Skip to main content

Groundwater copepods: diversity patterns over ecological and evolutionary scales

  • Chapter
Copepoda: Developments in Ecology, Biology and Systematics

Part of the book series: Developments in Hydrobiology ((DIHY,volume 156))

Abstract

Copepods are common components of the groundwater fauna, and greatly increase the diversity of groundwater communities. With more than 900 species/subspecies known from continental groundwaters, stygobiont copepods inhabit all kinds of aquifers (karstic, fissured, porous), as well as surface/subsurface ecotones (land/water and water/water). The polyhedral and varied structure of the stygohabitats is reflected in the surprising mixture of functional morphologies and habitat exploitations experienced by groundwater copepods. Morphological adaptations and specializations are discussed, as well as the chronology of their appearance in the evolutionary history of several taxa. Diversity patterns of copepod assemblages in groundwater are examined under both structural and functional profiles, as well as across a range of scales. Structure and function operate in an interactive, sometimes hierarchical ways, as well as scales. On the ecological scale, local heterogeneity and patchiness in geomorphic and hydrologic characteristics, as well as biotic interactions, are to be considered causal factors affecting the diversity patterns over a range of spatial and temporal scales. On the evolutionary scale, it is widely accepted that stygobiont copepods evolved from ancestors living in marine, freshwater and semiterrestrial environments. They gained access to the groundwater through major highways represented by the interstitial and the crevicular/karstic corridors. ‘Phylogenetic diversity’ in groundwater copepod taxocoenoses is viewed as a heterogeneous assemblage of species belonging to different phylogenetic lineages, which entered groundwater at different times and by different ways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahnert, A., 1998. Has the main habitat of Potamocaris species been overlooked until now? (Harpacticoida, Parastenocarididae). J. mar. Syst. 15: 121–125.

    Article  Google Scholar 

  • Amoros, C. & J. Mathieu, 1984. Structure et fonctionnement des écosystèmes du Haut-Rh≠ français. 35-Relations entre les eaux interstitielles et les eaux superficiels: influence sur les peuplements de Copépodes Cyclopoïdes (Crustacés). Hydrobiologia 108: 273–280.

    ISI  Google Scholar 

  • Apostolov, A., 1985. Etude sur quelques Copépodes harpacticoides du genre Elaphoidella Chappuis, 1929 de Bulgarie avec une révision du genre. Acta Mus. Mac. Sci. nat. 17: 135–163.

    Google Scholar 

  • Bjornberg, M. H. G. C. & F. D. Por, 1986. Comparative notes on the development of two species of Bryocyclops (Copepoda, Cyclopoida). In Schriever, G., H. K. Schminke and C.-t. Shih (eds), Proceedings of the Second International Conference on Copepoda, Syllogeus 58: 229–231.

    Google Scholar 

  • Botosaneanu, L., 1986. General Introduction. In Botosaneanu, L. (ed.), Stygofauna Mundi — A Faunistic, Distributional and Ecological Synthesis of the World Fauna Inhabiting Subterranean Waters (Including the Marine Interstitial). E. J. Brill, Leiden: 1–4.

    Google Scholar 

  • Botosaneanu, L. & J. R. Holsinger, 1991. Some aspects concerning colonization of the subterranean realm-especially of subterranenan waters: a response to Rouch & Danielopol, 1987. Stygologia 6: 11–39.

    ISI  Google Scholar 

  • Boutin, C., 1994. Phylogeny and biogeography of metacrangonyctid amphipods in North Africa. Hydrobiologia 287: 49–64.

    Article  ISI  Google Scholar 

  • Boutin, C. & N. Coineau, 1990. ‘Regression Model’,‘Modèle Biphase’ d’évolution et origine des micro-organismes stygobies interstitiels continentaux. Rev. Micropaléontol. 33: 303–322.

    Google Scholar 

  • Boxshall, G. A. & T. D. Evstigneeva, 1994. The evolution of species flocks of copepods in Lake Baikal: a preliminary analysis. Ergebn. Limnol. 44: 235–245.

    Google Scholar 

  • Boxshall, G. A., T. D. Evstigneeva & P. F. Clark, 1993. A new interstitial cyclopoid copepod from a sandy beach on the western shore of Lake Baikal, Siberia. Hydrobiologia 268: 99–107.

    Article  ISI  Google Scholar 

  • Boxshall, G. A. & D. Jaume, 2000. Discoveries of cave misophrioids (Crustacea: Copepoda) shed new light on the origin of anchihaline faunas. Zool. Anz. 239: 1–19.

    Google Scholar 

  • Brancelj, A., 1991a. Stygobitic Calanoida (Crustacea: Copepoda) from Yugoslavia with description of a new species-Stygodiaptomus petkovskii from Bosnia and Hercegovina. Stygologia 6: 165–176.

    ISI  Google Scholar 

  • Brancelj, A., 1991b. Paramorariopsis anae gen. n., sp. n. and the female of Ceuthonectes rouchi Petkovski, 1984 — two interesting harpacticoids (Copepoda: Crustacea) from caves in Slovenia (NW Yugoslavia). Stygologia 6: 193–200.

    ISI  Google Scholar 

  • Bruno, M. C. & V. Cottarelli, 1999. Harpacticoids from groundwaters in the Philippines: Parastenocaris mangyans, new species, Epactophanes philippinus, new species, and redescription of Phyllognathopus bassoti (Copepoda). J. crust. Biol. 19: 510–529.

    Google Scholar 

  • Bruno, M. C., V. Cottarelli & R. Berera, 1998. Preliminary remarks on the cladistic systematics in some taxa of Leptopontiidae and Parastenocarididae (Copepoda, Harpacticoida). Mem. Mus. Civ. St. Nat. Verona 13: 69–79.

    Google Scholar 

  • Castany, G., 1982. Principes et méthodes de l’hydrogéologie. Dunod Université, Paris: 238 pp.

    Google Scholar 

  • Chafiq, M., J. Gibert, P. Marmonier, M.-J. Dole-Olivier & J. Juget, 1992. Spring ecotone and gradient study of interstitial fauna along two floodplain tributaries of the River Rh≠, France. Reg. Riv. Res. Manage. 7: 103–115.

    Google Scholar 

  • Coineau, N., 1986. Isopoda: Asellota: Janiroidea. In Botosaneanu, L. (ed.), Stygofauna Mundi-A Faunistic, Distributional and Ecological Synthesis of the World Fauna Inhabiting Subterranean Waters (Including the Marine interstitial). E. J. Brill, Leiden: 465–472.

    Google Scholar 

  • Coineau, N. & C. Boutin, 1992. Biological processes in space and time. Colonization, evolution and speciation in interstitial stygobionts: In Camacho, A. I. (eel.), The Natural History of Biospeleology. Mus. Nac. Cienc.nat., CSIC Ed., Monografias, Madrid 7: 427–451.

    Google Scholar 

  • Conroy-Dalton, S. & R. Huys, 1996. Towards a revision of Ameira Boeck, 1865 (Harpacticoida, Ameiridae): re-examination of the A. tenella-group and the establishment of Filexilia gen. n. and Glabameira gen. n. Zool. Scr. 25: 317–339.

    Article  Google Scholar 

  • Culver, D. C., T. C. Kane & D. W. Fong, 1995. Adaptation and Natural Selection in Caves. The Evolution of Gammarus minus. Harvard University Press, Cambridge: 223 pp.

    Google Scholar 

  • Dahms, H.-U & M. Pottek, 1992. Metahuntemmannia Smirnov, 1946 and Talpina gen. nov. (Copepoda, Harpacticoida) from the deep-sea of the high Antarctic Weddell Sea with a description of eight new species. Microfauna Marina 7: 7–68.

    Google Scholar 

  • Danielopol, D., 1989. Groundwater fauna associated with riverine aquifers. J. n. am. Benthol. Soc. 8: 18–35.

    Google Scholar 

  • Danielopol, D. L., P. Marmonier, A. J. Boulton & G. Bonaduce, 1994. World subterranean ostracod biogeography: dispersal or vicariance. Hydrobiologia 287: 119–129.

    Article  ISI  Google Scholar 

  • Danielopol, D. & R. Rouch, 1991. L’adaptation des organismes au milieu aquatique souterrain. Réflexions sur l’apport des recherches écologiques récentes. Stygologia 6: 129–142.

    ISI  Google Scholar 

  • Danielopol, D. L., R. Rouch, P. Pospisil, P. Torreiter & F. Möszlacher, 1997. Ecotonal animal assemblages; their interest for groundwater studies. In Gibert, J., J. Mathieu & F. Fournier (eds), Groundwater/Surface Water Ecotones: Biological Interactions and Management Options International Hydrology Series. Cambridge University Press: 11–20.

    Google Scholar 

  • Dole-Olivier, M.-J., D. M. P. Galassi, P. Marmonier & M. Creuzé des Chatelliers, 2000. The biology and ecology of lotic micro-crustaceans. Freshwat. Biol. 44: 63–92.

    Google Scholar 

  • Dole-Olivier, M.-J. & P. Marmonier, 1992a. Ecological requirements of stygofauna in an active channel of the Rh≠ River. Stygologia 7: 65–75.

    Google Scholar 

  • Dole-Olivier, M.-J. & P. Marmonier, 1992b. Patch distribution of interstitial communities: prevailing factors. Freshwat. Biol. 27: 177–191.

    Google Scholar 

  • Dole-Olivier M.-J., P. Marmonier, M. Creuzé des Chatelliers & D. Martin, 1994. Interstitial fauna associated with the alluvial floodplains of the Rh≠ River (France). In Gibert, J., D. L. Danielopol & J. A. Stanford (eds), Groundwater Ecology. Academic Press, Inc., San Diego: 313–346.

    Google Scholar 

  • Drake, J. A., C. L. Hewitt, G. R. Huxel & J. Kolasa, 1996. Diversity and higher levels of organization. In Gaston, K. J. (ed.), Biodiversity. A Biology of Numbers and Difference. Blackwell Science Ltd., Oxford: 149–166.

    Google Scholar 

  • Dreher, J. E., P. Pospisil & D. L. Danielopol, 1997. The role of hydrology in defining a groundwater ecosystem. In Gibert, J., J. Mathieu & F. Fournier (eds), Groundwater/Surface Water Ecotones: Biological Interactions and Management Options. International Hydrology Series, Cambridge University Press: 119–126.

    Google Scholar 

  • Dussart, B. H. & D. Defaye, 1995. Copepoda. Introduction to the Copepoda. In Dumont, H. J. (ed.), Guides to the Identification of the Microinvertebrates of the Continental Waters of the World. SPB Academic Publishing bv, Amsterdam 7: 277 pp.

    Google Scholar 

  • Enckell, P. H., 1968. Oxygen availability and microdistribution of interstitial mesofauna in Swedish fresh-water sandy beaches. Oikos 19: 271–291.

    ISI  Google Scholar 

  • Enckell, P. H., 1969. Distribution and dispersal of Parastenocarididae (Copepoda) in northern Europe. Oikos 20: 493–507.

    ISI  Google Scholar 

  • Enckell, P. H., 1995. Parastenocaris glacialis (Crustacea: Copepoda: Parastenocarididae) in the Faroe Islands. Fróokaparrit 43 bók.: 101–105.

    Google Scholar 

  • Fiers, F., 1990. Abscondicola humesi n. gen. n. sp. from the gill chambers of land crabs and the definition of Cancrincolidae n. fam. (Copepoda, Harpacticoida). Bull. Inst. r. Sci. nat. Belg. (Biologie) 60: 69–103.

    Google Scholar 

  • Fiers, F. & V. Ghenne, 2000. Cryptozoic copepods from Belgium: diversity and biogeographic implications. Belg. J. Zool. 130: 11–19.

    Google Scholar 

  • Fiers, F., J. W. Reid, T. M Iliffe & E. Suárez-Morales 1996. New hypogean cyclopoid copepods (Crustacea) from the Yucatán Peninsula, Mexico. Contr. Zool. 66: 65–102.

    Google Scholar 

  • Fisher, S. G., 1997. Creativity, idea generation and the functional morphology of streams. J. n. am. Benthol. Soc. 16: 305–318.

    Google Scholar 

  • Fosshagen, A. & T. M. Iliffe, 1985. Two new genera of Calanoida and a new order of Copepoda, Platycopioida, from marine caves on Bermuda. Sarsia 70: 345–358.

    ISI  Google Scholar 

  • Fosshagen, A. & T. M. Iliffe, 1998. A new genus of the Ridgewayiidae (Copepoda, Calanoida) from an anchialine cave in the Bahamas. J. mar. Syst. 15: 373–380.

    Article  Google Scholar 

  • Galassi, D. M. P., 1997a. Little known harpacticoid copepods from Italy, and description of Parastenocaris crenobia n. sp. (Copepoda, Harpacticoida). Crustaceana 70: 694–709.

    ISI  Google Scholar 

  • Galassi, D. M. P., 1997b. The genus Pseudectinosoma Kunz, 1935: an update, and description of Pseudectinosoma kunzi sp. n. from Italy (Crustacea: Copepoda: Ectinosomatidae). Arch. Hydrobiol. 139:277–287.

    Google Scholar 

  • Galassi, D. M. P. & P. De Laurentiis, 1997a. Pseudectinosoma reductum, a new ectinosomatid harpacticoid from spring waters in Italy (Crustacea: Copepoda). Hydrobiologia 356: 81–86.

    Article  ISI  Google Scholar 

  • Galassi, D. M. P. & P. De Laurentiis, 1997b. Two new species of Nitocrella from groundwaters of Italy (Crustacea, Copepoda, Harpacticoida). Ital. J. Zool. 64: 367–376.

    Article  Google Scholar 

  • Galassi, D. M. P., P. De Laurentiis & M.-J. Dole-Olivier, 1997. The genus Pseudectinosoma Kunz, 1935 (Crustacea: Copepoda: Ectinosomatidae) in the Mediterranean Region: relict of an ancient Tethyan fauna? XIII International Symposium of Biospeleology, Marrakesh (20–27 April 1997): 40.

    Google Scholar 

  • Galassi, D. M. P., P. De Laurentiis & M.-J. Dole-Olivier, 1999a. Nitocrellopsis rouchi sp. n., a new ameirid harpacticoid from phreatic waters in France (Copepoda: Harpacticoida: Ameiridae). Hydrobiologia 412: 177–189.

    Article  ISI  Google Scholar 

  • Galassi, D. M. P., M.-J. Dole-Olivier & P. De Laurentiis, 1999b. Phylogeny and biogeography of the genus Pseudectinosoma, and description of P. janineae sp. n. (Copepoda, Ectinosomatidae). Zool. Scr. 28: 289–303.

    Article  Google Scholar 

  • Gibert, J., 1994. Ecologie et dynamique biogéochimique des systèmes souterrains. Programme Interdisciplinaire de Recherche sur l’Environnement(PIREN). Rapport d’Acticités 1991–1994, Lyon: 171 pp.

    Google Scholar 

  • Gibert, J., F. Fournier & J. Mathieu, 1997. The groundwater/surface water ecotone perspective: state of the art. In Gibert, J., J. Mathieu & F. Fournier (eds), Groundwater/Surface Water Ecotones: Biological Interactions and Management Options. International Hydrology Series. Cambridge University Press: 3–8.

    Google Scholar 

  • Gibert, J., F. Malard, M. J. Turquin & R. Laurent, 2000. Karst ecosystems in the Rhone River Basin. In Wilkens, H., D. C. Culver & B. Humpreys (eds), Ecosystems of the World-Subterranean Ecosystems. Elsevier, Amsterdam: 533–558.

    Google Scholar 

  • Gibert, J., J. A. Stanford, M.-J. Dole-Olivier & J. V. Ward, 1994a. Basic attributes of groundwater ecosystems and prospects for research. In Gibert, J., D. L. Danielopol & J. A. Stanford (eds), Groundwater Ecology. Academic Press, Inc., San Diego: 7–40.

    Google Scholar 

  • Gibert, J., Ph. Vervier, F. Malard, R. Laurent, & J.-L. Reygrobellet, 1994b. Dynamics of communities and ecology 43. of karst ecosystems: example of three karsts in eastern and southern France. In J. Gibert, D. L. Danielopol & J. A, Stanford (eds), Groundwater Ecology. Academic Press, Inc., San Diego: 425–450.

    Google Scholar 

  • Glatzel, T., 1990. On the biology of Parastenocaris phyllura Kiefer (Copepoda, Harpacticoida). Stygologia 5: 131–136.

    ISI  Google Scholar 

  • Glatzel, T., 1991. Neue morphologische Aspekte und die Copepodid-Stadien von Parastenocaris phyllura Kiefer (Copepoda, Harpacticoida). Zool. Scr. 20: 375–393.

    Article  Google Scholar 

  • Glatzel, T. & H. K. Schminke, 1996. Mating behaviour of the groundwater copepod Parastenocaris phyllura Kiefer, 1938 (Copepoda: Harpacticoida). Contr. Zool. 66: 103–108.

    Google Scholar 

  • Holsinger, J. R., 1988. Troglobites: the evolution of cave-dwelling organisms. Am. Sci. 76: 147–153.

    Google Scholar 

  • Holsinger, J. R., 1992. Two new species of the subterranean amphipod genus Bahadzia (Hadziidae) from the Yucatan Peninsula region of southern Mexico, with an analysis of phylogeny and biogeography of the genus. Stygologia 7: 85–105.

    ISI  Google Scholar 

  • Holsinger, J. R., 1994. Pattern and process in the biogeography of subterranean amphipods. Hydrobiologia 287: 131–145.

    Article  ISI  Google Scholar 

  • Hsü, K. J., 1978. When the Black Sea was drained. Sci. am. 128: 53–63.

    Google Scholar 

  • Hsü, K. J., W. B. F. Ryan & M. B. Cita, 1973. Late Miocene desiccation of the Mediterranean. Nature 242: 240–244.

    Google Scholar 

  • Husmann, S., 1975. The boreoalpine distribution of groundwater organisms in Europe. Verh. int. Ver. Limnol. 19: 2983–2988.

    Google Scholar 

  • Huys, R., 1988. Boxshallia bulbantennulata gen. et spec. nov. (Copepoda: Misophrioida) from an anchihaline lava pool on Lanzarote, Canary Islands. Stygologia 4: 138–154.

    ISI  Google Scholar 

  • Huys, R., 1996. Superornatiremidae fam. nov. (Copepoda: Harpacticoida): an enigmatic family from North Atlantic anchihaline caves. Sci. mar. 60: 497–542.

    Google Scholar 

  • Huys, R. & G. A. Boxshall, 1991. Copepod Evolution. The Ray Society, London: 468 pp.

    Google Scholar 

  • Iliffe, T. M., 1986. The zonation model for the evolution of aquatic faunas in anchialine caves. Stygologia 2: 2–8.

    ISI  Google Scholar 

  • Janetzky, W., P. Martínez Arbizu & J. W. Reid, 1996. Attheyella (Canthosella) mervini sp. n. (Canthocamptidae, Harpacticoida) from Jamaican bromeliads. Hydrobiologia 339: 123–135.

    Article  ISI  Google Scholar 

  • Jaume, D., 1997. First record of Superornatiremidae (Copepoda: Harpacticoida) from Mediterranean waters, with description of three new species from Balearic anchihaline caves. Sci. mar. 61: 131–152.

    Google Scholar 

  • Jaume, D. & G. Boxshall, 1995. A new species of Exumella (Copepoda: Calanoida: Ridgewayiidae) from anchihaline caves in the Mediterranean. Sarsia 80: 93–105.

    ISI  Google Scholar 

  • Jaume, D. & G. A. Boxshall, 1996a. Two new genera of cyclopinid copepods (Crustacea) from anchihaline caves on western Mediterranean and eastern Atlantic islands. Zool. J. linn. Soc. 117: 283–304

    Article  Google Scholar 

  • Jaume, D. & G. A. Boxshall, 1996b. The persistence of an ancient marine fauna in Mediterranean waters: new evidence from misophrioid copepods living in anchihaline caves. J. nat. Hist. 30: 1583–1595.

    Google Scholar 

  • Jaume, D. & G. A. Boxshall, 1997. Two new genera of cyclopinid copepods (Cyclopoida. Cyclopinidae) from anchihaline caves of the Canary and Balearic Islands, with a key to genera of the family. Zool. J. linn. Soc. 120: 79–101.

    Article  Google Scholar 

  • Jeannel, R., 1923. Sur l’evolution des Coléoptères aveugles et le peuplement des grottes dan le mons du Bihor, en Transylvanie. C. r. Acad. Sci., Paris 176: 1670–1673.

    Google Scholar 

  • Karaytug, S. & G. A. Boxshall, 1998a. Partial revision of Paracyclops Claus, 1893 (Copepoda, Cyclopoida, Cyclopidae) with descriptions of four new species. Bull. nat. Hist. Mus. Lond. (Zool.) 64: 111–205.

    Google Scholar 

  • Karaytug, S. & G. A. Boxshall, 1998b. The Paracyclops fimbriatus- complex (Copepoda, Cyclopoida): a revision. Zoosystema 20: 563–602.

    Google Scholar 

  • Kiefer, F., 1937. Ueber Systematik und geographische Verbreitung einiger Gruppe stark verkömmerter Cyclopiden (Crustacea, Copepoda). Zool. Jahrb. Syst. 70: 421–442.

    Google Scholar 

  • Lescher-Moutoué, F., 1973. Sur la biologie et,écologie des copépodes cyclopides hypogés (crustacés). Ann. Spéléol. 28: 429–502.

    Google Scholar 

  • Lescher-Moutoué, F., 1986. Copepoda Cyclopoida Cyclopidae des eaux douces souterraines continentales. In Botosaneanu, L., (ed.), Stygofauna Mundi — A Faunistic, Distributional and Eco-logical Synthesis of the World Fauna Inhabiting Subterranean Waters (Including the Marine Interstitial). E. J. Brill, Leiden: 299–312.

    Google Scholar 

  • Lewis, M. H., 1986. Biogeographic trends within the freshwater Canthocamptidae (Harpacticoida). In Schriever, G., H. K. Schminke & C.-t. Shih (eds), Proceedings of the Second International Conference on Copepoda. Syllogeus 58: 115–125.

    Google Scholar 

  • Malard, F., G. Crague, M.-J. Turquin & Y. Bouvet, 1994a. Monitoring karstic ground water: the practical aspect of subterranean ecology. Theor. appl. Karstol. 7: 115–126.

    Google Scholar 

  • Malard, F. & F. Hervant, 1998. Oxygen supply and the adaptations of animals in groundwater. Freshwat. Biol. 40: 1–30.

    Google Scholar 

  • Malard, F., J.-L. Reygrobellet, J. Gibert, R. Chappuis, C. Drogue, T. Winiarsky & Y. Bouvet, 1994b. Sensitivity of underground karst ecosystems to human perturbation-Conceptual and methodological framework applied to the experimental site of Terrieu (Herault-France). Verh. int. Ver. Limnol. 24: 1414–1419.

    Google Scholar 

  • Malard F., J.-L. Reygrobellet, J. Mathieu & M. Lafont, 1994c. The use of invertebrate communities to describe groundwater flow and contaminant transport in a fractured rock aquifer. Arch. Hydrobiol. 131: 93–110.

    Google Scholar 

  • Malard, F., J.-L. Reygrobellet & R. Laurent, 1998. Spatial distribution of hypogean invertebrates in an alluvial aquifer polluted by iron and manganese, Rhône River, France. Verh. int. Ver. Limnol. 26: 1590–1594

    CAS  Google Scholar 

  • Malard, F. & K. Simon, 1997. Sampling in wells for describing ecological patterns at a microscale in karst aquifers. In Sasowsky, I. D., D. W. Fong & E. L. White (eds), Conservation and Protection of the Biota of Karst. Karst Water Institute, Charlestown, West Virginia: 46–55.

    Google Scholar 

  • Martínez Arbizu, P., 1997. Parastenocaris hispanica n. sp. (Copepoda: Harpacticoida: Parastenocarididae) from hyporheic groundwaters in Spain and its phylogenetic position within the fontinalis-group of species. Contr. Zool. 66: 215–226.

    Google Scholar 

  • Martínez Arbizu, P. & G. Moura, 1994. The phylogenetic position of the Cylindropsyllinae Sars (Copepoda, Harpacticoida) and the systematic status of the Leptopontiinae Lang. Zool. Beitr. N. F. 35: 55–77.

    Google Scholar 

  • Mielke, W., 1995. Interstitial copepods (Crustacea) from Caribbean coast of Venezuela. Microfauna Marina 10: 41–65.

    Google Scholar 

  • Notenboom, J. 1991. Marine regressions and the evolution of groundwater dwelling amphipods (Crustacea). J. Biogeogr. 18: 437–454.

    Google Scholar 

  • Ohtsuka, S., A. Fosshagen & T. M. Iliffe, 1993. Two new species of Paramisophria (Copepoda,desCalanoida, Arietellidae) from anchialine caves on the Canary and Galapagos Islands. Sarsia 78: 57–67.

    ISI  Google Scholar 

  • Palmer, M. A., P. Arensburger, P. S. Botts, C. C. Hakenkamp & J. W. Reid, 1995. Disturbance and the community structure of stream invertebrates: patch-specific effects and the role of refugia. Freshwat. Biol. 34: 343–356.

    Google Scholar 

  • Palmer, M. A., A. P. Covich, B. J. Finlay, J. Gibert, K. D. Hyde, R. K. Johnson, T. Kairesalo, S. Lake, C. R. Lovell, R. J. Naiman, C. Ricci, F. Sabater & D. Strayer, 1997. Biodiversity and ecosystem processes in freshwater sediments. Ambio 26: 571–577.

    ISI  Google Scholar 

  • Parzefall, J., 1986. Behavioural preadaptations of marine species for the colonisation of caves. Stygologia 2: 144–155.

    ISI  Google Scholar 

  • Pesce, G. L. & D. M. P. Galassi, 1985. Due nuovi Diacyclops del complesso ‘languidoides’ (Copepoda: Cyclopidae) di acque sotterranee di Sardegna e considerazioni sul significato evolutive dell’antennacopepodi stigobionti. Boll. Mus. Civ. St. Nat. Verona 12: 411–418.

    Google Scholar 

  • Pesce, G. L. & D. M. P. Galassi, 1986. Taxonomic and phylogenetic value of the armature of coxa and antenna in stygobiont cyclopoid copepods. Atti Convegno U. Z. I., Roma, 1986, Boll. Zool. Modena 53 (suppl.): 58.

    Google Scholar 

  • Pesce, G. L. & D. M. P. Galassi, 1987. New or rare species of Diacyclops Kiefer, 1927 (Copepoda, Cyclopoida) from different groundwater habitats in Italy. Hydrobiologia 148: 103–114.

    Article  ISI  Google Scholar 

  • Pesce, G. L., D. M. P. Galassi & V. Cottarelli, 1995. Parastenocaris lorenzae n. sp., and first record of Parastenocaris glacialis Noodt (Copepoda, Harpacticoida) from Italy. Hydrobiologia 302: 97–101.

    Article  ISI  Google Scholar 

  • Pesce, G. L. & T. K. Petkovski, 1980. Parapseudoleptomesochra italica n. sp., a new harpacticoid from subterranean waters of Italy (Crustacea, Copepoda, Ameiridae). Frag. Balc., Mus. Mac. Sc. Nat. 11: 33–42.

    Google Scholar 

  • Petkovski, T. K., 1976. Drei neue Nitocrella-Arten von Kuba, zugleich eine Revision des Genus Nitocrella Chappuis (s. rest.) (Crustacea, Copepoda, Ameiridae). Acta Mus. Mac. Sci. nat. Skopje 15: 1–26.

    Google Scholar 

  • Petkovski, T. K., 1984. Bemerkenswerte Cyclopiden (Crustacea: Copepoda) aus den subterranen Gewässern Sloweniens. Acta Mus. Mac. Sci. nat. Skopje 17: 23–52.

    Google Scholar 

  • Pospisil, P., 1994. The groundwater fauna of a Danube aquifer in the ‘Lobau’ wetland in Vienna, Austria. In Gibert, J., D. L. Danielopol & J. A. Stanford (eds), Groundwater Ecology. Academic Press, Inc., San Diego: 347–366.

    Google Scholar 

  • Pospisil, P., 1999. Acanthocyclops sensitivus (Graeter & Chappuis, 1914) (Copepoda: Cyclopoida) in Austria. Ann. Limnol. 35: 49–55.

    Google Scholar 

  • Pospisil, P. & F. Stoch, 1997. Rediscovery and redescription of Austriocyclops vindobonae Kiefer, 1964 (Copepoda, Cyclopoida) with remarks on the subfamily Eucyclopinae Kiefer. Crustaceana 70: 901–910.

    Article  ISI  Google Scholar 

  • Pospisil, P. & F. Stoch, 1999. Two new species of the Diacyclops languidoides-group (Copepoda, Cyclopoida) from groundwa-ters of Austria. Hydrobiologia 412: 165–176.

    Article  ISI  Google Scholar 

  • Reid, J. W., 1984. Semiterrestrial meiofauna inhabiting a wet campo in central Brazil, with special reference to the Copepoda (Crustacea). Hydrobiologia 118: 95–111.

    Article  ISI  Google Scholar 

  • Reid, J. W., 1988. Copepoda (Crustacea) from a seasonal flooded marsh in Rock Creek Stream Valley Park, Maryland. Proc. biol. Soc. Wash. 101: 31–38.

    Google Scholar 

  • Reid,. J. W., 1990. Canthocamptus (Elaphoidella) striblingi, new species (Copepoda: Harpacticoida) from Costa Rica. Proc. biol. Soc. Wash. 103: 336–340.

    Google Scholar 

  • Reid, J. W., 1991. Use of fine morphological structures in interpreting the taxonomy and ecology of continental cyclopoid copepods (Crustacea). Anais do IV Encontro Brasileiro de Plâncton, Recife 4: 261–282.

    Google Scholar 

  • Reid, J. W., 1992. Taxonomic problems: a serious impediment to groundwater ecological research in North America. In Stanford, J. A. & J. J. Simons (eds), Proceedings of the First International Conference on Ground Water Ecology. American Water Research Association, Bethesda, Maryland: 133–142.

    Google Scholar 

  • Reid, J. W., 1993a. The harpacticoid and cyclopoid copepod fauna in the Cerrado region of central Brazil. 2. Community structures. Acta limnol. bras. 6: 69–81.

    Google Scholar 

  • Reid, J. W., 1993b. The harpacticoid and cyclopoid copepod fauna in the Cerrado region of central Brazil. 1. Species composition, habitats, and zoogeography. Acta limnol. bras. 6: 56–68.

    Google Scholar 

  • Reid, J. W., 1994. Murunducaris juneae, new genus, new species (Copepoda: Harpacticoida: Parastenocarididae) from a wet campo in central Brazil. J. crust. Biol. 14: 771–781.

    Google Scholar 

  • Reid, J. W., 1995. Redescription of Parastenocaris brevipes Kessler and description of a new species of Parastenocaris (Copepoda: Harpacticoida: Parastenocarididae) from the U.S.A. Can. J. Zool. 73: 173–187.

    Google Scholar 

  • Reid, J. W., 1998. How ‘cosmopolitan’ are the continental cyclopoid copepods? Comparison of the North America and Eurasian faunas, with description of Acanthocyclops parasensitivus sp. n. (Copepoda: Cyclopoida) from the U. S. A. Zool. Anz. 236: 109–118.

    Google Scholar 

  • Reid, J. W., 1999. New records of Bryocyclops from the continental U.S.A., Puerto Rico and Brazil (Copepoda: Cyclopoida: Cyclopidae). J. crust. Biol. 19: 84–92.

    Google Scholar 

  • Reid, J. W. & D. L. Strayer, 1994. Diacyclops dimorphus, a new species of copepod from Florida, with comments on morphology of interstitial cyclopine cyclopoids. J. n. am. Benthol. Soc. 13: 250–265.

    Google Scholar 

  • Reid, J. W., D. L. Strayer, J. V. McArthur, S. E. Stibbe & J. J. Lewis, 1999. Rheocyclops, a new genus of copepods from the southeastern and central U.S.A. (Copepoda: Cyclopoida: Cyclopidae). J. crust. Biol. 19: 384–396.

    Google Scholar 

  • Robertson, A. L., J. Lancaster, L. R. Belyea & A. G. Hildrew, 1997. Hydraulic habitat and the assemblage structure of stream benthic microcrustacea. J. n. am. Benthol. Soc. 16: 562–575.

    Google Scholar 

  • Robertson, A. L., J. Lancaster & A. G. Hildrew, 1995. Stream hydraulics and the distribution of microcrustacea: a role for refugia? Freshwat. Biol. 33: 469–484.

    Google Scholar 

  • Rocha, C. E. F. & T. M. Iliffe, 1994. Troglocyclops janstocki, new genus, new species, a very primitive cyclopid (Copepoda: Cyclopoida) from an anchialine cave in the Bahamas. Hydrobiologia 292/293: 105–11.

    Google Scholar 

  • Rouch, R., 1961. Le développement et la croissance des Copépodes Harpacticides cavernicoles (Crustacés). C. r. Acad. Sci., Paris 4: 4062–4064.

    Google Scholar 

  • Rouch, R., 1968. Contribution à la connaissance des harpacticides hypogés (Crustacés-Copépodes). Ann. Spéléol. 23: 5–167.

    Google Scholar 

  • Rouch, R., 1977. Considérations sur l’écosytème karstique. C. r. Acad. Sci. Paris 284: 1101–1103.

    Google Scholar 

  • Rouch, R., 1982. Le système karstique du Baget. XIII-Comparison de la dérive des Harpacticides á l’entrée et á la sortie de l’acquifère. Ann. Limnol. 18: 133–150.

    Google Scholar 

  • Rouch, R., 1986. Copepoda: les Harpacticoïdes souterrains des eaux douces continentales. In Botosaneanu, L. (ed.), Stygofauna Mundi — A Faunistic, Distributional and Ecological Synthesis of the World Fauna Inhabiting Subterranean Waters (Including the Marine Interstitial). E. J. Brill, Leiden: 321–355.

    Google Scholar 

  • Rouch, R, 1988. Sur la répartition spatiale des Crustacés dans le sous-écoulement d’un ruisseau des Pyrénées. Ann. Limnol. 24: 213–234.

    Google Scholar 

  • Rouch, R., 1991. Structure du peuplement des Harpacticides dans le milieu hyporhéique d’un ruisseau des Pyrénées. Ann. Limnol. 27: 227–241.

    Google Scholar 

  • Rouch, R., 1992. Caractéristiques et conditions hydrodynamiques des écoulements dans les sediments d’un ruisseau des Pyrénées. Implications écologiques. Stygologia 7: 13–25.

    ISI  Google Scholar 

  • Rouch, R., 1995. Peuplement des Crustacés dans la zone hypo-rhéique d’un ruisseau des Pyrénées. Ann. Limnol. 31: 9–28.

    Google Scholar 

  • Rouch, R., M. Bakalowicz, A. Mangin & D. D’Hulst 1989. Sur les Caractéristiques chimiques du sous-écoulement d’un ruisseau des Pyrénées. Ann. Limnol. 25: 3–16.

    Article  Google Scholar 

  • Rouch, R. & D. L. Danielopol, 1987. L’origine de la faune aquatique souterraine entre le paradigme du réfuge et la modèle de la colonization active. Stygologia 3: 345–372.

    ISI  Google Scholar 

  • Rouch, R. & D. L. Danielopol, 1997. Species richness of microcrustacea in subterranean freshwater habitats. Comparative analysis and approximate evaluation. Int. Rev. ges. Hydrobiol. 82: 121–145.

    Google Scholar 

  • Rouch, R. & F. Lescher-Moutoué, 1992. Structure du peuplement des Cyclopides (Crustacea: Copepoda) dans le milieu hyporhéique d’un ruisseau des Pyrénées. Stygologia 7: 197–211.

    ISI  Google Scholar 

  • Rouch, R., A. Pitzalis & A. Descouens, 1993. Effects d’un pompage à gros débit sur le peuplement des Crustacés d’un acquifère karstique. Ann. Limnol. 29: 15–29.

    Google Scholar 

  • Rundle, S. D., 1990. Micro-arthropod seasonality in streams of varying pH. Freshwat. Biol. 24: 1–21.

    Google Scholar 

  • Rundle, S. D. & S. J. Ormerod, 1991. The influence of chemistry and habitat features on the microcrustacea of some upland Welsh streams. Freshwat. Biol. 26: 439–451.

    CAS  Google Scholar 

  • Särkkä, J., L. Levonen & J. Mäkela, 1997. Meiofauna of springs in relation to environmental factors. Hydrobiologia 347: 139–150.

    Google Scholar 

  • Särkkä, J., L. Levonen & J. Mäkela, 1998. Harpacticoid and cyclopoid fauna of groundwater and springs in southern Finland. J. mar. Syst. 15: 155–161.

    Google Scholar 

  • Sarvala, J., 1986. Patterns of benthic copepod assemblages in an oligotrophic lake. Ann. Zool. fenn. 23: 101–130.

    Google Scholar 

  • Sarvala, J., 1990. Complex and flexible life history of a freshwater benthic harpacticoid species. Freshwat. Biol. 23: 523–540.

    Google Scholar 

  • Schminke, H. K., 1981. Perspectives in the study of the zoogeography of interstitial Crustacea: Bathynellacea (Syncarida) and Parastenocarididae (Copepoda). Int. J. Speleol. 11: 83–89.

    Google Scholar 

  • Schminke, H. K., 1986. The systematic confusion within the family Parastenocarididae (Copepoda, Harpacticoida). In Schriever, G., H. K. Schminke and C.-t. Shih (eds), Proceedings of the Second International Conference on Copepoda, Syllogeus 58: 635.

    Google Scholar 

  • Sewell, R. B. S., 1956. The continental drift theory and the distribution of the Copepoda. Proc. linn. Soc. Lond. 166: 149–177.

    Google Scholar 

  • Stanford, J. A. & J. V. Ward, 1993. An ecosystem perspective of alluvial rivers: connectivity and the hyporheic corridor. J. n. am. Benthol. Soc. 12: 48–60.

    Google Scholar 

  • Stoch, F., 1995. The ecological and historical determinants of crustacean diversity in groundwaters, or: why are there so many species? Mém. Biospéol. 22: 139–160.

    Google Scholar 

  • Stoch, F., 2000. Indagini sulla fauna acquatica delle grotte del Trentino (Italia settentrionale). Studi Trent. Sci. Nat., Acta Biol. 74: 117–132.

    Google Scholar 

  • Stoch, F., 2000. How many species of Diacyclops? New taxonomic characters and species richness in a freshwater cyclopoid genus (Copepoda, Cyclopoida). Hydrobiologia (this volume).

    Google Scholar 

  • Stock, J. H., 1980. Regression model evolution as exemplified by the genus Pseudoniphargus (Amphipoda). Bijdr. Dierk. 50: 105–144.

    Google Scholar 

  • Strayer D. L., 1994. Limits to biological distribution in groundwater. In J. Gibert, D. L. Danielopol & J. A. Stanford (eds), Groundwater Ecology. Academic Press, Inc., San Diego: 287–310.

    Google Scholar 

  • Strayer, D. L., S. E. May, P. Nielsen, W. Wollheim & S. Hausam, 1997. Oxygen, organic matter and sediment granulometry as controls on hyporheic animal communities. Arch. Hydrobiol. 140: 131–144.

    CAS  Google Scholar 

  • Strayer, D. L. & J. W. Reid, 1999. Distribution of hyporheic cyclopoids (Crustacea: Copepoda) in the eastern United States. Arch. Hydrobiol. 145: 79–92.

    Google Scholar 

  • Vervier, P., M. H. Valett, C. C. Hakenkamp & M.-J. Dole-Olivier, 1997.Contribution desof the groundwater/surface water ecotone concept to our knowledge of river ecosystempomfunctioning. In Gibert, J., J. Mathieu & F. Fournier (eds), Groundwater/Surface Water Ecotones: Biological Interactions and Management Options. International Hydrology Series. Cambridge University Press: 238–242.

    Google Scholar 

  • Ward, J. V., F. Malard, J. A. Stanford & T. Gonser, 2000. Interstitial aquatic fauna of shallow unconsolidated sediments, particularly hyporheic biotopes. In Wilkens, H., D. C. Culver & B. Humpreys (eds), Ecosystems of the World-Subterranean Ecosystems. Elsevier, Amsterdam: 41–58.

    Google Scholar 

  • Ward, J. V. & M. A. Palmer, 1994. Distribution patterns of interstitial freshwater meiofauna over a range of spatial scales, with emphasis on alluvial river-aquifer systems. Hydrobiologia 287: 147–156.

    ISI  Google Scholar 

  • Ward, J. V. & N. J. Voelz, 1994. Groundwater fauna of the South Platte River system, Colorado. In Gibert, J., D. L. Danielopol & J. A. Stanford (eds), Groundwater Ecology. Academic Press, Inc., San Diego: 391–423.

    Google Scholar 

  • Ward, J. V. & N. J. Voelz, 1997. Interstitial fauna along an epigean-hypogean gradient in a Rocky Mountain river. In Gibert, J., J. Mathieu & F. Fournier (eds), Groundwater/Surface Water Ecotones: Biological Interactions and Management Options. International Hydrology Series, Cambridge University Press: 37–41.

    Google Scholar 

  • Wiegert, R. G., 1988. Holism and reductionism in ecology: hypotheses, scale and systems. Oikos 53: 267–269.

    ISI  Google Scholar 

  • Williams, D. D., 1991. The springs as an interface between ground-water and lotic faunas and as a tool in assessing groundwater quality. Verh. int. Ver. Limnol. 24: 1621–1624.

    Google Scholar 

  • Wisheu, I. C., 1998. How organisms partition habitats: different types of community organization can produce identical patterns. Oikos 83: 246–258.

    ISI  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Galassi, D.M.P. (2001). Groundwater copepods: diversity patterns over ecological and evolutionary scales. In: Lopes, R.M., Reid, J.W., Rocha, C.E.F. (eds) Copepoda: Developments in Ecology, Biology and Systematics. Developments in Hydrobiology, vol 156. Springer, Dordrecht. https://doi.org/10.1007/0-306-47537-5_19

Download citation

  • DOI: https://doi.org/10.1007/0-306-47537-5_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7048-2

  • Online ISBN: 978-0-306-47537-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics