google Scholar 

  • Rozema J, Boelen P, Blokke P (2005) Depletion of stratospheric ozone over the Antarctic and Arctic: responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview. Environ Pollut 137:428–442

    Google Scholar 

  • Rundel PW (1982) Water uptake by organs other than roots. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology II. Water relations and carbon assimilation. Springer, Berlin Heidelberg New York, pp 111–134

    Google Scholar 

  • Rundel PW, Lange OL (1980) Water relations and photosynthetic response of a desert moss. Flora 169:329–335

    Google Scholar 

  • Rundel PW, Stichler W, Zander RH, Ziegler H (1979) Carbon and hydrogen isotope ratios of bryophytes from arid and humid regions. Oecologia 4:91–94

    Google Scholar 

  • Rydgren K, Cronberg N, Økland RH (2006) Factors influencing reproductive success in the clonal moss, Hylocomium splendens. Oecologia 147:445–454

    Google Scholar 

  • Rydgren K, de Kroon H, Økland RH, van Groenendael J (2001) Effects of fine-scale disturbances on the demography and population dynamics of the clonal moss Hylocomium splendens. J Ecol 89:395–405

    Google Scholar 

  • Rydgren K, Økland RH (2001) Sporophyte production in the clonal moss Hylocomium splendens: the importance of shoot density. J Bryol 23:91–96

    Google Scholar 

  • Rydgren K, Økland RH (2003) Short-term costs of sexual reproduction in the clonal moss Hylocomium splendens. Bryologist 106:212–220

    Google Scholar 

  • Rydgren K, Økland RH, Økland T (1998) Population biology of the clonal moss Hylocomium splendens in Norwegian boreal spruce forests. 4. Effects Exp Fine-Scale Disturb Oikos 82:5–19

    Google Scholar 

  • Rydin H (1995) Effects of density and water level on recruitment, mortality and shoot size in Sphagnum populations. J Bryol 18:439–453

    Google Scholar 

  • Rydin H (2009) Population and community ecology of bryophytes. In: Goffinet B, Shaw AJ (eds) Bryophyte biology, 2nd edn. Cambridge University Press, Cambridge, pp 393–444

    Google Scholar 

  • Rydin H, Barber KE (2001) Long-term and fine-scale co-existence of closely related species. Fol Geobot 36:53–62

    Google Scholar 

  • Ryömä R, Laaka-Lindberg S (2005) Bryophyte recolonization on burnt soil and logs. Scand J for Res 20:5–16

    Google Scholar 

  • Sabovljević M, Sabovljević A (2007) Contribution to the coastal bryophytes of the Northern Mediterranean: are there halophytes among bryophytes? Phytol Balcanica 13:131–135

    Google Scholar 

  • Sancho LG, Belnap J, Colesie C, Raggio J, Weber B (2016) Carbon budgets of biological soil crusts at micro-, meso-, and global scales. In: Weber B, Büdel B, Belnap J (eds) Biological soil crusts: an organizing principle in drylands, ecological studies, vol 226. Springer, Berlin, pp 287–304

    Google Scholar 

  • Sand-Jensen K, Hammer KJ (2012) Moss cushions facilitate water and nutrient supply for plant species on bare limestone pavements. Oecologia 170:305–312

    Google Scholar 

  • Sassmann S, Wernitznig S, Lichtscheidl IK, Lang I (2010) Comparing copper resistance in two bryophytes: Mielichhoferia elongata Hornsch. versus Physcomitrella patens Hedw. Protoplasma 246:119–123

    Google Scholar 

  • Sayre RM, Brunson LK (1971) Microfauna of moss habitats. Amer Biol Teacher 33(100–102):105

    Google Scholar 

  • Scandrett E, Gimingham CH (1989) Experimental investigation of bryophyte interactions on a dry heathland. J Ecol 77:838–852

    Google Scholar 

  • Scheirer DC (1983) Leaf parenchyma with transfer cell-like characteristics in the moss, Polytrichum commune Hedw. Am J Bot 70:987–992

    Google Scholar 

  • Scheirer DC (1990) Mosses. In: Behnke HD, Sjolund RD (eds) Sieve elements. Springer, Berlin Heidelberg New York, pp 19–33

    Google Scholar 

  • Schimper WP (1848) Recherches anatomiques et morphologiques sur les mousses. Strasbourg, 122 p

    Google Scholar 

  • Schipperges B, Rydin H (1998) Response of photosynthesis of Sphagnum species from contrasting microhabitats to tissue water content and repeated desiccation. New Phytol 140:677–684

    Google Scholar 

  • Schmidt AR, Hentschel J, Heinrichs J (2010) The fossil hornwort described from Dominican amber is an angiosperm flower. Rev Palaeobot Palynol 160:209–211

    Google Scholar 

  • Schofield WB (1985) Introduction to bryology. McMillan Publishing Company, New York, p 446p

    Google Scholar 

  • Schonbeck MW, Bewley JD (1981) Responses of the moss Tortula ruralis to desiccation treatments. II. Variations in desiccation tolerance. Can J Bot 59:2707–2712

    Google Scholar 

  • Schüßler A (2000) Glomus claroideum forms an arbuscular mycorrhiza-like symbiosis with the hornwort Anthoceros punctatus. Mycorrhiza 10:15–21

    Google Scholar 

  • Schuster RM (1966) The Hepaticae and Anthocerotae of North America, East of the Hundredth Meridian, vol I. Columbia University Press, New York, p 802p

    Google Scholar 

  • Schuster RM (1984) Comparative anatomy and morphology of the Hepaticae. In: Schuster RM (ed) New manual of bryology, vol 2. Hattori Bot Lab, Nichinan, pp 760–891

    Google Scholar 

  • Schuster RM (1997) On Takakia and the phylogenetic relationships of the Takakiales. Nova Hedwigia 64:281–310

    Google Scholar 

  • Schuster RM, Scott GAM (1969) A study of the family Treubiaceae (Hepaticae; Metzgeriales). J Hattori Bot Lab 32:219–261

    Google Scholar 

  • Schwabe W, Nachmony-Bascomb S (1963) Growth and dormancy in Lunularia cruciata (L.) Dum. II. The response to daylength and temperature. J Exp Bot 14:353–378

    Google Scholar 

  • Schwarzmaier U, Brehm K (1975) Detailed characterization of the cation exchanger in Sphagnum magellanicum brid. Z Pflanzenphysiol 75:250–255

    Google Scholar 

  • Scott GAM (1982) Desert Bryophytes. In: Smith AJE (ed) Bryophyte ecology. Chapman & Hall, London, pp 105–122

    Google Scholar 

  • Sedia EG, Ehrenfeld JG (2003) Lichens and mosses promote alternate stable plant communities in the New Jersey Pinelands. Oikos 100:447–458

    Google Scholar 

  • Seel WE, Hendry GAF, Lee JE (1992a) Effects of desiccation on some activated oxygen processing enzymes and anti-oxidants in mosses. J Exp Bot 43:1031–1037

    Google Scholar 

  • Seel WE, Hendry GAF, Lee JE (1992b) The combined effects of desiccation and irradiance on mosses from xeric and hydric habitats. J Exp Bot 43:1023–1030

    Google Scholar 

  • Selosse MA (2002) Prototaxites, a giant devonian fungus? Mycol Res 106:642–644

    Google Scholar 

  • Selosse MA (2005) Are liverworts imitating mycorrhizas? New Phytol 165:345–349

    Google Scholar 

  • Seppelt RD, Downing AJ, Deane-Coe KK, Zhang Y, Zhang J (2016) Bryophytes within biological soil crusts. In: Weber B, Büdel B, Belnap J (eds) (2016) Biological soil crusts: an organizing principle in drylands, ecological studies, vol 226. Springer, Berlin, pp 101–120

    Google Scholar 

  • Shacklette HT (1965) Element content of bryophytes. Washington, Geol Surv Bull 1198-D:D1–D21

    Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M. (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot: Article 217037

    Google Scholar 

  • Shaw AJ (1994) Adaptation to metals in widespread and endemic plants. Environ Health Persp 102:105–108

    Google Scholar 

  • Shaw AJ (2000) Population ecology, population genetics and microevolution. In: Shaw AJ, Goffinet B (eds) Bryophyte biology. Cambridge University Press, Cambridge, pp 369–402

    Google Scholar 

  • Shaw AJ, Cox CJ, Buck WR, Devos N, Buchanan AM, Cave L, Seppelt R, Shaw B, Larraín J, Andrus R, Greilhuber J, Temsche EM (2010) Newly resolved relationships in an early land plant lineage: Bryophyta class Sphagnopsida (peat mosses). Am J Bot 97:1511–1531

    Google Scholar 

  • Shaw AJ, Cox CJ, Goffinet B, Buck WR, Boles SB (2003) Phylogenetic evidence of a rapid radiation of pleurocarpous mosses (Bryophyta). Evolution 57:2226–2241

    Google Scholar 

  • Shaw AJ, Renzaglia KS (2004) Phylogeny and diversification of bryophytes. Am J Bot 91:1557–1581

    Google Scholar 

  • Shaw AJ, Szövényi P, Shaw B (2011) Bryophyte diversity and evolution: windows into the early evolution of land plants. Am J Bot 98:352–369

    Google Scholar 

  • Shaw B, Crandall-Stotler B, Váňa J, Stotler RE, von Konrat M, Engel JJ, Davis EC, Long DG, Sova P, Shaw AJ (2015) Phylogenetic relationships and morphological evolution in a major clade of leafy liverworts (Phylum Marchantiophyta, Order Jungermanniales): suborder Jungermanniineae. Syst Bot 40:27–45

    Google Scholar 

  • Shacklette HT (1967) Copper mosses as indicators of metal concentrations Washington. Geol Surv Bull 1198-G:G1–G18

    Google Scholar 

  • Silvola J (1985) CO2 dependence of photosynthesis in certain forest and peat mosses and simulated photosynthesis at various actual and hypothetical CO2 concentrations. Lindbergia 11:86–93

    Google Scholar 

  • Silvola J (1990) Combined effects of varying water content and CO2 concentration on photosynthesis in Sp(h)agnum fuscum. Holarct Ecol 13:224–228

    Google Scholar 

  • Simola LK (1975) The effect of several protein amino acids and some inorganic nitrogen sources on the growth of Sphagnum nemoreum. Physiol Plant 35:194–199

    Google Scholar 

  • Simola LK (1979) Dipeptide utilization by Sphagnum fimbriatum. J Hattori Botanical Lab 46:49–64

    Google Scholar 

  • Skotnicki ML, Ninham JA, Selkirk PM (2000) Genetic diversity, mutagenesis and dispersal of Antarctic mosses—a review of progress with molecular studies. Antarct Sci 12:363–373

    Google Scholar 

  • Slack NG (1990) Bryophytes and ecological niche theory. Bot J Linn Soc 104:187–121

    Google Scholar 

  • Slack NG (1997) Niche theory and practice: bryophyte studies. Adv Bryol 6:169–204

    Google Scholar 

  • Slate ML, Sullivan BW, Callaway RM (2019) Desiccation and rehydration of mosses greatly increases resource fluxes that alter soil carbon and nitrogen cycling. J Ecol 107:1767–1778

    Google Scholar 

  • Smirnoff N (1992) The carbohydrates of bryophytes in relation to desiccation-tolerance. J Bryol 17:185–191

    Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    Google Scholar 

  • Smirnoff N (ed) (2005) Antioxidants and reactive oxygen species in plants. Oxford, Blackwell Publishing, p 320

    Google Scholar 

  • Smith AJE (ed) (1982a) Bryophyte ecology. Chapman & Hall, London, p 511p

    Google Scholar 

  • Smith AJE (1982b) Epiphytes and epiliths. In: Smith AJE (ed) Bryophyte ecology. Chapman & Hall, London, pp 191–227

    Google Scholar 

  • Smith DK (1990) Sporophyte of Takakia discovered. Bryol Times 57/58:1,4

    Google Scholar 

  • Smith DK, Davison PG (1993) Antheridia and sporophytes in Takakia ceratophylla (Mitt.) Grolle: evidence for reclassification among the mosses. J Hattori Bot Lab 73:263–271

    Google Scholar 

  • Smith EC, Griffiths H (1996a) The occurrence of the chloroplast pyrenoid is correlated with the activity of a CO2-concentrating mechanism and carbon isotope discrimination in lichens and bryophytes. Planta 198:6–16

    Google Scholar 

  • Smith EC, Griffiths H (1996b) A pyrenoid-based carbon-concentrating mechanism is present in terrestrial bryophytes of the class Anthocerotae. Planta 200:203–212

    Google Scholar 

  • Smith EC, Griffiths H (2000) The role of carbonic anhydrase in photosynthesis and the activity of the carbon-concentrating mechanism in bryophytes of the class Anthocerotae. New Phytol 145:29–37

    Google Scholar 

  • Smith RJ (2013) Cryptic diversity in bryophyte soil-banks along a desert elevational gradient. Lindbergia 36:1–8

    Google Scholar 

  • Smith RJ, Abella SR, Stark LR (2014) Post-fire recovery of desert bryophyte communities: effects of fires and propagule soil banks. J Veg Sci 25:447–456

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London, p 787p

    Google Scholar 

  • Smith VR (1977) Notes on the feeding of Ectemnorrhinus similis Waterhouse (Curculionidae) adults on Marion Island. Oecologia 29:269–273

    Google Scholar 

  • Smith VR (1993) Effect of nutrients on CO2 assimilation by mosses on a sub-Antarctic Island. New Phytol 123:693–697

    Google Scholar 

  • Snäll T, Fogelquist J, Ribeiro PJ Jr, Lascoux M (2004) Spatial genetic structure in two congeneric epiphytes with different dispersal strategies analysed by three different methods. Mol Ecol 13:2109–2119

    Google Scholar 

  • Snäll T, Ribeiro J Jr, Rydin H (2003) Spatial occurrence and colonizations in patch-tracking metapopulations: local conditions versus dispersal. Oikos 103:566–578

    Google Scholar 

  • Snelgar WP, Brown DH, Green TGA (1980) A provisional survey of the interaction between net photosynthetic rate, respiratory rate, and thallus water content in some New Zealand cryptogams. NZ J Bot 18:247–256

    Google Scholar 

  • Snider JA (1975) A revision of the genus Archidium. J Hattori Bot Lab 39:105–201

    Google Scholar 

  • Söderlund S, Forsberg A, Pedersen M (1988) Concentrations of cadmium and other metals in Fucus vesiculosus L. and Fontinalis dalecarlica Br Eur from the northern Baltic Sea and the southern Bothnian Sea. Environ Poll 51:197–212

    Google Scholar 

  • Söderström L (1988) Sequence of bryophytes and lichens in relation to substrate variables of decaying coniferous wood in northern Sweden. Nordic J Bot 8:89–97

    Google Scholar 

  • Söderström L (1990) Dispersal and distribution patterns in patchy, temporal habitats. In: Krahulec F, Agnew ADQ, Agnew S, Willems JH (eds) Spatial processes in plant communities. SPB Academic Publishers, The Hague, pp 103–113

    Google Scholar 

  • Söderström L (1993) Substrate preference in some forest bryophytes: a quantitative study. Lindbergia 18:98–103

    Google Scholar 

  • Söderström L (1998) Modelling the dynamics of bryophyte populations. In: Bates JE, Ashton NW, Duckett JG (eds) Bryology for the twenty-first century. Maney Publishing and the British Bryological Society, Leeds, pp 321–330

    Google Scholar 

  • Söderström L, Hagborg A, von Konrat M, Bartholomew-Began S, Bell D, Briscoe L, Brown E, Cargill DC, Costa DP, Crandall-Stotler BJ, Cooper ED, Dauphin G, Engel JJ, Feldberg K, Glenny D, Gradstein SR, He X, Heinrichs J, Hentschel J, Ilkiu-Borges AL, Katagiri T, Konstantinova NA, Larraín J, Long DG, Nebel M, Pócs T, Puche F, Reiner-Drehwald E, Renner MAM, Sass-Gyarmati A, Schäfer-Verwimp A, Segarra Moragues JG, Stotler RE, Sukkharak P, Thiers BM, Uribe J, Váňa J, Villarreal JC, Wigginton M, Zhang L, Zhu R-L (2016) World checklist of hornworts and liverworts. PhytoKeys 59:1–828

    Google Scholar 

  • Söderström L, Herben T (1997) Dynamics of bryophyte metapopulations. Adv Bryol 6:89–97

    Google Scholar 

  • Söderström L, Jonsson BG (1989) Spatial pattern and dispersal in the leafy hepatic Ptilidium pulcherrimum. J Bryol 15:793–802

    Google Scholar 

  • Song L, Lu HZ, Xu XL, Li S, Shi XM, Chen X, Wu Y, Huang JB, Chen Q, Liu S, Wu CS, Liu WY (2016) Organic nitrogen uptake is a significant contributor to nitrogen economy of subtropical epiphytic bryophytes. Nat Sci Rep 6:30408. https://doi.org/10.1038/srep3040

  • Soudzilovskaia NA, Graae BJ, Douma JC, Grau O, Milbau A, Shevtsova A, Wolters L, Cornelissen JHC (2011) How do bryophytes govern generative recruitment of vascular plants? New Phytol 190:1019–1031

    Google Scholar 

  • Southorn ALD (1976) Bryophyte recolonization of burnt ground with particular reference to Funaria hygrometrica. I. Factors affecting the pattern of recolonization. J Bryol 9:63–80

    Google Scholar 

  • Southorn ALD (1977) Bryophyte recolonization of burnt ground with particular reference to Funaria hygrometrica. II. The nutrient requirements of Funaria hygrometrica. J Bryol 9:361–373

    Google Scholar 

  • Spackova I, Leps J (2004) Variability of seedling recruitment under dominant, moss, and litter removal over four years. Folia Geobot 39:41–55

    Google Scholar 

  • Spitale D (2009) Switch between competition and facilitation within a seasonal scale at colony level in bryophytes. Oecologia 160:471–482

    Google Scholar 

  • Springer E (1935) Über apogame (vegetativ entstandene) Sporogone an der bivalenten Rasse des Laubmooses Phascum cuspidatum. Z Indukt Abstamm Vererbungsl 69:249–262

    Google Scholar 

  • Stahl M (1949) Die Mykorrhiza der Lebermoose mit besonderer Berücksichtigung der thallösen formen. Planta 37:103–148

    Google Scholar 

  • Stalfelt MG (1937) Der Gasaustausch Der Moose. Planta 27:30–60

    Google Scholar 

  • Stankovic JD, Sabovljevic AD, Sabovljevic MS (2018) Bryophytes and heavy metals: a review. Acta Bot Croat. https://doi.org/10.2478/botcro-2018-0014

  • Stark (2017) Ecology of desiccation tolerance in bryophytes: a conceptual framework and methodology. Bryologist 120:130–165

    Google Scholar 

  • Stark LR (1997) Phenology and reproductive biology of Syntrichia inermis (Bryopsida, Pottiaceae) in the Mojave Desert. Bryologist 100:13–27

    Google Scholar 

  • Stark LR (2001) Widespread sporophyte abortion following summer rains in Mojave Desert populations of Grimmia orbicularis. Bryologist 104:115–125

    Google Scholar 

  • Stark LR, Brinda JC, McLetchie DN (2011a) Effects of increased summer precipitation and N deposition on Mojave Desert populations of the biological crust moss Syntrichia caninervis. J Arid Environ 75:457–463

    Google Scholar 

  • Stark LR, Brinda JC, McLetchie DN, Oliver MJ (2012) Extended periods of hydration do not elicit dehardening to desiccation tolerance in regeneration trials of the moss Syntrichia caninervis. Int J Plant Sci 173(4):333–343

    Google Scholar 

  • Stark LR, Greenwood JL, Brinda JC (2017) Desiccated Syntrichia ruralis shoots regenerate after 20 years in the herbarium. J Bryol 39:85–93

    Google Scholar 

  • Stark LR, McLetchie DN, Smith SD, Oliver MJ (2011b) Responses of a biological crust moss to increased monsoon precipitation and N deposition in the Mojave Desert. In: Tuba Z, Slack NG, Stark LR (eds) Bryophyte ecology and climate change. Cambridge University Press, Cambridge, pp 149–168

    Google Scholar 

  • Stark LR, Mishler BD, McLetchie DN (2000) The cost of realized sexual reproduction: assessing patterns of reproductive allocation and sporophyte abortion in a desert moss. Am J Bot 87:1599–1608

    Google Scholar 

  • Stark LR, Oliver MJ, Mishler BD, McLetchie DN (2007) Generational differences in response to desiccation stress in the desert moss Tortula inermis. Ann Bot 99:53–60

    Google Scholar 

  • Stech M, Frey W (2004) Molecular circumscription and relationships of selected Godwanan species of Haplomitrium (Calobryales, Haplomitriopsida, Hepaticophytina). Nova Hedwigia 78:57–70

    Google Scholar 

  • Stech M, Frey W (2008) A morpho-molecular classification of mosses (Bryophyta). Nova Hedwigia 86:1–21

    Google Scholar 

  • Stech M, Quandt D (2010) 20,000 species and five key markers: the status of molecular bryophyte phylogenetics. Phytotaxa 9:196–228

    Google Scholar 

  • Steel JB, Wilson JB, Anderson BJ, Lodge HE, Tangney RS (2004) Are bryophyte communities different from higher-plant communities? abundance relations. Oikos 104:479–486

    Google Scholar 

  • Steere WC (1961) A preliminary review of the bryophytes of Antarctica. In: Science in Antarctica. Part 1: the life sciences in Antarctica. National Academy of Sciences, National Research Council publication 839, pp 20–33

    Google Scholar 

  • Steere WC (1965) Antarctic bryophytes. Bioscience 15:283–285

    Google Scholar 

  • Steijlen I, Nilsson MC, Zackrisson O (1995) Seed regeneration of Scots pine in boreal forest stands dominated by land feather moss. C J for Res 25:713–723

    Google Scholar 

  • Stewart GR, Lee JA (1972) Desiccation-injury in mosses. II. The effect of moisture stress on enzyme levels. New Phytol 71:461–466

    Google Scholar 

  • Stewart RRC, Bewley JD (1982) Stability and synthesis of phospholipids during desiccation and rehydration of a desiccation-tolerant and a desiccation-intolerant moss. Plant Physiol 69:724–727

    Google Scholar 

  • Stone IG (1986) The relationship between Mittenia plumula (Mitt.) Lindb. and Schistostega pennata (Hedw) Web & Mohr. J Bryol 14:301–314

    Google Scholar 

  • Stone IG (2012) Australian Mosses Online 38. Mitteniaceae. Australian biological resources study, Canberra. Version 9 June 2012. http://www.anbg.gov.au/abrs/Mosses_online/38_Mitteniaceae.html

  • Stoneburner A, Lane DM, Anderson LE (1992) Spore dispersal distances in Atrichum angustatum (Polytrichaceae). Bryologist 95:324–328

    Google Scholar 

  • Stotler RE, Crandall-Stotler B (2005) A revised classification of the Anthocerotophyta and a checklist of the hornworts of North America, north of Mexico. Bryologist 108:16–26

    Google Scholar 

  • Strack M (ed) (2008) Peatlands and climate change. International Peat Society, Jyväskylä, Finland, p 223

    Google Scholar 

  • Strack M, Price JS (2009) Moisture controls on carbon dioxide dynamics of peat-Sphagnum monoliths. Ecohydrology. https://doi.org/10.1002/eco36

  • Strack M, Waddington JM, Lucchese MC, Cagampan JP (2009) Moisture controls on CO2 exchange in a Sphagnum-dominated peatland: results from an extreme drought field experiment. Ecohydrology. https://doi.org/10.1002/eco68

  • Strong L, Wall R (1994) Effects of ivermectin and moxidectin on the insects of cattle dung. Bull Entomol Res 84:403–409

    Google Scholar 

  • Suire C (2000) A comparative transmission electron microscopic study on the formation of oil-bodies in liverworts. J Hattori Bot Lab 89:209–232

    Google Scholar 

  • Suire C, Bouvier F, Backhaus R, Bégu D, Bonneu M, Camara B (2000) Cellular localization of isoprenoid biosynthetic enzymes in Marchantia polymorpha. Uncovering a new role of oil bodies. Plant Physiol 124:971–978

    Google Scholar 

  • Sundberg S, Rydin H (2002) Habitat requirements for establishment of Sphagnum from spores. J Ecol 90:268–278

    Google Scholar 

  • Suren AM (1992) Meiofaunal communities associated with bryophytes and gravels in shaded and unshaded alpine streams in New Zealand. NZ J Mar Freshwat Res 26:115–125

    Google Scholar 

  • Suren AM, Winterbourn MJ (1991) Consumption of aquatic bryophytes by alpine stream invertebrates in New Zealand. NZ J Mar Freshwat Res 25:331–343

    Google Scholar 

  • Suzuki M (1971) An analysis of colonization in the freshwater microorganisms. I. Colonization at 17 stations along the 5 lakes of the Mt. Fuji Zool Mag Tokyo Zool Soc 80:191–201

    Google Scholar 

  • Sveinbjörnsson B, Oechel WC (1992) Controls on growth and productivity of bryophytes: environmental limitations under current and anticipated conditions. In: Bates JW, Farmer AM (eds) Bryophytes and lichens in a changing environment. Oxford Scientific Publications, Oxford, pp 77–102

    Google Scholar 

  • Svensson BM (1995) Competition between Sphagnum fuscum and Drosera rotundifolia: a case of ecosystem engineering. Oikos 74:205–212

    Google Scholar 

  • Svensson BM, Rydin H, Carlsson BA (2005) Clonal plants in the community. In: van der Maarel E (ed) Vegetation ecology. Blackwell Science, Oxford, pp 129–146

    Google Scholar 

  • Swindles GT, Charman DJ, Roe HM, Sansum PA (2009) Environmental controls on peatland testate amoebae (Protozoa: Rhizopoda) in the North of Ireland: implications for Holocene palaeoclimate studies. J Paleolimn 42:123–140

    Google Scholar 

  • Takezawa D (2018) Mechanisms underlying freezing and desiccation tolerance in bryophytes. In: Iwaya-Inoue M, Sakurai M, Uemura M (eds), Survival strategies in extreme cold and desiccation. Advances in experimental medicine and biology, vol 1081. Springer, Singapore, pp 167–187

    Google Scholar 

  • Talbot J, Richard PJH, Roulet NT, Booth RK (2010) Assessing long-term hydro-logical and ecological responses to drainage in a raised bog using paleoecologyand a hydrosequence. J Veg Sci 21:143–156

    Google Scholar 

  • Tallis JH (1959) Studies in the biology and ecology of Rhacomitrium lanuginosum Brid. II. Growth, reproduction and physiology. J Ecol 47:325–350

    Google Scholar 

  • Tamm CO (1953) Growth, yield and nutrition in carpets of a forest moss (Hylocomium splendens). Meddelanden Fran Statens Skogsforskningsinstitut 43:1–140

    Google Scholar 

  • Tarnawski M, Green TGA, Büdel B, Meyer A, Zellner H, Lange OL (1994) Diel changes of atmospheric CO2 concentration within, and above, cryptogam stands in a New Zealand temperate rainforest. NZ J Bot 32:329–336

    Google Scholar 

  • Tarnawski M, Melik D, Roser D, Adamson E, Adamson H, Seppelt R (1992) In situ CO2 levels in cushion and turf forms of Grimmia antarctici at Casey station, East Antarctica. J Bryol 17:241–249

    Google Scholar 

  • Tavili A, Jafari M, Chahouki MAZ, Sohrabi M (2017) How do cryptogams affect vascular plant establishment? Cryptogam Bryol 38:313–323

    Google Scholar 

  • Taylor TN, Taylor EL, Krings M (2009) Paleobotany. The biology and evolution of Fossil plants, 2nd edn. Academic Press, Burlington, p 1252

    Google Scholar 

  • Teeri JA (1981) Stable carbon isotope analysis of mosses and lichens growing in xeric and moist habitats. Bryologist 84:82–84

    Google Scholar 

  • Thiers BM (1993) A monograph of Pleurozia (Hepaticae; Pleuroziaceae). Bryologist 96:517–554

    Google Scholar 

  • Thomas PA, Proctor MCF, Maltby E (1994) The ecology of severe moorland fire on the North York Moors: chemical and physical constraints on moss establishment from spores. J Ecol 82:457–474

    Google Scholar 

  • Thomas RJ, Stanton DS, Grusak NA (1979) Radioactive tracer study of sporophyte nutrition in hepatics. Am J Bot 66:398–403

    Google Scholar 

  • Thomas RJ, Stanton DS, Longendorfer DH, Farr ME (1978) Physiological evaluation of the nutritional autonomy of a hornwort sporophyte. Int J Plant Sci 139:306–311

    Google Scholar 

  • Thomas RT, Doyle WT (1976) Changes in the carbohydrate constituents of elongating Lophocolea heterophylla setae (Hepaticae). Am J Bot 63:1054–1059

    Google Scholar 

  • Thompson HA (1967) The climate of the Canadian Arctic. Canada Dept of Transport. Meteorological Branch, Ottawa 32 pp

    Google Scholar 

  • Thomson WW, Platt KA (1997) Conservation of cell order in desiccated mesophyll of Selaginella lepidophylla ([Hook & Grev.] Spring). Ann Bot 79:439–447

    Google Scholar 

  • Thormann MN, Bayley SE (1997) Decomposition along a moderate-rich fen-marsh peatland gradient in Boreal Alberta, Canada. Wetlands 17:123–137

    Google Scholar 

  • Touw A (1971) A taxonomic revision of the Hynodendraceae (Musci) Blumea 19:211–354

    Google Scholar 

  • Tsubota H, Ageno Y, Estébanez B, Yamaguchi T, Deguchi H (2003) Molecular phylogeny of the Grimmiales (Musci) based on chloroplast rbcL sequences. Hikobia 14:55–70

    Google Scholar 

  • Tuba Z, Csintalan Z, Badacsonyi A, Proctor MCF (1997) Chlorophyll fluorescence as an exploratory tool for ecophysiological studies on mosses and other small poikilohydric plants. J Bryol 19:401–407

    Google Scholar 

  • Tuba Z, Csintalan Z, Proctor MCF (1996) Photosynthetic responses of a moss, Tortula ruralis ssp. ruralis, and the lichens Cladonia convoluta and C. furcata to water deficit and short periods of desiccation, and their ecophysiological significance: a baseline study at present CO2 concentration. New Phytol 133:353–361

    Google Scholar 

  • Tuba Z, Csintalan Z, Szente K, Nagy Z, Grace J (1998) Carbon gains by desiccation-tolerant plants at elevated CO2. Funct Ecol 12:39–44

    Google Scholar 

  • Tuba Z, Slack NG, Stark LR (eds) (2011) Bryophyte ecology and climate change. Cambridge University Press, Cambridge, p 528

    Google Scholar 

  • Tucker EB, Costerton JW, Bewley JD (1975) The ultrastructure of the moss Tortula ruralis on recovery from desiccation. Can J Bot 53:94–101

    Google Scholar 

  • Turetsky MR (2003) The role of bryophytes in carbon and nitrogen cycling. Bryologist 106:395–409

    Google Scholar 

  • Turetsky MR, Wieder RK, Halsey L, Vitt D (2002) Current disturbance and the diminishing peatland carbon sink. Geophys Res Lett 29:21-1–21-4

    Google Scholar 

  • Turetsky MR, Wieder RK, Williams C, Vitt DH (2000) Organic matter accumulation, peat chemistry, and permafrost melting in peatlands of boreal Alberta. Ecoscience 7:379–392

    Google Scholar 

  • Turnbull JD, Leslie SJ, Robinson SA (2009) Desiccation protects Antarctic mosses from ultraviolet-B induced DNA damage. Funct Plant Biol 36:214–221

    Google Scholar 

  • Turner TE, Swindles GT (2012) Ecology of testate amoebae in moorland with a complex fire history: implications for ecosystem monitoring and sustainable land management. Protist 163:844–855

    Google Scholar 

  • Tyler G (1990) Bryophytes and heavy-metals: a literature review. Bot J Linnean Soc 104:231–253

    Google Scholar 

  • Tyler T, Olsson PA (2016) Substrate pH ranges of south Swedish bryophytes—identifying critical pH values and richness patterns. Flora 223:74–82

    Google Scholar 

  • Umana NHN, Wanek W (2010) Large canopy exchange fluxes of inorganic and organic nitrogen and preferential retention of nitrogen by epiphytes in a tropical lowland rainforest. Ecosystems 13:367–381

    Google Scholar 

  • Valanne N (1984) Photosynthesis and photosynthetic products in mosses. In: Dyer AF, Duckett JG (eds) The experimental biology of bryophytes. Academic Press, London, pp 257–273

    Google Scholar 

  • van der Heijden E, Verbeek SK, Kuiper PJC (2000) Elevated atmospheric CO2 and increased nitrogen deposition: effects on C and N metabolism and growth of the peat moss Sphagnum recurvum P. Beauv. var. mucronatum (Russ.) Warnst. Global Change Biol 6:201–212

    Google Scholar 

  • van der Hoeven EC (1999) Reciprocal transplantation of three chalk grassland bryophytes in the field. Lindbergia 24:23–28

    Google Scholar 

  • van der Hoeven EC, During HJ (1997) The effect of density on size frequency distributions in chalk grassland bryophyte populations. Oikos 80:533–539

    Google Scholar 

  • van der Hoeven EC, During HJ (2008) Interspecific interactions between bryophytes in a Dutch chalk grassland after pulse perturbation. Abhdl Westfäl Mus Naturkde 70:277–288

    Google Scholar 

  • Vanderporten A, Goffinet B (2009) Introduction to bryophytes. Cambridge University Press, Cambridge, p 303p

    Google Scholar 

  • Vanderpoorten A, Klein JP (1999) Variations of aquatic bryophyte assemblages in the Rhine Rift related to water quality. 2. The waterfalls of the Vosges and the Black Forest. J Bryol 21:109–115

    Google Scholar 

  • Vanderpoorten A, Patino J, Désamoré A, Laenen B, Górsky P, Papp B, Holá E, Korpelainen H, Hardy OJ (2019) To what extent are bryophytes efficient dispersers? J Ecol 107:2149–2154

    Google Scholar 

  • Van der Velde M, During HJ, Van de Zande L, Bijlsma R (2001) The reproductive biology of Polytrichum formosum: clonal structure and paternity revealed by microsatellites. Mol Ecol 10:2423–2434

    Google Scholar 

  • van Tooren BF, van Dam D, During HJ (1990) The relative importance of precipitation and soil as sources of nutrients for Calliergonella cuspidata in a chalk grassland. Funct Ecol 4:101–107

    Google Scholar 

  • Vasander H, Kettunen A (2006) Carbon in boreal peatlands. In: Wieder RK, Vitt DH (eds) Boreal peatland ecosystems, ecological studies, vol 188. Springer, Berlin, pp 165–194

    Google Scholar 

  • Vaughn KC, Campbell EO, Hasegawa J, Owen HA, Renzaglia KS (1990) The pyrenoid is the site of ribulose 1–5 bisphosphate carboxylase; oxygenase accumulation in the hornwort (Bryophyta: Anthocerotae) chloroplast. Protoplasma 156:117–129

    Google Scholar 

  • Vaughn KC, Ligrone R, Owen HA, Hasegawa J, Campbell EO, Renzaglia KS, Monge-Najera J (1992) The anthocerote chloroplast: a review. New Phylol 120:169–190

    Google Scholar 

  • Verhoeven JTA, Liefveld WM (1997) The ecological significance of organochemical compounds in Sphagnum. Acta Botan Neerlandica 46:117–130

    Google Scholar 

  • Villarreal JC, D. Cargill DC, Hagborg A, Söderström L, Renzaglia KS (2010) A synthesis of hornwort diversity: patterns, causes and future work. Phytotaxa 9:150–166

    Google Scholar 

  • Villarreal JC, Cusimano N, Renner SS (2015) Biogeography and diversification rates in hornworts: the limitations of diversification modeling. Taxon 64:229–238

    Google Scholar 

  • Villarreal JC, Renner SS (2012) Hornwort pyrenoids, carbon-concentrating structures, evolved and were lost at least five times during the last 100 million years. PNAS 109:18873–18878

    Google Scholar 

  • Villarreal JC, Renner SS (2013) Correlates of monoicy and dioicy in hornworts, the apparent sister group to vascular plants. BMC Evol Biol 13:239

    Google Scholar 

  • Villarreal JC, Renzaglia KS (2006a) Structure and development of Nostoc strands in Leiosporoceros dussii (Anthocerotophyta): a novel symbiosis in land plants. Am J Bot 93:693–705

    Google Scholar 

  • Villarreal JC, Renzaglia KS (2006b) Sporophyte structure in the neotropical hornwort Phaeomegaceros fimbriatus: implications for phylogeny, taxonomy and character evolution. Int J Plant Sci 167:413–427

    Google Scholar 

  • Villarreal JC, Renzaglia KS (2015) The hornworts: important advancements in early land plant evolution. J Bryol 37:157–170

    Google Scholar 

  • Vile MA, Scott KD, Brault E, Wieder RK, Vitt DH (2011) Living on the edge: the effects of drought on Canada’s western boreal peatlands. In: Tuba Z, Slack NG, Stark LR (eds) Bryophyte ecology and climate change. Cambridge University Press, Cambridge, pp 147–155

    Google Scholar 

  • Vilnet AA, Konstantinova NA, Troitsky AV (2009) Genosystematics and new insight into the phylogeny and taxonomy of liverworts. Mol Biol 43:783–793

    Google Scholar 

  • Virtanen V (2003) Phylogeny of the Bartramiaceae (Bryopsida) based on morphology and rbcL, rps4, and trnL-trnF sequence data. Bryologist 106:280–296

    Google Scholar 

  • Vitt DH (1981) Adaptive modes of the moss sporophyte. Bryologist 84:166–186

    Google Scholar 

  • Vitt DH (1984) Classification of the bryopsida. In: Schuster RM (ed) New manual of bryology, vol 2. Nichinan, Hattori Botanical Laboratory, pp 696–759

    Google Scholar 

  • Vitt DH, Halsey LA, Bauer IE, Campbell C (2000) Spatial and temporal trends in carbon stoage of peatlands of continental western Canada through the Holocene. Can J Earth Sci 37:683–693

    Google Scholar 

  • Vitt DH, Wieder K, Halsey LA, Turetsky M (2003) Response of Sphagnum fuscum to nitrogen deposition: a case study of ombrogenous peatlands in Alberta, Canada. Bryologist 106:235–245

    Google Scholar 

  • Vitt DH, Wieder RK (2009) The structure and function of bryophyte-dominated peatlands. In: Goffinet B, Shaw AJ (eds) Bryophyte Biology, 2nd edn. Cambridge University Press, Cambridge, pp 357–391

    Google Scholar 

  • von Wettstein F (1925) Genetische Untersuchungen an Moosen (Musci und Hepaticae). Bibliogr Genet 1:1–38

    Google Scholar 

  • Voth PD (1943) Effects of nutrient-solution concentration on the growth of Marchantia polymorpha. Bot Gaz 104:591–601

    Google Scholar 

  • Wagner S, Bader MY, Zotz G (2014a) Physiological ecology of tropical bryophytes. In: Hanson DT, Rice SK (eds) Photosynthesis in bryophytes and early land plants. Springer, Berlin Heidelberg New York, pp 269–289

    Google Scholar 

  • Wagner S, Zotz G, Bader MY (2014b) The temperature acclimation potential of tropical bryophytes. Plant Biol 16:117–124

    Google Scholar 

  • Walker LR, Zimmerman JK, Lodge DJ, Guzman-Grajales S (1996) An altitudinal comparison of growth and species composition in hurricane-damaged forests in Puerto Rico. J Ecol 84:877–889

    Google Scholar 

  • Wasley J, Robinson SA, Lovelock CE, Popp M (2006) Some like it wet—biological characteristics underpinning tolerance of extreme water stress events in Antarctic bryophytes. Funct Plant Biol 33:443–455

    Google Scholar 

  • Watson MA (1979) Age structure and mortality within a group of closely related mosses. Ecology 60:988–997

    Google Scholar 

  • Webber PJ (1974) Tundra primary productivity. In: Ives JD, Barry RG (eds) Arctic and alpine environments. Methuen, London, pp 445–473

    Google Scholar 

  • Weber B, Büdel B, Belnap J (eds) (2016) Biological soil crusts: an organizing principle in drylands, ecological studies, vol 226. Springer, Berlin, p 549

    Google Scholar 

  • Weetman G (1968) The relationship between feather-moss growth and the nutrition of black spruce. In: Lafleur C, Butler J (eds) Proc Third Int Peat Congr. Dept Energy Mines and Resources and Natural Res Council, Ottawa, pp 366–370

    Google Scholar 

  • Weibull H (2001) Influence of tree species on the epilithic bryophyte flora in deciduous forests of Sweden. J Bryol 23:55–66

    Google Scholar 

  • Weis E, Wamper D, Santarius KA (1986) Heat sensitivity and thermal adaptation of photosynthesis in liverwort thalli. Oecologia 69:134–139

    Google Scholar 

  • Wellman CH, Osterloff PL, Mohiuddin U (2003) Fragments of the earliest land plants. Nature 425:282–285

    Google Scholar 

  • Werner O, Espin RMR, Bopp M, Atzorn R (1991) Abscisic-acid-induced drought tolerance in Funaria hygrometrica Hedw. Planta 186:99–103

    Google Scholar 

  • Werner O, Ros RM, Cano MJ, Guerra J (2004) Molecular phylogeny of Pottiaceae (Musci) based on chloroplast rps 4 sequence data. Plant Syst Evol 243:147–164

    Google Scholar 

  • Weston DJ, Turetsky MR, Johnson MG, Granath G, Zoe L, Belyea LR, Rice SK, Hanson DT, Engelhardt KAM, Schmutz J, Dorrepaal E, Euskirchen ES, Stenøien HK, Szövényi P, Jackson M, Piatkowski BT, Muchero W, Norby RJ, Kostka JE, Glass JB, Rydin H, Limpens J, Tuittila ES, Ullrich KK, Carrell A, Benscoter BW, Chen JG, Oke TA, Nilsson MB, Ranjan P, Jacobson D, Lilleskov EA, Clymo RS, Shaw AJ (2018) The Sphagnome project: enabling ecological and evolutionary insights through a genus-level sequencing project. New Phytol 217:16–25

    Google Scholar 

  • Wieder RW (2006) Primary production in boreal peatlands. In: Wieder RK, Vitt DH (eds) Boreal peatland ecosystems, ecological studies, vol 188. Springer, Berlin, pp 145–164

    Google Scholar 

  • Wiklund K, Rydin H (2004) Ecophysiological constraints on spore establishment in bryophytes. Funct Ecol 18:907–913

    Google Scholar 

  • Wikström N, He-Nygrén X, Shaw JA (2009) Liverworts (Marchantiopsida) In: Blair Hodges S, Kumar S (eds) The timetree of life. Oxford University Press, Oxford, pp 146–152; Microb Ecol 74:561–569

    Google Scholar 

  • Williams CJ, Yavitt JB, Wieder RK, Cleavitt NL (1998) Cupric oxidation products of northern peat and peat-forming plants. Can J Bot 76:51–62

    Google Scholar 

  • Wilson JA, Coxson DS (1999) Carbon flux in a subalpine spruce–fir forest: pulse release from Hylocomium splendens feather-moss mats. Can J Bot 77:564–569

    Google Scholar 

  • Wilson MA, Sawyer J, Hatcher PG, Lerch HE II, I, (1989) 1-3-5-hydroxybenzene structures in mosses. Phytochemistry 28:1395–1400

    Google Scholar 

  • Wolf JHD (1993) Ecology of epiphytes and epiphyte communities in montane rain forests, Colombia. PHD Thesis Univ Amsterdam, 238 p

    Google Scholar 

  • Wolters B (1964) Antibiotisch und toxisch wirkende Substanzen aus Algen und Moosen. Plant Med 12:85–99

    Google Scholar 

  • Wong FCY, Meeks JC (2002) Establishment of a functional symbiosis between the cyanobacterium Nostoc punctiforme and the bryophyte Anthoceros punctatus requires genes involved in nitrogen control and initiation of heterocyst differentiation. Microbiology 148:315–323

    Google Scholar 

  • Wood AJ (2007) The nature and distribution of vegetative desiccation tolerance in hornworts, liverworts and mosses. Bryologist 110:163–177

    Google Scholar 

  • Woollon FBM (1975) Mineral relationships and ecological distribution of Fissidens cristatus Wils. J Bryol 8:455–464

    Google Scholar 

  • Wyatt R (1977) Spatial pattern and gamete dispersal distances in Atrichum angustatum, a dioicous moss. Bryologist 80:284–291

    Google Scholar 

  • Wyatt R, Odrzykoski IJ, Stoneburner A, Bass HW, Galau GA (1988) Allopolyploidy in bryophytes: multiple origins of Plagiomnium medium. Proc Natl Acad Sci USA 85:5601–5604

    Google Scholar 

  • Xiao B, Hu KL, Ren TS, Li BG (2016) Moss-dominated biological soil crusts significantly influence soil moisture and temperature regimes in semiarid ecosystems. Geoderma 263:35–46

    Google Scholar 

  • Xiao L, Yobi A, Koster KL, He Y, Oliver MJ (2018) Desiccation tolerance in Physcomitrella patens: rate of dehydration and the involvement of endogenous abscisic acid (ABA). Plant, Cell Environ 41:275–284

    Google Scholar 

  • Yarranton GA (1967) Principal components analysis of data from saxicolous bryophyte vegetation at Steps Bridge, Devon: III. Correlation of variation in the vegetation with environmental variables. Can J Bot 45:249–258

    Google Scholar 

  • Yu Z, Beilman DW, MacDonald FS, GM, Roulet NT, Camill P, Charman DJ (2011) Peatlands and their role in the global carbon cycle. Eos 92:97–108

    Google Scholar 

  • Yu Z, Loisel J, Brosseau DP, Beilman DW, Hunt SJ (2010) Global peatland dynamics since the Last Glacial Maximum. Geophys Res Lett 37:L13402. https://doi.org/10.1029/2010GL043584

  • Yu ZC (2012) Northern peatland carbon stocks and dynamics: a review. Biogeosciences 9:4071–4085

    Google Scholar 

  • Zaady E, Kuhn U, Wilske B, Sandoval-Soto L, Kesselmeier J (2000) Patterns of CO2 exchange in biological soil crusts of successional age. Soil Biol Biochem 32:959–966

    Google Scholar 

  • Zamfir M (2000) Effects of bryophytes and lichens on seedling emergence of alvar plants: evidence from greenhouse experiments. Oikos 88:603–611

    Google Scholar 

  • Zamfir M, Dai XB, van der Maarel E (1999) Bryophytes, lichens and phanerogams in an alvar grassland: relationships at different scales and contributions to plant community pattern. Ecography 22:40–52

    Google Scholar 

  • Zanatta JP, Patino J, Lebeau F, Massinon M, Hylander K, De Haan M, Ballings P, Degreef J, Vanderpoorten A (2016) Measuring spore settling velocity for an improved assessment of dispersal rates in mosses. Ann Bot 118:197–206

    Google Scholar 

  • Zanatta F, Vanderpoorten A, Hedenäs L, Johansson V, Patiño J, Lönnell N, Hylander K (2018) Under which humidity conditions are moss spores released? a comparison between species with perfect and specialized peristomes. Ecol Evol 2018:1–8. https://doi.org/10.1002/ece3.4579

  • Zartman CE, Nascimento HEM (2006) Are habitat-tracking metacommunities dispersal limited? Inferences from abundance-occupancy patterns of epiphylls in Amazonian forest fragments. Biol Cons 127:46–54

    Google Scholar 

  • Zartman CE, Nascimento HEM, Cangani KG, Alvarenga LDP, Snäll T (2012) Fine-scale changes in connectivity affect the metapopulation dynamics of a bryophyte confined to ephemeral patches. J Ecol 100:980–986

    Google Scholar 

  • Zartman CE, Shaw AJ (2006) Metapopulation extinction thresholds in rain forest remnants. Am Nat 167(2):177–189

    Google Scholar 

  • Zechmeister HG (2005) Bryophytes of continental salt meadows in Austria. J Bryol 27:297–302

    Google Scholar 

  • Zechmeister HG, Grodzinska K, Szarek-Lukaszewska G (2003) Bryophytes. In: Markert BA, Breure AM, Zechmeister HG (eds) Trace metals and other contaminants in the environment, vol 6. Bioindicators and Biomonitors. Amsterdam Boston, Elsevier, pp 329–375

    Google Scholar 

  • Zhang H, Piilo SR, Amesbury MJ, Charman DC, Gallego-Sala AV, Väliranta MM (2018) The role of climate change in regulating Arctic permafrost peatland hydrological and vegetation change over the last millennium. Quatern Sci Rev 182:121–130

    Google Scholar 

  • Zhang J, Fu XX, Li RQ, Zhao X, Liu Y, Li MH, Zwaenepoel A, Ma H, Goffinet B, Guan YL, Xue JY, Liao YY, Wang QF, Wang QH, Wang JY, Zhang GQ, Wang ZW, Jia Y, Wang MZ, Dong SS, Yang JF, Jiao YN, Guo YL, Kong HZ, Lu AM, Zhang SZ, van de Peer Y, Liu ZJ, Chen ZD (2020) The hornwort genome and early land plant evolution. Nat Plants 6:107–118

    Google Scholar 

  • Zhang J, Zhang YM, Downing A, Cheng JH, Zhou XB, Zhang BC (2009) The influence of biological soil crusts on dew deposition in Gurbantunggut Desert, Northwest China. J Hydrol 379:220–228

    Google Scholar 

  • Zhang W, Yang H, Xia X, Xie L, Xie G (2016) Triassic chrysophyte cyst fossils discovered in the Ordos Basin, China. Geology 44:1031–1034 [https://doi.org/10.1130/G38527.1]

  • Zhang Y, Aradottir AL, Serpe M, Boeken B (2016) Interactions of biological soil crusts with vascular plants. In: Weber B, Büdel B, Belnap J (eds) Biological soil crusts: an organizing principle in drylands. In: Ecological studies, vol 226. Springer, Berlin, pp 385–406

    Google Scholar 

  • Zhao Y, Qin N, Weber B, Xu M (2014) Response of biological soil crusts to raindrop erosivity and underlying influences in the hilly Loess Plateau region, China. Biodivers Conserv 23:1669–1686

    Google Scholar 

  • Zhou JC, Li RJ, Zhang JZ, Wu JY, Kang YQ, Lou HX (2015) Chemical and antioxidant responses of the Chinese liverwort Plagiochasma appendiculatum to water-deficit stress. Bryologist 118:264–272

    Google Scholar 

  • Zhou L, Liu F, Yang W, Liu H, Shao H, Wang Z, An S (2014) Differential effects of lichens versus liverworts epiphylls on host leaf traits in the tropical montane rainforest, Hainan Island, China. Sci World J. Article ID 681369, 10 pp. https://doi.org/10.1155/2014/681369

  • Zhou L, Wang Z, Chen S, Yao Z, Xu W, Wei N, An S (2009) Advances in researches on ecological epiphylls. Chin J Plant Ecol 33:993–1002

    Google Scholar 

  • Ziegler H, Kaiser K, Lipp J (1988) Sucrose in the archegonium exudate of the moss Bryum capillare Hedw. Naturwissenschaften 75:203

    Google Scholar 

  • Zelikova T, Housman D, Grote E, Neher D, Belnap J (2012) Warming and increased precipitation frequency on the Colorado Plateau: implications for biological soil crusts and soil processes. Plant Soil 355:265–282

    Google Scholar 

  • Zoltai SC, Vitt DH (1995) Canadian wetlands: environmental gradients and classification. Vegetatio 118:131–137

    Google Scholar 

  • Zotz G, Büdel B, Meyer A, Zellner H, Lange OL (1997) Water relations and CO2 exchange of tropical bryophytes in a lower montane rain forest in panama. Botanica Acta 110:9–17

    Google Scholar 

  • Zotz G, Kahler H (2007) A moss “canopy”—small scale differences in microclimate and physiological traits in Tortula ruralis. Flora 202:661–666

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram Beyschlag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Der/die Autor(en), exklusiv lizenziert durch Springer-Verlag GmbH, DE, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beyschlag, W. (2024). Bryophytes. In: Büdel, B., Friedl, T., Beyschlag, W. (eds) Biology of Algae, Lichens and Bryophytes. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-65712-6_7

Download citation

Publish with us

Policies and ethics