Skip to main content

Biosystematics of Genus Lophopyrum

  • Chapter
  • First Online:
Biosystematics of Triticeae
  • 146 Accesses

Abstract

Genus Lophopyrum Á. Löve is a new genus published by the pioneers of genetics Áskell Löve in the Taxon (1980) of the Vol. 29, p. 351. In this paper, Löve also published a new genus Thinopyrum Á. Löve. He defined Lophopyrum as a genus containing the E, EE, EEE, EEEE, and EEEEE genomes and Thinopyrum as a genus containing the J, JJ, JJJ, and JJJJ genomes in the Conspectus of the Triticeae published in 1984. Lophopyrum elongatum (Host) Á. Löve and Thinopyrum junceum (L.) Á. Löve were the type species of the genera Lophopyrum Á. Löve and Thinopyrum Á. Löve, respectively. After more than 20 years of studies showed that the E and J are two very similar genomes, and the difference between them can only be the difference between subtypes of the same genome. Therefore, the report of the Committee on Genome Designations in the 2nd Triticeae International Conference (Logan, Utah, USA, 1995) suggested that the E genome was renamed as the Ee genome while the J genome was renamed as the Eb genome. They are considered to be two variants of the same genome. According to principle of Á. Löve: “a haplome or a combination of haplome for establishing a genus,” they should be combined into one genus because they contained the same genome. Both of these two genera are published on the same page of the same article in 1980. In general, there is no priority between them. Seriously, Lophopyrum is still in front of Thinopyrum. Lophopyrum was identified as containing the E genome when Áskell. Löve established the genus, and the genus should be Lophopyrum instead of Thinopyrum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso, L. G., & Kimber, G. (1981). The analysis of meiosis in hybrids. II. Triploid hybrids. Canadian Journal of Genetics and Cytology, 23, 221–234.

    Google Scholar 

  • Armstrong, K. C., Le, H., & Fedak, G. (1991). Expression of Thinopyrum distichum NORs in wheat × Thinopyrum amphiploids and their backcross generations. Theoretical and Applied Genetics, 81, 363–368.

    CAS  PubMed  Google Scholar 

  • Breton-Sintes, S., & Cauderon, Y. (1978). Étude cytotaxonomique de 1’Agropyron scirpeum C. Presl et de 1’ A. elongatum (Host) P. B. Bulletin de la Société Botanique de France, 125, 443–455.

    Google Scholar 

  • Cauderon, Y. (1979). Use of Agropyron species for wheat improvement. In Proceedings of the Conference on Broadening Genetic Base of Crops (pp. 129–139). Wageningen.

    Google Scholar 

  • Cauderon, Y., & Saigne, B. (1961). New interspecific and generic hybrids involving Agropyron. Wheat Information Service, 12, 13–14.

    Google Scholar 

  • Charpentier, A., Feldman, M., & Cauderon, Y. (1986a). Genetic control of meiotic chromosome pairing in tetraploid Agropyron elongatum. I. Pattern of pairing in natural and induced tetraploids and in F1 triploid hybrids. Canadian Journal of Genetics and Cytology, 28, 783–788.

    Google Scholar 

  • Charpentier, A., Feldman, M., & Cauderon, Y. (1986b). Chromosomal pairing at meiosis of F1 hybrid and backcross derivatives of Triticum aestivum × hexaploid Agropyron junceum. Canadian Journal of Genetics and Cytology, 28, 1–6.

    Google Scholar 

  • Chen, Q., Conner, R. L., Laroche, A., & Thomas, J. B. (1998). Genome analysis of Thinopyrum intermedium and Th. ponticum using genomic in situ hybridization. Genome, 41, 580–586.

    CAS  PubMed  Google Scholar 

  • Chennaveeraiah, M. S. (1960). Karyomorphologic and cytotaxonomic studies in Aegilops.

    Google Scholar 

  • Dewey, D. R. (1976). The genome constitution and phylogeny of Elymus ambiguus. American Journal of Botany, 63, 626–634.

    Google Scholar 

  • Dewey, D. R. (1980). Cytogenetics of Agropyron drobovii and five of its interspecific hubrids. Botanical Gazette, 141, 469–478.

    Google Scholar 

  • Dewey, D. R. (1984). The genomic system of classification as a guide to intergeneric hybridization with the Perennial Triticeae. In J. P. Gustafson (Ed.), Gene manipulation in plant improvement (pp. 209–279). Plenum.

    Google Scholar 

  • Driscoll, C. J., Bielig, L. M., & Darvey, N. L. (1979). An analysis of frequencies of chromosome configurations in wheat and wheat hybrids. Genetics, 91, 755–767.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dvořák, J. (1981a). Chromosoma differentitiation in polyploidy species of Elytrigia, with special reference to the evolution of diploidlike chromosome pairing in polyploidy species. Canadian Journal of Genetics and Cytology, 23, 287–303.

    Google Scholar 

  • Dvořák, J. (1981b). Genome relationships among Elytrigia (Agropyron) elongata, E. stipifolia, “E. elongate 4x”, E. caespitosa, E. intemedia, and “E. elongate 10x”. Canadian Journal of Genetics and Cytology, 23, 481–492.

    Google Scholar 

  • Dvořák, J., McGuire, P. E., & Endlihger, S. M. (1984). Inferred chromosome morphology of the ancestral genome of Triticum. Plant Systematics and Evolution, 144, 209–220.

    Google Scholar 

  • Endo, T. R., & Gill, B. S. (1984). The heterochromatin distribution and genomic evolution in diploid species of Elymus and Agropyron. Canadian Journal of Genetics and Cytology, 26, 669–678.

    Google Scholar 

  • Evans, L. E. (1962). Karyotype analysis and chromosome designations for diploid Agropyron elongatum (Host) P. Canadian Journal of Genetics and Cytology, 4, 267–271.

    Google Scholar 

  • Forster, B. P., & Miller, T. E. (1989). Genome relationship between Thinopyrum bessarabicum and Thinopyrum elongatum. Genome, 32, 930–931.

    Google Scholar 

  • Hashemi, A., Estilai, A., & Waines, J. (1989). Cytogenetics and reproductive behavior of induced and natural tetraploid guayule (parthenium argentatum gray). Genome, 32(6), 1100–1104.

    Google Scholar 

  • Heneen, W. K. (1962). Karyotype studies in Agropyron junceum, A. repens and their spontaneous hybrids. Hereditas, 48, 471–502.

    Google Scholar 

  • Heneen, W. K. (1977). Chromosomal polymorphism in isolated populations of Elymus (Agropyron) in the Aegean. II. Elymus rechingeri. Hereditas, 86, 211–224.

    Google Scholar 

  • Heneen, W. K., & Runemark, H. (1972a). Cytology of Elymus (Agropyron) elongates complex. Hereditas, 70, 155–164.

    Google Scholar 

  • Heneen, W. K., & Runemark, H. (1972b). Chromosomal polymorphism in isolated populations of Elymus (Agropyron) in the Aegean. I. Elymus striatulus sp. nov. Botaniska Notiser, 125, 419–429.

    Google Scholar 

  • Hsiao, C., Wang, R. R.-C., & Dewey, D. R. (1986). Karyotype analysis and genome relationships of 22 diploid species in the tribe Triticeae. Canadian Journal of Genetics and Cytology, 28, 109–120.

    Google Scholar 

  • Jackson, R. C., & Jane, C. (1982). Cytogenetic analyses of autopolyploids: Models and methods for triploids to octoploids. American Journal of Botany, 69(4), 487–501.

    Google Scholar 

  • Jarvie, J. K. (1992). Taxonomy of Elytrigia sect. caespitosae and sect. junceae (Gramineae: Triticeae). Nordic Journal of Botany, 12, 155–169.

    Google Scholar 

  • Jarvie, J. K., & Barkworth, M. E. (1990). Isozyme similarity in Thinopyrum and its relative (Triticeae: Gramineae). Genome, 33, 885–891.

    Google Scholar 

  • Jarvie, J. K., & Barkworth, M. E. (1992). Morphological variation and genome constitution in some Perennial Triticeae. Botanical Journal of the Linnean Society, 108, 167–180.

    Google Scholar 

  • Jauhar, P. P. (1981). Cytogenetics of pearl millet. Advances in Agronomy, 34, 407–479.

    Google Scholar 

  • Jauhar, P. P. (1988). A reassessment of genome relationships between Thinopyrum bessarabicum and T. elongatum of the Triticeae. Genome, 30, 903–914.

    Google Scholar 

  • Jauhar, P. P. (1990). Dilemma of genome relationship in the diploid species Thinopyrum elongatum (Triticeae: Poaceae). Genome, 33(6), 944–946.

    Google Scholar 

  • Jauhar, P. P., & Bickford, I. W. (1989). Chromosome pairing in trispecific hybrids between durum wheat and Thinopyrum: Its breeding implications (Agron Abstracts) (p. 87). American Society of Agronomy.

    Google Scholar 

  • Jensen, K. B. (1990). Cytology and morphology of Elymus pendulinus, E, pendulinus ssp. multiculmis and E. parviglume (Poaceae: Triticeae). Botanical Gazette, 151, 245–251.

    Google Scholar 

  • Jones, J., & Flavell, R. B. (1982). The structure, amount and chromosomal localisation of defined repeated DNA sequences in species of the genus secale. Chromosoma, 86(5), 613–641.

    CAS  Google Scholar 

  • Kellogg, E. A. (1989). Comments on genomic genera in the Triticeae (Poaceae). American Journal of Botany, 76, 796–805.

    Google Scholar 

  • Kihara, H. (1954). Considerations on the evolution and distribution of Aegilops species based on the analyser-method. Cytologia, 19(4), 336–357.

    Google Scholar 

  • Kihara, H. (1963). Interspecific relationship in Triticum and Aegilops. Seiken Ziho, 15, 1–12.

    Google Scholar 

  • Kihara, H. (1975). Origin of cultivated plants with special reference to wheat. Seiken Ziho, 25, 1–24.

    Google Scholar 

  • Kimber, G. (1984). Technique selection for the introduction of alien variation in wheat. Zeitschrift fur Pflanzenzuchtung = Journal of Plant Breeding, 2(2), 123–142.

    Google Scholar 

  • Kimber, G., & Riley, R. (1963). The relationships of the diploid progenitors of hexaploid wheat. Canadian Journal of Genetics and Cytology, 5, 83–88.

    Google Scholar 

  • Kimber, G., & Feldman, M. (1987). Wild wheat: An introduction. Special Rep. 353. University of Missouri.

    Google Scholar 

  • Liu, Z.-W., & Wang, R. R.-C. (1989). Genome analysis of Thinopyrum caespitosum. Genome, 32, 141–145.

    Google Scholar 

  • Liu, Z. W., & Wang, R. R. C. (1992). Genome analysis of Thinopyrum junceiforme and Th. sartorii. Genome, 35, 758–764.

    CAS  Google Scholar 

  • Liu, Z. W., & Wang, R. R. C. (1993). Genome constitutions of Thinopyrum curvifolium, T. scirpeum, T. distichum, and T. junceum (Triticeae: Gramineae). Genome, 36, 641–651.

    CAS  PubMed  Google Scholar 

  • Löve, Á. (1982). Generic evolution in the wheatgrasses. Biol Zentralbl, 101, 199–212.

    Google Scholar 

  • Löve, Á. (1984). Conspectus of the Triticeae. Feddes Repert., 95, 425–521.

    Google Scholar 

  • McGuire, P. E. (1984). Chromosome pairing in triploid and tetraploid hybrids in Elytrigia (Triticeae: Poaceae). Canadian Journal of Genetics and Cytology, 26, 519–522.

    Google Scholar 

  • McIntyre, C. L. (1988). Variation at isozyme loci in Triticeae. Plant Systematics and Evolution, 160, 123–142.

    Google Scholar 

  • Melderis, A. (1978). Taxonomic notes on the tribe Triticeae (Gramineae) with special reference to the genera Elymus L. sensu lato and Agropyron Gaertner sensu lato. Botanical Journal of the Linnean Society, 76, 369–384.

    Google Scholar 

  • Moustakas, M., Symeonidis, L., & Ouzounidou, G. (1988). Genome relationships in the Elytrigia group of the genus Agropyron (Poaceae) as indicated by seed protein electrophoresis. Plant Systematics and Evolution, 161, 147–153.

    Google Scholar 

  • Mujeeb-Kazi, A., & Rodrignez. (1981). Cytogenetics in intergeneric hybrids involving genera within the Triticeae. Cereal Research Communications, 9, 39–45.

    Google Scholar 

  • Muramatsu, M. (1990). Cytogenetics of dacaploid Agropyron elongatum (Elytrigia elongate) (2n = 70). I. Frequency of decavalent formation. Genome, 33, 811–817.

    Google Scholar 

  • Okamoto, M. (1957). Asynaptic effect of chromosome V. Wheat Information Service, 5, 6.

    Google Scholar 

  • Östergren, G. (1940). Cytology of Agropyron junceum and A. repens and their spontaneous hybrids. Hereditas (Lund, Sweden), 26, 305–316.

    Google Scholar 

  • Peto, F. H. (1936). Hybridization of Triticum and Agripyron II. Cytology of the male parents and F1 generation. Canadian Journal of Research, 14, 203–214.

    Google Scholar 

  • Pienaar, R. V. (1981). Genome relationships in wheat × Agropyron distichum (Thunb.) Beauv. hybrids. Z Pflanzenzuecht, 89, 193–212.

    Google Scholar 

  • Pienaar, R. V., Littlejohn, G. M., & Sears, E. R. (1988). Genome relationships in Thinopyrum. South African Journal of Botany, 54, 541–550.

    Google Scholar 

  • Powell, J. B., Hanna, W. W., & Burton, G. W. (1975). Origin, cytology, and reproductive characteristics of haploids in pearl millet. Crop Science, 15, 389–392.

    Google Scholar 

  • Riley, R. (1960). The diploidisation of polyploid wheat. Heredity, 15, 407–429.

    Google Scholar 

  • Riley, R., & Chapman, V. (1958a). Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature, 182, 713–715.

    Google Scholar 

  • Riley, R., & Chapman, V. (1958b). The production and phenotypes of wheat-rye chromosome addition lines. Heredity, 12(3), 208–212.

    Google Scholar 

  • Sadasivaiah, R. S., & Kasha, K. J. (1971). Meiosis in haploid barley – An interpretation of non-homologous chromosome associations. Chromosoma, 35, 247–263.

    Google Scholar 

  • Sadasivaiah, R. S., & Kasha, K. J. (1973). Non-homologous associations of haploid barley chromosomes in the cytoplasm of Hordeum bulbosum L. Canadian Journal of Genetics and Cytology, 15, 45–52.

    Google Scholar 

  • Sears, E. R. (1941). Chromosome pairing and fertility in hybrids and amphidiploids in the Triticinae. Missouri Agricultural Experiment Station Research Bulletin, 337, 20 pp.

    Google Scholar 

  • Sears, E. R. (1976). Genetic control of chromosome pairing in wheat. Annual Review of Genetics, 10, 31–51.

    CAS  PubMed  Google Scholar 

  • Sears, E. R., & Okamoto, M. (1958). Intergenomic chromosome relationships in hexaploid wheat. In Proceedings 10th International Congress of Genetics (Vol. 2, pp. 258–259).

    Google Scholar 

  • Sharma, H. C., Aylward, S. G., & Gill, B. S. (1987). Partial amphiploid from Triticum aestivum × Agropyron scirpeum cross. Botanical Gazette, 146(2), 258–262.

    Google Scholar 

  • Stergren, G. Ã. (2010). Cytology of Agropyron junceum, A. repens and their spontaneous hybrids. Hereditas, 26(3–4), 305–316.

    Google Scholar 

  • Tzvelev, N. N. (1976). Tribe 3. Triticeae Dum. In Poaceae URSS (pp. 105–206). Nauka Publishing House.

    Google Scholar 

  • Wang, R. R.-C. (1985). Genome analysis of Thinopyrum bessarabicum and T. elongatum. Canadian Journal of Genetics and Cytology, 27, 722–728.

    Google Scholar 

  • Wang, R. R.-C. (1986). Diploid perennial intergeneric hybrids in the tribe Triticeae. II. Hybrids of Thinopyrurn elongaturn with Pseudoroegneria spicata and Critesion violaceurn. Biologisches Zentralblatt, 105, 361–368.

    Google Scholar 

  • Wang, R. R.-C. (1988). Diploid perennial intergeneric hybrids in the tribe Triticeae. IV. Hybrids among Thinopyrum bessarabicum, Pseudoroegneria spicata, and Secale montanum. Genome, 30, 356–360.

    Google Scholar 

  • Wang, R. R.-C. (1992). Amphidiploids of Perennial Triticeae. I. Synthetic Thinopyrum species and their hybrids. Genome, 35, 951–956.

    Google Scholar 

  • Wang, R. R.-C., & Hsiao, C. T. (1989). Genome relationship between Thinopyrum bessarabicum and T. elongatum revisited. Genome, 32, 802–809.

    Google Scholar 

  • Wang, R. R.-C., Marburger, J. E., & Hu, C.-J. (1991). Tissue-culture-facilitated-production of aneupolyploid Thinopyrum ponticum and amphidiploid of Hordeum violaveum × H. bogdanii and their uses in phylogenetic studies. Theoretical and Applied Genetics, 81, 151–156.

    CAS  PubMed  Google Scholar 

  • Zhang, X. Y., Koul, A., Petroski, R., Ouellet, T., Fedak, G., Dong, Y. S., & Wang, R. R. C. (1996). Molecular verification and characterization of BYDV-resistant germ plasms derived from hybrids of wheat with Thinopyrum ponticum and Th. intermedium. Theoretical and Applied Genetics, 93, 1033–1039.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 China Agriculture Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yen, C., Yang, J. (2022). Biosystematics of Genus Lophopyrum. In: Biosystematics of Triticeae. Springer, Singapore. https://doi.org/10.1007/978-981-19-0015-0_4

Download citation

Publish with us

Policies and ethics