Skip to main content

Sorghum bicolor

  • Chapter
  • First Online:
Edible Medicinal And Non-Medicinal Plants
  • 4035 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Selected References

  • Abdelgadir M, Abbas M, Järvi A, Elbagir M, Eltom M, Berne C (2005) Glycaemic and insulin responses of six traditional Sudanese carbohydrate-rich meals in subjects with Type 2 diabetes mellitus. Diabet Med 22(2):213–217

    Article  PubMed  CAS  Google Scholar 

  • Adewusi SR, Ilori MO (1994) Nutritional evaluation of spent grains from sorghum malts and maize grit. Plant Foods Hum Nutr 46(1):41–51

    Article  PubMed  CAS  Google Scholar 

  • Agudelo RA, Fliedel G, Alarcón OM (1997) Tannin elimination and improvement of the digestibility of protein sorghum grains. Arch Latinoam Nutr 47(2):131–135

    PubMed  CAS  Google Scholar 

  • Ai Y, Medic J, Jiang H, Wang D, Jane JL (2011) Starch characterization and ethanol production of sorghum. J Agric Food Chem 59(13):7385–7392

    Article  PubMed  CAS  Google Scholar 

  • Akazawa T, Miljanich P, Conn EE (1960) Studies on cyanogenic glycoside of Sorghum vulgare. Plant Physiol 35(4):535–538

    Article  PubMed  CAS  Google Scholar 

  • Avato P, Bianchi G, Mariani G (1984) Epicuticular waxes of sorghum and some compositional changes with plant age. Phytochemistry 23:2843–2846

    Article  CAS  Google Scholar 

  • Avato P, Bianchi G, Murelli C (1990) Aliphatic and cyclic lipid components of sorghum plant organs. Phytochemistry 29:1073–1078

    Article  CAS  Google Scholar 

  • Awadelkareem AM, Muralikrishna G, El Tinay AH, Mustafa AI (2009) Characterization of tannin and study of in vitro protein digestibility and mineral profile of Sudanese and Indian sorghum cultivars. Pak J Nutr 8(4):469–476

    Article  CAS  Google Scholar 

  • Awika JM, Rooney LW (2004) Sorghum phytochemicals and their potential impact on human health. Phytochemistry 65:1199–1221

    Article  PubMed  CAS  Google Scholar 

  • Awika JM, Dykes L, Gu L, Rooney LW, Prior RL (2003a) Processing of sorghum (Sorghum bicolor) and sorghum products alters procyanidin oligomer and polymer distribution and content. J Agric Food Chem 51(18):5516–5521

    Article  PubMed  CAS  Google Scholar 

  • Awika JM, Rooney LW, Wu X, Prior RL, Cisneros-Zevallos L (2003b) Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. J Agric Food Chem 51(23):6657–6662

    Article  PubMed  CAS  Google Scholar 

  • Awika JM, Rooney LW, Waniska RD (2004) Properties of 3-deoxyanthocyanins from sorghum. J Agric Food Chem 52(14):4388–4394

    Article  PubMed  CAS  Google Scholar 

  • Awika JM, McDonough CM, Rooney LW (2005a) Decorticating sorghum to concentrate healthy phytochemicals. J Agric Food Chem 53(16):6230–6234

    Article  PubMed  CAS  Google Scholar 

  • Awika JM, Rooney LW, Waniska RD (2005b) Anthocyanins from black sorghum and their antioxidant properties. Food Chem 90:293–301

    Article  CAS  Google Scholar 

  • Balole TV, Legwaila GM (2006) Sorghum bicolor (L.) Moench. [Internet] Record from Protabase. In Brink M, Belay G (eds) PROTA (Plant Resources of Tropical Africa/Ressources végétales de l’Afrique tropicale), Wageningen. http://database.prota.org/search.htm

  • Bianchi G, Avato P, Mariani G (1979) Composition of surface wax from sorghum grain. Cereal Chem 56:491–492

    CAS  Google Scholar 

  • Blakely ME, Rooney LW, Sullins RD, Miller FR (1979) Microscopy of the pericarp and the testa of different genotypes of sorghum. Crop Sci 19(6):837–842

    Article  Google Scholar 

  • Bralley E, Greenspan P, Hargrove JL, Hartle DK (2008) Inhibition of hyaluronidase activity by select sorghum brans. J Med Food 11(2):307–312

    Article  PubMed  CAS  Google Scholar 

  • Bröhan M, Jerkovic V, Collin S (2011) Potentiality of red sorghum for producing stilbenoid-enriched beers with high antioxidant activity. J Agric Food Chem 59(8):4088–4094

    Article  PubMed  CAS  Google Scholar 

  • Burdette A, Garner PL, Mayer EP, Hargrove JL, Hartle DK, Greenspan P (2010) Anti-inflammatory activity of select sorghum (Sorghum bicolor) brans. J Med Food 13(4):879–887

    Article  PubMed  Google Scholar 

  • Burkill IH (1966) A dictionary of the economic products of the Malay Peninsula. Revised reprint, 2 vols. Ministry of Agriculture and Co-operatives, Kuala Lumpur, Malaysia. Vol 1 (A–H), pp 1–1240, vol 2 (I–Z), pp 1241–2444

    Google Scholar 

  • Burkill HM (1994) The useful plants of west tropical Africa, vol 2, Families E to I. Royal Bot. Gardens, Kew, 636 pp

    Google Scholar 

  • Chen SL, Philips SM (2000) Sorghum Moench. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, vol 22, Poaceae. Science Press/Missouri Botanical Garden Press, Beijing/StLouis

    Google Scholar 

  • Chohnan S, Nakane M, Rahman MH, Nitta Y, Yoshiura T, Ohta H, Kurusu Y (2011) Fuel ethanol production from sweet sorghum using repeated-batch fermentation. J Biosci Bioeng 111(4):433–436

    Article  PubMed  CAS  Google Scholar 

  • Chung IM, Kim MJ, Park DS, Moon HI (2011a) Inhibition effects of the classical pathway complement of three Sorghum bicolor from South Korea. Immunopharmacol Immunotoxicol 33(3):447–449

    Article  PubMed  CAS  Google Scholar 

  • Chung IM, Yeo MA, Kim SJ, Kim MJ, Park DS, Moon HI (2011b) Antilipidemic activity of organic solvent extract from Sorghum bicolor on rats with diet-induced obesity. Hum Exp Toxicol 30(11):1865–1868

    Article  PubMed  Google Scholar 

  • Clayton WD (1961) Proposal to conserve the generic name Sorghum Moench (Gramineae) versus Sorghum Adans (Gramineae). Taxon 10:242–243

    Article  Google Scholar 

  • Clayton WD, Govaerts R, Harman KT, Williamson H, Vorontsova M (2011) World checklist of Poaceae. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet; http://apps.kew.org/wcsp/. Retrieved 2011-08-18

  • Dalziel JM (1955) The useful plants of West Tropical Africa (Reprint of 1937 ed.). Crown Agents for Overseas Governments and Administrations, London, 612 pp

    Google Scholar 

  • Dayan FE, Rimando AM, Pan Z, Baerson SR, Gimsing AL, Duke SO (2010) Sorgoleone. Phytochemistry 71(10):1032–1039

    Article  PubMed  CAS  Google Scholar 

  • De Mesa-Stonestreet NJ, Alavi S, Bean SR (2010) Sorghum proteins: the concentration, isolation, modification, and food applications of kafirins. J Food Sci 75:R90–R104

    Article  PubMed  CAS  Google Scholar 

  • De Wet JMJ, Harlan JR (1971) The origin and domestication of Sorghum bicolor. Econ Bot 25(2):128–135

    Article  Google Scholar 

  • De Wet JMJ, Huckabay JP (1967) Origin of Sorghum bicolor. II. Distribution and domestication. Evolution 21:787–802

    Article  Google Scholar 

  • Devi PS, Saravanakuma M, Mohandas S (2011) Identification of 3-deoxyanthocyanins from red sorghum (Sorghum bicolor) bran and its biological properties. Afr J Pure Appl Chem 5(7):181–193

    Google Scholar 

  • Dicko MH, Hilhorst R, Gruppen H, Traore AS, Laane C, van Berkel WJ, Voragen AG (2002) Comparison of content in phenolic compounds, polyphenol oxidase, and peroxidase in grains of fifty sorghum varieties from Burkina Faso. J Agric Food Chem 50(13):3780–3788

    Article  PubMed  CAS  Google Scholar 

  • Dicko MH, Gruppen H, Barro C, Traore AS, van Berkel WJ, Voragen AG (2005a) Impact of phenolic compounds and related enzymes in sorghum varieties for resistance and susceptibility to biotic and abiotic stresses. J Chem Ecol 31(11):2671–2688

    Article  PubMed  CAS  Google Scholar 

  • Dicko MH, Gruppen H, Traore AS, van Berkel WJ, Voragen AG (2005b) Evaluation of the effect of germination on phenolic compounds and antioxidant activities in sorghum varieties. J Agric Food Chem 53(7):2581–2588

    Article  PubMed  CAS  Google Scholar 

  • Doggett H (1988) Sorghum, 2nd edn. Longman Scientific & Technical, London, 512 pp

    Google Scholar 

  • Duodu KG, Taylor JRN, Belton PS, Hamaker BR (2003) Factors affecting sorghum protein digestibility. J Cereal Sci 38(2):117–131

    Article  CAS  Google Scholar 

  • Dykes L, Rooney LW, Waniska RD, Rooney WL (2005) Phenolic compounds and antioxidant activity of sorghum grains of varying genotypes. J Agric Food Chem 53(17):6813–6818

    Article  PubMed  CAS  Google Scholar 

  • Earp CF, Rooney LW (1986) Fluorescence characterization of the mature caryopsis of Sorghum bicolor (L.) Moench. Food Microstruct 5(2):257–264

    Google Scholar 

  • Eggum BO, Monawar L, Bach Knudsen KE, Munck L, Axtell JD (1983) Nutritional quality of sorghum and sorghum foods from Sudan. J Cereal Sci 1(2):127–137

    Article  Google Scholar 

  • El Khalifa AO, El Tinay AH (1994) Effect of fermentation on protein fractions and tannin content of low- and high-tannin cultivars of sorghum. Food Chem 49(3):265–269

    Article  CAS  Google Scholar 

  • Elkhalifa AEO (2005) Sudanese women and traditional uses of fermented sorghum. Ahfad J 22(2):77–92

    Google Scholar 

  • Elkin RG, Freed MB, Hamaker BR, Zhang Y, Parsons CM (1996) Condensed tannins are only partially responsible for variations in nutrient digestibilities of sorghum grain cultivars. J Agric Food Chem 44(3):848–853

    Article  CAS  Google Scholar 

  • FAO (2012) FAO STAT. Food and Agricultural Organization of United Nations: Economic and Social Department: the Statistical Division. http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor

  • Farrar JL, Hartle DK, Hargrove JL, Greenspan P (2008) A novel nutraceutical property of select sorghum (Sorghum bicolor) brans: inhibition of protein glycation. Phytother Res 22(8):1052–1056

    Article  PubMed  CAS  Google Scholar 

  • Filho JX (1974) Trypsin inhibitors in sorghum grain. J Food Sci 39:422–423

    Article  Google Scholar 

  • Gómez-Cordovés C, Bartolomé B, Vieira W, Virador VM (2001) Effects of wine phenolics and sorghum tannins on tyrosinase activity and growth of melanoma cells. J Agric Food Chem 49(3):1620–1624

    Article  PubMed  CAS  Google Scholar 

  • Gu L, House SE, Rooney L, Prior RL (2007) Sorghum bran in the diet dose dependently increased the ­excretion of catechins and microbial-derived phenolic acids in female rats. J Agric Food Chem 55(13):5326–5334

    Article  PubMed  CAS  Google Scholar 

  • Hahn DH, Rooney LW (1986) Effect of genotype on tannins and phenols of sorghum. Cereal Chem 63:4–8

    CAS  Google Scholar 

  • Han B, Wang L, Li S, Wang E, Zhang L, Li T (2010) Ethanol production from sweet sorghum stalks by advanced solid state fermentation (ASSF) technology. Sheng Wu Gong Cheng Xue Bao 26(7):966–973 (in Chinese)

    PubMed  CAS  Google Scholar 

  • Hargrove JL, Greenspan P, Hartle DK, Dowd C (2011) Inhibition of aromatase and α-amylase by flavonoids and proanthocyanidins from Sorghum bicolor bran extracts. J Med Food 14(7–8):799–807

    Article  PubMed  CAS  Google Scholar 

  • Harlan JR, de Wet JMJ (1972) A simplified classification of cultivated Sorghum. Crop Sci 12:172–176

    Article  Google Scholar 

  • Hedrick UP (1972) Sturtevant’s Edible plants of the world. Dover Publications, New York, 686 pp

    Google Scholar 

  • Hwang KT, Cuppett SL, Weller CL, Hanna MA (2002a) HPLC of grain sorghum wax classes highlighting separation of aldehydes from wax esters and steryl esters. J Sep Sci 25:619–623

    Article  CAS  Google Scholar 

  • Hwang KT, Cuppett SL, Weller CL, Hanna MA (2002b) Properties, composition, and analysis of grain sorghum wax. J Am Oil Chem Soc 79(6):521–527

    Article  CAS  Google Scholar 

  • Hwang KT, Cuppett SL, Weller CL, Hanna MA, Shoemaker RK (2002c) Aldehydes in grain sorghum wax. J Am Oil Chem Soc 79:529–533

    Article  CAS  Google Scholar 

  • Hwang KT, Weller CL, Cuppett SL, Hanna MA (2004) Policosanol contents and composition of grain sorghum kernels and dried distillers grains. Cereal Chem 81(3):345–349

    Article  CAS  Google Scholar 

  • Hwang KT, Kim JE, Weller CL (2005) Policosanol contents and compositions in wax-like materials extracted from selected cereals of Korean origin. Cereal Chem 82(3):242–245

    Article  CAS  Google Scholar 

  • Idris Wisal H, Abdel Rahman SM, El Maki HB, Babiker EE, El Tinay AH (2005) Effect of germination, fermentation and cooking on phytic acid and tannin contents and HCl extractability of minerals of sorghum (Sorghum biocolor) cultivars. J Food Technol 3(3):410–416

    Google Scholar 

  • Iqbal Z, Munir MA, Khan MN, Akhtar MS, Javed I (2001) In vitro inhibitory effects of Sorghum bicolor on hatching and moulting of Haemonchus contortus eggs. Int J Agric Biol 3(4):451–453

    Google Scholar 

  • Iyamu EW, Turner EA, Asakura T (2002) In vitro effects of NIPRISAN (Nix-0699): a naturally occurring, potent antisickling agent. Br J Haematol 118(1):337–343

    Article  PubMed  CAS  Google Scholar 

  • Kaluza WZ, McGrath RM, Roberts TC, Schroeder HH (1980) Separation of phenolics of Sorghum bicolor (L) Moench grain. J Agric Food Chem 28(6):1191–1196

    Article  CAS  Google Scholar 

  • Kamath V, Niketh S, Chandrashekar A, Rajini PS (2007) Chymotryptic hydrolysates of α-kafirin, the storage protein of sorghum (Sorghum bicolor) exhibited angiotensin converting enzyme inhibitory activity. Food Chem 100(1):306–311

    Article  CAS  Google Scholar 

  • Kayodé AP, Nout MJ, Linnemann AR, Hounhouigan JD, Berghofer E, Siebenhandl-Ehn S (2011) Uncommonly high levels of 3-deoxyanthocyanidins and antioxidant capacity in the leaf sheaths of dye sorghum. J Agric Food Chem 59(4):1178–1184

    Article  PubMed  CAS  Google Scholar 

  • Kil HY, Seong ES, Ghimire BK, Chung IM, Kwon SG, Goh EJ, Heo KO, Kim MJ, Lim JD, Lee DY, Yu CY (2009) Antioxidant and antimicrobial activities of crude sorghum extract. Food Chem 115(4):1234–1239

    Article  CAS  Google Scholar 

  • Kwon YS, Kim CM (2003) Antioxidant constituents from the stem of Sorghum bicolor. Arch Pharm Res 26(7):535–539

    Article  PubMed  CAS  Google Scholar 

  • Lwande W, Bentley MD (1987) Volatiles of Sorghum bicolor seedlings. J Nat Prod 50(5):950–952

    Article  CAS  Google Scholar 

  • Mabberley DJ (1997) The plant-book, 2nd edn. Cambridge University Press, Cambridge, 858 pp

    Google Scholar 

  • Misra K, Seshadri JR (1967) Chemical components of Sorghum durra glumes. Indian J Chem 5:409–412

    CAS  Google Scholar 

  • Mohamed SK, Ahmed AAA, Yagi SM, Abd Alla AEWH (2009) Antioxidant and antibacterial activities of total polyphenols isolated from pigmented sorghum (Sorghum bicolor) lines. J Genet Eng Biotechnol 7(1):51–58

    Google Scholar 

  • Mohammed MAE, Makki HMM, Mustafa AEMI (2011a) Production of cereal-based infant food from sorghum [Sorghum bicolor (L) Moench] and pigeon pea (Cajanus cajan). Pak J Nutr 10(10):910–913

    Article  Google Scholar 

  • Mohammed NA, Ahmed IAM, Babiker EE (2011b) Nutritional evaluation of sorghum flour (Sorghum bicolor L. Moench) during processing of injera. World Acad Sci Eng Technol 75:72–76

    Google Scholar 

  • Moon HI, Lee YC, Lee JH (2012) Isolated compounds from Sorghum bicolor L. inhibit the classical pathway of the complement. Immunopharmacol Immunotoxicol 34(2):299–302

    Article  PubMed  CAS  Google Scholar 

  • Mulimani VH, Supriya D (1994) Tannic acid content in sorghum (Sorghum bicolour M.): effects of processing. Plant Foods Hum Nutr 46(3):195–200

    Article  PubMed  CAS  Google Scholar 

  • Mulimani VH, Vadiraj S (1991) Proteinase inhibitors of sorghum. J Sci Food Agric 54:485–488

    Article  CAS  Google Scholar 

  • Mulimani VH, Vadiraj S (1994) Changes in trypsin and chymotrypsin inhibitory activity on soaking of sorghum (Sorghum bicolor L. Moench). Plant Foods Hum Nutr 46(1):27–31

    Article  PubMed  CAS  Google Scholar 

  • National Research Council (1996) Lost crops of Africa, vol I, Grains. The National Academies Press, Washington, DC, 408 pp

    Google Scholar 

  • Neucere JN, Godshall MA, Roberts EJ (1986) Hemolytic activity in crude polysaccharide extracted from grain sorghum [Sorghum bicolor (L.) Moench]. Toxicon 24(3):305–308

    Article  PubMed  CAS  Google Scholar 

  • Nip WK, Burns EE (1969) Pigment characterization in grain sorghum. I. Red varieties. Cereal Chem 46:490–495

    CAS  Google Scholar 

  • Nip WK, Burns EE (1971) Pigment characterization in grain sorghum. II. White varieties. Cereal Chem 48:74–80

    CAS  Google Scholar 

  • Nwinyi FC, Kwanashie HO (2009a) Evaluation of Sorghum bicolor leaf base extract for gastrointestinal effects. Afr J Biotechnol 8(21):5985–5994

    Google Scholar 

  • Nwinyi FC, Kwanashie HO (2009b) Neuropharmacological effects of Sorghum bicolor leaf base extract. Res Pharm Biotechnol 1:1–8

    CAS  Google Scholar 

  • Nwinyi FC, Kwanashie HO, Ahmad AA, Odama LE (2009) Evaluation of toxicity profile of leaf base extract of Sorghum bicolor in rat. Afr J Biotechnol 8(2):334–342

    CAS  Google Scholar 

  • Oboh G, Akomolafe TL, Adetuyi AO (2010) Inhibition of cyclophosphamide-induced oxidative stress in brain by dietary inclusion of red dye extracts from sorghum (Sorghum bicolor) stem. J Med Food 13(5):1075–1080

    Article  PubMed  CAS  Google Scholar 

  • Ogwumike OO (2002) Hemopoietic effect of aqueous extract of the leaf sheath of Sorghum bicolor in albino rats. Afr J Biomed Res 5(1–2):69–71

    Google Scholar 

  • Oladiji AT, Jacob TO, Yakubu MT (2007) Anti-anaemic potentials of aqueous extract of Sorghum bicolor (L.) Moench stem bark in rats. J Ethnopharmacol 111(3):651–656

    Article  PubMed  CAS  Google Scholar 

  • Osman MA (2004) Changes in sorghum enzyme inhibitors, phytic acid, tannins and in vitro protein digestibility occurring during Khamir (local bread) fermentation. Food Chem 88(1):129–134

    Article  CAS  Google Scholar 

  • Pale E, Kouda-Bonafos M, Nacro M, Vanhaelen M, Vanhaelen-Fastré R, Ottinger R (1997) 7-O-methy­lapigeninidin, an anthocyanidin from Sorghum caudatum. Phytochemistry 45(5):1091–1092

    Article  CAS  Google Scholar 

  • Paulis JW, Wall JS (1979) Distribution and electrophoretic properties of alcohol-soluble proteins in normal and high-lysine sorghums. Cereal Chem 56(1):20–23

    CAS  Google Scholar 

  • Porcher MH et al. (1995–2020) Searchable world wide web multilingual multiscript plant name database. Published by The University of Melbourne, Melbourne. http://www.plantnames.unimelb.edu.au/Sorting/Frontpage.html

  • Rahman IEA, Osman MAW (2011) Effect of sorghum type (Sorghum bicolor) and traditional fermentation on tannins and phytic acid contents and trypsin inhibitor activity. J Food Agric Environ 9(3–4):163–166

    Google Scholar 

  • Ramesh HP, Tharanathan RN (2000) Non-cellulosic mixed linkage beta-D-glucan in sorghum, Sorghum bicolor (L.) Moench – localization and biological activity studies. Indian J Exp Biol 38(2):155–159

    PubMed  CAS  Google Scholar 

  • Ring AS, Waniska RD, Rooney LW (1988) Phenolic compounds in different sorghum tissues during maturation. Biomass 17(1):39–49

    Article  CAS  Google Scholar 

  • Rooney LW (2005) Ten myths about tannins in sorghums. SICNA/ICRISAT Int Sorgh Mill Newsl 46:3–5

    Google Scholar 

  • Sang Y, Bean S, Seib PA, Pedersen J, Shi YC (2008) Structure and functional properties of sorghum starches differing in amylose content. J Agric Food Chem 56(15):6680–6685

    Article  PubMed  CAS  Google Scholar 

  • Schons PF, Ries EF, Battestin V, Macedo GA (2011) Effect of enzymatic treatment on tannins and phytate in sorghum (Sorghum bicolor) and its nutritional study in rats. Int J Food Sci Technol 46:1253–1258

    Article  CAS  Google Scholar 

  • Sène M, Gallet C, Doré T (2001) Phenolic compounds in a Sahelian sorghum (Sorghum bicolor) genotype (CE145-66) and associated soils. J Chem Ecol 27(1):81–92

    Article  PubMed  Google Scholar 

  • Sereme A, Kouda-Bonafos M, Nacro M (1993) Phenolic compounds in Sorghum caudatum tissues during plant development. Biomass Bioenergy 4(1):69–71

    Article  CAS  Google Scholar 

  • Sereme A, Kouda-Bonafos M, Nacro M (1994) Tannins in utilization of sorghum grains in Burkina Faso. Plant Foods Hum Nutr 46(4):331–334

    Article  PubMed  CAS  Google Scholar 

  • Shih CH, Siu SO, Ng R, Wong E, Chiu LC, Chu IK, Lo C (2007) Quantitative analysis of anticancer 3-deoxyanthocyanidins in infected sorghum seedlings. J Agric Food Chem 55(2):254–259

    Article  PubMed  CAS  Google Scholar 

  • Shull JM, Watterson JJ, Kirleis AW (1991) Proposed nomenclature for the alcohol-soluble proteins (kafirins) of Sorghum bicolor (L. Moench) based on molecular weight, solubility, and structure. J Agric Food Chem 39(1):83–87

    Article  CAS  Google Scholar 

  • Shull JM, Watterson JJ, Kirleis AW (1992) Purification and immunocytochemical localization of kafirins in Sorghum bicolor (L. Moench) endosperm. Protoplasma 171(1–2):64–74

    Article  CAS  Google Scholar 

  • Smith CW, Frederiksen RA (2000) Sorghum: origin, history, technology, and production. Wiley, New York, 824 pp

    Google Scholar 

  • Soetan KO, Oyekunie MA (2006) Evaluation of the antimicrobial activity of saponins extract of Sorghum bicolor L. Moench. Afr J Biotechnol 5(23):2405–2407

    CAS  Google Scholar 

  • Stafford HA (1965) Flavonoids and related phenolic compounds produced in the first internode of Sorghum vulgare Pers. in darkness and in light. Plant Physiol 40(1):130–138

    Article  PubMed  CAS  Google Scholar 

  • Stemler ABL, Harlan JR, de Wet JMJ (1977) The sorghums of Ethiopia. Econ Bot 31:446–460

    Article  Google Scholar 

  • Stenhouse JW, Tippayaruk JL (1996) Sorghum bicolor (L.) Moench. In: Grubben GJH, Partohardjono S (eds) Plant resources of South-East Asia No. 10. Cereals. Backhuys Publishers, Leiden, pp 130–136

    Google Scholar 

  • Svensson L, Sekwati-Monang B, Lutz DL, Schieber A, Gänzle MG (2010) Phenolic acids and flavonoids in nonfermented and fermented red sorghum (Sorghum bicolor (L.) Moench). J Agric Food Chem 58(16):9214–9220

    Article  CAS  Google Scholar 

  • Taylor J, Taylor JR, Belton PS, Minnaar A (2009) Kafirin microparticle encapsulation of catechin and sorghum condensed tannins. J Agric Food Chem 57(16):7523–7528

    Article  PubMed  CAS  Google Scholar 

  • U.S. Department of Agriculture, Agricultural Research Service (USDA) (2012) USDA National nutrient database for standard reference, Release 25. Nutrient Data Laboratory Home Page, http://www.ars.usda.gov/ba/bhnrc/ndl

  • Uddin MR, Park KW, Kim YK, Park SU, Pyon JY (2010) Enhancing sorgoleone levels in grain sorghum root exudates. J Chem Ecol 36(8):914–922

    Article  PubMed  CAS  Google Scholar 

  • Wambebe C, Khamofu H, Momoh JA, Ekpeyong M, Audu BS, Njoku OS, Bamgboye EA, Nasipuri RN, Kunle OO, Okogun JI, Enwerem MN, Audam JG, Gamaniel KS, Obodozie OO, Samuel B, Fojule G, Ogunyale O (2001) Double-blind, placebo-controlled, randomised cross-over clinical trial of NIPRISAN in patients with sickle cell disorder. Phytomedicine 8(4):252–261

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Tilley M, Bean S, Sun XS, Wang D (2009) Comparison of methods for extracting kafirin proteins from sorghum distillers dried grains with solubles. J Agric Food Chem 57(18):8366–8372

    Article  PubMed  CAS  Google Scholar 

  • Wang CY, Ng CC, Lin HT, Shyu YT (2011) Free radical-scavenging and tyrosinase-inhibiting activities of extracts from sorghum distillery residue. J Biosci Bioeng 111(5):554–556

    Article  PubMed  CAS  Google Scholar 

  • Waniska RD, Ring AS, Doherty CA, Poe JH, Rooney LW (1988) Inhibitors in sorghum biomass during growth and processing into fuel. Biomass 15(3):155–164

    Article  CAS  Google Scholar 

  • Wharton PS, Nicholson RL (2000) Temporal synthesis and radiolabeling of the sorghum 3-deoxyanthocyanidin phytoalexins and the anthocyanin, cyanidin 3-dimalonyl glucoside. New Phytol 145:457–469

    Article  CAS  Google Scholar 

  • Wu L, Huang Z, Qin P, Yao Y, Meng X, Zou J, Zhu K, Ren G (2011) Chemical characterization of a procyanidin-rich extract from sorghum bran and its effect on oxidative stress and tumor inhibition in vivo. J Agric Food Chem 59(16):8609–8615

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Browning JD, Awika JM (2009) Sorghum 3-deoxyanthocyanins possess strong phase II enzyme inducer activity and cancer cell growth inhibition properties. J Agric Food Chem 57(5):1797–1804

    Article  PubMed  CAS  Google Scholar 

  • Yasumata K, Nakayam TOM, Chichester CO (1965) Flavonoids of sorghum. J Food Sci 30:663–667

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lim, T.K. (2013). Sorghum bicolor . In: Edible Medicinal And Non-Medicinal Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5653-3_19

Download citation

Publish with us

Policies and ethics