Skip to main content

Genomics of Crucifer’s Host-Pathosystem: Prologue

  • Chapter
  • First Online:
Genomics of Crucifer's Host- Pathosystem

Abstract

Crucifer’s belong to the family Cruciferae containing over 3660 species which includes very important crops of human and animal needs yielding quality edible oil, industrial oilseeds, vegetables, and fodder crops. The largest group of crops contains 39 species of Brassicaceae grown all over the world including Arabidopsis thaliana which has been used widely for dissecting molecular mechanisms of crucifer’s host-pathosystem through multiomics approaches. Under natural and cultivated conditions, crucifer’s are challenged by several abiotic and biotic stresses viz., Albugo (White rust), Alternaria (Alternaria blight), Colletotrichum (Anthracnose), Erysiphe (Powdery mildew), Fusarium (Fusarium wilt), Hyaloperonospora (Downy mildew), Leptosphaeria (Blackleg), Plasmodiophora (Clubroot), Pseudocercosporella (White leaf spot), Pyrenopeziza (Light leaf spot), Sclerotinia (Stem rot), Turnip mosaic virus (TuMV), Verticillium (Verticillium wilt), Xanthomonas (Black rot), and Heterodera (Cyst nematode). These pathogens have been used as model host-pathosystem to reveal genomics of crucifer’s host-pathosystem. The genomics of plants was initiated after the sequencing of A. thaliana genome for the first time in 1990. The genome size of A. thaliana is 125 Mbp containing 25,498 genes encoding proteins from 11,000 families. Now, the genome of all the six Brassica species has been sequenced. The sequence analysis has revealed genome size of B. carinata 642 Mb, B. juncea 922 Mb, B. napus 925 Mb, B. nigra 591 Mb, B. oleracea 584.60 Mb, and B. rapa 485 Mb. The genome of major pathogens of crucifer’s has also been sequenced. The availability of genome sequence analysis of both host and pathogen has allowed rapid identification of candidate genes during different events of host–pathogen interaction to understand genes governing pathogenesis and host resistance. The application of omics technologies like NGS, Pangenomics, SNP, In Silico, BSA, Ren Seq, Effectoromics, Transcriptomics, Proteomics, Secretomics, Interactomics, and Metabolomics has benefitted greatly in revealing the complex biological, genetical, and molecular mechanisms of crucifer’s host-pathosystem. Crucifers have developed molecular mechanisms in response to multiple stresses which are activated through complex signaling pathways for the expression of genes to overcome these stresses. Several genes are differentially expressed in response to multiple stresses. At global level, 16 pathogens causing crucifers diseases are considered as of major consequences based on their geographical distribution, host range, losses caused, and resources spend to manage them. Using crucifer’s host-pathosystem with these pathogens, several genes have been identified, mapped on Brassica chromosomes with functional characterization, isolation, and cloning to produce resistant cultivars of Brassica. In recent years, QRT-PCR, a powerful and efficient technique has become the first choice in quantitative gene expression in crucifer’s host-pathosystem for various biological and molecular functions. However, data normalization is essential for reliable output of QRT-PCR assays to avoid unsuitable choice of reference genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abawi GS, Grogan RG (1975) Source of primary inoculum and effects of temperature and moisture on infection of beans by Whetzelinia sclerotiorum. Phytopathology 65:300–309

    Article  Google Scholar 

  • Abawi GS, Grogan RG (1979) Epidemiology of diseases caused by Sclerotinia species. Symposium on Sclerotinia. Am Phytopathol Soc 69(8):899–904

    Article  Google Scholar 

  • Abuqamar S, Luo H, Laluk K, Mickelbart MV, Mengiste T (2009) Crosstalk between biotic and abiotic stress responses in tomato is mediated by the AIM1 transcription factor. Plant J 58:347–360

    Article  CAS  PubMed  Google Scholar 

  • Acquaah G (2007) Principles of plant genetics and breeding. Blackwell, Oxford, p 385

    Google Scholar 

  • Agrios G (2005) Plant pathology, 5th edn. Elsevier Academic Press, Burlington, VA, p 952. https://doi.org/10.1016/C2009-0-02037-6

    Book  Google Scholar 

  • Ahmed NU, Park JI, Seo MS, Kumar TS, Lee IH, Park BS (2012a) Identification and expression analysis of chitinase genes related to biotic stress resistance in Brassica. Mol Biol Rep 39:3649–3657

    Article  CAS  PubMed  Google Scholar 

  • Ahmed NU, Park JI, Jung HJ, Lee IH, Song IJ, Yang SY (2012b) Identification and characterization of longevity assurance gene related to stress resistance in Brassica. Afr J Biotechnol 11:12721–12727

    CAS  Google Scholar 

  • Ahmed NU, Park JI, Jung HJ, Chung MY, Cho YG, Nou IS (2013) Characterization of thaumatin-like gene family and identification of Pectobacterium carotovorum subsp. carotovorum inducible genes in Brassica oleracea. Plant Breed Biotech 1:111–121

    Article  Google Scholar 

  • Ahmed NU, Jung HJ, Park JI, Cho YG, Hur Y, Nou IS (2015) Identification and expression analysis of cold and freezing stress responsive genes of Brassica oleracea. Gene 554:215–223

    Article  CAS  PubMed  Google Scholar 

  • Ahmed H, Howton TC, Sun Y, Weinberger N, Belkhadir Y, Mukhtar MS (2018) Network biology discovers pathogen contact points in host protein-protein interactomes. Nat Commun 9:2312

    Article  PubMed  PubMed Central  Google Scholar 

  • Ainsworth GC, Sparrow FK, Sussman AS (1973) The fungi: an advance treatise, vol IV. Academic Press, New York. (A&B)

    Google Scholar 

  • Akhtar J, Singh B, Kandan A, Kumar P, Chand D, Maurya AK, Dubey SC (2017) Interception of pathogens during quarantine processing: an effort towards safe introduction of oilseed and vegetable Brassicas germplasm in India. J Oilseed Brassica 8:120–130

    Google Scholar 

  • Alabouvette C, Brunin B, Louvet J (1974) Recherches sur la maladie du colza due àLeptosphaeria maculans (Desm.) Ces. et de Not. IV. Pouvoir inffectieux des pycnidiospores et sensibilité variétale. Ann Phytopathol 6:265–275. (in French)

    Google Scholar 

  • Amelung D, Daebeler F (1988) White spot (Pseudocercosporella capsellae/Ell. et Ev./Deighton)-a new disease of winter rape in the German Democratic Republic. Nachricht Pflanzensch DDR 42:73–74

    Google Scholar 

  • Angadi SV, Cutforth HW, Miller PR, McConkey BG, Entz MH, Brandt SA (2000) Response of three Brassica species to high temperature stress during reproductive growth. Can J Plant Sci 80:693–701

    Article  Google Scholar 

  • Annis SL, Goodwin PH (1996) Comparison of cell wall-degrading enzymes produced by highly and weakly virulent isolates of Leptosphaeria maculans in culture. Microbiol Res 151:401–406

    Article  CAS  Google Scholar 

  • Anonymous (2020) Canola encyclopedia: white leaf spot and gray stem. Canola Council of Canada, Winnipeg, MB

    Google Scholar 

  • Ansan-Melayah D, Rouxel T, Bertrandy J, Letarnec B, Mendes-Pereira E, Balesdent M-H (1997) Field efficiency of Brassica napus specific resistance correlates with Leptosphaeria maculans population structure. Eur J Plant Pathol 103:835–841

    Article  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Ashraf M, McNeilly T (2004) Salinity tolerance in Brassica oilseeds. Crit Rev Plant Sci 23:157–174

    Article  CAS  Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3543

    Article  CAS  PubMed  Google Scholar 

  • Audenaert K, De Meyer GB, Hofte MM (2002) Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiol 128:491–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awasthi RP, Nashaat NI, Kolte SJ (1995) Interaction between Peronospora parasitica and Albugo candida in relation to development of stag heads in Brassica juncea. In: Proc, National symposium on detection of plant pathogens and their management, Faizabad, India, January 18–20, p 36

    Google Scholar 

  • Awasthi RP, Nashaat NI, Heran A, Kolte SJ, Singh U (1997) The effect of Albugo candida on the resistance to Peronospora parasitica and vice versa in rapeseed-mustard. In: Proceeding, ISHS Symposium on Brassicas, Tenth Crucifer Genetics Workshop, September 23–27, 1997, Rennes, France

    Google Scholar 

  • Badawy HMA, Kakau J, Hoppe HH (1992) Temperature and ageing of host tissue affect the interactions between different oilseed rape cultivars and pathotype groups of Leptosphaeria maculans. J Phytopathol 134:255–263. https://doi.org/10.1111/j.1439-0434.1992.tb01234.x

    Article  Google Scholar 

  • Baker SD (1955) The genus Albugo in New Zealand. Trans R Soc N Z 82:987–993

    Google Scholar 

  • Balesdent MH, Barbetti MJ, Li H, Sivasithamparam K, Gout L, Rouxel T (2005) Analysis of Leptosphaeria maculans race structure in a worldwide collection of isolates. Phytopathology 95:1061–1071

    Article  CAS  PubMed  Google Scholar 

  • Barbetti MJ (1975) Effects of temperature on development and progression in rape of crown canker caused by Leptosphaeria maculans. Aust J Exp Agric Ani Husb 15:705–708

    Article  Google Scholar 

  • Barbetti MJ (1976) Late blackleg infections in rape are important. Aust Plant Pathol Soc Newsl 4:3–4

    Article  Google Scholar 

  • Barbetti MJ, Khangura RK (1997) Developments for better management of blackleg disease in Western Australia. In: Proceedings of the 11th Australian Research Assembly on Brassicas, Perth, WA, 1997, Perth, Australia: Agriculture Western Australia, pp 11–14

    Google Scholar 

  • Barbetti MJ, Khangura RK (1999) Managing blackleg in the disease-prone environment of Western Australia. In: Proc 10th Int Rapeseed Congress, (1999) Canberra, Australia. http://www.regional.org.au/papers/index.htm

    Google Scholar 

  • Barbetti MJ, Khangura RK (2000) Fungal diseases of canola in Western Australia. In: Agriculture Western Australia, Bulletin no. 4406. Agriculture Western Australia, Perth, WA

    Google Scholar 

  • Barbetti MJ, Sivasithamparam K (1981) Pseudocercosporella capsellae and Myrothecium verrucaria on rapeseed in Western Australia. Australas Plant Pathol 10:43–44. https://doi.org/10.1071/APP9810043

    Article  Google Scholar 

  • Barbetti MJ, Carmody P, Khangura RK, Sweetingham M, Walton G (2000) Managing blackleg in Western Australia. In: Agriculture Western Australia, Bulletin no. 4400. Agriculture Western Australia, Perth, WA

    Google Scholar 

  • de Bary A (1863) Recherches sur le developement quelques champignons parasites. Ann Sci Nat Bot 20(4):5–148

    Google Scholar 

  • Basso J, Dallaire P, Charest PJ, Devantier Y, Laliberté JF (1994) Evidence for an internal ribosome entry site within the 5′ non-translated region of turnip mosaic potyvirus RNA. J Gen Virol 75:3157–3165

    Article  CAS  PubMed  Google Scholar 

  • Beckman CH (1987) The nature of wilt diseases of plants. American Phytopathological Society, St. Paul, MN

    Google Scholar 

  • Berkenkamp B, Vaartonou H (1972) Fungi associated with rape root rot in Alberta. Can J Plant Sci 52:973–976

    Article  Google Scholar 

  • Berlese AN, de Toni JB (1888) Phycomycetae. In: Saccardo PA (ed) Sylloge Fungorum, vol 7, pp 181–322

    Google Scholar 

  • Bhargava SN, Shukla DN, Singh N (1980) Root- and foot-rot of Eruca sativa caused by Alternaria alternata (Fr) Keissler. Curr Sci India 49:452

    Google Scholar 

  • Biddulph JE, Fitt BDL, Leech PK, Welham SJ, Gladders P (1999) Effects of temperature and wetness duration on infection of oilseed rape by ascospores of Leptosphaeria maculans (stem canker). Eur J Plant Pathol 105:769–781

    Article  Google Scholar 

  • Biga MLB (1955) Review of the species of the genus Albugo based on the morphology of the conidia. Sydowia 9:339–358

    Google Scholar 

  • Blanc G, Barakat A, Guyot R, Cooke R, Delseny M (2000) Extensive duplication and reshuffling in the Arabidopsis genome. Plant Cell 12:1093–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boerema G, Verhoeven A (1980) Check-list for scientific names of common parasitic fungi. Series 2b: Fungi on field crops: cereals and grasses. Neth J Plant Pathol 83:165–204. https://doi.org/10.1007/BF01976647

    Article  Google Scholar 

  • Bokor A, Barbetti MJ, Brown AGP, MacNish GC, Wood PM (1975) Blackleg of rapeseed. J Dept Agric W A 16:7–10

    Google Scholar 

  • Booth V (1978) Fusarium equiseti. In: IMI description of fungi and bacteria. CABI Biosciences, Surrey. No. 58: Sheet 571

    Google Scholar 

  • Bosch U, Mirocha CJ (1992) Toxin production by Fusarium species from sugar-beets and natural occurrence of zearaenone in beets and beet fiber. Appl Environ Microbiol 58:3233–3239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boudart G (1982) The black-leg disease: some aspects of the host–parasite relationship. Crucif Newsl 7:63–64

    Google Scholar 

  • Boudet AM, Lapierre C, Grima-Pettenati J (1995) Biochemistry and molecular biology of lignification. New Phytol 129:203–236

    Article  CAS  PubMed  Google Scholar 

  • Boys EF (2009) Resistance to Pyrenopeziza brassicae (light leaf spot) in Brassica napus (oilseed rape). Ph D Thesis, University of Nottingham, UK

    Google Scholar 

  • Boys EF, Roques SE, Ashby AM, Evans N, Latunde-Dada AO, Thomas JE, West JS, Fitt BDL (2007) Resistance to infection by stealth: Brassica napus (winter oilseed rape) and Pyrenopeziza brassicae (light leaf spot). Eur J Plant Pathol 118:307–321. https://doi.org/10.1007/s10658-007-9141-9

    Article  Google Scholar 

  • Braun U (2001) Taxonomic notes on some species of the Cercospora complex (VII). Fungal Divers 8:41–71

    Google Scholar 

  • Bray EA (2002) Classification of genes differentially expressed during water-deficit stress in Arabidopsis thaliana: an analysis using microarray and differential expression data. Ann Bot 89:803–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. ASPP, Rockville, MD, pp 1158–1249

    Google Scholar 

  • Brun H, Levivier S, Eber F, Renard M, Chevre AM (1997) Electrophoretic analysis of natural populations of Leptosphaeria maculans directly from leaf lesions. Plant Pathol 46:147–154

    Article  CAS  Google Scholar 

  • Brun H, Chevre AM, Fitt BD, Powers S, Besnard AL, Ermel M, Huteau V, Marquer B, Eber F, Renard M, Andrivon D (2010) Quantitative resistance increases the durability of qualitative resistance to Leptosphaeria maculans in Brassica napus. New Phytol 185:285–299

    Article  PubMed  Google Scholar 

  • Burdyukova LI (1980) Albuginacea fungi. Taxonomy, morphology, biology, and specialization. Ukrainskyi Botanichnyi Zhumal 37:65–74. (Russian)

    Google Scholar 

  • Butler EJ (1918) Fungi and diseases in plant. Thaker Spink & Co, Calcutta, pp 297–300

    Google Scholar 

  • Butler EJ, Bisby GR (1934) The fungi of India. Sci. Manager No. 1. ICAR, New Delhi, India

    Google Scholar 

  • Büttner D, Bonas U (2010) Regulation and secretion of Xanthomonas virulence factors. FEMS Microbiol Rev 34:107–133

    Article  PubMed  Google Scholar 

  • Cai Q, Qiao L, Wang M, He B, Lin FM, Palmquist J, Huang SD, Jin H (2018) Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science 360:1126–1129. https://doi.org/10.1126/science.aar4142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cannon PF, Damm U, Johnston PR, Weir BS (2012) Colletotrichum – current status and future directions. Stud Mycol 73:181–213. https://doi.org/10.3114/sim0014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardoza V, Stewart CN (2004) Brassica biotechnology: progress in cellular and molecular biology. In Vitro Cell Dev Biol Plant 40:542–551

    Article  CAS  Google Scholar 

  • Carmody S (2017) Light leaf spot and white leaf spot of Brassicaceae in Washington State. M Sc Thesis, Washington State University

    Google Scholar 

  • Carreón-Anguiano KG, Islas-Flores I, Vega-Arreguín J, Sáenz-Carbonell L, Canto-Canché B (2020) Eff Hunter: a tool for prediction of effector protein candidates in fungal proteomic databases. Biomolecules 10:712. https://doi.org/10.3390/biom10050712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castro-Moretti FR, Gentzel IN, Mackey D, Alonso AP (2020) Metabolomics as an emerging tool for the study of plant-pathogen interactions. Metabolites 10:52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerkauskas R, Stobbs L, Lowery D, Van Driel L, Liu W, Van Schagen J (1998) Diseases pests and abiotic problems associated with oriental cruciferous vegetables in southern Ontario in 1993-1994. Can J Plant Pathol 20:87–94. https://doi.org/10.1080/07060669809500449

    Article  Google Scholar 

  • Changsri W (1961) Studies of Alternaria spp. pathogen on Cruciferae. Dis Abstr 21:1698

    Google Scholar 

  • Charkowski A, Blanco C, Condemine G, Expert D, Franza T, Hayes C, Hugouvieux-Cotte-Pattat N, Solanilla EL, Low D, Moleleki L, Pirhonen M, Pitman A, Perna N, Reverchon S, Palenzuela PR, Francisco MS, Toth I, Tsuyumu S, van der Waals J, van der Wolf J, Gijsegem FV, Yang CH, Yedidia I (2011) The role of secretion systems and small molecules in Soft-Rot Enterobacteriaceae pathogenicity. Annu Rev Phytopathol 50:425–449

    Article  Google Scholar 

  • Chaudhary RG, Kaur A (2002) Wilt disease as a cause of shift from lentil cultivation in Sangod Tehsil of Kota (Rajasthan). Indian J Pulses Res 15:193–194

    Google Scholar 

  • Chauhan LS, Saksena HK (1974) A new Rhizoctonia leaf blight of rapes and mustard. Indian J Farm Sci 2:98–99

    Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought: from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  PubMed  Google Scholar 

  • Cheah LH, Hartill WFT, Corbin JB (1980) First report of the natural occurrence of Pyrenopeziza brassicae Sutton et. Rawlinson, the apothecial state of Cylindrosporium concentricum Greville, in Brassica crops in New Zealand. N Z J Bot 18:197–202

    Article  Google Scholar 

  • Cheeseman JM (1988) Mechanisms of salinity tolerance in plants. Plant Physiol 87:547–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen QY (1980) Varietal resistance of Chinese cabbage varieties to turnip mosaic virus disease. Acta Phytothol Sin 7:201–208

    Google Scholar 

  • Chen CY, Howlett B (1996) Rapid necrosis of guard cells is associated with the arrest of fungal growth in leaves of Indian mustard (Brassica juncea) inoculated with avirulent isolates of Leptosphaeria maculans. Physiol Mol Plant Pathol 48:73–81

    Article  Google Scholar 

  • Chen W, Li Y, Yan R, Xu L, Ren L, Liu F, Zeng L, Yang H, Chi P, Wang X, Chen K, Ma D, Fang X (2019) Identification and characterization of Plasmodiophora brassicae primary infection effector candidates that suppress or induce cell death in host and nonhost plants. Phytopathology 109:1689–1697. https://doi.org/10.1094/PHYTO-02-19-0039-R

    Article  CAS  PubMed  Google Scholar 

  • Chimbekujwo IB (2000) Frequency and pathogenicity of Fusarium wilts (Fusarium solani and Fusarium equiseti) of cotton (Gossypium hirsutum) in Adamawa in Nigeria. Rev Biol Trop 48:1–5

    Google Scholar 

  • Chittem K, Yajima WR, Goswami RS, del Rio Mendoza LE (2020) Transcriptome analysis of the plant pathogen Sclerotinia sclerotiorum interaction with resistant and susceptible canola (Brassica napus) lines. PLoS One 15(3):e0229844. https://doi.org/10.1371/journal.pone.0229844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu WF, Chang YH (1982) Advances of science of plant protection in the People’s Republic of China. Annu Rev Phytopathol 20:71–92

    Article  Google Scholar 

  • Choi D, Priest MJ (1995) A key to the genus Albugo. Mycotaxon 53:261–272

    Google Scholar 

  • Choi YJ, Hong SB, Shin HD (2006) Genetic diversity within the Albugo candida complex (Peronosporales, Oomycota) inferred from phylogenetic analysis of ITS rDNA and COX2 mtDNA sequences. Mol Phylogenet Evol 40:400–409

    Article  CAS  PubMed  Google Scholar 

  • Choi YJ, Shin HD, Hong SB, Thines M (2007) Morphological and molecular discrimination among Albugo candida materials infecting Capsella bursa-pastoris world-wide. Fungal Divers 27:11–34

    Google Scholar 

  • Choi YJ, Park MJ, Park JH, Shin HD (2011a) White blister rust caused by A. candida on Oilseed rape in Korea. Plant Pathol J 27:192

    Article  Google Scholar 

  • Choi YJ, Shin HD, Ploch S, Thines M (2011b) Three new phylogenetic lineages are the closest relatives of the widespread species Albugo candida. Fungal Biol 115:598–607

    Article  PubMed  Google Scholar 

  • Choi YJ, Thines M, Shin HD (2011c) A new perspective on the evolution of white blister rust: Albugo s.str. (Albugonales; Oomycota) is not restricted to Brassicales but also present on Fabales. Org Divers Evol 11:193–199

    Article  Google Scholar 

  • Chou CK (1970) An electron-microscope study of host penetration and early stages of haustorium formation of Peronospora parasitica (Fr) Tul. on cabbage cotyledons. Ann Bot 34:189–204

    Article  Google Scholar 

  • Ciaghi S, Schwelm A, Neuhauser S (2019) Transcriptomic response in symptomless roots of clubroot infected kohlrabi (Brassica oleracea var. gongylodes) mirrors resistant plants. BMC Plant Biol 19:288. https://doi.org/10.1186/s12870-019-1902-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claassen B (2016) Investigations of Black leg and Light leaf spot on Brassicaceae hosts in Oregon. M Sc Thesis, Oregon State University

    Google Scholar 

  • CMI (1986) Distribution map of plant diseases, pathogen: Pseudocercosporella capsellae (EII. and Ev.) Deighton: Commonwealth Mycological Institute. CAB, Wallingford

    Google Scholar 

  • Conn KL, Tewari JP, Awasthi RP (1990) A disease assessment key for Alternaria black spot in rapeseed and mustard. Can Plant Dis Surv 70:19–22

    Google Scholar 

  • Conroy RY (1959) Black ring spot disease of Crucifers. J Aust Inst Agric Sci 25:64–67

    Google Scholar 

  • Cook AA, Larson RH, Walker JC (1952a) Relation of the black rot pathogen to cabbage seed. Phytopathology 42:316–320

    Google Scholar 

  • Cook AA, Walker JC, Larson RH (1952b) Studies on the disease cycle of black rot of crucifers. Phytopathology 42:162–167

    Google Scholar 

  • Cooke DEL, Drenth A, Duncan JM, Wagels G, Brasier CM (2000) A molecular phylogeny of Phytophthora and related Oomycetes. Fungal Genet Biol 30:17–32

    Article  CAS  PubMed  Google Scholar 

  • Corlett M (1999) Mycosphaerella brassicicola. Can J Plant Pathol 21:52–54. https://doi.org/10.1080/07060661.1999.10600133

    Article  Google Scholar 

  • Crossan D (1954) Cercosporella leaf spot of crucifers. NC Agric Exp Stn Tech Bull 109:23

    Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17. https://doi.org/10.1104/pp.105.063743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damm U, O’Connell RJ, Groenewald JZ, Crous PW (2014) The Colletotrichum destructivum [italicize] species complex–hemibiotrophic pathogens of forage and field crops. Stud Mycol 79:49–84. https://doi.org/10.1016/j.simyco.2014.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danquah A, de Zelicourt A, Colcombet J, Hirt H (2014) The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol Adv 32:40–52

    Article  CAS  PubMed  Google Scholar 

  • Darma R, Lutz A, Elliott C, Idnurm E (2019) A Identification of a gene cluster for the synthesis of the plant hormone abscisic acid in the plant pathogen Leptosphaeria maculans. Fungal Genet Biol 130:62–71

    Article  CAS  PubMed  Google Scholar 

  • Daub ME, Ehrenshaft M (2000) The photo activated Cercospora toxin cercosporin: contributions to plant disease and fundamental biology. Annu Rev Phytopathol 38:461–490. https://doi.org/10.1146/annurev.phyto.38.1.461

    Article  CAS  PubMed  Google Scholar 

  • Davies JML (1986) Diseases of oilseed rape. In: Scarisbrick DH, Daniels RW (eds) Oilseed rape. Collins, London, pp 195–236

    Google Scholar 

  • Deboever E, Deleu M, Mongrand S, Lins L, Fauconnier M-L (2020) Plant–pathogen interactions: underestimated roles of phyto-oxylipins. Trends Plant Sci 25:22–34

    Article  CAS  PubMed  Google Scholar 

  • Deighton F (1973) Studies on Cercospora and allied genera. IV. Cercosporella Sacc., Pseudocercosporella gen. nov. and Pseudocercsporidium gen. nov. Mycol Pap 133:1–62

    Google Scholar 

  • Delourme R, Bousset L, Ermel M, Duffe P, Besnard AL, Marquer B, Fudal I, Linglin J, Chadoeuf J, Brun H (2014) Quantitative resistance affects the speed of frequency increase but not the diversity of the virulence alleles overcoming a major resistance gene to Leptosphaeria maculans in oilseed rape. Infect Genet Evol 27:490–499

    Article  CAS  PubMed  Google Scholar 

  • Depotter JRL, Doehlemann G (2020) Target the core: durable plant resistance against filamentous plant pathogens through effector recognition. Pest Manag Sci 76:426–431. https://doi.org/10.1002/ps.5677

    Article  CAS  PubMed  Google Scholar 

  • Depotter JR, Deketelaere S, Inderbitzin P, Von Tiedemann A, Höfte M, Subbarao KV, Wood TA, Thomma BPHJ (2016) Verticillium longisporum, the invisible threat to oilseed rape and other Brassicaceous plant hosts. Mol Plant Pathol 17(7):1004–1016. https://doi.org/10.1111/mpp.12350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Depotter JRL, Thomma BPHJ, Wood TA (2019) Measuring the impact of Verticillium longisporum on oilseed rape (Brassica napus) yield in field trials in the United Kingdom. Eur J Plant Pathol 153:321–326. https://doi.org/10.1007/s10658-018-1537-1

    Article  Google Scholar 

  • de Roussel HFA (1806) Flore du Calvados, 2nd edn, Caen

    Google Scholar 

  • Dhar S, Singh D (2014) Performance of cauliflower genotypes for yield and resistance against black rot (Xanthomonas campestris pv. campestris). Indian J Hortic 71(2):197–201

    Google Scholar 

  • Dick MW (2001) Straminipilous fungi. Kluwer, Dordrecht

    Book  Google Scholar 

  • Dita MA, Rispail N, Prats E, Rubiales D, Singh KB (2006) Biotechnology approaches to overcome biotic and abiotic stress constraints in legumes. Euphytica 147:1–24

    Article  Google Scholar 

  • Dixelius C, Happstadius I, Berg G (2005) Verticillium wilt on Brassica oilseed crops – a Swedish perspective. J Swed Seed Assoc 115:36–48

    Google Scholar 

  • Dixon GR (2007) Vegetable Brassicas and related crucifers. CABI, Wallingford, pp 1–2. Chapter 1

    Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK (2006) The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci U S A 103:8281–8286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doucet R, Shattuck VI, Stobbs LW (1990) Rutabaga germplasm TuMV-R possessing resistance to Turnip mosaic virus. Hortic Sci 25:583–584

    Google Scholar 

  • Duff J, Sermon D, Walton G, Mangano P, Newman C, Walden K et al (2006) Growing Western Canola, an overview of canola production in Western Australia. Oilseeds Industry Association of Western Australia, Perth, WA

    Google Scholar 

  • Dunker S, Keunecke H, Steinbach P, Tiedemann AV (2008) Impact of Verticillium longisporum on yield and morphology of winter oilseed rape (Brassica napus) in relation to systemic spread in the plant. J Phytopathol 156:698–707

    Article  Google Scholar 

  • Eastburn D (1989) Disease management of cabbage and broccoli-an IPM approach. Trans II State Hortic Soc 123:32–35

    Google Scholar 

  • Edwardson JR (1974) Some properties of the potato virus V-group. FL Agric Exp Stn Monogr Ser 4:398

    Google Scholar 

  • Edwardson JR, Christie RG (1986) Turnip mosaic virus. In: Viruses infecting forage legumes. Vol. II. Agri Exp Inst Food Agr Sci Monograph, 14. Univ Florida, Gainesville, Gainesville, FL, pp 438–453

    Google Scholar 

  • Edwardson JR, Christie RG (1991) The Potyvirus Group. University of Florida, Monograph 16, vol 3. University of Florida, Gainesville, FL, pp 699–712

    Google Scholar 

  • Elliott VL, Marcroft SJ, Howlett BJ, Van de Wouw AP (2016) Gene-for-gene resistance is expressed in cotyledons, leaves and pods, but not during late stages of stem colonization in the Leptosphaeria maculans-Brassica napus pathosystem. Plant Breed 135:200–207

    Article  CAS  Google Scholar 

  • Eshraghi L, You M, Barbetti M (2005) First report of white leaf spot caused by Pseudocercosporella capsellae on Brassica juncea in Australia. Plant Dis 89:1131. https://doi.org/10.1094/PD-89-1131B

    Article  CAS  PubMed  Google Scholar 

  • Eshraghi L, Barbetti M, Li H, Danehloueipour N, Sivasithamparam K (2007) Resistance in oilseed rape (Brassica napus) and Indian mustard (Brassica juncea) to a mixture of Pseudocercosporella capsellae isolates from Western Australia. Field Crop Res 101:37–43. https://doi.org/10.1016/j.fcr.2006.09.006

    Article  Google Scholar 

  • Eynck C, Koopmann B, Grunewaldt-Stoecker G, Karlovsky P, Tiedemann AV (2007) Differential interactions of Verticillium longisporum and V. dahliae with Brassica napus detected with molecular and histological techniques. Eur J Plant Pathol 118:259–274

    Article  Google Scholar 

  • Eynck C, Koopmann B, Karlovsky P, von Tiedemann A (2009) Internal resistance in winter oilseed rape inhibits systemic spread of the vascular pathogen Verticillium longisporum. Phytopathology 99:802–811

    Article  CAS  PubMed  Google Scholar 

  • Fang X, Willis RC, Hoang Q, Kelnar K, Xu W (2004) High-throughput sample preparation for gene expression profiling and in vitro target validation. JALA 9(3):140–145

    CAS  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  • Fischer A (1892) Phycomycetes. In: Fischer A, Hauck F, Limpricht G, Luerssen C, Richter P, Winter G (eds) Dr L Ranenhorst’s Kryptogamen-Flora von Deutschland, Österreich und der Schweiz, vol 1, 2nd edn. von Eduard Kummer, Leipzig

    Google Scholar 

  • Fitt BDL, Gladders P, Turner JA, Sutherland KG, Welham SJ, Davies JML (1997) Prospects for developing a forecasting scheme to optimize use of fungicides for disease control on winter oilseed rape in the UK. Asp Appl Biol 48:135–142

    Google Scholar 

  • Fitt BDL, Brun H, Barbetti MJ, Rimmer SR (2006) Worldwide importance of phoma stem canker (Leptosphaeria maculans and L. biglobosa) on oilseed rape (Brassica napus). Eur J Plant Pathol 114:3–15

    Article  Google Scholar 

  • Fitt BDL, Hu BC, Li ZQ, Liu SY, Lange RM, Kharbanda PD, Butterworth MH, White RP (2008) Strategies to prevent spread of Leptosphaeria maculans (phoma stem canker) on to oilseed rape crops in China: costs and benefits. Plant Pathol 57:652–664

    Article  Google Scholar 

  • Föller I, Paul V (2002) Investigations on diseases of false flax (Camelina sativa (L.) Crtz.) with special regard to downy mildew (Peronospora parasitica (Pers.) Fr.). Soest Germany 2:43–52

    Google Scholar 

  • Francis A, Warwick SI (2003) The biology of Canadian weeds Neslia paniculata (L.) Desv. Can J Plant Sci 83:441–451. https://doi.org/10.4141/P02-076

    Article  Google Scholar 

  • Frandsen KJ (1943) Experimental formation of Brassica juncea, (L.) Czern & Coss. Dansk Bot Arkiv Bd 11(4):Irl7

    Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442

    Article  PubMed  Google Scholar 

  • Gabrielson RL (1983) Blackleg disease of cabbage caused by Leptosphaeria maculans (Phoma lingam) and its control. Seed Sci Technol 11:749–780

    Google Scholar 

  • Gaetan SA (2005) Occurrence of Fusarium wilt on canola caused by Fusarium oxysporum f. sp. conglutinans in Argentina. Plant Dis 89:432

    Article  CAS  PubMed  Google Scholar 

  • Gardner MW, Kendrick JB (1921) Turnip Mosaic. J Agric Res 22:123–124

    Google Scholar 

  • Garman H (1894) A bacterial disease of cabbage. Kentucky Agric Exp Stn Rep 3:43–46

    Google Scholar 

  • Genva M, Obounou Akong F, Andersson MX, Deleu M, Lins L, Fauconnier ML (2019) New insights into the biosynthesis of esterified oxylipins and their involvement in plant defense and developmental mechanisms. Phytochem Rev 18:343–358

    Article  CAS  Google Scholar 

  • Gilles T, Evans N, Fitt BDL, Jeger MJ (2000) Epidemiology in relation to methods for forecasting light leaf spot (Pyrenopeziza brassicae) severity on winter oilseed rape (Brassica napus) in the UK. Eur J Plant Pathol 106:593–605. https://doi.org/10.1023/a:1008701302853

    Article  Google Scholar 

  • Gilles T, Ashby AM, Fitt BDL, Cole T (2001a) Development of Pyrenopeziza brassicae apothecia on agar and oilseed rape debris. Mycol Res 105:705–714. https://doi.org/10.1017/s0953756201003902

    Article  Google Scholar 

  • Gilles T, Fitt BDL, Jeger MJ (2001b) Effects of environmental factors on development of Pyrenopeziza brassicae (light leaf spot) apothecia on oilseed rape debris. Phytopathology 91:392–398. https://doi.org/10.1094/phyto.2001.91.4.392

    Article  CAS  PubMed  Google Scholar 

  • Gladders P, Musa TM (1979) The development of Leptosphaeria maculans in winter oilseed rape and its implications for disease control. Pests Dis 89:129–136

    Google Scholar 

  • Gladders P, Musa TM (1980) Observations on the epidemiology of Leptosphaeria maculans stem canker in winter oilseed rape. Plant Pathol 29:28–37

    Article  Google Scholar 

  • Gladders P, Symonds BV (1995) Occurrence of canker (Leptosphaeria maculans) in winter oilseed rape in eastern England 1977–93. Inter Org Biol Cont Bull 18:1–11

    Google Scholar 

  • Gladders P, Symonds BV, Hardwick NV, Sansford CE (1998) Opportunities to control canker (Leptosphaeria maculans) in winter oilseed rape by improved spray timing. Inter Org Biol Cont Bull 21:111–120

    Google Scholar 

  • Gładysz K, Hanus-Fajerska E (2009) Evaluation of the infectivity of selected turnip mosaic virus isolates towards white cabbage cultivars. Folia Hortic Ann 21(1):129–138

    Article  Google Scholar 

  • Goossens K, Poucke MV, Soom AV, Vandesompele J, Zeveren AV, Peelman LJ (2005) Selection of reference genes for quantitative real-time PCR in bovine pre-implantation embryos. BMC Dev Biol 5:27. https://doi.org/10.1186/1471-213X-5-27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gosende S, Penaud A, Aubertat NJ, Schnieder O, Pinochet X (2003) Evolution of soil surface oilseed rape stubbles and their ability to produce spores of Leptosphaeria maculans: preliminary results. In: Proc. 11th Inter Rapeseed Congress, 4: AP 11 Denmark, vol 14, pp 1166–1168

    Google Scholar 

  • Goswami RS, Dong Y, Punja ZK (2008) Host range and mycotoxin production by Fusarium equiseti isolates originating from ginseng fields. Can J Plant Pathol 30:155–160

    Article  CAS  Google Scholar 

  • Graham-Taylor C, Kamphuis LG, Derbyshire MC (2020) A detailed in silico analysis of secondary metabolite biosynthesis clusters in the genome of the broad host range plant pathogenic fungus Sclerotinia sclerotiorum. BMC Genome 21:7

    Article  CAS  Google Scholar 

  • Gray SF (1821) A natural arrangement of British plants: according to their relations to each other as pointed out by Jussieu, De CandoIle, Brown: with an introduction to botany. Baldwin, Cradock and Joy, London, p 72

    Google Scholar 

  • Green SK, Deng TC (1985) Turnip mosaic virus strains in cruciferous hosts in Taiwan. Plant Dis 69:28–31

    Article  Google Scholar 

  • Gudelj I, Fitt BDL, Van den Bosch F (2004) Evolution of sibling fungal plant pathogens in relation to host specialization. Phytopathology 94:789–795. https://doi.org/10.1094/PHYTO.2004.94.7.789

    Article  CAS  PubMed  Google Scholar 

  • Guenin S, Mauriat M, Pelloux J, Van Wuytswinkel O, Bellini C, Gutierrez L (2009) Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. J Exp Bot 60(2):487–493. https://doi.org/10.1093/jxb/ern305

    Article  CAS  PubMed  Google Scholar 

  • Gugel RK, Yitbarek SM, Verma PR, Morrall RAA, Sadasivaiah RS (1987) Etiology of the Rhizoctonia root-rot complex of canola in the Peace River region of Alberta. Can J Plant Pathol 9:119–128

    Article  Google Scholar 

  • Gunasinghe N, You MP, Banga SS, Barbetti MJ (2013) High level resistance to Pseudocercosporella capsellae offers new opportunities to deploy host resistance to effectively manage white leaf spot disease across major cruciferous crops. Eur J Plant Pathol 138:873–890

    Article  Google Scholar 

  • Gunasinghe N, You MP, Barbetti MJ (2015) Phenotypic and phylogenetic studies associated with the crucifer white leaf spot pathogen, Pseudocercosporella capsellae, in Western Australia. Plant Pathol 65(2):205. https://doi.org/10.1111/ppa.12402

    Article  Google Scholar 

  • Gunasinghe N, You MP, Cawthray G, Barbetti M (2016a) Cercosporin from Pseudocercosporella capsellae and its critical role in white leaf spot development. Plant Dis 100:1521–1531. https://doi.org/10.1094/PDIS-10-15-1192-RE

    Article  CAS  PubMed  Google Scholar 

  • Gunasinghe N, You M, Clode P, Barbetti M (2016b) Mechanisms of resistance in Brassica carinata, B. napus and B. juncea to Pseudocercosporella capsellae. Plant Pathol 65:888–900. https://doi.org/10.1111/ppa.12484

    Article  CAS  Google Scholar 

  • Gunasinghe N, Barbetti MJ, You MP, Burrell D, Neate S (2020) White leaf spot caused by Neopseudo-cercosporella capsellae: a re-emerging disease of Brassicaceae. Front Cell Infect Microbiol 10:588090. https://doi.org/10.3389/fcimb.2020.588090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta M, Vikram A, Bharat N (2013) Black rot-a devastating disease of crucifers: a review. Agric Rev 34:269. https://doi.org/10.5958/j.0976-0741.34.4.012

    Article  Google Scholar 

  • Haddadi P, Larkan NJ, Borhan MH (2019) Dissecting R gene and host genetic background effect on the Brassica napus defense response to Leptosphaeria maculans. Sci Rep 9:6947. https://doi.org/10.1038/s41598-019-43419-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall R (1992) Epidemiology of blackleg of oilseed rape. Can J Plant Pathol 14:46–55

    Article  Google Scholar 

  • Hall G (1996) Modern approaches to species concepts in downy mildews. Plant Pathol 45:1009–1026

    Article  Google Scholar 

  • Hall R, Peters RD, Assabgui RA (1993) Occurrence and impact of blackleg of oilseed rape in Ontario. Can J Plant Pathol 15:305–313

    Article  Google Scholar 

  • Hammond KE (1985) Systemic infection of Brassica napus L. spp. oleifera (Metzger) Sinsk. by Leptosphaeria maculans (Desm.) Ces. et de Not. PhD thesis, University of East Anglia, Norwich

    Google Scholar 

  • Hammond KE, Lewis BG (1986a) The timing and sequence of events leading to stem canker disease in populations of Brassica napus var. oleifera in the field. Plant Pathol 35:551–564

    Article  Google Scholar 

  • Hammond KE, Lewis BG (1986b) Ultrastructure studies of the limitation of stem lesions caused by Leptosphaeria maculans on Brassica napus var. oleifera. Physiol Mol Plant Pathol 28:251–265

    Article  Google Scholar 

  • Hammond KE, Lewis BG (1987) Variation in stem infections caused by aggressive and non-aggressive isolates of Leptosphaeria maculans on Brassica napus var. oleifera. Plant Pathol 36:53–65

    Article  Google Scholar 

  • Hammond KE, Lewis BG, Musa TM (1985) A systemic pathway in the infection of oilseed rape plants by Leptosphaeria maculans. Plant Pathol 34:557–565

    Article  Google Scholar 

  • Happstadius I, Ljungberg A, Kristiansson B, Dixelius C (2003) Identification of Brassica oleracea germplasm with improved resistance to Verticillium wilt. Plant Breed 122:30–34

    Article  Google Scholar 

  • Harakava R (2005) Genes encoding enzymes of the lignin biosynthesis pathway in Eucalyptus. Genet Mol Biol 28:601–607

    Article  CAS  Google Scholar 

  • Hardwick NV, Davies JML, Wright DM (1994) The incidence of three virus diseases of winter oilseed rape in England and Wales in the 1991/92 and 1992/93 growing seasons. Plant Pathol 43:1045–1049

    Article  Google Scholar 

  • Heale JB, Karapapa KV (1999) The Verticillium threat to Canada’s major oilseed crop: canola. Can J Plant Pathol 21:1–7

    Article  Google Scholar 

  • Higgins BB (1917) A Colletotrichum leaf spot of turnips. J Agric Res 10:157–165

    Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052

    Article  CAS  PubMed  Google Scholar 

  • Horie H, Sugata S, Abe Z (1988) Studies on anthracnose of komatsuna, Brassica rapa. Bull Tokyo Metro Agric Exp Stn 21:189–237

    Google Scholar 

  • Howlett B, Ballinger D, Barbetti MJ (1999) Diseases. In: Salisbury PA, Potter TD, McDonald G (eds) Proc Canola in Australia. Canberra, Australia, 10th International Rapeseed Congress, Australia, pp 47–52

    Google Scholar 

  • Howlett BJ, Idnurm A, Pedras MS (2001) Leptosphaeria maculans, the causal agent of blackleg disease of Brassicas. Fungal Genet Biol 33:1–14

    Article  CAS  PubMed  Google Scholar 

  • Huang HC, Hoes JA (1980) Importance of plant spacing and sclerotial position to development of Sclerotinia wilt of sunflower. Plant Dis 64:81–84

    Article  Google Scholar 

  • Huang Y, Fitt B, Steed Y, Hall A (2003) Maturation of Leptosphaeria maculans pseudothecia in relation to forecasting phoma leaf spots (stem canker) on oilseed rape. In: Proc 11th International Rapeseed Congress, 4: AP 11 Denmark, vol 9, pp 1153–1156

    Google Scholar 

  • Hudspeth DSS, Stenger D, Hudspeth MES (2003) A COX2 phylogenetic hypothesis of the downy mildews and white rusts. Fungal Divers 13:47–57

    Google Scholar 

  • Hughes SL, Green SK, Lydiate DJ, Walsh JA (2002) Resistance to Turnip mosaic virus, in B. rapa and B. napus and the analysis of genetic inheritance in selected lines. Plant Pathol 51:567–573. https://doi.org/10.1046/j.1365-3059.2002.00755.x

    Article  Google Scholar 

  • Huis R, Hawkins S, Neutelings G (2010) Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.). BMC Plant Biol 10:71. https://doi.org/10.1186/1471-2229-10-71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humpherson-Jones FM (1986) The occurrence of virulent pathotypes of Leptosphaeria maculans in Brassica seed crops in England. Plant Pathol 35:224–231

    Article  Google Scholar 

  • Humphreys TL, Schnizlein-Bick CT, Katz BP, Baldridge LA, Hood AF, Hromas RA, Spinola SM (2002) Evolution of the cutaneous immune response to experimental Haemophilus ducreyi infection and its relevance to HIV-1 acquisition. J Immunol 169:6316–6323

    Article  CAS  PubMed  Google Scholar 

  • Hungerford W, Pitts R (1953) The Sclerotinia disease of beans in Idaho. Phytopathology 43:519–521

    Google Scholar 

  • Ignatov A, Hida K, Kuginuki Y (1999a) Environmentally dependent change of disease symptoms caused by Xanthomonas campestris pv. campestris on Brassicas. Acta Phytopathol Entomol Hungarica 34(3):183–186

    Google Scholar 

  • Ignatov A, Kuginuki Y, Hida K (1999b) Vascular stem resistance to black rot in Brassica oleracea. Can J Bot 77:442–446

    Google Scholar 

  • Inman AJ (1992) The biology and epidemiology of white leaf spot (Pseudocercosporella capsellae) on oilseed rape. PhD Thesis, The University of London

    Google Scholar 

  • Inman A, Sivanesan A, Fitt B, Evans R (1991) The biology of Mycosphaerella capsellae sp. nov., the teleomorph of Pseudocercosporella capsellae, cause of white leaf spot of oilseed rape. Mycol Res 95:1334–1342. https://doi.org/10.1016/S0953-7562(09)80586-8

    Article  Google Scholar 

  • Inman A, Fitt BDL, Todd A, Evans R (1999) Ascospores as primary inoculum for epidemics of white leaf spot (Mycosphaerella capsellae) in winter oilseed rape in the UK. Plant Pathol 48:308–319. https://doi.org/10.1046/j.1365-3059.1999.00350.x

    Article  Google Scholar 

  • Jacobsen BJ, Williams PH (1971) Histology and control of Brassica oleracea seed infection by Phoma lingam. Plant Dis Rep 55:934–938

    Google Scholar 

  • Jacobson DJ, Le Febvre SM, Ojerio RS, Berwald N (1998) Persistent, systemic, asymptomatic infections of Albugo candida, an oomycete parasite, detected in three wild crucifer species. Can J Bot 76(5):739–750

    CAS  Google Scholar 

  • Janowska-Sejda EI, Lysenko A, Urban M, Rawlings C, Tsoka S, Hammond-Kosack KE (2019) PHI-nets: a network resource for ascomycete fungal pathogens to annotate and identify putative virulence interacting proteins and siRNA targets. Front Microbiol 10:2721. https://doi.org/10.3389/fmicb.2019.02721

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeanes A (1973) Extracellular microbial polysaccharides: new hydrocolloides having both fundamental and practical importance. In: Bikales NM (ed) Polymer science and technology, vol 2. Plenum Press, New York, NY

    Google Scholar 

  • Jedryczka M, Fitt BDL, Kachlicki P, Lewartowska E, Balesdent MH, Rouxel T (1999) Comparison between Polish and United Kingdom populations of Leptosphaeria maculans, cause of stem canker of winter oilseed rape. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, (Phytopath Z) 106:608–617

    Google Scholar 

  • Jenner CE, Walsh JA (1996) Pathotypic variation in turnip mosaic virus with special reference to European isolates. Plant Pathol 45:848–856

    Article  Google Scholar 

  • Johnson RD, Lewis BG (1994) Variation in host range, systemic infection and epidemiology of Leptosphaeria maculans. Plant Pathol 43:269–277

    Article  Google Scholar 

  • Johnston JS, Pepper AE, Hall AE, Chen ZJ, Hodnett G, Drabek J, Lopez R, Price HJ (2005) Evolution of genome size in Brassicaceae. Ann Bot 95:229–235. https://doi.org/10.1093/aob/mci016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones RAC (2004) Using epidemiological information to develop effective integrated virus disease management strategies. Virus Res 99:5–30

    Article  Google Scholar 

  • Jones RAC (2006) Control of plant virus diseases. Adv Virus Res 67:205–244

    Article  PubMed  Google Scholar 

  • Kadian AK, Saharan GS (1983) Symptomatology, host range and assessment of yield losses due to Alternaria brassicae infection in rapeseed and mustard. Indian J Mycol Plant Pathol 13:319–323

    Google Scholar 

  • Karapapa VK, Bainbridge BW, Heale JB (1997) Morphological and molecular characterization of Verticillium longisporum comb. nov., pathogenic to oilseed rape. Mycol Res 101:1281–1294

    Article  Google Scholar 

  • Karolewski Z (1999) The occurrence of light leaf spot on winter oilseed rape in Western Poland in 1991–1996 and the characteristics of Pyrenopeziza brassicae isolates. Phytopatol Pol 18:113–121

    Google Scholar 

  • Karolewski Z (2010) Development of light leaf spot (Pyrenopeziza brassicae) on Brassicas. Phytopathologia 55:13–20

    Google Scholar 

  • Karolewski Z, Fitt BDL, Latunde-Dada AO, Foster SJ, Todd AD, Downes K, Evans N (2006) Visual and PCR assessment of light leaf spot (Pyrenopeziza brassicae) on winter oilseed rape (Brassica napus) cultivars. Plant Pathol 55:387–400

    Article  CAS  Google Scholar 

  • Karolewski Z, Kaczmarek J, Jedryczka M, Cools HJ, Fraaije BA, Lucas JA, Latunde-Dada AO (2012) Detection and quantification of airborne inoculum of Pyrenopeziza brassicae in Polish and UK winter oilseed rape crops by real-time PCR assays. Grana 51:270–279. https://doi.org/10.1080/00173134.2011.653401

    Article  Google Scholar 

  • Kataria H, Verma PR (1992) Rhizoctonia solani damping-off and root rot in oilseed rape and canola. Crop Prot 11:8–13

    Article  Google Scholar 

  • Kayum MA, Jung HJ, Park JI, Ahmed NU, Saha G, Yang TJ (2015a) Identification and expression analysis of WRKY family genes under biotic and abiotic stresses in Brassica rapa. Mol Gen Genomics 290:79–95

    Article  Google Scholar 

  • Kayum MA, Park JI, Ahmed NU, Jung HJ, Saha G, Kang JG (2015b) Characterization and stress-induced expression analysis of Alfin-like transcription factors in Brassica rapa. Mol Gen Genomics 290:1299–1311

    Article  Google Scholar 

  • Kayum MA, Park JI, Ahmed NU, Saha G, Chung MY, Kang JG (2016a) Alfin-like transcription factor family: characterization and expression profiling against stresses in Brassica oleracea. Acta Physiol Plant 38:127

    Article  Google Scholar 

  • Kayum MA, Kim HT, Nath UK, Park JI, Kho KH, Cho YG, Nou IS (2016b) Research on biotic and abiotic stress related genes exploration and prediction in Brassica rapa and B. oleracea: a review. Plant Breed. Biotech 4(2):135–144. https://doi.org/10.9787/PBB.2016.4.2.135

    Article  Google Scholar 

  • Khangura RK, Barbetti MJ, Sweetingham MW (1999) Characterization and pathogenicity of Rhizoctonia species on canola. Plant Dis 83:714–721

    Article  PubMed  Google Scholar 

  • Kharbanda PD, Stevens RR (1993) Seed testing for blackleg of canola. Alberta Environmental Centre, Vegreville, AB. AECV93–E1

    Book  Google Scholar 

  • Kim BR, Nam HY, Kim SU, Kim SI, Chang YJ (2003) Normalization of revere transcription quantitative-PCR with housekeeping genes in rice. Biotechnol Lett 25:1869–1872. https://doi.org/10.1023/A:1026298032009

    Article  CAS  PubMed  Google Scholar 

  • Kiran G, Saharan GS (2002) Identification of pathotypes of Albugo candida with stable characteristic symptoms on Indian mustard. J Mycol Plant Pathol 32:46–51

    Google Scholar 

  • Kiran G, Saharan GS, Mehta N, Sangwan MS (2004) Identification of pathotypes of Alternaria brassicae from Indian mustard [Brassica juncea (L) Czern and Coss]. J Mycol Plant Pathol 34:15–19

    Google Scholar 

  • Kirk PM, Cannon PF, David JC, Stalpers JA (2001) Ainsworth & Bisby’s dictionary of the fungi, 9th edn. CABI, Egham

    Google Scholar 

  • Klassen J, Yu C, Lange R, Fernando WGD (2007) Genetic variation in Fusarium oxysporum f. sp. conglutinans strains causing Fusarium-wilt of canola in Western Canada. Genetics and breeding: breeding for stress resistance. In: Proc International Rapeseed Congress, Wuhan, pp 433–435

    Google Scholar 

  • Kohn LM (1979) Delimitation of the economically important plant pathogenic Sclerotinia species. Phytopathology 69(8):881–886

    Article  Google Scholar 

  • Koike ST, Gladders P, Paulus AO (2007) Vegetable diseases: a color handbook. Academic Press, San Diego, CA

    Google Scholar 

  • Kolte SJ (1985) Diseases of annual edible oilseed crops. Vol. II. Rapeseed-mustard and sesame diseases. CRC Press, Boca Raton, FL, p 135

    Google Scholar 

  • Kosiak B, Torp M, Skjerve E, Thrane U (2003) The prevalence and distribution of Fusarium species in Norwegian cereals: a survey. Acta Agric Scandi B Soil Plant Sci 53:168–179

    Google Scholar 

  • Krauthausen HJ, Laun N, Wohanka W (2011) Methods to reduce the spread of the black rot pathogen, Xanthomonas campestris pv. campestris, in Brassica transplants. J Plant Dis Prot 118:7–16

    Article  CAS  Google Scholar 

  • Ku HM, Vision T, Liu J, Tanksley SD (2000) Comparing sequenced segments of the tomato and Arabidopsis genomes: large-scale duplication followed by selective gene loss creates a network of synteny. Proc Natl Acad Sci U S A 97:9121–9126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kucher HR, Vandenberg CGJ, Rimmer SR (1993) Variation in pathogenicity of Leptosphaeria maculans on Brassica spp. based on cotyledon and stem reactions. Can J Plant Pathol 15:253–258

    Article  Google Scholar 

  • Kumar S (2013) Defence mechanism in plants: Phase I. Google Blogger. http://sanjeetbiotech.blogspot.kr/2013/03/defence-mechanism-in-plants-phase-i.html

  • Kundu A, Patel A, Pal A (2013) Defining reference genes for qPCR normalization to study biotic and abiotic stress responses in Vigna mungo. Plant Cell Rep 32:1647–1658. https://doi.org/10.1007/s00299-013-1478-2

    Article  CAS  PubMed  Google Scholar 

  • Kuninaga S, Natsuaki T, Takeuchi T, Yokosawa R (1997) Sequence variation of the rDNA ITS regions within and between anastomosis groups in Rhizoctonia solani. Curr Genet 32:237–243

    Article  CAS  PubMed  Google Scholar 

  • Lagercrantz U (1998) Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 150:1217–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagercrantz U, Lydiate DJ (1996) Comparative genome mapping in Brassica. Genetics 144:1903–1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan HY, Wang CH, Zhang LH, Liu GZ, Wan LL, Chen ZH, Tian YC (2000) Studies on transgenic oilseed rape (Brassica napus) plants transformed with beta-1, 3-glucanase and chitinase genes and its resistance to Sclerotinia sclerotiorum. Chin J Biotech 16:142–146

    CAS  Google Scholar 

  • Lancaster R (2006) Diseases of vegetable brassicas. Department of Agriculture, Government of Western Australia, Perth, WA

    Google Scholar 

  • Lane A, Gladders P (2008) Pests and diseases of oilseeds, Brassica seed crops and field beans. In: Alford DV (ed) Pest and disease management handbook. Blackwell, Oxford, pp 52–83. https://doi.org/10.1002/9780470690475.ch3

    Chapter  Google Scholar 

  • Lange RM, Harrison LM, Hall M, MacDonald K, Kharbanda PD (2001) The first report of Fusarium wilt of canola in Alberta, 1999. Abstracts, Alberta Regional Meeting, The Canadian Phytopathological Society 1999 in Canadian Journal of Plant Pathology 23:185

    Google Scholar 

  • Lange RM, Gossmann M, Büttner C (2007) Yield loss in susceptible cultivars of spring rapeseed due to Fusarium wilt caused by Fusarium oxysporum. Commun Agric Appl Biol Sci 72(4):723–734

    CAS  PubMed  Google Scholar 

  • Lee SC, Lim MH, Yu JG, Park BS, Yang TJ (2012) Genome-wide characterization of the CBF/DREB1 gene family in Brassica rapa. Plant Physiol Biochem 61:142–152. https://doi.org/10.1016/j.plaphy.2012.09.016

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Chawla HS, Obermeier C, Dreyer F, Abbadi A, Snowdon R (2020) Chromosome-scale assembly of winter oilseed rape Brassica napus. Front Plant Sci 11:496. https://doi.org/10.3389/fpls.2020.00496

    Article  PubMed  PubMed Central  Google Scholar 

  • Letham DB, Daincs D, Hennissey J (1975) Turnip mosaic-a serious problem in hybrid cabbage crops. Agric Gaz N S W 86:52–53

    Google Scholar 

  • Leveilla JH (1847) On the methodical arrangement of the Uredineae. Ann Sci Nat Ser 3:371

    Google Scholar 

  • Leyns F, de Cleene M, Swings JG, de Ley J (1984) The host range of the genus Xanthomonas. Bot Rev 50(3):308–356

    Article  Google Scholar 

  • Ling L, Yang JY (1940) A mosaic disease of rape and other cultivated crucifers in China. Phytopathology 30:338–342

    Google Scholar 

  • Liu XP, Lu WC, Liu YK, Wei SQ, Xu JB, Liu JB, Liu ZR, Zhang HJ, Li JL, Ke GL, Yao WY, Cai YS, Wu FY, Cao SC, Li YH, Xie SD, Lin BX, Zhang CL (1996) Occurrence and strain differentiation of turnip mosaic potyvirus and sources of resistance in Chinese cabbage in China. Acta Hortic 407:431–440

    Article  Google Scholar 

  • Liu T, Song X, Duan W, Huang Z, Liu G, Li Y (2014) Genome-wide analysis and expression patterns of NAC transcription factor family under different developmental stages and abiotic stresses in Chinese cabbage. Plant Mol Biol Rep 32:1041–1056

    Article  Google Scholar 

  • Lo CT, Tu CC, Tsai WH (1990) Anastomosis groups and pathogenicity of carnation. Plant Prot Bull 32:158–161

    Google Scholar 

  • Lubbe EM, Meyer L (1995) Crater disease of wheat in South Africa. In: An International Symposium of Rhizoctonia, The Netherlands, p 59

    Google Scholar 

  • Lv H, Fang Z, Yang L, Zhang Y, Wang Y (2020) An update on the arsenal: mining resistance genes for disease management of Brassica crops in the genomic era. Hortic Res 7:34. https://doi.org/10.1038/s41438-020-0257-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15:516–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacNish GC, Carling DE, Brainard KA (1993) Characterization of Rhizoctonia solani AG-8 from bare patches by pectic isozyme (zymogram) and anastomosis techniques. Phytopathology 83:22–27

    Article  Google Scholar 

  • Maddock SE, Ingram DS (1981) Studies of survival and longevity of the light leaf spot pathogen of Brassicas, Pyrenopeziza brassicae. Trans Br Mycol Soc 77:153–159. https://doi.org/10.1016/s0007-1536(81)80189-1

    Article  Google Scholar 

  • Mahiar M, Khalaif H (1999) Black rot of crucifers in Jordan: sources of inoculum. Dirasat Agric Sci 26:329–337

    Google Scholar 

  • Mahmodi F, Kadir JB, Wong MY, Nasehi A, Puteh A, Soleimani N (2013) First report of anthracnose caused by Colletotrichum gloeosporioides on soybean (Glycine max) in Malaysia. Plant Dis 97:841

    Article  CAS  PubMed  Google Scholar 

  • Marchionatto J (1947) Parasitic fungi of plants, new or little known in Argentina. Min Agric 3:11

    Google Scholar 

  • Marcroft S, Sprague S, Salisburg P, Howlett B (2003) Survival and dissemination of Leptosphaeria maculans in southern Australia. In: Proc 11th. International Rapeseed Congress, 4: AP 11 Denmark, vol 11, pp 1157–1159

    Google Scholar 

  • Marcroft SJ, Elliott VL, Cozijnsen AJ, Salisbury PA, Howlett BJ, Van De Wouw AP (2012) Identifying resistance genes to Leptosphaeria maculans in Australian Brassica napus cultivars based on reactions to isolates with known avirulence genotypes. Crop Past Sci 63:338–350. https://doi.org/10.1071/CP11341

    Article  CAS  Google Scholar 

  • Masuhara G, Katsuya K, Yamaguchi K (1993) Potential for symbiosis of Rhizoctonia solani and binucleate Rhizoctonia with seeds of Spiranthes sinesis var. amoana in vitro. Mycol Res 97:746–752

    Article  Google Scholar 

  • Matic S, Gilardi G, Gullino ML, Garibaldi A (2018) Evidence for an expanded host range of Fusarium oxysporum f. sp. chrysanthemi. J Plant Pathol 100(1):97. https://doi.org/10.1007/s42161-018-0021-2

    Article  Google Scholar 

  • Maxwell A, Scott JK (2008) Pathogens on wild radish, Raphanus raphanistrum (Brassicaceae), in South-Western Australia–implications for biological control. Australas Plant Pathol 37:523–533. https://doi.org/10.1071/AP08040

    Article  Google Scholar 

  • Mayer K, Murphy G, Tarchini R, Wambutt R, Volckaert G, Pohl T, Düsterhöft A, Stiekema W, Entian KD, Terryn N, Lemcke K, Haase D, Hall CR, van Dodeweerd AM, Tingey SV, Mewes HW, Bevan MW, Bancroft I (2001) Conservation of micro-structure between a sequenced region of the genome of rice and multiple segments of the genome of Arabidopsis thaliana. Genome Res 11(7):1167–1174. https://doi.org/10.1101/gr.161701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCartney H, Lacey M (1990) The production and release of ascospores of Pyrenopeziza brassicae on oilseed rape. Plant Pathol 39:17–32. https://doi.org/10.1111/j.1365-3059.1990.tb02471.x

    Article  Google Scholar 

  • McDonald MR, Boland GJ (2004) Forecasting diseases caused by Sclerotinia spp. in eastern Canada: fact or fiction. Can J Plant Pathol 26:480–488

    Article  Google Scholar 

  • McDonald BA, Linde C (2002) Pathogen population genetics, evolutionary potential and durable resistance. Annu Rev Phytopathol 40:349–379

    Article  CAS  PubMed  Google Scholar 

  • McGee DC (1977) Blackleg (Leptosphaeria maculans (Desm) Ces. et de Not.) of rapeseed in Victoria: sources of infection and relationships between inoculum, environmental factors and disease severity. Aust J Agric Res 28:53–62

    Article  Google Scholar 

  • McGee DC, Petrie GA (1979) Seasonal patterns of ascospore discharge by L. maculans in relation to blackleg of oilseed rape. Phytopathology 69:586–589

    Article  Google Scholar 

  • McLean GD, Price LK (1984) Virus, viroid, mycoplasma and rickettsial diseases of plants in Western Australia. Tech Bull Dept Agric W A 68:22

    Google Scholar 

  • Meena PD, Chattopadhyay C, Meena PS, Goyal P, Kumar VR (2014) Shelf life and efficacy of talc-based bio-formulations of Trichoderma harzianum isolates in management of Sclerotinia rot of Indian mustard (Brassica juncea). Ann Plant Prot Sci 22:127–135

    Google Scholar 

  • Meena PD, Riteka G, Sharma P, Rai PK, Meena HS, Singh SK (2019) Isolation and characterization of a new fungal species, Fusarium equiseti (Corda) Sacc., from Brassica juncea in Bharatpur. J Oilseed Brassica 10(2):130–133

    Google Scholar 

  • Meena PD, Mehta N, Saharan GS (2021) Minor pathogens: a worldwide challenge to cultivation of crucifers. Agric Res J 58(4):557–580. https://doi.org/10.5958/2395-146X.2021.00081.8

    Article  Google Scholar 

  • Migula W (1910) Familie Albuginaceae. In: Kryptogamen-Flora von Deutschland. Deutsch Österreich und der Schweiz. 3, Pilze, vol 1, pp 153–155

    Google Scholar 

  • Miller P, McWhorter F (1948) A disease of cabbage and other crucifers due to Cercosporella brassicae. Phytopathology 38:893–898

    Google Scholar 

  • Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443–462

    Article  CAS  PubMed  Google Scholar 

  • Miura K, Jin JB, Lee J, Yoo CY, Stirm V, Miura T (2007) SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19:1403–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizoi J, Ohori T, Moriwaki T, Kidokoro S, Todaka D, Maruyama K (2013) GmDREB2A;2, a canonical Dehydration-Responsive Element-Binding Protein2-type transcription factor in soybean, is post translationally regulated and mediates dehydration-responsive element-dependent gene expression. Plant Physiol 161:346–361

    Article  CAS  PubMed  Google Scholar 

  • Morris MJ, Crous PW (1994) New and Interesting records of South African fungi. XIV. Cercosporoid fungi from weeds. S Afr J Bot 60:325–332. https://doi.org/10.1016/S0254-6299(16)30587-7

    Article  Google Scholar 

  • Mulema JK, Vicente JG, Pink DAC, Jackson A, Chacha DO, Wasilwa L, Kinyua ZM, Karanja DK, Holub EB, Hand P (2012) Characterization of isolates that cause black rot of crucifers in East Africa. Eur J Plant Pathol 133:427–438

    Article  CAS  Google Scholar 

  • Nagaharu U (1935) Genome-analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Naito S, Djaeni M, Nasution A, Purwanti H, Sutoyo AM, Kardin K, Achmad NH, Lidya B (1991) Soil-borne diseases affecting yield loss of soybean. In: Proc Final Seminar of the Strengthening of Pioneering Research for PALAWIJA Crop Indonesia, pp 24–37

    Google Scholar 

  • Narusaka Y, Narusaka M, Park P, Kubo Y, Hirayama T, Seki M, Shiraishi T, Shida T, Nakashima M, Enju A, Sakurai T, Satou M, Kobayashi M, Shinozaki K (2004) RCH1, a locus in Arabidopsis that confers resistance to the hemibiotrophic fungal pathogen Colletotrichum higginsianum. Mol Plant-Microbe Interact 17:749–762. https://doi.org/10.1094/MPMI.2004.17.7.749

    Article  CAS  PubMed  Google Scholar 

  • Neik TX, Amas J, Barbetti M, Edwards D, Batley J (2020) Understanding host–pathogen interactions in Brassica napus in the omics era. Plants 9:1336. https://doi.org/10.3390/plants9101336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholson RL, Hammerschmidt R (1992) Phenolic compounds and their role in disease resistance. Annu Rev Phytopathol 30:369–389

    Article  CAS  Google Scholar 

  • Nicot N, Hausman JF, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56:2907–2914. https://doi.org/10.1093/jxb/eri285

    Article  CAS  PubMed  Google Scholar 

  • Niu X, Leung H, Williams PH (1983) Sources and nature of resistance to downy mildew and turnip mosaic virus in Chinese cabbage. J Am Soc Hortic Sci 108:775–778

    Article  Google Scholar 

  • Novakazi F, Inderbitzin P, Sandoya G, Hayes RJ, Tiedemann AV, Subbarao KV (2015) The three lineages of the diploid hybrid Verticillium longisporum differ in virulence and pathogenicity. Phytopathology 105:662–673

    Article  PubMed  Google Scholar 

  • O’Connell R, Herbert C, Sreenivasaprasad S, Khatib M, Esquerré-Dugayé MT, Dumas B (2004) A novel Arabidopsis-Colletotrichum pathosystem for the molecular dissection of plant-fungal interactions. Mol Plant-Microbe Interact 17:272–282

    Article  PubMed  Google Scholar 

  • O’Connell RJ, Thon MR, Hacquard S, Amyotte SG, Kleemann J, Torres M, Damm U, Buiate EA, Epstein L, Alkan N, Altmüller J, Alvarado-Balderrama L, Bauser CA, Becker C, Birren BW, Chen Z, Choi J, Crouch JA, Duvick JP, Farman MA, Gan P, Heiman D, Henrissat B, Howard RJ, Kabbage M, Koch C, Kracher B, Kubo Y, Law AD, Lebrun MH, Lee YH, Miyara I, Moore N, Neumann U, Nordström K, Panaccione DG, Panstruga R, Place M, Proctor RH, Prusky D, Rech G, Reinhardt R, Rollins JA, Rounsley S, Schardl CL, Schwartz DC, Shenoy N, Shirasu K, Sikhakolli UR, Stüber K, Sukno SA, Sweigard JA, Takano Y, Takahara H, Trail F, van der Does HC, Voll LM, Will I, Young S, Zeng Q, Zhang J, Zhou S, Dickman MB, Schulze-Lefert P, van Themaat EVL, Ma LJ, Vaillancourt LJ (2012) Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat Genet 44:1060. https://doi.org/10.1038/ng.2372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obidiegwu JE, Bryan GJ, Jones HG, Prashar A (2015) Coping with drought: stress and adaptive responses in potato and perspectives for improvement. Front Plant Sci 6:542

    Article  PubMed  PubMed Central  Google Scholar 

  • Ocamb C (2014) Disease alert - white leaf spot and gray stem in crucifer seed crops in Western Oregon. Oregon State University, Corvallis, OR

    Google Scholar 

  • Ocamb C (2016) A clinic close-up: blackleg, light leaf spot, and white leaf spot in Western Oregon. Oregon State University Extension Service, Corvallis, OR

    Google Scholar 

  • Ocamb CM, Juzwik J (1995) Fusarium species associated with rhizosphere soil and diseased roots of eastern white pine seedlings and associated nursery soil. Can J Plant Pathol 17:325–330

    Article  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  • Ogle H, Dale M (1997) Disease management: cultural practices. In: Brown J, Ogle H (eds) Plant pathogens and plant diseases. Rockdale Publ, Armidale, pp 390–404

    Google Scholar 

  • Ogoshi A (1996) Introduction—the genus Rhizoctonia. In: Sneh B, Jabaji-Hare S, Neate S, Dijst G (eds) Rhizoctonia species: taxonomy, molecular biology, ecology, pathology and disease control. Kluwer Academic Publishers, Dordrecht, pp 1–9

    Google Scholar 

  • Ohshima K, Tanaka M, Sako N (1996) The complete nucleotide sequence of turnip mosaic virus RNA Japanese strain. Arch Virol 141:1991–1997

    Article  CAS  PubMed  Google Scholar 

  • Okullo’kwany FS (1987) Studies on white leaf spot of turnips caused by Cercosporella brassicae (Fautr. and Roum.), Hoehnel. Master of Agricultural Science, University of Canterbury

    Google Scholar 

  • Oppel CB, Dussourd DE, Garimella U (2009) Visualizing a plant defense and insect counter ploy: alkaloid distribution in Lobelia leaves trenched by a plusiine caterpillar. J Chem Ecol 35:625–634

    Article  CAS  PubMed  Google Scholar 

  • Pammel LH (1895) Bacteriosis of rutabaga (Bacillus campestris n. sp.). IA Coll Agric Exp Stn Bull 27:130–134

    Google Scholar 

  • Patel MK, Abhyankar SG, Kulkarni YS (1949) Black rot of cabbage. Indian Phytopathol 2:58–61

    Google Scholar 

  • Patel JS, Costa de Novaes MI, Zhang S (2014) First report of Colletotrichum higginsianum causing anthracnose of Arugula (Eruca sativa) in Florida. Plant Dis 98(9):1269. https://doi.org/10.1094/PDIS-09-13-0926-PDN

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Lan T, Amasino R, Osborn TC, Quiros C (2001) Brassica genomics: a complement to, and early beneficiary of, the Arabidopsis sequence. Genome Biol 2(3):1011.1–1011.4

    Article  Google Scholar 

  • Patkar RN, Naqvi NI (2017) Fungal manipulation of hormone-regulated plant defence. PLoS Pathol 13(6):e1006334. https://doi.org/10.1371/journal.ppat.1006334

    Article  CAS  Google Scholar 

  • Paul VH, Rawlinson CJ (1992) Diseases and pests of rape. Verlag Th. Mann, Gelsenkirchen-Buer

    Google Scholar 

  • Pedras CSM, Taylor LJ, Morales MV (1996) The blackleg fungus of rapeseed: how many species. Acta Hortic 407:441–446

    Article  CAS  Google Scholar 

  • Pegg GF (1985) Life in a black hole–the micro-environment of the vascular pathogen. Trans Br Mycol Soc 85:1–20

    Article  Google Scholar 

  • Penaud A (1987) La maladie des taches blanches du colza. Phytoma 95:23–26

    Google Scholar 

  • Peres A, Poisson B, Le Sourne V, Maisonneuve C (1999) Leptosphaeria maculans: effect of temperature, rainfall and humidity on the formation of pseudothecia. In: Proc 10th International Rapeseed Congress, 1999, Canberra, Australia

    Google Scholar 

  • Perez-Clemente RM, Vives V, Zandalinas SI, Lopez-Climent MF, Munoz V, Gomez-Cadenas A (2013) Biotechnological approaches to study plant responses to stress. BioMed Res Int 10:654120. https://doi.org/10.1155/2013/654120

    Article  CAS  Google Scholar 

  • Perron G, Souliac L (1990) Pseuocercosporella capsellae (Et. et Ev) ou maladies des taches blanches du colza. Def Vegetaux 44:22–27

    Google Scholar 

  • Persoon CH (1796) Observations mycologicae sur descriptions tan novorum quam notibilium fungorum exhibitae. Part 1:115

    Google Scholar 

  • Petersen AB, Rosendahl S (2000) Phylogeny of the Peronosporomycetes (Oomycota) based on partial sequence of the large ribosomal subunit (LSU rDNA). Mycol Res 104:1295–1303

    Article  CAS  Google Scholar 

  • Petrie GA (1978) Occurrence of a highly virulent strain of blackleg (Leptosphaeria maculans). Can Plant Dis Surv 58:21–25

    Google Scholar 

  • Petrie GA (1979) Blackleg of rape. Can Agric 24:22–25

    Google Scholar 

  • Petrie GA (1986) Consequences of survival of Leptosphaeria maculans (blackleg) in canola stubble residue through an entire crop rotation sequence. Can J Plant Pathol 8:353. (Abstract)

    Google Scholar 

  • Petrie GA (1994) Effects of temperature and moisture on the number, size and septation of ascospores produced by Leptosphaeria maculans (blackleg) on rapeseed stubble. Can Plant Dis Surv 74:141–151

    Google Scholar 

  • Petrie GA, Vanterpool TC (1974) Infestation of crucifer seed in western Canada by the blackleg fungus Leptosphaeria maculans. Can Plant Dis Surv 54:119–123

    Google Scholar 

  • Petrie GA, Vanterpool TC (1978) Pseudocercosporella capsellae, the cause of white leaf spot and gray stem of Cruciferae in Western Canada. Can Plant Dis Surv 58:69–72

    Google Scholar 

  • Peyraud R, Mbengue M, Barbacci A, Raffaele S (2019) Intercellular cooperation in a fungal plant pathogen facilitates host colonization. Proc Natl Acad Sci U S A 116:3193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilet ML, Delourme R, Foisset N, Renard M (1998) Identification of QTL involved in field resistance to light leaf spot (Pyrenopeziza brassicae) and blackleg resistance (Leptosphaeria maculans) in winter rapeseed (Brassica napus L.). Theor Appl Genet 97:398–406. https://doi.org/10.1007/s001220050909

    Article  CAS  Google Scholar 

  • Pink DAC, Walkey DGA (1988) The reaction of summer- and autumn-maturing cauliflowers to infection by cauliflower and turnip mosaic viruses. J Hortic Sci 63:95–102

    Article  Google Scholar 

  • Pink DAC, Sutherland RA, Walkey DGA (1986) Genetic analysis of resistance in Brussels sprout to Cauliflower mosaic and Turnip mosaic viruses. Ann Appl Biol 109:199–208

    Article  Google Scholar 

  • Pirotta R (1884) Breve notizia sul Cystopus Capparidis. In: Nuovo Giornale Botanico Italiano

    Google Scholar 

  • Poisson B (1997) Etudes relàtives à la maturation des péritheces de Leptosphaeria maculans sur les pailles de colza d’hiver nécrosées au collet. In: 5ème Conférence Sur les Maladies Des Plantes, Tours, France: (1997) ANPP1, pp 345–352. (in French)

    Google Scholar 

  • Poisson B, Pérès A (1999) Study of rapeseed susceptibility to primary contamination of Leptosphaeria maculans in relation to plant vegetative stage. In: Proc 10th. International Rapeseed Congress, 1999, Canberra, Australia. http://www.regional.org.au/papers/index.htm

    Google Scholar 

  • Pound SG (1947) Variability in Phoma lingam. J Agric Res 75(4):571

    Google Scholar 

  • Pound GS (1948) Horseradish mosaic. J Agric Res 77:97–114

    Google Scholar 

  • Pound GS, Walker JC (1945) Differentiation of certain crucifer viruses by the use of temperature and host immunity reactions. J Agric Res 71:255–278

    Google Scholar 

  • Poveda J, Francisco M, Cartea ME, Velasco P (2020) Development of transgenic Brassica crops against biotic stresses caused by pathogens and arthropod pests. Plants 9:1664. https://doi.org/10.3390/plants9121664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Provvidenti R (1980) Evaluation of Chinese cabbage cultivars from Japan and the People’s Republic of China for resistance to Turnip mosaic virus and Cauliflower mosaic virus. J Am Soc Hortic Sci 105:571–573

    Article  Google Scholar 

  • Provvidenti R (1982) A destructive disease of garden balsam caused by a strain of Turnip mosaic virus. Plant Dis 66:1076–1077

    Article  Google Scholar 

  • Provvidenti R, Robinson RW, Shail JW (1979) Chicory: a valuable source of resistance to Turnip mosaic for endive and escarole. J Am Soc Hortic Sci 104:726–728

    Article  Google Scholar 

  • Punithalingam E, Holliday P (1972) Leptosphaeria maculans, CMI Descriptions of pathogenic fungi and bacteria. No. 331. The Eastern Press Ltd, London

    Google Scholar 

  • Purdy LH (1979) Sclerotinia sclerotiorum: history, diseases and symptomatology, host range, geographic distribution and impact. Phytopathology 69:875–880

    Article  Google Scholar 

  • Qin F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol 52:1569–1582

    Article  CAS  PubMed  Google Scholar 

  • Rabenhorst GL (1844) Deutschlands Kryptogamen-Flora, Erster Band. Pilze, Leipzig

    Google Scholar 

  • Rai RP (1979) Fusarium equiseti (Corda) Sacc. causing dry rot of potato tubers. New report. Curr Sci 48:1043–1045

    Google Scholar 

  • Reyes A (1979) First occurrence of a severe white leaf spot on Chinese mustard in Canada. Can Plant Dis Surv 59:1–2

    Google Scholar 

  • Riethmüller A, Voglmayr H, Göker M, Weiß M, Oberwinkler F (2002) Phylogenetic relationships of the downy mildews (Peronosporales) and related groups based on nuclear large subunit ribosomal DNA sequences. Mycologia 94:834–849

    Article  PubMed  Google Scholar 

  • Robbins MA, Witsenboer H, Michelmore RW, Laliberté JF, Fortin MG (1994) Genetic mapping of turnip mosaic virus resistance in Lactuca sativa. Theor Appl Genet 89:583–589

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues AAC, Menezes M (2005) Identification and pathogenic characterization of endophytic Fusarium species from cowpea seeds. Mycopathologia 159:79–85

    Article  CAS  PubMed  Google Scholar 

  • Romero FM, Rossi FR, Gárriz A, Carrasco P, Ruíz OA (2018) A bacterial endophyte from apoplast fluids protects canola plants from different phytopathogens via antibiosis and induction of host resistance. Phytopathology 109:375–383

    Article  Google Scholar 

  • Rouxel T, Penaud A, Pinochet X, Brun H, Gout L, Delourme R, Schmit J, Balesdent MH (2003) A 10-year survey of populations of Leptosphaeria maculans in France indicates a rapid adaptation towards the Rlm1 resistance gene of oilseed rape. Eur J Plant Pathol 109:871–881

    Article  CAS  Google Scholar 

  • Rovira AD, Ogoshi A, McDonald HJ (1986) Characterization of isolates of Rhizoctonia solani from cereal roots in South Australia and New South Wales. Phytopathology 76:1245–1248

    Article  Google Scholar 

  • Ruano G, Scheuring D (2020) Plant cells under attack: unconventional endomembrane trafficking during plant defense. Plants 9(3):389. https://doi.org/10.3390/plants9030389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rygulla W, Friedt W, Seyis F, Lühs W, Eynck C, Tiedemann AV, Snowdon RJ (2007a) Combination of resistance to Verticillium longisporum from zero erucic acid Brassica oleracea and oilseed Brassica rapa genotypes in resynthesized rapeseed (Brassica napus) lines. Plant Breed 126:596–602

    Article  CAS  Google Scholar 

  • Rygulla W, Snowdon RJ, Eynck C, Koopmann B, Tiedemann AV, Lühs W, Friedt W (2007b) Broadening the genetic basis of Verticillium longisporum resistance in Brassica napus by interspecific hybridization. Phytopathology 97:1391–1396

    Article  CAS  PubMed  Google Scholar 

  • Saccardo PA (1888) Cyctopus lepigoni, Cystopus bliti, Cystopus capparidis, Cystopus portulacae. In: Sylloge Fungorum, vol 7, pp 235–237

    Google Scholar 

  • Safeefulla KM (1952a) Morphological and cytological studies of Albugo species on Ipomoea hederacea. Curr Sci 21:287–288

    Google Scholar 

  • Safeefulla KM (1952b) Species of the genus Albugo in India. Sci Cutt 18:282–283

    Google Scholar 

  • Saha G, Park JI, Jung HJ, Ahmed NU, Kayum MA, Kang JG (2015) Molecular characterization of BZR transcription factor family and abiotic stress induced expression profiling in Brassica rapa. Plant Physiol Biochem 92:92–104

    Article  CAS  PubMed  Google Scholar 

  • Saharan GS (1992a) Disease resistance. In: Labana KS, Banga SS, Banga SK (eds) Breeding oilseed Brassicas. Narosa Publ House, New Delhi, pp 181–205. Chapter 12

    Google Scholar 

  • Saharan GS (1992b) Management of rapeseed-mustard diseases. In: Kumar D, Rai M (eds) Advances in oilseeds research. Sci Pub, Jodhpur, pp 152–188

    Google Scholar 

  • Saharan GS (1997) Disease resistance. In: Kalia HR, Gupta SC (eds) Recent advances in oilseed Brassicas. Kalyani Pub, Ludhiana, pp 233–259. Chapter 12

    Google Scholar 

  • Saharan GS (1998) Diseases of rapeseed and mustard and their management. In: Thind TS (ed) Diseases of field crops and their management. National Agricultural Technology Information Center, Ludhiana, pp 95–114

    Google Scholar 

  • Saharan GS (2010) Analysis of genetic diversity in Albugo-crucifer system. J Mycol Plant Pathol 40:1–13

    Google Scholar 

  • Saharan GS, Chand JN (1988) Diseases of oilseed crops (Hindi). Min. Human Resources, Govt of India. HAU Press, Hisar, pp 84–91. Chapter 3

    Google Scholar 

  • Saharan GS, Kaushik JC (1981) Occurrence and epidemiology of powdery mildew of Brassica. Indian Phytopathol 34:54–57

    Google Scholar 

  • Saharan GS, Mehta N (2002) Fungal diseases of rapeseed-mustard. In: Nagarajan S, Singh DP (eds) Role of resistance in intensive agriculture. Kalyani Pub, New Delhi, pp 98–108

    Google Scholar 

  • Saharan GS, Mehta N (2008) Sclerotinia diseases of crop plants: biology, ecology and disease management. Springer, Dordrecht., 486 p. https://doi.org/10.1007/978-1-4020-8408-9

    Book  Google Scholar 

  • Saharan GS, Verma PR (1992) White rusts: a review of economically important species. International Development Research Centre (IDRC), Ottawa, ON

    Google Scholar 

  • Saharan GS, Verma PR, Nashaat NI (1997) Monograph on downy mildew of crucifers. Tech Bull 1997-01, Cat No A5A-13/1997-01E. Agric and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, SK. 197 p

    Google Scholar 

  • Saharan GS, Mehta N, Sangwan MS (2003) Nature and mechanism of disease resistance to Alternaria blight in rapeseed-mustard system. Annu Rev Plant Pathol 2:85–125

    Google Scholar 

  • Saharan GS, Mehta N, Sangwan MS (2005) Development of disease resistance in rapeseed-mustard. In: Saharan GS, Mehta N, Sangwan MS (eds) Diseases of oilseed crops. Indus Pub Co, New Delhi, pp 561–617

    Google Scholar 

  • Saharan GS, Verma PR, Meena PD, Kumar A (2014) White rust of crucifers: biology, ecology and disease management. Springer Nature, Singapore. 244 p

    Book  Google Scholar 

  • Saharan GS, Mehta N, Meena PD (2016) Alternaria diseases of crucifers: biology, ecology and disease management. Springer, Singapore. 244 p

    Book  Google Scholar 

  • Saharan GS, Mehta N, Meena PD (2017) Downy mildew disease of crucifers: biology, ecology and disease management. Springer Nature, Singapore. 357 p

    Book  Google Scholar 

  • Saharan GS, Mehta N, Meena PD (2019) Powdery mildew disease of crucifers: biology, ecology and disease management. Springer Nature, Singapore. 362 p

    Book  Google Scholar 

  • Saharan GS, Mehta N, Meena PD (2021a) Molecular mechanism of crucifer’s host-resistance. Springer Nature, Singapore., 835 p. https://doi.org/10.1007/978-981-16-1974-8/1

    Book  Google Scholar 

  • Saharan GS, Mehta N, Meena PD (2021b) Genomics of crucifer’s host-resistance. Springer Nature, Singapore., 784 p. https://doi.org/10.1007/978-981-16-0862-9

    Book  Google Scholar 

  • Saharan GS, Mehta N, Meena PD (2021c) Clubroot disease of crucifers: biology, ecology and disease management. Springer Nature, Singapore., 757 p. https://doi.org/10.1007/978-981-16-2133-8

    Book  Google Scholar 

  • Salam MU, Khangura RK, Diggle AJ, Barbetti MJ (2003) Blackleg Sporacle. A model for predicting onset of pseudothecia maturity and seasonal ascospore showers in relation to blackleg of Canola. Phytopathology 93:1073–1081

    Article  CAS  PubMed  Google Scholar 

  • Sanghera GS, Wani SH, Hussain W, Singh NB (2011) Engineering cold stress tolerance in crop plants. Curr Genomics 12:30–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sano Y, Kojima M (1989) Increase in cucumber mosaic virus concentration in Japanese radish plants co-infected with turnip mosaic virus. Annu Phytopathol Soc Jpn 55:296–302

    Article  Google Scholar 

  • Savary S, Ficke A, Aubertot JN, Hollier C (2012) Crop losses due to diseases and their implications for global food production losses and food security. Food Secur 4:519–537

    Article  Google Scholar 

  • Savulescu O (1946a) Study of the species of Cystopus (Pers.) Lev. Bucharest. Anal Acad Rous Mem Sect Stimtiface Soc 21:13

    Google Scholar 

  • Savulescu O (1946b) A study on the European species of the genus Cystopus Lev. With special reference to the species found in Rumania. Thesis 213. University of Bucarest, Rumania. (Abstract in Rev Appl Mycol 27: 542, 1948)

    Google Scholar 

  • Schaad NW, Alvarez A (1993) Xanthomonas campestris pv. campestris: cause of black rot of crucifers. In: Swings JG, Civerolo EL (eds) Xanthomonas. Chapman & Hall, London, pp 51–55

    Google Scholar 

  • Schaad NW, Dianese JC (1981) Cruciferous weeds as sources of inoculum of Xanthomonas campestris in black rot of crucifers. Phytopathology 71:1215–1220

    Article  Google Scholar 

  • Scheffer RP (1950) Anthracnose leaf spot of crucifers. Tech Bull N C Agric Exp Stn 92:1–26

    Google Scholar 

  • Schmittgen TD, Zakrajsek BA (2000) Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J Biochem Biophys Methods 46:69–81

    Article  CAS  PubMed  Google Scholar 

  • Schnathorst WC (1981) In: Mace ME, Bell AA, Beckman CH (eds) Life cycle and epidemiology of Verticillium. In: Fungal wilt diseases of plants. Academic Press, New York, NY, pp 81–111

    Chapter  Google Scholar 

  • Schroter J (1893) Peronosporinae. In: Engler A (ed) Die naturlichen Pflanzenfamilien, vol 1. Wilhelm Engelmann, Leipzig, pp 108–119

    Google Scholar 

  • Schultz ES (1921) A transmissible mosaic disease of Chinese cabbage. J Agric Res 22:173–177

    Google Scholar 

  • Schwinghamer MW, Schilg MA, Walsh JA, Bambach RW, Cossu RM, Bambridge JM, Hind-Lanoiselet TL, McCorkell BE, Cross P (2014) Turnip mosaic virus: potential for crop losses in the grain belt of New South Wales, Australia. Aust Plant Pathol 43:663–678

    Article  Google Scholar 

  • Scott DB, Visser CPN, Rufenacht EMC (1979) Crater disease of summer wheat in African drylands. Plant Dis Rep 63:836–840

    Google Scholar 

  • Shattuck VI (1992) The biology, epidemiology, and control of turnip mosaic virus. Plant Breed Res 14:199–238

    Google Scholar 

  • Shattuck VI, Parry R (1990) The occurrence of Powdery mildew on rutabagas in Southern Ontario. Can Plant Dis Surv 70:15–16

    Google Scholar 

  • Shattuck VI, Stobbs LW (1987) Evaluation of rutabaga cultivars for turnip mosaic virus resistance and the Inheritance of resistance. Hortic Sci 22:935–937

    Google Scholar 

  • Sherf AF, MacNab AA (1986) Vegetable diseases and their control. John Wiley & Sons, New York, NY

    Google Scholar 

  • Shivas RG (1989) Fungal and bacterial diseases of plants in Western Australia. J R Soc WA 72:1–62

    Google Scholar 

  • Siebold M, Von Tiedemann A (2012) Potential effects of global warming on oilseed rape pathogens in Northern Germany. Fungal Ecol 5:62–72. https://doi.org/10.1016/j.funeco.2011.04.003

    Article  Google Scholar 

  • Simons AJ, Skidmore DI (1988) Race-specific resistance to light leaf spot in Brassica oleracea. Trans Br Mycol Soc 90:431–435. https://doi.org/10.1016/s0007-1536(88)80152-9

    Article  Google Scholar 

  • Singh D, Rathaur PS, Vicente JG (2016) Characterization, genetic diversity and distribution of Xanthomonas campestris pv. campestris races causing black rot disease in cruciferous crops of India. Plant Pathol 65(9):1411–1418

    Article  CAS  Google Scholar 

  • Sinha AK, Wood RKS (1968) Studies on the nature of resistance in tomato plants to Verticillium alboatrum. Ann Appl Biol 59:143–154

    Article  Google Scholar 

  • Smiley RW, Ogg AG Jr, Cook RJ (1992) Influence of glyphosate on Rhizoctonia root rot, growth, and yield of barley. Plant Dis 76:937–942

    Article  CAS  Google Scholar 

  • Smith KM (1935) A virus disease of cultivated crucifers. Ann Appl Biol 22:239–242

    Article  Google Scholar 

  • Sneh B, Burpee L, Ogoshi A (1991) Identification of Rhizoctonia species. Am Phytopath Soc Press, St. Paul, MN

    Google Scholar 

  • Sochting H, Verreet J (2004) Effects of different cultivation systems (soil management, nitrogen fertilization) on the epidemics of fungal diseases in oilseed rape (Brassica napus L. var. napus). J Plant Dis Prot 1:1–29. https://doi.org/10.1007/BF03356129

    Article  Google Scholar 

  • Sonah H, Zhang X, Deshmukh RK, Borhan MH, Fernando WGD, Bélanger RR (2016) Comparative transcriptomic analysis of virulence factors in Leptosphaeria maculans during compatible and incompatible interactions with canola. Front Plant Sci 7:1784. https://doi.org/10.3389/fpls.2016.01784

    Article  PubMed  PubMed Central  Google Scholar 

  • Song K, Osborn T, Williams P (1998) Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). Theor Appl Genet 75:784–794. https://doi.org/10.1007/BF00265606

    Article  Google Scholar 

  • Spallek T, Gan P, Kadota Y, Shirasu K (2018) Same tune, different song-cytokinins as virulence factors in plant-pathogen interactions? Curr Opin Plant Biol 44:82–87. https://doi.org/10.1016/j.pbi.2018.03.002

    Article  CAS  PubMed  Google Scholar 

  • Spence NJ, Phiri NA, Hughes SL, Mwaniki A, Simons S, Oduor G, Chacha D, Kuria A, Ndirangu S, Kibata GN, Marris GC (2007) Economic impact of Turnip mosaic virus, Cauliflower mosaic virus and Beet mosaic virus in three Kenyan vegetables. Plant Pathol 56:317–323. https://doi.org/10.1111/j.1365-3059.2006.01498.x

    Article  Google Scholar 

  • Sprague SJ, Balesdent MH, Brun H, Hayden HL, Marcroft SJ, Pinochet X, Rouxel T, Howlett BJ (2006a) Major gene resistance in Brassica napus (oilseed rape) is overcome by changes in virulence of populations of Leptosphaeria maculans in France and Australia. In: Fitt BDL, Evans N, Cooke BM, Howlett BJ (eds) Sustainable strategies for managing Brassica napus (oilseed rape) resistance to Leptosphaeria maculans (phoma stem canker). Springer, New York, NY, pp 33–40

    Chapter  Google Scholar 

  • Sprague SJ, Marcroft SJ, Hayden HL, Howlett BJ (2006b) Major gene resistance to blackleg in Brassica napus overcome within three years of commercial production in southeastern Australia. Plant Dis 90:190–198

    Article  CAS  PubMed  Google Scholar 

  • Sprague SJ, Marcroft SJ, Lindbeck KD, Ware AH, Khangura RK, Van de Wouw AP (2018) Detection, prevalence and severity of upper canopy infection on mature Brassica napus plants caused by Leptosphaeria maculans in Australia. Crop Past Sci 69:65–78

    Article  Google Scholar 

  • Spring O, Thines M (2004) On the necessity of new characters for classification and systematics of biotrophic Peronosporomycetes. Planta 219:910–914

    Article  CAS  PubMed  Google Scholar 

  • Stack RW, Frohberg RC, Casper H (1997) Reaction of spring wheats incorporating Sumai#3-derived resistance to inoculation with seven Fusarium species. Cereal Res Commun 25:667–671

    Article  Google Scholar 

  • Staunton WP (1967) Studies on light leaf spot (Gloeosporium concentricum) of Brassicae. Irish J Agric Res 6(2):203–211

    Google Scholar 

  • Stevens FL (1899) The compound oosphere of Albugo bliti. Bot Gaz 28:149–172. 225–245

    Article  Google Scholar 

  • Stevens FL (1901a) Gametogenesis and fertilization in Albugo. Contribution from the Hull Botanical Laboratory. XXIX. Bot Gaz 32:77–98

    Article  Google Scholar 

  • Stevens FL (1901b) Gametogenesis and fertilization in Albugo. Contribution from the Hull Botanical Laboratory. XXIX. Bot Gaz 32:177–169

    Google Scholar 

  • Stevens FL (1901c) Gametogenesis and fertilization in Albugo. Contribution from the Hull Botanical Laboratory. XXIX. Bot Gaz 32:238–261

    Article  Google Scholar 

  • Stevens FL (1904) Oogenesis and fertilization in Albugo ipomoeae-panduranae. Bot Gaz 38:300–302

    Article  Google Scholar 

  • Stobbs LW, Hume D, Forrest B (1989) Survey of canola germplasm for resistance to Turnip mosaic virus. Phytoprotection 70:1–6

    Google Scholar 

  • Stojsin V, Balaz F, Bagi F, Keljack I (2001) Pathogenicity of Fusarium spp. isolates from sugar beet root. Zaštita Bilja 52:241–249

    Google Scholar 

  • Stotz HU, Mitrousia GK, de Wit PJ, Fitt BDL (2014) Effector-triggered defence against apoplastic fungal pathogens. Trends Plant Sci 19:491–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stürzenbaum SR, Kille P (2001) Control genes in quantitative molecular biological techniques: the variability of invariance. Compar Biochem Physiol B 130:281–289

    Article  Google Scholar 

  • Suh SK, Green SK, Park HG (1995) Genetics of resistance to five strains of Turnip mosaic virus in Chinese cabbage. Euphytica 81:71–77

    Article  Google Scholar 

  • Suleman P, Al-Musallam A, Menezes CA (2001) The effect of solute potential and water stress on black scorch caused by Chalara paradoxa and Chalara radicicola on date palms. Plant Dis 85:80–83

    Article  PubMed  Google Scholar 

  • Sumner D, Glaze N, Dowler C, Johnson A (1978) Foliar diseases of turnip grown for greens in intensive cropping systems. Plant Dis Rep 62:51–55

    Google Scholar 

  • Sun D, Wang C, Zhang X, Zhang W, Jiang H, Yao X, Liu L, Wen Z, Niu G, Shan X (2019) Draft genome sequence of cauliflower (Brassica oleracea L var. botrytis) provides new insights into the C genome in Brassica species. Hortic Res 6:82

    Article  PubMed  PubMed Central  Google Scholar 

  • Sutton JC, Williams PH (1970) Comparison of extracellular polysaccharide of Xanthomonas campestris from culture and from infected cabbage leaves. Can J Bot 48(3):433–664. https://doi.org/10.1139/b70-089

    Article  Google Scholar 

  • Sylvester-Bradley R, Makepeace RJ (1985) Revision of a code for stages of development in oilseed rape (Brassica napus L.). Asp Appl Biol 10:395–400

    Google Scholar 

  • Tahvonen R (1979) Seed-borne fungi on cruciferous cultivated plants in Finland and their importance in seedling raising. J Sci Agric Soc Finl 51:327–379

    Google Scholar 

  • Tahvonen R, Hollo J, Hannukkala A, Kurppa A (1984) Rhizoctonia solani damping-off on spring turnip rape and spring rape (Brassica spp.) in Finland. J Sci Agric Soc Finl 56:143–154

    Google Scholar 

  • Taylor JD, Conway J, Roberts SJ, Astley D, Vicente JG (2002) Sources and origin of resistance to Xanthomonas campestris pv. campestris in Brassica genomes. Phytopathology 92:105–111

    Article  CAS  PubMed  Google Scholar 

  • Tekauz A, Mueller E, Beyene M, Stulzer M (2005) Fusarium head blight of winter wheat in Manitoba in 2004. Can Plant Dis Surv 85:47–48

    Google Scholar 

  • Teng PS, Shane WW, MacKenzie DR (1984) Crop losses due to plant pathogens. Crit Rev Plant Sci 2:21–47. https://doi.org/10.1080/07352688409382187

    Article  Google Scholar 

  • Teo BK, Yitbarek SM, Verma PR, Morrall RAA (1988) Influence of soil moisture, seeding date, and Rhizoctonia solani isolates (AG 2–1 and AG 4) on disease incidence and yield in canola. Can J Plant Pathol 10:151–158

    Article  Google Scholar 

  • Tewari JP (1991) Structural and biochemical bases of the black spot disease of crucifers. Adv Struct Biol 1:325–349

    Google Scholar 

  • Tewoldemedhin YT, Lamprecht SC, Mcleod A, Mazzola M (2006) Characterization of Rhizoctonia spp. recovered from crop plants used in rotational cropping systems in the Western Cape province of South Africa. Plant Dis 90:1399–1406. https://doi.org/10.1094/pd-90-1399

    Article  CAS  PubMed  Google Scholar 

  • Thakur M, Sohal BS (2013) Role of elicitors in inducing resistance in plants against pathogen infection: a review. ISRN Biochem 2013:762412., 10 pages. https://doi.org/10.1155/2013/762412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theron DJ, Holtz G (1989) Fusarium species associated with dry and stem-end rot of potatoes in South Africa. Phytophylactica 21:175–181

    Google Scholar 

  • Thines A, Spring O (2005) A revision of Albugo (Chromista, Peronosporomycetes). Mycotaxon 92:443–458

    Google Scholar 

  • Thurwachter F, Garbe V, Hoppe HH (1999) Ascospore discharge, leaf infestation and variations in pathogenicity as criteria to predict impact of Leptosphaeria maculans on oilseed rape. J Phytopathol 147:215–222. https://doi.org/10.1046/j.1439-0434.1999.147004215.x

    Article  Google Scholar 

  • Tian X, Wang D, Mao Z, Pan L, Liao J, Cai Z (2019) Infection of Plasmodiophora brassicae changes the fungal endophyte community of tumourous stem mustard roots as revealed by high-throughput sequencing and culture-dependent methods. PLoS One 14:e0214975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todaka D, Nakashima K, Shinozaki K, Yamaguchi-Shinozaki K (2012) Toward understanding transcriptional regulatory networks in abiotic stress responses and tolerance in rice. Rice 5:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Togashi K, Shibasaki Y (1934) Biometrical and biological studies of A. candida (Pers.) O. Kuntze in connection with its specialization. Bull Imp Coll Agric For 18:88

    Google Scholar 

  • Togashi K, Shibasaki Y, Kwanno Y (1930) Morphological studies of Albugo candida, the causal fungus of the white rust of cruciferous plants. Agric Hortic 7:859–882

    Google Scholar 

  • Togashi K, Shibasaki Y, Sugana Y (1931) Morphological studies of white rust fungi in cruciferous plants. Jpn J Bot 5:82–83

    Google Scholar 

  • Tomimura K, Spak J, Katis N, Jenner CE, Walsh JA, Gibbs AJ, Ohshima K (2004) Comparisons of the genetic structure of populations of Turnip mosaic virus in West and East Eurasia. Virology 330(2):408–423. https://doi.org/10.1016/j.virol.2004.09.040

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson JA (1970) Turnip mosaic virus. CMI/AAB descriptions of plant viruses, vol 8. CABI, Wallingford

    Google Scholar 

  • Tomlinson JA (1987) Epidemiology and control of virus diseases of vegetables. Ann Appl Biol 110:661–681

    Article  Google Scholar 

  • Tomlinson JA, Ward CM (1978) The reactions of swede (Brassica napus) to infection by Turnip mosaic virus. Ann Appl Biol 89:61–69

    Article  Google Scholar 

  • Tomlinson JA, Ward CM (1982) Selection for immunity in swede (Brassica napus) to infection by Turnip mosaic virus. Ann Appl Biol 101:43–50

    Article  Google Scholar 

  • Ton J, van der Ent S, van Hulten M, Pozo M, van Oosten V, van Loon LC et al (2009) Priming as a mechanism behind induced resistance against pathogens; insects and abiotic stress. IOBC/WPRS Bull 44:3–13

    Google Scholar 

  • Tortosa M, Cartea ME, Rodríguez VM, Velasco P (2018) Unraveling the metabolic response of Brassica oleracea exposed to Xanthomonas campestris pv. campestris. J Sci Food Agric 98:3675–3683

    Article  CAS  PubMed  Google Scholar 

  • Tu JC (1988) The role of white mold-infected white bean (Phaseolus vulgaris L) seeds in the dissemination of Sclerotinia sclerotiorum (Lib) de Bary. J Phytopathol 121:40–50

    Article  Google Scholar 

  • Tuncel G, Nergiz C (1993) Antimicrobial effect of some olive phenols in a laboratory medium. Lett Appl Microbiol 17:300–302

    Article  CAS  Google Scholar 

  • Tyvaert L, França SC, Debode J, Höfte M (2014) The endophyte Verticillium Vt305 protects cauliflower against Verticillium wilt. J Appl Microbiol 116:1563–1571

    Article  CAS  PubMed  Google Scholar 

  • Van Alfen NK (1989) Molecular bases for virulence and avirulence of fungal wilt pathogens. In: Tjamos EC, Beckman CH (eds) Vascular wilt diseases of plants. Springer, Berlin, pp 19–32

    Google Scholar 

  • Van de Wouw AP, Idnurm A (2019) Biotechnological potential of engineering pathogen effector proteins for use in plant disease management. Biotechnol Adv 37:1073–1087. https://doi.org/10.1016/j.biotechadv.2019.04.009

    Article  CAS  Google Scholar 

  • Van de Wouw AP, Idnurm A, Davidson JA, Sprague SJ, Khangura RK, Ware AH, Lindbeck KD, Marcroft SJ (2016) Fungal diseases of canola in Australia: identification of trends, threats and potential therapies. Aust Plant Pathol 45:415–423

    Article  Google Scholar 

  • Vance CP, Kirk TK, Sherwood RT (1980) Lignification as a mechanism of disease resistance. Annu Rev Phytopathol 18:259–288

    Article  CAS  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034. https://doi.org/10.1186/gb-2002-3-7-research0034

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanniasingham VM, Gilligan CA (1989) Effects of host, pathogen and environmental factors on latent period and production of pycnidia of Leptosphaeria maculans on oilseed rape leaves in controlled environments. Mycol Res 93:167–174

    Article  Google Scholar 

  • Vasudeva RS (1958) Diseases of rape and mustard. In: Singh DP (ed) Rape and mustard. Indian Central Oilseed Committee, Hyderabad. 77 p

    Google Scholar 

  • Vegetables New Zealand (2016) Vegetable Brassica IPM manual: pests, natural enemies, diseases and disorders of vegetable Brassicas in New Zealand. Horticulture New Zealand, Wellington. www.vegetablesnz.co.nz/research-and-development/current-research-projects/. Accessed 26 Feb 2017

    Google Scholar 

  • Verma PR (1996a) Oilseed rape and canola diseases incited by Rhizoctonia species. In: Sneh B, Jabaji-Hare S, Neate S, Dijst G (eds) Rhizoctonia species: taxonomy, molecular biology, ecology, pathology and disease control. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2901-7_22

    Chapter  Google Scholar 

  • Verma PR (1996b) Biology and control of Rhizoctonia solani on rapeseed: a review. Phytoprotection 77:99–111

    Article  CAS  Google Scholar 

  • Verma PR, Saharan GS (1994) Monograph on Alternaria diseases of crucifers. Technical Bulletin 1994–6E. Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, SK

    Google Scholar 

  • Vicente JG, Holub EB (2013) Xanthomonas campestris pv. campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to Brassica crops. Mol. Plant Pathol 14(1):2–18. https://doi.org/10.1111/j.1364-3703.2012.00833.x

    Article  CAS  Google Scholar 

  • Vicente JG, Conway J, Roberts SJ, Taylor JD (2001) Identification and origin of Xanthomonas campestris pv. campestris races and related pathovars. Phytopathology 91:492–499

    Article  CAS  PubMed  Google Scholar 

  • Videira S, Groenewald J, Braun U, Shin HD, Crous P (2016) All that glitters is not Ramularia. Stud Mycol 83:49–163. https://doi.org/10.1016/j.simyco.2016.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vijayvargiya S, Kumar A (2011) Influence of salinity stress on plant growth and productivity: salinity stress influences on plant growth. Lap Lambert Academic Publishers, Saarbrucken, p 180

    Google Scholar 

  • Vincent D, Rafiqi M, Job D (2020) The multiple facets of plant-fungal interactions revealed through plant and fungal secretomics. Front Plant Sci 10:1626

    Article  PubMed  PubMed Central  Google Scholar 

  • Voglmayr H, Riethmüller A (2006) Phylogenetic relationships of Albugo species (white blister rusts) based on LSU rDNA sequence and oospore data. Mycol Res 110:75–85

    Article  CAS  PubMed  Google Scholar 

  • Wafford JD, Gladders P, McPherson GM (1986) The incidence and severity of Brussels sprout diseases and the influence of oilseed rape. Asp Appl Biol 12:1–12

    Google Scholar 

  • Wakefield EM (1927) The genus Cystopus in South Africa. Trans Br Mycol Soc 2:242–246

    Google Scholar 

  • Walker JC (1969) Sclerotinia disease of vegetable and field crops. In: Plant pathology, 3rd edn. McGraw-Hill, New York, NY, p 417

    Google Scholar 

  • Walkey DGA (1982) Reaction of spring cabbage cultivars to infection by Turnip mosaic virus. J Natl Inst Agric Bot 16:114–125

    Google Scholar 

  • Walkey DGA, Pink DAC (1988) Reactions of white cabbage (Brassica oleracea var. capitata) to four different strains of turnip mosaic virus. Ann Appl Biol 112:273–284

    Article  Google Scholar 

  • Walsh JA (1989) Genetic control of immunity to Turnip mosaic virus in winter oilseed rape (Brassica napus ssp. oleifera) and the effect of foreign isolates of the virus. Ann Appl Biol 115:89–99

    Article  Google Scholar 

  • Walsh JA, Jenner CE (2002) Turnip mosaic virus and the quest for durable resistance. Mol Plant Pathol 3(5):289–300. https://doi.org/10.1046/j.1364-3703.2002.00132.x

    Article  CAS  PubMed  Google Scholar 

  • Walsh JA, Tomlinson JA (1985) Viruses infecting winter oilseed rape (Brassica napus ssp. oleifera). Ann Appl Biol 107:485–495

    Article  Google Scholar 

  • Walsh JA, Rusholme RL, Hughes SL, Jenner CE, Bambridge JM, Lydiate DJ, Green SK (2002) Different classes of resistance to Turnip mosaic virus in Brassica rapa. Eur J Plant Pathol 108:15–20

    Article  Google Scholar 

  • Wang G (1999) Evaluation of Brassica napus seed infection by Leptosphaeria maculans/Phoma lingam. M Sc thesis, University of Agriculture, Poznan

    Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14. https://doi.org/10.1007/s00425-003-1105-5

    Article  CAS  PubMed  Google Scholar 

  • Wang TY, He F, Hu QW, Zhang Z (2011) A predicted protein-protein interaction network of the filamentous fungus Neurospora crassa. Mol BioSyst 7:2278–2285. https://doi.org/10.1039/c1mb05028a

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Wang Y, Zhou P (2013) Validation of reference genes for quantitative real-time PCR during Chinese wolfberry fruit development. Plant Physiol Biochem 70:304–310

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L (2014) Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Tang J, Hu R, Wu P, Hou XL, Song XM (2015) Genome-wide analysis of the R2R3-MYB transcription factor genes in Chinese cabbage (Brassica rapa ssp. pekinensis) reveals their stress and hormone responsive patterns. BMC Genomics 16:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Wardrop AB (1971) Occurrence and formation in plants. In: Sarkanen KV, Ludwig CH (eds) Lignins: occurrence, formation, structure, and reactions. Wiley Inter science, New York, NY, pp 19–41

    Google Scholar 

  • Warwick SI, Black LD (1991) Molecular systematics of Brassica and allied genera (subtribe Brassicinae, Brassiceae)—chloroplast genome and cytodeme congruence. Theor Appl Genet 82:81–92. https://doi.org/10.1007/BF00231281

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse GM (1975) Species of Albugo on Aizoaceae. Trans Br Mycol Soc 65:504–507

    Article  Google Scholar 

  • West JS, Biddulph JE, Fitt BDL, Gladders P (1999) Epidemiology of Leptosphaeria maculans in relation to forecasting stem canker severity on winter oilseed rape in the UK. Ann Appl Biol 135:535–546

    Article  Google Scholar 

  • West JS, Evans N, Liu S, Hu B, Peng L (2000) Leptosphaeria maculans causing stem canker of oilseed rape in China. New Dis Rep. http://www.bspp.org.uk/ndr/2000/20003.htm

  • West JS, Kharbanda PD, Barbetti MJ, Fitt BDL (2001) Epidemiology and management of Leptosphaeria maculans (phoma stem canker) on oilseed rape in Australia. Can Eur Plant Pathol 50:10–27

    Article  Google Scholar 

  • Whetten R, Sederoff R (1995) Lignin biosynthesis. Plant Cell 7:1001–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams PH (1980) Black rot: a continuing threat to world crucifers. Plant Dis 64:736–742

    Article  Google Scholar 

  • Williams PH, Hill CB (1986) Rapid cycling populations of Brassica. Science 232:1385–1389

    Article  CAS  PubMed  Google Scholar 

  • Wilson GW (1907) Studies in North American Peronasporales. I. The genus Albugo. Torry Bot Club Bull 34:61–84

    Article  Google Scholar 

  • Wing N, Bryden WL, Lauren DR, Burgess LW (1993) Toxogenecity of Fusarium species and subspecies in Section Gibbosum from different regions of Australia. Mycol Res 97:1441–1446

    Article  Google Scholar 

  • Wolf FA, Wolf FT (1947) The fungi, vol I. John Wiley and Sons, New York, pp 105–108

    Google Scholar 

  • Wood PMc R, Barbetti M (1977a) The role of seed infection in the spread of blackleg of rape in Western Australia. Aust J Exp Agric 17:1040–1044

    Google Scholar 

  • Wood PMc R, Barbetti MJ (1977b) A study on the inoculation of rape seedlings with ascospores and pycnidiospores of the blackleg disease causal agent Leptosphaeria maculans. J Aust Inst Agric Sci 43:79–80

    Google Scholar 

  • Wroblewski T, Coulibaly S, Sadowski J, Quiros CF (2000) Variation and phylogenetic utility of the Arabidopsis thaliana Rps2 homolog in various species of the tribe Brassiceae. Mol Phylogenet Evol 16:440–448

    Article  CAS  PubMed  Google Scholar 

  • Xue AG, Ho KM, Butler G, Vigler BJ, Babcock C (2006) Pathogenicity of Fusarium species causing head blight in barley. Phytoprotection 87:55–61

    Article  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Yuan Q, Tang J, Huang J, Hsiang T, Wei Y, Zheng L (2018) Colletotrichum higginsianum as a model for understanding host–pathogen interactions: a review. Int J Mol Sci 19(7):2142. https://doi.org/10.3390/ijms19072142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Tang J, Yuan Q, Gu Q, Liu H, Huang J, Hsiang T, Zheng L (2020) ChCDC25 regulates infection-related morphogenesis and pathogenicity of the crucifer anthracnose fungus Colletotrichum higginsianum. Front Microbiol 11:763. https://doi.org/10.3389/fmicb.2020.00763

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang YW, Lai KN, Tai PY, Li WH (1999) Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and other angiosperm lineages. J Mol Evol 48:597–604

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Feng HX, Yang YS (2008) Effects of silicon on flowering Chinese cabbage’s anthracnose occurrence, flower stalk formation, and silicon uptake and accumulation. Chin J Appl Ecol 19(5):1006–1012

    CAS  Google Scholar 

  • Yang J, Liu D, Wang X, Ji C, Cheng F, Liu B, Hu Z, Chen S, Pental D, Ju Y (2016) The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nat Genet 48:1225–1232

    Article  CAS  PubMed  Google Scholar 

  • Yasaka R, Fukagawa H, Ikematsu M, Soda H, Korkmaz S, Golnaraghi A, Katis N, Ho SYM, Gibbs AJ, Ohshima K (2017) The timescale of emergence and spread of turnip mosaic potyvirus. Sci Rep 7:4240. https://doi.org/10.1038/s41598-017-01934-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasuda M, Ishikawa A, Jikumaru Y, Seki M, Umezawa T, Asami T (2008) Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis. Plant Cell 20:1678–1692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon JY, Green SK, Opena RT (1993) Inheritance of resistance to turnip mosaic virus in Chinese cabbage. Euphytica 69:103–108

    Article  Google Scholar 

  • Yoshii M, Yoshioka N, Ishikawa M et al (1998) Isolation of an Arabidopsis thaliana mutant in which accumulation of Cucumber mosaic virus coat protein is delayed. Plant J 13:211–219

    Article  CAS  PubMed  Google Scholar 

  • Yu D, Chen C, Chen Z (2001) Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell 13:1527–1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeise K, von Tiedemann A (2001) Morphological and physiological differentiation among vegetative compatibility groups of Verticillium dahlia in relation to V. longisporum. J Phytopathol 149:469–475

    Article  Google Scholar 

  • Zeise K, von Tiedemann A (2002a) Host specialization among vegetative compatibility groups of Verticillium dahlia in relation to Verticillium longisporum. J Phytopathol 150:112–119

    Article  Google Scholar 

  • Zeise K, von Tiedemann A (2002b) Application of RAPD-PCR for virulence type analysis within Verticillium dahlia and Verticillium longisporum. J Phytopathol 150:557–563

    Article  CAS  Google Scholar 

  • Zhang X, Fernando WGD (2018) Insights into fighting against blackleg disease of Brassica napus in Canada. Crop Past Sci 69:40–47. https://doi.org/10.1071/CP16401

    Article  Google Scholar 

  • Zhang H, Zhou E, Liu Z, Yang M, Shen Y (1998) A technique for identification of resistance to anthracnose of Brassica parachinensis in seedling stage. J South China Agric Univ 19:47–50

    Google Scholar 

  • Zhang H, Liu Z, Zheng Y, Huang H, Zhou E, Yang M (2000) The identification of resistance of Chinese flowering cabbage varieties to anthracnose. Guangdong Agric Sci 27:47–49

    Google Scholar 

  • Zhang X, White RP, Demir E, Jedryczka M, Lange RM, Islam M, Li ZQ, Huang YJ, Hall M, Zhou G, Wang Z, Cai X, Skelsey P, Fitt BDL (2014) Leptosphaeria spp., phoma stem canker and potential spread of L. maculans on oilseed rape crops in China. Plant Pathol 63:598–612. https://doi.org/10.1111/ppa.12146

    Article  Google Scholar 

  • Zhang L, Cai X, Wu J, Liu M, Grob S, Cheng F, Liang J, Cai C, Liu Z, Liu B, Wang F, Li S, Liu F, Li X, Cheng L, Yang W, Li MH, Grossniklaus U, Zheng H, Wang X (2018a) Improved Brassica rapa reference genome by single-molecule sequencing and chromosome conformation capture technologies. Hortic Res 5:50. https://doi.org/10.1038/s41438-018-0071-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YW, Xue LH, Li CJ (2018b) First report of anthracnose caused by Colletotrichum higginsianum on Rumex acetosa in China. Plant Dis 102(6):1174. https://doi.org/10.1094/PDIS-07-17-1082-PDN

    Article  Google Scholar 

  • Zhou Y, Fitt BDL, Welham SJ, Gladders P, Sansford CE, West JS (1999) Effects of severity and timing of stem canker (Leptosphaeria maculans) symptoms on yield of winter oilseed rape (Brassica napus) in the UK. Eur J Plant Pathol 105:715–728

    Article  Google Scholar 

  • Zhou E, Yang M, Zhang H, Liu Z (2002) Factors affecting the mycelia growth, sporulation and conidial germination of Colletotrichum higginsianum Sacc. J Nanjing Agric Univ 25:47–51

    CAS  Google Scholar 

  • Zhou L, Hu Q, Johansson A, Dixelius C (2006) Verticillium longisporum and V. dahliae: infection and disease in Brassica napus. Plant Pathol 55:137–144

    Article  CAS  Google Scholar 

  • Zhu W, Wei W, Fu Y, Cheng J, Xie J, Li G, Yi X, Kang Z, Dickman MB, Jiang D (2013) A secretory protein of necrotrophic fungus Sclerotinia sclerotiorum that suppresses host resistance. PLoS One 8:e53901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh Saharan, G., Mehta, N.K., Meena, P.D. (2023). Genomics of Crucifer’s Host-Pathosystem: Prologue. In: Genomics of Crucifer's Host- Pathosystem . Springer, Singapore. https://doi.org/10.1007/978-981-19-3812-2_1

Download citation

Publish with us

Policies and ethics