Skip to main content

Arthrospira (Spirulina)

  • Chapter
  • First Online:
Ecology of Cyanobacteria II

Summary

The successful commercial exploitation of Arthrospira because of its high nutritional value, chemical composition and safety of the biomass has made it one of the most important industrially cultivated microalgae. Knowledge of its biology and physiology, which is essential for understanding the growth requirements of this alkaliphilic organism, has been used in developing suitable technologies for mass cultivation. The relationships between environmental and cultural factors, which govern productivity in outdoor cultures, are discussed in connection with growth yield and efficiency. The response of Arthrospira and its modification under stress are described, together with the strategy of osmotic adjustment and the mechanism of internal pH regulation to alkalinity. The metabolic plasticity of the response to disparate environmental stimuli is demonstrated in the natural environment, but is also well-expressed in the maintenance of high productive monoculture in intensive outdoor cultivation systems.

While the confused taxonomy of Arthrospira and its relationship with Spirulina has been resolved by study of the ultrastructural feature of trichomes and 16S rRNA sequence analysis, the problem of species definition is still ongoing. However, molecular methods such as total DNA restriction profile analyses of a wide range of strains are helping to resolve this.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulqader G, Barsanti L, Tredici M (2000) Harvest of Arthrospira platensis form Lake Kossorom (Chad) and its household usage among the Kanembu. J Appl Phycol 12:493–498

    Article  Google Scholar 

  • Abeliovich A, Azov Y (1976) Toxicity of ammonia to algae in sewage oxidation ponds. Appl Environ Microbiol 31(6):801–806

    PubMed  CAS  Google Scholar 

  • Aikawa S, Izumi Y, Matsuda F, Hasunuma T, Chang JS, Kondo A (2012) Synergystic enhancement of glycogen production in Arthrospira platensis by optimization of light intensity and nitrate supply. Bioresour Technol 108: 211–215

    Article  Google Scholar 

  • Alcocer J, Williams WD (1996) Historical and recent changes in Lake Texoco, a saline lake in Mexico. Int J Salt Lake Res 5:45–61

    Article  Google Scholar 

  • Aldea R, Guţu A, Nicoară A, Dragoş N (2002) Genetic variation of Arthrospira (Spirulina) strain assessed by PCR techniques based on genomic repetitive sequences. Contributii Botanice 37:127–136

    Google Scholar 

  • An J, Carmichael WW (1996) Technical booklet for the microalgae biomass industry: detection of microcystins and nodularins using an enzyme linked immunosorbant assay (ELISA) and a protein phosphatase inhibition assay (PPIA). Department of Biological Sciences, Wayne State University, Dayton, OH

    Google Scholar 

  • Asada K (1994) Mechanisms for scavenging reactive molecules generated in chloroplasts under light stress. In: Baker NR, Bowyer JR (eds) Photoinhibition of photosynthesis from molecular mechanisms to the field. Bios Scientific Publishers, Oxford, pp 129–142

    Google Scholar 

  • Averdano MC, Maeso ES, Nieva M, Fernandez Valiente E (1989) Effect of sodium deficiency on the ultrastructure of the cyanobacterium Anabaena PCC 7119. J Plant Physiol 135:409–415

    Article  Google Scholar 

  • Balloni W, Tomaselli L, Giovannetti L, Margheri MC (1980) Biologia fondamentale del genere Spirulina. In: Materassi R (ed) Prospettive della Coltura Massiva di Spirulina in Italia. CNR Rome, pp 49–85

    Google Scholar 

  • Ballot A, Krienitz L, Kotut K, Wiegand C, Metcalf JS, Codd GA, Pflugmacher S (2004) Cyanobacteria and cyanobacterial toxins in three alkaline Rift Valley lakes of Kenya – Lakes Bogoria, Nakuru and Elmenteita. J Plankton Res 26:925–953

    Article  CAS  Google Scholar 

  • Ballot A, Krienitz L, Kotut K, Wiegand C, Pflugmacher S (2005) Cyanobacteria and cyanobacterial toxins in the alkaline crater lakes Sonachi and Simbi, Kenya. Harmful Algae 4:139–150

    Article  CAS  Google Scholar 

  • Ballot A, Kotut K, Novelo E, Krienitz L (2009) Changes of phytoplankton communities in Lakes Naivasha and Oloidien, examples of degradation and salinization of lakes in the Kenyan Rift Valley. Hydrobiologia 632:359–363

    Article  CAS  Google Scholar 

  • Bao Y, Liu M, Wu X, Cong W, Ning Z (2012) In situ carbon supplementation in large-scale cultivations of Spirulina platensis in open raceway pond. Biotechnol Bioprocess Eng 17:93–99

    Article  Google Scholar 

  • Baurain D, Renquin L, Grubisic S, Scheldeman P, Belay A, Wilmotte A (2002) Remarkable conservation of internally transcribed spacer sequences of Arthrospira (“Spirulina”) (Cyanophyceae, Cyanobacteria). Strains from four continents and of recent and 30-years old samples from Africa. J Phycol 38:384–393

    Article  CAS  Google Scholar 

  • Belay A (2002) The potential application of Spirulina (Arthrospira) as a nutritional and therapeutic supplement in health management. J Am Nutra Assoc (JANA) 5(2):27–48

    Google Scholar 

  • Belay A (2008) Spirulina (Arthrospira): production and quality assurance. In: Gershwin ME, Belay A (eds) Spirulina in human nutrition and health. CRC Press/Taylor & Francis Group, London, pp 1–25, 312 pp

    Google Scholar 

  • Belkin S, Boussiba S (1991) Resistance of Spirulina platensis to ammonia at high pH values. Plant Cell Physiol 32:953–958

    CAS  Google Scholar 

  • Bergman AN, Laurent P, Otiang’a-Oqwiti G, Bergman HL, Walsh PJ, Wilson P, Wood CM (2003) Physiological adaptation of the gut in the Lake Magadi tilapia, Alcolapia grahami, an alkaline-ad saline adapted teleost fish. Comp Biochem Physiol A 136:701–715

    Google Scholar 

  • Bernard Ch (1909) Sur quelques algues unicellulaires d’eau douce récoltés dans le Domaine Malais. Dep Agric Indes Néerlandaises, Buitzorg, 94 pp

    Article  Google Scholar 

  • Blumwald E, Tel-Or E (1982) Osmoregulation and cell composition in salt adaptation of Nostoc muscorum. Arch Microbiol 132:168–172

    Article  CAS  Google Scholar 

  • Blumwald E, Mehlhorn RJ, Packer L (1984) Salt adaptation mechanisms in the cyanobacterium Synechococcus 6311. In: Sybesma S (ed) Advances in photosynthesis research. Martinus Nijhoff/Dr W Junk Publs, The Hague, pp 627–630

    Google Scholar 

  • Bocci F, Ferrari F, Materassi R, Mannelli D (1980) Prime ricerche sulla crescita di Spirulina platensis e Spirulina maxima in coltura fotolimitata. In: Atti XIX Congr Naz Soc Ital Microbiol, Catania (Italy) July 5–8

    Google Scholar 

  • Booker MJ, Walsby AE (1979) The relative form resistance of straight and helical blue-green algal filaments. Br Phycol J 14:141–150

    Article  Google Scholar 

  • Borowitzka LJ (1986) Osmoregulation in blue-green algae. In: Round FE, Chapman DJ (eds) Progress in phycological research, vol 4. Biopress Ltd, Bristol, pp 243–256

    Google Scholar 

  • Bourrelly P (1970) Les Algues d’Eau Douce. III Les Algues bleues et rouges, les Eugléniens, Peridiniens et Cryptomonadines. Editions N Boubée & Cie, Paris, 512 pp

    Google Scholar 

  • Boussiba S (1989) Ammonium uptake in the alkalophilic cyanobacterium Spirulina platensis. Plant Cell Physiol 32:303–314

    Google Scholar 

  • Boussiba S, Gibson J (1991) Ammonia traslocation in cyanobacteria. FEMS Microbiol Lett 88:1–14

    Article  Google Scholar 

  • Boussiba S, Affalo C (2005) An insight into the future of microalgal biotechnology. Innov Food Technol 28:37–39

    Google Scholar 

  • Brandily MY (1959) Depuis des lustres une tribu primitive du Tchad exploite la nourriture de l’an 2000. Sci Avenir 152:516–519

    Google Scholar 

  • Busson F (1971) Spirulina platensis (Gom.) Geitler et Spirulina geitleri J De Toni, Cyanophycées Alimentaires. Service de Santé, Marseille

    Google Scholar 

  • Campbell D, Hurry V, Clarke A, Gustafsson P, Oquist G (1998) Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol Mol Biol Rev 6:667–683

    Article  Google Scholar 

  • Carr NG, Whitton BA (eds) (1973) The biology of blue-green algae. Blackwell Scientific Publications, Oxford, 676 pp

    Google Scholar 

  • Carr NG, Whitton BA (eds) (1982) The biology of cyanobacteria. Blackwell Scientific Publications, Oxford, 688 pp

    Google Scholar 

  • Castenholz RW (1989) Subsection III, order oscillatoriales. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 3. Williams and Wilkins Co, Baltimore, pp 1771–1780

    Google Scholar 

  • Castenholz RW (2001) Form-genus I Arthrospira Stizenberger 1852. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, pp 542–543

    Chapter  Google Scholar 

  • Ciferri O (1983) Spirulina, the edible microorganism. Microbiol Rev 47:551–578

    PubMed  CAS  Google Scholar 

  • Clément G (1968) A new type of food algae. In: Mateles RJ, Tannenbaum SR (eds) Single-cell protein. Massachusetts Institute of Technology Press, Cambridge, MA

    Google Scholar 

  • Coe MJ (1966) The biology of Tilapia grahami Boulenger in Lake Magadi, Kenya. Acta Trop 23:146–177

    Google Scholar 

  • Colwell RR (1970) Polyphasic taxonomy of the genus Vibrio: numerical taxonomy of Vibrio cholerae, Vibrio parahaemolyticus, and related Vibrio species. J Bacteriol 104:410–433

    PubMed  CAS  Google Scholar 

  • Compère P (1974) Cyanophycées de la région du lac Tchad, taxons, combinaisons et noms nouveaux. Bull Jard Bot Nat Belg 44: 17–21

    Article  Google Scholar 

  • Dadheech PK, Ballot A, Casper P, Kotut K, Novelo E, Lemma B, Pröschold T, Krienitz L (2010) Phylogenetic relationship and divergence among planktonic strains of Arthrospira (Oscillatoriales, Cyanobacteria) of African, Asian and America origin deduced by 16S-23S ITS and phycoyanin operon sequences. Phycologia 49(4):361–372

    Article  CAS  Google Scholar 

  • Dainippon Ink & Chemicals Inc. (1980) Production of highly purified alcoholophilic phycocyanin. Japanese Patent 80 77, 890

    Google Scholar 

  • Dainippon Ink & Chemicals Inc. (1981) Cosmetics containing water soluble phycocyanin. Japanese Patent 7 9–138755

    Google Scholar 

  • Dangeard P (1940) Sur une algue bleue alimentaire pour l’homme: Arthrospira platensis (Nordst.) Gomont. Act Soc Linn Bordx 91:39–41

    Google Scholar 

  • De Toni GB (1935) Noterelle di nomenclatura algologica 3:1–2

    Google Scholar 

  • Desikachary TV (1959) Cyanophyta. Indian Council of Agricultural Research, New Delhi, pp 187–198, 686 pp

    Google Scholar 

  • Desikachary TV, Jeeji Bai N (1992) Taxonomic studies in Spirulina. In: Seshradi CV, Jeeji Bai N (eds) Spirulina ETTA national symposium. MCRC, Madras, pp 12–21

    Google Scholar 

  • Desikachary TV, Jeeji Bai N (1996) Taxonomic studies in Spirulina II. The identification of Arthrospira (“Spirulina”) strains and natural samples of different geographical origins. Arch Hydrobiol Suppl 116 Algol Stud 83:163–168

    Google Scholar 

  • Ehrenfeld J, Cousin JL (1984) Ionic regulation of the unicellular green alga Dunaliella tertiolecta: response to hypertonic shock. J Membr Biol 77:45–55

    Article  CAS  Google Scholar 

  • El-Bestawy E, Bellinger EG, Sigee DC (1996) Elemental composition of phytoplankton in a subtropical lake: X-ray microanalytical studies on the dominant algae Spirulina platensis (Cyanophyta) and Cyclotella meneghiniana (Bacillariophyceae). Eur J Phycol 31:157–166

    Article  Google Scholar 

  • Espie GS, Miller AG, Canvin DT (1988) Characterization of the Na+-Requirement in cyanobacterial photosynthesis. Plant Physiol 88:757–763

    Article  PubMed  CAS  Google Scholar 

  • Fathi AA, Abdelzaher A, Flower RJ, Ramdani M, Kraïem MM (2001) Phytoplankton communities of North African wetland lakes: the CASSARINA Project. Aquatic Ecology 35:303–318

    Article  Google Scholar 

  • Ferreira LS, Rodrigues MS, Converti A, Sato S, Carvalho JCM (2012) Arthrospira (Spirulina) platensis cultivation in tubular photobioreactor: use of no-cost CO2 from ethanol fermentation. Appl Energy 92:379–385

    Article  Google Scholar 

  • Fogg GE, Stewart WDP, Fay P, Walsby AE (1973) The blue-green algae. Academic, London, 459 pp

    Google Scholar 

  • Fott B, Karim AGA (1973) Spirulina plankton community in a lake in Jebel Marra, Sudan. Arch Protistenk 115:408–418

    Google Scholar 

  • Fox DL (1976) Animal biochromes and structural colours, 2nd edn. University of California Press, Berkeley, p 433

    Google Scholar 

  • Fox RD (1985) Spirulina, the alga that can end malnutrition. Futurist 19:30–35

    Google Scholar 

  • Fox RD (1996) Spirulina production and potential. Edisud, Aix-en-Provence

    Google Scholar 

  • Fry IV, Huflejt M, Erber WWA, Peshek GA, Packer L (1986) The role of respiration during adaptation of the freshwater cyanobacterium Synechococcus 6311 to salinity. Arch Biochem Biophys 244:686–690

    Article  PubMed  CAS  Google Scholar 

  • Fuzinato S, Fodora A, Subakov-Simic G (2010) Arthrospira fusiformis (Voronichin) Komárek et Lund (Cyanoprocariota)- A new species for Europe. Algol Stud 134:17–24

    Article  CAS  Google Scholar 

  • Gallegos AJ (1993) The past, present and future of algae in Mexico. Bull Inst Océanograph Monaco 12:133–139

    Google Scholar 

  • Gao K, Li P, Watanabe T, Helbling EW (2008) Combined effects of ultraviolet radiation and temperature on morphology, photosynthesis, and DNA of Arthrospira (Spirulina) platensis (Cyanophyta). J Phycol 44:777–786

    Article  Google Scholar 

  • Gardner NL (1917) New Pacific coast marine algae I. Univ Calif Publ Bot 6:377–416, Plates 31–35

    Google Scholar 

  • Geitler L (1925) Cyanophyceae. In: Pascher Süsswasserflora 12. G Fisher-Verlag, Jena, 450 pp

    Article  Google Scholar 

  • Geitler L (1932) Cyanophyceae. In: Rabenhorst’s Krytogamen-Flora von Deutschland, Österreich und der Schweiz 14. Akademische Verlagsgesellschaft, Leipzig, 1196 pp

    Google Scholar 

  • Gershwin ME, Belay A (2008) In: Gershwin ME, Belay A (eds) Spirulina in human nutrition and health. CRC Press/Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Gomont M (1892) Monographie des Oscillariées. Ann Sci Nat Bot, Sér 7, 15:263–368; 16:91–264

    Google Scholar 

  • Gong H, Tang Y, Wang J, Wen X, Zhang L, Lu C (2008) Characterization of photosystem II in salt stressed cyanobacterial Spirulina platensis cells. Biochim Biophys Acta 1777:488–495

    Article  PubMed  CAS  Google Scholar 

  • Grant WD (2006) Alkaline Environments and Biodiversity. In: Gerday C, Glansdorff N (eds) Extremophiles. In Encyclopedia of Life Support Systems (EOLSS). Eolss Publishers, Oxford. htpp://www.eolss.net

  • Grant WD, Mwatha WE, Jones BE (1990) Alkaliphiles: ecology, diversity and applications. FEMS Microbiol Rev 75:255–270

    Article  CAS  Google Scholar 

  • Greque de Morais M, Da Cruze Reichert C, Dalcaton F (2008) Isolation and characterization of a new Arthrospira strain. Z Naturforsch 63c:144–150

    Google Scholar 

  • Guglielmi G, Cohen-Bazire G (1982) Structure et distribution des pores et des perforations de l’enveloppe de peptidoglycane chez quelques cyanobactéries. Protistologica 18:151–165

    Google Scholar 

  • Guterman H, Vonshak A, Ben-Yaakov S (1989) Automatic on-line growth estimation method for outdoor algal biomass production. Biotechnol Bioeng 34:143–152

    Article  PubMed  CAS  Google Scholar 

  • Habib B, Parvin, Huntington TC, Hasan MR (2008) A review on culture, production and use of Spirulina as food for humans and feeds for domestic animal and fish. FAO Fisheries and Aquaculture Circular No. 1034, ISBN 978-92-5-106-106-0

    Google Scholar 

  • Hindák F (1985) Morphology of trichomes in Spirulina fusiformis Voronichin from Lake Bogoria, Kenya. Arch Hydrobiol Suppl 71 Algol Stud 38(39):209–218

    Google Scholar 

  • Hongsthong A, Sirijuntarut M, Prommeenate P, Thammathorn S, Bunnag B, Cheevadhanarak S, Tanticharoen M (2007) Revealing differentially expressed proteins in two morphological forms of Spirulina platensis by proteomic analysis. Mol Biotechnol 36:123–130

    Article  PubMed  CAS  Google Scholar 

  • Horikoshi K, Akiba T (1982) Alkalophilic microorganisms. Springer, Berlin

    Google Scholar 

  • Iltis A (1968) Tolérance de salinité de Spirulina platensis (Gom.) Geitler, (Cyanophyta) dans les mares natronées du Kanem (Tchad). Cah ORSTOM, sér Hydrobiol 2:119–125

    Google Scholar 

  • Iltis A (1969a) Phytoplancton des eaux natronées du Kanem (Tchad). I. Les lacs permanents a Spirulines. Cah ORSTOM, sér Hydrobiol 3:29–44

    Google Scholar 

  • Iltis A (1969b) Phytoplancton des eaux natronées du Kanem (Tchad). II. Les mares temporaires. Cah ORSTOM, sér Hydrobiol 3:3–19

    Google Scholar 

  • Iltis A (1970) Phytoplancton des eaux natronées du Kanem (Tchad). III. Variations annuelles du plancton d’une mare temporaire. Cah ORSTOM, sér Hydrobiol 4:53–59

    Google Scholar 

  • Iltis A (1971) Phytoplancton des eaux natronées du Kanem (Tchad). V. Les lacs mésohalins. Cah ORSTOM, sér Hydrobiol 5:73–84

    Google Scholar 

  • Iltis A (1972) Algues des eaux natroné du Kanem (Tchad). Primo. Premiere saltie. Cah ORSTOM, sér Hydrobiol 4:129–134

    Google Scholar 

  • Iltis A, Riou-Duwat S (1971) Variations saisonnières du peuplement en rotifères des eaux natronées du Kanem (Tchad). Cah ORSTOM, sér Hydrobiol 5:101–112

    Google Scholar 

  • Jeeji Bai N (1985) Competitive exclusion or morphological transformation? A case study with Spirulina fusiformis. Arch Hydrobiol Suppl 71 Algol Stud 38(39):191–199

    Google Scholar 

  • Jeeji Bai N (1999) A taxonomic appraisal of the genera Spirulina and Arthrospira. In: Mahato AK, Vidyavati (eds) Recent trends in algal taxonomy, vol I, Taxonomical issues. APC Publications PVT LTD, New Delhi, pp 253–272

    Google Scholar 

  • Jeeji Bai N, Seshadri CV (1980) On coiling and uncoiling of trichomes in the genus Spirulina. Arch Hydrobiol Suppl 60 Algol Stud 26:32–47

    Google Scholar 

  • Kebede E, Ahlgren G (1996) Optimum growth conditions and light utilisation efficiency of Spirulina platensis (equal Arthrospira fusiformis) (Cyanophyta) from Lake Chitu, Ethiopia. Hydrobiologia 332:99–109

    Article  CAS  Google Scholar 

  • Kerfeld CA (2004) Structure and function of the water-soluble carotenoid-binding proteins of cyanobacteria. Photosynth Res 81:215–225

    Article  Google Scholar 

  • Kirilovsky D (2007) Photoprotection in cyanobacteria: the orange carotenoid protein (OCP)-related non-photochemical-quenching mechanism. Photosynth Res 93:7–16

    Article  Google Scholar 

  • Komárek J, Anagnostidis K (2005) Cyanoprokaryota – Part 2: oscillatoriales. In: Büdel B, Krienits L, Gärtner G, Schagerl M (eds) Süsswasserflora von Mitteleuropa 19/2. Elsevier/Spektrum, Heidelberg, pp 341–353, 759 pp

    Google Scholar 

  • Komárek J, Hauer T (2011) CyanoDB.cz – On-line database of cyanobacterial genera. – Word-wide electronic publication, University of South Bohemia & Institute of Botany AS CR. http://www.cyanodb.cz

  • Komárek J, Lund JWG (1990) What is “Spirulina platensis” in fact? Arch Hydrobiol Suppl 85 Algol Stud 58:1–6

    Google Scholar 

  • Krause GH (1994) The role of oxygen in photoinhibition of photosynthesis. In: Foyer CH, Mullinex PM (eds) Cause of photooxidative stress and amelioration of defences systems in plants. CRC Press, Boca Raton, pp 42–76

    Google Scholar 

  • Laliberté G, Olguín EJ, de la Noüe J (1997) Mass cultivation and wastewater treatment using Spirulina. In: Vonshak A (ed) Spirulina platensis (Arthrospira): physiology, cell-biology and biotechnology. Taylor & Francis Ltd, London, pp 159–173, 233 pp

    Google Scholar 

  • Lee YK (1997) Commercial production of microalgae in the Asia-Pacific rim. J Appl Phycol 9:403–4511

    Article  Google Scholar 

  • Léonard J, Compère P (1967) Spirulina platensis (Gom.) Geitler, algue bleue de grande valeur alimentaire par sa richesse en protéines. Bull Jard Bot Nat Belg 37:1–23

    Google Scholar 

  • Leverenz JW, Falk S, Pilström CM, Samuelson G (1990) The effect of on the photosynthetic light-response curve of green plant cells (Chlamydomonas reinhardtii). Planta 182:161–168

    Article  CAS  Google Scholar 

  • Lewin RA (1980) Uncoiled variants of Spirulina platensis (Cyanophyceae: Oscillatoriaceae). Arch Hydrobiol Suppl 60 Algol Stud 26:48–52

    Google Scholar 

  • Li BS, Qiao V, Tian XY (2003) Potential to development Spirulina platensis with alkaline lakes in Orodos Plateau. Plant Mag 06:18–20 (cited by Lu et al. 2011)

    Google Scholar 

  • Lincoln EP, Hall TW, Koop B (1983) Zooplankton control in mass algal cultures. Aquaculture 32:331–337

    Article  Google Scholar 

  • Long SP, Humphries S, Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Annu Rev Plant Physiol Plant Mol Biol 45:633–662

    Article  CAS  Google Scholar 

  • Lu C, Vonshak A (2002) Effects of salinity on photosystem II function in cyanobacterial Spirulina platensis cells. Physiol Plant 114:405–413

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Torzillo G, Vonshak A (1999) Kinetic response of photosystem II photochemistry in the cyanobacterium Spirulina platensis to high salinity is characterised by two distinct phases. Aust J Plant Physiol 26:283–292

    Article  CAS  Google Scholar 

  • Lu Y-M, Xiang W-Z, Wen Y-H (2011) Spirulina (Arthrospira) industry in Inner Mongolia of China: current status and prospects. J Appl Phycol 23:264–269

    Google Scholar 

  • Ma Z, Gao K (2009) Photoregulation of morphological structure and its physiological relevance in the cyanobacterium Arthrospira (Spirulina) platensis. Planta 230:329–337

    Article  PubMed  CAS  Google Scholar 

  • Maglione G. (1969) Premières données sur le regime hydrogéochimique des lacs permanents du Kanem (Tchad). Cah ORSTOM, sér Hydrobiol 3:121–141

    Article  Google Scholar 

  • Manen JF, Falquet J (2002) The cpcB-cpcA locus as a tool for the genetic characterization of the genus Arthrospira (Cyanobacteria): evidence for horizontal transfer. Int J Syst Evol Microbiol 52:861–867

    Article  PubMed  CAS  Google Scholar 

  • Margheri MC, Tomaselli Feroci L, Materassi R (1975) Contributo sperimentale alla sistematica del genere Spirulina Turpin. In: Atti XVII Cong Naz Soc Ital Microbiol, Padova, vol II, pp 891–901

    Google Scholar 

  • Marquez FJ, Sasaki K, Nishio N, Nagai S (1995) Inhibitory effect of oxygen accumulation on growth of Spirulina platensis. Biotechnol Lett 17:222–228

    Article  Google Scholar 

  • Martel A, Yu S, Garcia-Reina G, Lindblad P, Pedersén M (1992) Osmotic-adjustment in the cyanobacterium Spirulina platensis: presence of an α-glucosidase. Plant Physiol Biochem 30:573–578

    CAS  Google Scholar 

  • Melack JM (1979) Photosynthesis and growth of Spirulina platensis (Cyanophyta). In an equatorial lake (Lake Simbi, Kenya). Limnol Oceanogr 24:753–760

    Article  Google Scholar 

  • Miller AG, Turpin DH, Canvin DT (1984) Na+ Requirement for growth, photosynthesis, and pH regulation in the alkalotolerant cyanobacterium Synechococcus leopoliensis. J Bacteriol 159:100–106

    PubMed  CAS  Google Scholar 

  • Molitor V, Erber W, Peschek GA (1986) Increased levels of cytochrome oxidase and sodium proton antiporter in the plasma membrane of Anacystis nidulans after growth in sodium enriched media. FEBS Lett 204:251–254

    Article  CAS  Google Scholar 

  • Mühling M, Harris N, Belay A, Whitton BA (2003) Reversal of helix orientation in the cyanobacterium Artrhospira. J Phycol 39:360–367

    Article  Google Scholar 

  • Mühling M, Somerfield PJ, Harris N, Belay A, Whitton BA (2006) Phenotypic analysis of Arthrospira (Spirulina) strains (cyanobacteria). Phycologia 45(2):148–157

    Article  Google Scholar 

  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of PSII under environmental stress. Biochim Biophys Acta:1767:414–421

    Article  Google Scholar 

  • Mussagy A, Wilmotte A, Cronberg G (2006) The cyanophyte Arthrospira fusiformis from Mozambique, Africa: morphological and molecular characterization. Algol Stud 121:59–73

    Article  Google Scholar 

  • Noor P, Akhtar N, Munshi JL, Begum S (2008) Spirulina culture in Bangladesh XII. Effects of different culture media, different culture vessels and different cultural conditions on coiled and straight filament characteristics of Spirulina. Bangladesh J Sci Ind Res 43(3):369–376 (Available at www.banglajol.info)

    Article  Google Scholar 

  • Oberholster PJ, Botha AM, Ashton PJ (2009) Appearance of new taxa: invertebrates phytoplankton and bacteria in a alkaline, saline, meteorite crater lake, South Africa. Fundam Appl Limnol Archiv Hydrobiol 173. doi:10.1127/1863-9135/2009

  • Ogawa T, Aiba S (1978) CO2 assimilation and growth of a blue-green alga, Spirulina platensis, in continuous culture. J Appl Chem Biotechnol 28:5151–5157

    Google Scholar 

  • Ohmori K, Ehira S, Kimura S, Ohmori M (2009) Changes in the amount of cellular trehalose, the activity of maltooligosyl trehalose hydrolase, and the expression of its gene in response to salt stress in the cyanobacterium Spirulina platensis. Microbes Environ 24(1):52–56

    Article  PubMed  Google Scholar 

  • Okoth OE, Mucai M, Shivoga WA, Miller SN, Rasowo J, Ngugi CC (2009) Spatial and seasonal variations in phytoplankton community structure in alkaline-saline Lake Nakuru, Kenya. Lake & Reservoirs. Res Manag 14:57–69

    CAS  Google Scholar 

  • Padan E, Zilberstein D, Schuldiner S (1981) pH Homeostasis in bacteria. Biochim Biophys Acta 650:151–166

    Article  PubMed  CAS  Google Scholar 

  • Padisák J, Soróczki-Pintér E, Rezner Z (2003) Sinking properties of some phytoplankton shapes and the relation of form resistance to morphological diversity of plankton – an experimental study. Hydrobiologia 500:243–257

    Article  Google Scholar 

  • Palinska KA, Krumbein WE (2000) Perforation patterns in the peptidoglycan wall of filamentous cyanobacteria. J Phycol 36:139–145

    Article  Google Scholar 

  • Peschek GA, Obinger C, Fromwald S, Bergman B (1994) Correlation between immuno-gold labels and activities of cytochrome-c oxidase (aa-type) in membranes and salt stressed cyanobacteria. FEMS Microbiol Lett 124:431–438

    Article  CAS  Google Scholar 

  • Pogoryelov D, Sudhir P-R, Kovács L, Gombos Z, Brown I, Garab G (2003) Sodium dependency of the photosynthetic electron transport in the alkaliphilic cyanobacterium Arthrospira platensis. J Bioenerg Biomembr 35(5):427–437

    Article  PubMed  CAS  Google Scholar 

  • Qiao C, Li BS, Zeng ZQ (2001) Alkaline lakes and Spirulina (Arthrospira) resources in sandy land of Erdos. J Arid Land Res Environ 15(4):86–91

    Google Scholar 

  • Ramus J (1981) The capture and transduction of light energy. In: Lobban CS, Wynne MJ (eds) The biology of seaweeds, botanical monographs, vol 17. Blackwell Scientific Publications, Oxford, pp 458–492

    Google Scholar 

  • Reed RH, Richardson DL, Stewart WDP (1985) Na+ uptake and extrusion in the cyanobacterium Synechocystis PCC 6714 in response to hypersaline treatment. Evidence for transient changes in plasmalemma Na+ permeability. Biochim Biophys Acta 814:347–353

    Article  CAS  Google Scholar 

  • Rich F (1931) Notes on Arthrospira platensis. Rev Algol 6:75–82

    Google Scholar 

  • Rich F (1932) Report on the Percy Sladen Expedition to some Rift Valley Lakes in Kenya in 1929. IV. Phytoplankton from the Rift Valley Lakes in Kenya. Ann Mag Nat Hist, ser.10, 10:233–262

    Article  Google Scholar 

  • Richmond A (2004a) In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science Ltd, Oxford, 566 pp

    Google Scholar 

  • Richmond A (2004b) Biological principles of mass cultivation. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science Ltd, Oxford, pp 125–177

    Google Scholar 

  • Rippka R, Herdman M (1992) Catalogue of strains. Pasteur culture collection of cyanobacterial strains in axenic culture. Institut Pasteur, Paris, 103 pp

    Google Scholar 

  • Rodrigues MS, Ferreira LS, Converti A, Sato S, Monteiro de Carvalho JC (2011) Influence of ammonium sulphate feeding time on the fed-batch Arthrospira (Spirulina) platensis cultivation and biomass composition with and without pH control. Bioresour Technol 102:6587–6592

    Article  Google Scholar 

  • Scheldeman P, Baurain D, Bouhy R, Scott M, Mühling M, Whitton BA, Belay A, Wilmotte A (1999) Arthrospira (‘Spirulina’) strains from four continents are resolved into two only two clusters, based on ARDRA (Amplified Ribosomal DNA Restriction Analysis) of the ITS (Internal Transcribed Spacer). FEMS Microbiol Lett 172:213–222

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger P, Belkin S, Boussiba S (1996) Sodium deprivation under alkaline conditions causes rapid death of the filamentous cyanobacterium Spirulina platensis. J Phycol 32:608–613

    Article  CAS  Google Scholar 

  • Shimamatsu H (2004) Mass production of Spirulina, an edible microalga. Hydrobiologia 512:39–44

    Article  Google Scholar 

  • Sili C, Abdulqader G, Tredici MR (1999) Photosynthetic biocenosis of two soda lakes of the north-east fringe of Lake Chad. In Abstracts of the 8th international conference of applied algology “Algae and human affairs in the 21st century”, Montecatini Terme, p 318

    Google Scholar 

  • Sodelac (2000) Etude de préfaisabilité du developpement de la production de spirulines. Répubblique du Tchad. Ministére de l’Agriculture. Tractebel Consult (Belgique). Financement: Fond African de Dèveloppement. Contract N 003/SODELA C/99

    Google Scholar 

  • Spiller S, Denbeaux G, Jones G, Pearson AL (2000) Fine structure of cyanobacteria, Spirulina platensis and Spirulina subsalsa, as viewed by x-ray microscope, XM-1, beamline 6.1.2. In Compendium 2000. The Advanced Light Source (ALS), Lawrence Berkeley National Laboratories, General ALS Publications

    Google Scholar 

  • Stizenberger E (1852) Spirulina und Arthrospira (nov. gen.). Hedwigia 1:32–41

    Google Scholar 

  • Talling JF, Talling IB (1965) The chemical composition of African lake waters. Int Rev Hydrobiol 50:1–32

    Article  Google Scholar 

  • Thein M (1993) Production of Spirulina in Myanmar. Bull Inst Océanograph Monaco 12:175–178

    Google Scholar 

  • Tomaselli L (1997) Systematic and ecology. In: Vonshak A (ed) Spirulina platensis (Arthrospira): physiology, cell-biology and biotechnology. Taylor & Francis Ltd, London, pp 1–19, 233 pp

    Google Scholar 

  • Tomaselli L, Giovannetti L, Margheri MC (1981) On the mechanism of trichome breakage in Spirulina platensis and S. maxima. Ann Microbiol 31:27–31

    Google Scholar 

  • Tomaselli L, Torzillo G, Giovannetti L, Pushparaj B, Bocci F, Tredici M, Papuzzo T, Balloni W, Materassi R (1987) Recent research on Spirulina in Italy. Hydrobiologia 151(152):79–82

    Article  Google Scholar 

  • Tomaselli L, Giovannetti L, Sacchi A, Bocci F (1988) Effects of temperature on growth and biochemical composition in Spirulina platensis strain M2. In: Staedler T, Mollion J, Verdus MC, Karamanos Y, Morvan H, Christiaen D (eds) Algal biotechnology. Elsevier Applied Sciences, London/New York, pp 305–314

    Google Scholar 

  • Tomaselli L, Giovannetti L, Torzillo G (1993) Physiology of stress response in Spirulina spp. Bull Inst Océanograph, Monaco 12:65–75

    Google Scholar 

  • Tomaselli L, Palandri MR, Tredici MR (1996) On the correct use of the Spirulina designation. Arch Hydrobiol Suppl 116 Algol Stud 83:539–548

    Google Scholar 

  • Thomasson K (1960) Ett fall av tropisk vattenblomming. [A case of tropical waterbloom] Bot Notiser 113(2):214–216

    Article  Google Scholar 

  • Torzillo G, Vonshak A (1994) Effect of light and temperature on the photosynthetic activity of the cyanobacterium Spirulina platensis. Biomass Bioenergy 6:399–404

    Article  Google Scholar 

  • Torzillo G, Vonshak A (2003) Biotechnology of algal mass cultivation. In: Fingerman M, Nagabhushanam R (eds) Recent advances in marine biotechnology, vol 9, Biomaterials and bioprocessing. Science Publishers, Inc, Plymouth, pp 45–77, 385 pp

    Google Scholar 

  • Torzillo G, Giovannetti L, Bocci F, Materassi R (1984) Effect of oxygen concentration on the protein content of Spirulina biomass. Biotechnol Bioeng 26:1134–1135

    Article  PubMed  CAS  Google Scholar 

  • Torzillo G, Pushparaj B, Bocci F, Balloni W, Materassi R, Florenzano G (1986) Production of Spirulina biomass in closed photobioreactors. Biomass 11:61–74

    Article  Google Scholar 

  • Torzillo G, Sacchi A, Materassi R, Richmond A (1991) Effect of temperature on yield and night biomass loss in Spirulina platensis grown outdoors in tubular photobioreactors. J Appl Phycol 3:103–108

    Article  Google Scholar 

  • Torzillo G, Bernardini P, Masojidek J (1998) On-line monitoring of chlorophyll fluorescence to assess the extent of photoinhibition of photosynthesis induced by high oxygen concentration and low temperature and its effect on the productivity of outdoor cultures of Spirulina platensis (Cyanobacteria). J Phycol 34:504–510

    Article  CAS  Google Scholar 

  • Torzillo G, Komenda J, Kopecky J, Faraloni C, Masojidek J (2003a) Photoinhibitory stress induced by high oxygen and low temperature in outdoor cultures of Arthrospira platensis grown in closed photobioreactors. In: Abstracts of third European phycological congress, Belfast, Ireland, July 21–26

    Google Scholar 

  • Torzillo G, Pushparaj B, Masojidek J, Vonshak A (2003b) Biological constraints in algal biotechnology. Biotechnol Bioprocess Eng 8:338–348

    Article  CAS  Google Scholar 

  • Tredici MR, Papuzzo T, Tomaselli L (1986) Outdoor mass culture of Spirulina maxima in sea-water. Appl Microbiol Biotechnol 24:42–50

    Article  Google Scholar 

  • Tsen CT, Chang TP (1990) Ultrastrukturen von vier “Spirulina”-Arten (Cyanophyceae). Arch Hydrobiol Suppl 87 Algol Stud 60:33–41

    Google Scholar 

  • Tuite CH (1981) Standing crop densities and distribution of Spirulina and benthic diatoms in East African alkaline saline lakes. Freshw Biol 11:345–360

    Article  Google Scholar 

  • Turpin PJF (1829) Spirulina oscillarioide. In: Dictionnaire des Sciences Naturelles, De Lévrault, Paris vol. 50, pp 309–310

    Article  Google Scholar 

  • Van Eykelenburg C (1977) On the morphology and ultrastructure of the cell wall of Spirulina platensis. Antonie Van Leeuwenhoek J Microbiol 43:89–94

    Article  PubMed  Google Scholar 

  • Van Eykelenburg C (1979) The ultrastructure of Spirulina platensis in relation to temperature and light intensity. Antonie Van Leeuwenhoek J Microbiol 45:369–375

    Article  PubMed  Google Scholar 

  • Van Eykelenburg C, Fuchs A (1980) Rapid reversible macromorphological changes in Spirulina platensis. Naturwissenschaften 67:200–204

    Article  Google Scholar 

  • Van Liere L, Mur L (1979) Growth kinetics of Oscillatoria agardhii Gomont in continuous culture limited in its growth by the light energy supply. J Gen Microbiol 115:153–159

    Article  Google Scholar 

  • Vareschi E (1982) The ecology of lake Nakuru (Kenya). III: abiotic factors and primary production. Oecologia 55:81–101

    Article  Google Scholar 

  • Verma K, Mohanty P (2000) Alterations in the structure of phycobilisomes of the cyanobacterium Spirulina platensis in response to enhanced Na+ level. World J Microbiol Biotechnol 16:795–798

    Article  CAS  Google Scholar 

  • Viti C, Ventura S, Lotti F, Capolino E, Tomaselli L, Giovannetti L (1997) Genotypic diversity and typing of cyanobacterial strains of the genus Arthrospira by very sensitive total DNA restriction profile analysis. Res Microbiol 148:605–611

    Article  PubMed  CAS  Google Scholar 

  • Vonshak A (1997a) Spirulina platensis (Arthrospira): physiology, cell-biology and biotechnology. Taylor & Francis Ltd, London, 233 pp

    Google Scholar 

  • Vonshak A (1997b) Spirulina: growth, physiology and biochemistry. In: Vonshak A (ed) Spirulina platensis (Arthrospira): physiology, cell-biology and biotechnology. Taylor & Francis Ltd, London, pp 43–65

    Google Scholar 

  • Vonshak A, Guy R (1992) Photoadaptation, photoinhibition and productivity in outdoor grown Spirulina platensis strains. Plant Cell Environ 15:613–616

    Article  Google Scholar 

  • Vonshak A, Novoplansky N (2008) Acclimation to low temperature of two Arthrospira platensis (cyanobacteria) strains involves down-regulation of PSII and improved resistance to photoinhibition. J Phycol 44:1071–1079

    Article  Google Scholar 

  • Vonshak A, Richmond A (1988) Mass production of the blue-green alga Spirulina: an overview. Biomass 15:233–247

    Article  Google Scholar 

  • Vonshak A, Richmond A (1981) Photosynthetic and respiratory activity in Anacystis nidulans adapted to osmotic stress. Plant Physiol 68:504–509

    Article  Google Scholar 

  • Vonshak A, Tomaselli L (2000) Arthrospira (Spirulina) Systematics and ecophysiology. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 505–522, 669 pp

    Google Scholar 

  • Vonshak A, Abeliovich A, Boussiba S, Arad S, Richmond A (1982) Production of Spirulina biomass: effects of environmental factors and population density. Biomass 2:175–185

    Article  Google Scholar 

  • Vonshak A, Boussiba S, Abeliovich A, Richmond A (1983) Production of Spirulina biomass: maintenance of monoalgal culture. Biotechnol Bioeng 25:341–351

    Article  PubMed  CAS  Google Scholar 

  • Vonshak A, Guy R, Guy M (1988a) The response of the filamentous cyanobacterium Spirulina platensis to salt stress. Arch Microbiol 150:417–420

    Article  Google Scholar 

  • Vonshak A, Guy R, Poplawsky R, Ohad I (1988b) Photoinhibition and its recovery in two different strains of Spirulina. Plant Cell Physiol 29:721–726

    CAS  Google Scholar 

  • Vonshak A, Chanawongse L, Bunnang B, Tanticharoen M (1996a) Light acclimation and photoinhibition in three Spirulina platensis (cyanobacteria) isolates. J Appl Phycol 8:35–40

    Article  Google Scholar 

  • Vonshak A, Torzillo G, Accolla P, Tomaselli L (1996b) Light and oxygen stress in Spirulina platensis (cyanobacteria) grown outdoors in tubular reactors. Physiol Plant 97:175–179

    Article  CAS  Google Scholar 

  • Voronichin NN (1934) Biologie des bassins mineral des steppes Koulondine. Expedition de l’Academie des Sciences d’URSS 1931–1933 I. Leningrad. Trav Soviet pour serv l’étude ressour natur. Sér Siberie 8:182–183

    Google Scholar 

  • Wang ZP, Zhao Y (2005) Morphological reversion of Arthrospira (Spirulina) platensis (Cyanophyta): from linear to helical. J Phycol 41:622–628

    Article  Google Scholar 

  • Welsh H (1965) A contribution to our knowledge of the blue-green algae of South West Africa and Bechuanaland. Nova Hedwigia 9 (1–4):131–162

    Article  Google Scholar 

  • Wilson A, Ajilani G, Verbavatz J-M, Vass I, Kerfeld C, Kirilovsky D (2006) A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. Plant Cell 18:992–1007

    Article  Google Scholar 

  • Wittrock VB, Nordstedt CFO (1884) Algae aquae dulcia exiccata. Fasc 14, 679:59

    Google Scholar 

  • Wu H, Gao K, Villafaňe VE, Watanabe T, Helbling EW (2005) Effects of solar UV radiation on morphology and photosynthesis of filamentous cyanobacterium Arthrospira platensis. Appl Environ Microbiol 71(9):5004–5013

    Article  PubMed  CAS  Google Scholar 

  • Zarrouk C (1966) Contribution à l’étude d’une cyanophycée. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthèse de Spirulina maxima (Setchell et Gardner) Geitler. Ph D thesis, University of Paris, France

    Google Scholar 

  • Zeng MT, Vonshak A (1998) Adaptation of Spirulina platensis to salinity-stress. Comp Biochem Physiol A 120:113–118

    Article  Google Scholar 

  • Zhao J, Briand JJ (1988) Sequential events in the photoinhibition of Synechocystis under sodium stress. Plant Physiol 91:91–100

    Article  Google Scholar 

  • Zheng XY, Zhang MG, Dong YH, Gao ZH, Xu C, Han ZM, Zhang BZ, Sun DP, Wang KJ (1992) Salt lakes in Inner Mongolia. Science press, Beijing, pp 41–266 (in Chinese)

    Google Scholar 

Download references

Acknowledgements

The authors (TG and SC) thank the Italian Space Agency for financial support through the MoMa project (contract number I/014/06/0). Partial funding support was provided for joint projects in the framework of Bilateral Scientific Agreement (2010–2012) between the National Research Council of Italy and the Czech Academy of Science. We thank Prof. Brian Whitton for his critical and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Sili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sili, C., Torzillo, G., Vonshak, A. (2012). Arthrospira (Spirulina). In: Whitton, B. (eds) Ecology of Cyanobacteria II. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3855-3_25

Download citation

Publish with us

Policies and ethics