Skip to main content

Marine Fungal Diversity: Present Status and Future Perspectives

  • Chapter
  • First Online:
Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications

Abstract

Fungal diversity in marine habitats varies with the techniques adopted. The processing of water and soil samples in artificial media on Petri dishes results in those similar to terrestrial environments, whereas direct examination of decaying plant substrata results in litter fungi mostly belonging to ascomycetes. With the advent of molecular techniques and retrieval of common soil fungi from deep-sea environments, it is now believed that the definition of marine fungi hitherto was narrow, and hence, the scope and definition of what is a marine fungus need to be expanded. Till 2009, there were 530 marine fungi that were reported, but after broadening the definition of marine fungi, this number has risen to 1112 species in 472 genera by 2015. The list included marine-derived fungi, which are now considered as marine fungi. The present number of marine fungi stands at 1206. Halosphaeriales belonging to Ascomycota is the most speciose order. Marine fungi are taxonomically diverse, though they may be physiologically or ecologically a defined group. Molecular sequence studies also reveal that marine environments comprise a large diversity of forms and lineages, including chytrids, filamentous hyphal forms, and multicellular forms. Ecologically, marine fungi play saprophytic and parasitic roles. A number of bioactive compounds have been reported from marine fungi which have therapeutic potential, including antimicrobial, antioxidant, anticancer, and various other disease states. Marine fungal diversity in the light of molecular inputs and their role in human welfare are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Wahab MA, El-Samawaty AEMA, El-Gorbani AM, Yassin AM, Alsaadi MH (2018) Khaleijomyces marinus gen. Et sp. nov. (Juncigenaceae, Torpedosporales) a new lignicolous marine fungus from Saudi Arabia. Phytotaxa 340:277–285

    Article  Google Scholar 

  • Aguileta G, Marthey S, Chiapello H, Lebrun MH, Rodolphe F, Fournier E, Gendrault-Jacquemard A, Giraud T (2008) Assessing the performance of single copy genes for recovering robust phylogenies. Syst Biol 57:613–627

    Article  CAS  PubMed  Google Scholar 

  • Alexander E, Stock A, Breiner HW, Behnke A, Bunge J, Yakimov MM, Stoeck T (2009) Microbial eukaryotes in the hypersaline anoxic L’Atalante deep-sea basin. Environ Microbiol 11:360–381

    Article  CAS  PubMed  Google Scholar 

  • Amend A (2014) From dandruff to deep-sea vents: Malassezia like fungi are ecologically hyper-diverse. PLoS Pathog 10:1004277. https://doi.org/10.1371/journal.pat.1004277

    Article  Google Scholar 

  • Amend AS, Barshis DJ, Oliver TA (2012) Coral-associated marine fungi form novel lineages and heterogeneous assemblages. ISME J 6:1291–1301

    Article  CAS  PubMed  Google Scholar 

  • Arfi Y, Marchand C, Wartel M, Record E (2012) Fungal diversity in anoxic-sulfidic sediments in a mangrove soil. Fungal Ecol 5:282–285

    Article  Google Scholar 

  • Arnold AE, Henk DA, Eells RL, Lutzoni F, Vilgalys R (2007) Diversity and phylogenetic affinities of foliar fungal endophytes in loblolly pine inferred by culturing and environmental PCR. Mycologia 99:185–206

    Article  CAS  PubMed  Google Scholar 

  • Bass D, Howe A, Brown N, Barton H, Demidova M, Michelle H, Li L, Sanders H, Watkinson SC, Willcock S, Richards TA (2007) Yeast forms dominate fungal diversity in the deep oceans. Proc R Soc B 274:3069–3077

    Article  CAS  PubMed  Google Scholar 

  • Bhadury P, Mohammad BT, Wright PC (2006) The current status of natural products from marine fungi and their potential as anti-infective agents. J Ind Microbiol Biotechnol 33:325–337

    Article  CAS  PubMed  Google Scholar 

  • Blackwell M (2011) The fungi: 1, 2, 3 … 5.1 million species? Am J Bot 98:426–438. https://doi.org/10.3732/ajb.1000298

    Article  PubMed  Google Scholar 

  • Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2016) Marine natural products. Nat Prod Rep 33:382–431

    Article  CAS  PubMed  Google Scholar 

  • Bucher VVC, Hyde KD, Pointing SB, Reddy CA (2004) Production of wood decay enzymes, mass loss and lignin solubilization in wood by marine ascomycetes and their anamorphs. Fungal Divers 15:1–14

    Google Scholar 

  • Bugni TS, Ireland CM (2004) Marine-derivedfungi: achemicallyand biologically diverse group of microorganisms. Nat Prod Rep 21:143–163. https://doi.org/10.1039/b301926h. CABI

    Article  CAS  PubMed  Google Scholar 

  • Collado J, Platas G, Paulus B, Bills GF (2007) High throughput culturing of fungi from plant litter by a dilution-to-extinction technique. FEMS Microbiol Ecol 60:521–533

    Article  CAS  PubMed  Google Scholar 

  • Culligan EP, Sleator RD, Marchesi JR, Hill C (2014) Metagenomics and novel gene discovery: promise and potential for novel therapeutics. Virulence 5:399–412

    Article  PubMed  Google Scholar 

  • Cury JC, Araujo FV, Coelho-Souza SA, Peixoto RS, Oliveira JAL, Santos HF, Davila AMR, Rosado AS (2011) Microbial diversity of a Brazilian coastal region influenced by an upwelling system and anthropogenic activity. PLoS One 6:e16553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Souza J, Rodrigues BF (2013) Biodiversity of arbuscular mycorrhizal (AM) fungi in mangroves of Goa in West India. J For Res 24:515–523

    Article  CAS  Google Scholar 

  • D’Souza DT, Tiwari R, Sah AK, Raghukumar C (2006) Enhanced production of laccase by a marine fungus during treatment of colored effluents and synthetic dyes. Enzym Microb Technol 38:504–511. https://doi.org/10.1016/j.enzmictec.2005.07.005

    Article  CAS  Google Scholar 

  • Damare SR, Nagarajan M, Raghukumar C (2008) Spore germination of fungi belonging to Aspergillus species under deep-sea conditions. Deep-Sea Res 55:670–678

    Article  Google Scholar 

  • Dawson SC, Pace NR (2002) Novel kingdom-level eukaryotic diversity in anoxic environments. Proc Natl Acad Sci U S A 99:8324–8329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Vries RP, Riley R, Wiebenga A, Aguilar-Osorio G, Amillis S, Uchima CA, Anderluh G, Asadollahi M, Askin M, Barry K, Battaglia E, Bayram O, Benocci M, Reich A, Labes T, Braus-Stromeyer SA, Caldana C, Canovas D, Cerqueira GC, Chen FS, Chen WP, Choi C, Clum A, dos Santos RAC, Damasio ARD, Diallinas G, Emri T, Fekete E, Flipphi M, Freyberg S, Gallo A, Gournas C, Habgood R, Hainaut M, Harispe ML, Henrissat B, Hilden KS, Hope R, Hossain A, Karabika E, Karaffa L, Karanyi Z, Krasevec N, Kuo A, Kusch H, LaButti K, Lagendijk EL, Lapidus A, Levasseur A, Lindquist E, Lipzen A, Logrieco AF, MacCabe A, Makela MR, Malavazi I, Melin P, Meyer V, Mielnichuk N, Miskei M, Molnar AP, Mule G, Ngan CY, Orejas M, Orosz E, Ouedraogo JP, Overkamp KM, Park HS, Perrone G, Piumi F, Punt PJ, Ram AFJ, Ramon A, Rauscher S, Record E, Riano-Pachon DM, Robert V, Rohrig J, Ruller R, Salamov A, Salih NS, Samson RA, Sandor E, Sanguinetti M, Schutze T, Sepcic K, Shelest E, Sherlock G, Sophianopoulou V, Squina F, Sun H, Susca A, Todd RB, Tsang A, Unkles SE, van de Wiele N, van Rossen-Uffink D, Oliveira JVD, Vesth TC, Visser J, Yu JH, Zhou MM, Andersen MR, Archer DB, Baker SE, Benoit I, Brakhage AA, Braus GH, Fischer R, Frisvad JC, Goldman GH, Houbraken J, Oakley B, Pocsi I, Scazzocchio C, Seiboth B, van Kuyk PA, Wortman J, Dyer PS, Grigoriev IV (2017) Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biol 18:1

    Article  CAS  Google Scholar 

  • Debbab A, Aly AH, Lin WH, Proksch P (2010) Bioactive compounds from marine bacteria and fungi. Microb Biotechnol 3:544–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deshmukh SK, Prakash V, Ranjan N (2018) Marine fungi: a source of potential anticancer compounds. Front Microbiol 8:2536. https://doi.org/10.3389/fmicb.2017.02536

    Article  PubMed  PubMed Central  Google Scholar 

  • Devadatha B, Sarma VV, Ariyawansa HA, Jones EBG (2018a) Deniquelatavittalii sp. nov., a novel Indian saprobic marine fungus on Suaedamonoica and two new records of marine fungi from Muthupet mangroves, east coast of India. Mycosphere 9:565–582. https://doi.org/10.5943/mycosphere/9/3/8

    Article  Google Scholar 

  • Devadatha B, Sarma VV, Jeewon R, Wanasinghe DN, Hyde KD, Jones EBG (2018b) Thyridariella, a novel marine fungal genus from India: morphological characterization and phylogeny inferred from multigene DNA sequence analyses. Mycol Prog 17:791–804. https://doi.org/10.1007/s11557-018-1387-4

    Article  Google Scholar 

  • Devadatha B, Sarma VV, Jeewon R, Jones EBG (2018c) Morosphaeria muthupetensis sp. nov. (Morosphaeriaceae) from India: morphological characterisation and multigene phylogenetic inference. Bot Mar 61:395–405. https://doi.org/10.1515/bot-2017-0124

    Article  CAS  Google Scholar 

  • Ebel R (2012) Natural products from marine-derived fungi. In: Jones EBG, Pang KL (eds) Marine fungi and fungal-like organisms. Walter De Gruyter, Berlin, pp 411–440

    Google Scholar 

  • Edgcomb VP, Kysela DT, Teske A, de Vera Gomez A, Sogin ML (2002) Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment. Proc Natl Acad Sci U S A 99:7658–7662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgcomb VP, Beaudoin D, Gast R, Biddle JF, Teske A (2011) Marine subsurface eukaryotes: the fungal majority. Environ Microbiol 13:172–183

    Article  CAS  PubMed  Google Scholar 

  • Feau N, Decourcelle T, Husson C, Desprez-Loustau ML, Dutech C (2011) Finding single copy genes out of sequenced genomes for multilocus phylogenetics in non-model Fungi. PLoS One 6:e18803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fell JW, Boekhout T, Fonseca A, Scorzetti G, Statzell-Tallman A (2000) Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evol Microbiol 50:1351–1371

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Li BL, Zheng CC, Wang G (2008) Molecular detection of fungal communities in the Hawaiian marine sponges Suberiteszeteki and Mycale armata. Appl Environ Microbiol 74:6091–6101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Z, Johnson ZI, Wang G (2010) Molecular characterization of the spatial diversity and novel lineages of mycoplankton in Hawaiian coastal waters. ISME J 4:111–120

    Article  PubMed  Google Scholar 

  • Glass NL, Donaldson GC (1995) Development of primer setsdesigned for use with the PCR to amplified conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, Riley R, Salamov A, Zhao XL, Korzeniewski F, Smirnova T, Nordberg H, Dubchak I, Shabalov I (2014) MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res 42:D699–D704

    Article  CAS  PubMed  Google Scholar 

  • Grossar HP, Wurzbacher C, James TY, Kagami M (2016) Discovery of dark matter fungi in aquatic ecosystems demands a reappraisal of the phylogeny and ecology of zoosporic fungi. Fungal Ecol 19:28–38. https://doi.org/10.1016/j.funeco.2015.06.004

    Article  Google Scholar 

  • Gutierrez MH, Jara AM, Pantoja S (2016) Fungal parasites infect marine diatoms in the upwelling ecosystem of the Humboldt current system off Central Chile. Environ Microbiol 18:1646–1653

    Article  PubMed  Google Scholar 

  • Hassett BT, Gradinger R (2016) Chytrids dominate arctic marine fungal communities. Environ Microbiol 18:2001–2009

    Article  CAS  PubMed  Google Scholar 

  • Hassett BT, Ducluzeau A-LL, Collins RE, Gradinger R (2017) Spatial distribution of aquatic marine fungi across western Arctic and sub-Arctic. Environ Microbiol 19:475–484

    Article  CAS  PubMed  Google Scholar 

  • Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance and conservation. Mycol Res 95:641–655

    Article  Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432

    Article  Google Scholar 

  • Hubka V, Kolarik M (2012) Beta-tubulin paralogue tubC is frequently misidentified as the benA gene in Aspergillus section Nigri taxonomy: primer specificity testing ad taxonomic consequences. Persoonia 29:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyde KD, Alias SA (2000) Biodiversity and distribution of fungi associated with decomposing. Biodivers Conserv 9:393–402

    Article  Google Scholar 

  • Hyde KD, Jones EBG (1988) Marine mangrove fungi. PSZNI Mar Ecol 9:15–38

    Article  Google Scholar 

  • Hyde KD, Lee SY (1995) Ecology of mangrove fungi and their role in nutrient cycling: what gaps occur in our knowledge? Hydrobiologia 295:107–118

    Article  Google Scholar 

  • Hyde KD, Sarma VV (2000) Marine mycology – a practical approach. Fungal Diversity Press, Hong Kong, pp 201–264

    Google Scholar 

  • Hyde KD, Jones EBG, Leano E, Pointing SB, Poonyth AD, Vrijmoed LLP (1998) Role of marine fungi in marine ecosystems. Biodivers Conserv 7:1147–1161

    Article  Google Scholar 

  • Hyde KD, Sarma VV, Jones EBG (2000) Morphology and taxonomy of higher marine fungi. In: Hyde KD, Pointing SB (eds) Marine mycology – a practical approach. Fungal Diversity Press, Hong Kong University, Hong Kong

    Google Scholar 

  • Hyde KD, McKenzie EHC, KoKo TW (2011) Towards incorporating anamorphic fungi in a natural classification –checklist and notes for 2010. Mycosphere 2:1–88

    Google Scholar 

  • Imhoff JF (2016) Natural products from marine fungi – still an under represented resource. Mar Drugs 14

    Google Scholar 

  • James TY, Pelin A, Bonen L, Ahrendt S, Sain D, Corradi N, Stajich JE (2013) Shared signatures of parasitism and phylogenomics unite Cryptomycota and microsporidia. Curr Biol 23:1548–1553

    Article  CAS  PubMed  Google Scholar 

  • Jebaraj CS, Raghukumar C, Behnke A, Stoeck T (2010) Fungal diversity in oxygen-depleted regions of the Arabian Sea revealed by targeted environmental sequencing combined with cultivation. FEMS Microbiol Ecol 71:399–412

    Article  CAS  PubMed  Google Scholar 

  • Jones EBG (1994) Fungal adhesion. Mycol Res 98:961–981

    Article  Google Scholar 

  • Jones EBG (1995) Ultrastructure and taxonomy of the aquatic ascomycetous order Halosphaeriales. Can J Bot 73(S1):790–801

    Article  Google Scholar 

  • Jones EBG (2000) Marine fungi: some factors influencing biodiversity. Fungal Divers 4:53–73

    Google Scholar 

  • Jones EBG (2011) Are there more marine fungi to be described? Bot Mar 54:343–354

    Article  Google Scholar 

  • Jones EBG, Alias SA (1997) Biodiversity of mangrove fungi. In: Hyde KD (ed) Biodiversity of tropical microfungi. Hong Kong University Press, Hong Kong

    Google Scholar 

  • Jones EBG, Hyde KD (1988) Methods for the study of marine fungi from the mangroves. In: Agate AD, Subramanian CV, Vanucci M (eds) Mangrove microbiology. Role of microorganisms in nutrient cycle of mangrove soils and waters. UNDP/UNESCO, New Delhi, pp 9–27

    Google Scholar 

  • Jones EBG & Mitchell JI (1996) Biodiversity of marine fungi. In: Cimerman A, Gunde-Cimerman N (eds) Biodiversity: international biodiversity seminar. National Inst. Chemistry and Slovenia National Commission for UNESCO, Ljubljana, pp 31±42

    Google Scholar 

  • Jones EBG, Sakayaroj J, Suetrong S, Somrithipol S, Pang KL (2009) Classification of marine Ascomycota, anamorphic taxa and Basidiomycota. Fungal Divers 35:1–187

    Google Scholar 

  • Jones MDM, Forn I, Gadelha C, Egan MJ, Bass D, Massana R, Richards TA (2011) Discovery of novel intermediate forms redefines the fungal tree of life. Nature 474:200–U234

    Article  CAS  PubMed  Google Scholar 

  • Jones EBG, Suetrong S, Sakayaroj J, Bahkali AH, Abdel-Wahab MA, Boekhout T, Pang K-L (2015) Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota. Fungal Divers 73:1–72

    Article  Google Scholar 

  • Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the fungi, 10th edn. CABI Europe, Oxon

    Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1979) Marine mycology: the higher fungi. Academic Press, London

    Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (1991) Illustrated key to the filamentous higher marine fungi. Bot Mar 34:1–64

    Article  Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (2001) The biodiversity of fungi on Juncus roemerianus. Mycol Res 105:1411–1412

    Article  Google Scholar 

  • Kristensen R, Torp M, Kosiak B, Holst-Jensen A (2005) Phylogeny and toxigenic potential is correlated in Fusarium species as revealed by partial translation elongation factor 1 alpha gene sequences. Mycol Res 109:173–186

    Article  CAS  PubMed  Google Scholar 

  • Kuhnert E, Fournier J, PerÅ¡oh D, Luangsa-ard JJD, Stadler M (2014) New Hypoxylon species from Martinique and new evidence on the molecular phylogeny of Hypoxylon based on ITS rDNA and β-tubulindata. Fungal Divers 64:181–203

    Article  Google Scholar 

  • Kumaresan V, Suryanarayanan TS (2002) Endophyte assemblages in young, mature and senescent leaves of Rhizophoraapiculata: evidence for the role of endophytes in mangrove litter degradation. Fungal Divers 9:81–91

    Google Scholar 

  • Kurtzman CP, Fell JW, Boekhout T (2011) The yeasts, a taxonomic study, vol 3. Elsevier, Amsterdam

    Google Scholar 

  • Lai XT, Cao LX, Tan HM, Fang S, Huang YL, Zhou SN (2007) Fungal communities from methane hydrate-bearing deep-sea marine sediments in South China Sea. ISME J 1(8):756–762

    Article  CAS  PubMed  Google Scholar 

  • Le Calvez T, Burgaud G, Mahe S, Barbier G, Vandenkoornhuyse P (2009) Fungal diversity in deep-sea hydrothermal ecosystems. Appl Environ Microbiol 75:6415–6421. https://doi.org/10.1128/AEM.00653-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefèvre E, Bardot C, Noël C, Carrias JF, Viscogliosi E, Amblard C, Sime-Ngando T (2007) Unveiling fungal zooflagellates as members of freshwater picoeukaryotes: evidence from a molecular diversity study in a deep meromictic lake. Environ Microbiol 9:61–71. https://doi.org/10.1111/j.1462-2920.2006.01111.x

    Article  CAS  PubMed  Google Scholar 

  • Lefranc M, Thénot A, Lepère C, Debroas D (2005) Genetic diversity of small eukaryotes in lakes differing by their trophic status. Appl Environ Microbiol 71:5935–5942. https://doi.org/10.1128/AEM.71.10.5935-5942.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Mol Biol Evol 16:1799–1808

    Article  CAS  PubMed  Google Scholar 

  • Liu KL, Porras-Alfaro A, Kuske CR, Eichorst SA, Xie G (2012) Accurate, rapid taxonomic classification of fungal large-subunit rRNA genes. Appl Environ Microbiol 78:1523–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Garcia P, Rodriguez-Valera F, Pedros-Allo C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–607

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Garcıa P, Philippe H, Gail F, Moreira D (2003) Autochthonous eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at the mid-Atlantic ridge. Proc Natl Acad Sci U S A 100:697–702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • López-Garcia P, Vereshchaka A, Moreira D (2007) Eukaryotic diversity associated with carbonates and fluid-seawater interface in lost City hydrothermal field. Environ Microbiol 9:546–554. https://doi.org/10.1111/j.1462-2920.2006.01158.x

    Article  CAS  PubMed  Google Scholar 

  • Lucking R, Hawksworth DL (2018) Formal description of sequence-based voucherless fungi: promises, pitfalls, and how to resolve them. IMA Fungus 9:143–166

    Article  PubMed  PubMed Central  Google Scholar 

  • Lutzoni F, Kauff F, Cox CJ, McLaughlin D, Celio G, Dentinger B, Padamsee M, Hibbett D, James TY, Baloch E, Grube M, Reeb V, Hofstetter V, Schoch C, Arnold AE, Miadlikowska J, Spatafora J, Johnson D, Hambleton S, Crockett M, Shoemaker R, Hambleton S, Crockett M, Shoemaker R, Sung GH, Lucking R, Lumbsch T, O’Donnell K, Binder M, Diederich P, Ertz D, Gueidan C, Hansen K, Harris RC, Hosaka K, Lim YW, Matheny B, Nishida H, Pfister D, Rogers J, Rossman A, Schmitt I, Sipman H, Stone J, Sugiyama J, Yahr R, Vilgalys R (2004) Assembling the fungal tree of life: progress, classification and evolution of subcellular traits. Am J Bot 91:1446–1480

    Article  PubMed  Google Scholar 

  • Manohar CS, Raghukumar C (2013) Fungal diversity from various marine habitats deduced through culture-independent studies. FEMS Microbiol Lett 341:69–78

    Article  CAS  PubMed  Google Scholar 

  • Massana R, Pedrós-Alió C (2008) Unveiling new microbial eukaryotes in the surface ocean. Curr Opin Microbiol 11:213–218. https://doi.org/10.1016/j.mib.2008.04.004

    Article  PubMed  Google Scholar 

  • Massana R et al (2015) Marine protist diversity in European coastal waters and sediments asrevealed by high-throughput sequencing. Environ Microbiol 17:4035–4049. https://doi.org/10.1111/1462-2920.12955

    Article  CAS  PubMed  Google Scholar 

  • Nagahama T, Takahashi E, Nagano Y, Abdel-Wahab MA, Miyazaki M (2011) Molecular evidence that deep-branching fungi are major fungal components in deep-sea methane. Environ Microbiol 13:2359–2370

    Article  CAS  PubMed  Google Scholar 

  • Nagano Y, Nagahama T, Hatada Y, Nunoura T, Takami H, Miyazaki J, Takai K, Horikoshi K (2010) Fungal diversity in deep-sea sediments – the presence of novel fungal groups. Fungal Ecol 3:316–325

    Article  Google Scholar 

  • O’Brien HE, Parrent JL, Jackson JA, Moncalvo JM, Vilgalys R (2005) Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 71:5544–5550. https://doi.org/10.1128/AEM.71.9.5544-5550.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orsi W, Biddle JF, Edgcomb V (2013a) Deep sequencing of subseafloor eukaryotic rRNA reveals active fungi across marine subsurface provinces. PLoS One 8:e56335. https://doi.org/10.1371/journal.pone.0056335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orsi WD, Edgcomb VP, Christman GD, Biddle JF (2013b) Gene expression in the deep biosphere. Nature 499:205–208. https://doi.org/10.1038/nature12230

    Article  CAS  PubMed  Google Scholar 

  • Overy DP, Bayman P, Kerr RG, Bills GF (2014) An assessment of natural product discovery from marine (sensustrictu) and marine-derived fungi. Mycology 5:145–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang K-L, Jones EBG (2017) Recent advances in marine mycology. Bot Mar 60:361–362

    Article  Google Scholar 

  • Pang KL, Overy DP, Jones EBG, Calado MDL, Burgaud G, Walker AK, Johnson JA, Kerr RG, Cha HJ, Bills GF (2016) ‘Marine fungi’ and ‘marine-derived fungi’ in natural product chemistry research: toward a new consensual definition. Fungal Biol Rev 30:163–175

    Article  Google Scholar 

  • Panzer K, Yilmaz P, Weiß M, Reich L, Richter M, Wiese J, Schmaljohann R, Labes A, Imhoff JF, Glöckner FO, Reich M (2015) Identification of habitatspecific biomes of aquatic fungal communities using a comprehensive nearly fulllength 18S rRNA dataset enriched with contextual data. PLoS One 10:10134377

    Google Scholar 

  • Passarini MRZ, Rodrigues MVN, DaSilva M, Sette LD (2011) Marine derived filamentous fungi and their potential application for polycyclic aromatic hydrocarbon bioremediation. Mar Pollut Bull 62:364–370. https://doi.org/10.1016/j.marpolbul.2010.10.003

    Article  CAS  PubMed  Google Scholar 

  • Picard KT (2017) Coastal marine habitats harbor novel early-diverging fungal diversity. Fungal Ecol 25:1–13

    Article  Google Scholar 

  • Pointing SB (1999) Qualitative methods for the determination of lignocellulolytic enzyme production by tropical fungi. Fungal Divers 2:17–33

    Google Scholar 

  • Raghukumar C, Raghukumar S, Chinnaraj A, Chandramohan D, D’Souza TM, Reddy CA (1994) Laccase and other lignocellulose modifying enzymes of marine fungi isolated from the coast of India. Bot Mar 37:515–523

    Article  CAS  Google Scholar 

  • Raghukumar C, Chandramohan D, Michel FC, Reddy CA (1996) Degradation of lignin and decolorization of paper mill bleach plant effluent (BPE) by marine fungi. Biotechnol Lett 18:105–106. https://doi.org/10.1007/bf00137820

    Article  CAS  Google Scholar 

  • Raghukumar C, Muraleedharan U, Gaud VR, Mishra R (2004) Simultaneous detoxification and decolorization of molasses spent wash bythe immobilized white-rot fungus Flavodonflavus isolated from a marine habitat. Enzym Microb Technol 35:197–202. https://doi.org/10.1016/j.enzmictec.2004.04.010

    Article  CAS  Google Scholar 

  • Raghukumar C, Shailaja MS, Parameswaran PS, Singh SK (2006) Removal of polycyclic aromatic hydrocarbons from aqueous media by the marinefungus NIOCC#312: involvement of lignin-degrading enzymes and exopolysaccharides. Indian J Mar Sci 35:373–379

    CAS  Google Scholar 

  • Raghukumar C, D’souza-Ticlo D, Verma AK (2008) Treatmentofcolored effluents with lignin- degrading enzymes: an emerging role of marine- derived fungi. Crit Rev Microbiol 34:189–206. https://doi.org/10.1080/10408410802526044

    Article  CAS  PubMed  Google Scholar 

  • Rämä T, Davey M, Norden J, Halvorsen R, Blaalid R, Mathiassen G, Alsos I, Kauserud H (2016) Fungi sailing the Arctic Ocean: speciose communities in North Atlantic driftwood as revealed by high-throughput amplicon sequencing. Microb Ecol 72:295–304

    Article  PubMed  CAS  Google Scholar 

  • Redou V, Navari M, Meslet-Cladlere L, Barbler G, Burgaud G (2015) Species richness and adaptation of marine fungi from deep-subsea floor sediments. Appl Environ Microbiol 81:3571–3583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehner SA (2001) Primers for elongation factor 1-a (EF1-a). http://ocid.NACSE.ORG/research/deephyphae/EF1primer.pdf

  • Reich M, Labes A (2017) How to boost marine fungal research: a first step towards a multidisciplinary approach by combining molecular fungal ecology and natural products chemistry. Mar Genomics 36:57–75

    Article  PubMed  Google Scholar 

  • Reich M, Wicheis A, Panzer K, Krause E, Gimenez L, Gerdts G (2017) Impacts of a reduction in seawater pH mimicking ocean acidification on the structure and diversity of mycoplankton communities. Aquat Microb Ecol 79:221–233

    Article  Google Scholar 

  • Richards TA, Bass D (2005) Molecular screening of freeliving microbial eukaryotes: diversity and distribution using a meta-analysis. Curr Opin Microbiol 8:240–252. https://doi.org/10.1016/j.mib.2005.04.010

    Article  CAS  PubMed  Google Scholar 

  • Richards TA, Jones MDM, Leonard G, Bass D (2012) Marine fungi: their ecology and molecular diversity. Annu Rev Mar Sci 4:495–522

    Article  Google Scholar 

  • Richards TA, Leonard G, Mahé F, Del Campo J, Romac S, Jones MD, Maguire F, Dunthorn M, De Vargas C, Massana R et al (2015) Molecular diversity and distribution of marine fungi across 130 European environmental samples. Proc R Soc B 282:2015–2043

    Article  CAS  Google Scholar 

  • Rohrmann S, Molitoris P (1992) Screening of wood degrading enzymes in marine fungi. Can J Bot 70:2116–2123

    Article  CAS  Google Scholar 

  • Sakayaroj J, Pang K-L, Jones EBG (2011) Multi-gene phylogeny of the halosphaeriaceae: its ordinal status, relationships between genera and morphological character evolution. Fungal Divers 46:87–109. https://doi.org/10.1007/s13225-010-0072-y

    Article  Google Scholar 

  • Saleem M, Ali MS, Hussain S, Jabbar A, Ashraf M, Lee YS (2007) Marine natural products of fungal origin. Nat Prod Rep 24:1142–1152

    Article  CAS  PubMed  Google Scholar 

  • Sarma VV, Hyde KD (2001) A review on frequently occurring fungi in mangroves. Fungal Divers 8:1–34

    Google Scholar 

  • Sarma VV, Vittal BPR (2001) Biodiversity of fungi on selected mangrove plants in the Godavari and Krishna deltas, east coast of India. Fungal Divers 6:113–129

    Google Scholar 

  • Schadt EE, Turner S, Kasarskis A (2010) A window into third-generation sequencing. Hum Mol Genet 19:R227–R240

    Article  CAS  PubMed  Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Bolchacova E, Voigt K, Crous PW, Miller AN, Wingfield MJ, Aime MC, An KD, Bai FY, Barreto RW, Begerow D, Bergeron MJ, Blackwell M, Boekhout T, Bogale M, Boonyuen N, Burgaz AR, Buyck B, Cai L, Cai Q, Cardinali G, Chaverri P, Coppins BJ, Crespo A, Cubas P, Cummings C, Damm U, de Beer ZW, de Hoog GS, Del-Prado RBD, Dieguez-Uribeondo J, Divakar PK, Douglas B, Duenas M, Duong TA, Eberhardt U, Edwards JE, Elshahed MS, Fliegerova K, Furtado M, Garcia MA, Ge ZW, Griffith GW, Griffiths K, Groenewald JZ, Groenewald M, Grube M, Gryzenhout M, Guo LD, Hagen F, Hambleton S, Hamelin RC, Hansen K, Harrold P, Heller G, Herrera G, Hirayama K, Hirooka Y, Ho HM, Hoffmann K, Hofstetter V, Hognabba F, Hollingsworth PM, Hong SB, Hosaka K, Houbraken J, Hughes K, Huhtinen S, Hyde KD, James T, Johnson EM, Johnson JE, Johnston PR, Jones EBG, Kelly LJ, Kirk PM, Knapp DG, Koljalg U, Kovács GM, Kurtzman CP, Landvik S, Leavitt SD, Liggenstoffer AS, Liimatainen K, Lombard L, Luangsa-Ard JJ, Lumbsch HT, Maganti H, Maharachchikumbura SS, Martin MP, May TW, McTaggart AR, Methven AS, Meyer W, Moncalvo JM, Mongkolsamrit S, Nagy LG, Nilsson RH, Niskanen T, Nyilasi I, Okada G, Okane I, Olariaga I, Otte J, Papp T, Park D, Petkovits T, Pino-Bodas R, Quaedvlieg W, Raja HA, Redecker D, Rintoul TL, Ruibal C, Sarmiento-Ramirez JM, Schmitt I, Schussler A, Shearer C, Sotome K, Stefani FO, Stenroos S, Stielow B, Stockinger H, Suetrong S, Suh SO, Sung GH, Suzuki M, Tanaka K, Tedersoo L, Telleria MT, Tretter E, Untereiner WA, Urbina H, Vagvolgyi C, Vialle A, Vu TD, Walther G, Wang QM, Wang Y, Weir BS, Weiss M, White MM, Xu J, Yahr R, Yang ZL, Yurkov A, Zamora JC, Zhang N, Zhuang WY, Schindel D, Consortium FB (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci U S A 109:6241–6246. https://doi.org/10.1073/pnas.1117018109

    Article  PubMed  PubMed Central  Google Scholar 

  • Seifert KA (2009) Progress towards DNA barcoding of fungi. Mol Ecol Resour 9:83–89

    Article  CAS  PubMed  Google Scholar 

  • Sengupta A, Chaudhuri S (2002) Arbuscular mycorrhizal relations of mangrove plant community at the Ganges river estuary in India. Mycorrhiza 12:169–174

    Article  PubMed  Google Scholar 

  • Singh P, Raghukumar C, Verma P, Shouche Y (2010) Phylogenetic diversity of culturable fungi from the deep-sea sediments of the central Indian Basin and their growth characteristics. Fungal Divers 40:89–102

    Article  Google Scholar 

  • Singh P, Raghukumar C, Verma P, Shouche Y (2011) Fungal community analysis in the deep-sea sediments of the central Indian Basin by culture-independent approach. Microb Ecol 61:507–517

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Raghukumar C, Verma P, Shouche Y (2012) Assessment of fungal diversity in deep-sea sediments by multiple primer approach. World J Microbiol Biotechnol 28:659–667

    Article  CAS  PubMed  Google Scholar 

  • Stockinger H, Peyret-Guzzon M, Koegel S, Bouffaud ML, Redecker D (2014) The largest subunit of RNA polymerase II as a new marker gene to study assemblages of arbuscularmycorrhizal fungi in the field. PLoS One 9:e107783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suetrong S, Schoch CL, Spatafora JW, Kohlmeyer J, Volkmann-Kohlmeyer B, Sakayaroj J, Jones EBG (2009) Molecular systematics of the marine Dothideomycetes. Stud Mycol 64:155–173. https://doi.org/10.3114/sim.2009.64.09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suryanarayanan TS, Kumaresan V, Johnson JA (1998) Foliar fungal endophytes from two species of the mangrove Rhizophora. Can J Microbiol 44:1003–1006

    Article  CAS  Google Scholar 

  • Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB, Sasse F, Jansen R, Murali TS (2009) Fungal endophytes and bioprospecting. Fungal Biol Rev 23:9–19

    Article  Google Scholar 

  • Takishita K, Tsuchiya M, Reimer JD, Maruyama T (2006) Molecular evidence demonstrating the basidiomycetous fungus Cryptococcus curvatus is the dominant microbial eukaryote in sediment at the Kuroshima knoll methane seep. Extremophiles 10:165–169. https://doi.org/10.1007/s00792-005-0495-7

    Article  CAS  PubMed  Google Scholar 

  • Taylor JD, Cunliffe M (2016) Multi-year assessment of coastal planktonic fungi reveals environmental drivers of diversity and abundance. ISME J 10:2118–2128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic speciesrecognition and species concepts in fungi. Fungal Genet Biol 31:21–32. https://doi.org/10.1006/fgbi.2000.1228

    Article  CAS  PubMed  Google Scholar 

  • Taylor DL, Hollingsworth TN, McFarland JW, Lennon NJ, Nusbaum C, Ruess RW (2014) A first comprehensive census of fungi in soil reveals both hyperdiversity and finescale. Ecol Monogr 84:3–20

    Article  Google Scholar 

  • Thaler AD, Dover CLV, Vilgalys R (2012) Ascomycete phylotypes recovered from a Gulf of Mexico methane seep are identical to an uncultured deep-sea fungal clade from the Pacific. Fungal Ecol 5:270–273

    Article  Google Scholar 

  • Thines M, Crouss PW, Aime MC, Aoki T, Cai L, Hyde KD, Miller AN, Zhang N, Stadler M (2018) Ten reasons why a sequence based nomenclature is not useful for fungi anytime soon. IMA Fungus 9:177–183

    Article  PubMed  PubMed Central  Google Scholar 

  • Vetrovsky T, Kolarik M, Zifcakova L, Zelenka T, Baldrian P (2016) The rpb2 gene represents a viable alternative molecular marker for the analysis of environmental fungal communities. Mol Ecol Resour 16:388–401

    Article  CAS  PubMed  Google Scholar 

  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Xu Z, Gao L, Hao BL (2009) A fungal phylogeny based on 82 complete genomes using the composition vector method. BMC Evol Biol 9:195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wegley L, Edwards R, Rodriguez-Brito B, Liu H, Rohwer F (2007) Metagenomic analysis of the microbial communityassociated with the coral Porites astreoides. Environ Microbiol 9:2707–2719

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Wu Y-R, He T-T, Lun J-S, Maskaoui K, Huang T-W, Hu Z (2009) Removal of benzoapyrene by a fungus Aspergillus sp. BAP14. World J Microbiol Biotechnol 25:1395–1401. https://doi.org/10.1007/s11274-009-0026-2

    Article  CAS  Google Scholar 

  • Xu J (2016) Fungal DNA barcoding. Genome 59:913–932. https://doi.org/10.1139/gen-2016-0046

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The photomicrographs included in this chapter were taken during my research pursuits with Late Prof. B.P.R. Vittal, C.A.S. in Botany, University of Madras, Chennai, India; Dr. S. Raghukumar, Microbiology Division, National Institute of Oceanography (NIO), Dona Paula, Goa, India; and Dr.K.D. Hyde, Dept. of Ecology and Biodiversity, University of Hong Kong and presently at Mae Fau Luang University, Chiang Rai, Thailand, in a collaborative work during 1998–1999 carried out at NIO, Goa, India, and they are thanked for the encouragement.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarma, V.V. (2019). Marine Fungal Diversity: Present Status and Future Perspectives. In: Satyanarayana, T., Johri, B., Das, S. (eds) Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-8315-1_9

Download citation

Publish with us

Policies and ethics