Skip to main content

Visual Adaptations in Crustaceans: Chromatic, Developmental, and Temporal Aspects

  • Chapter
Sensory Processing in Aquatic Environments

Abstract

Crustaceans possess a huge variety of body plans and inhabit most regions of Earth, specializing in the aquatic realm. Their diversity of form and living space has resulted in equally diverse eye designs. This chapter reviews the latest state of knowledge in crustacean vision concentrating on three areas: spectral sensitivities, ontogenetic development of spectral sensitivity, and the temporal properties of photoreceptors from different environments. Visual ecology is a binding element of the chapter and within this framework the astonishing variety of stomatopod (mantis shrimp) spectral sensitivities and the environmental pressures molding them are examined in some detail. The quantity and spectral content of light changes dramatically with depth and water type and, as might be expected, many adaptations in crustacean photoreceptor design are related to this governing environmental factor. Spectral and temporal tuning may be more influenced by bioluminescence in the deep ocean, and the spectral quality of light at dawn and dusk is probably a critical feature in the visual worlds of many shallow-water crustaceans. Plasticity in photoreceptor tuning is a recently emerging theme both in crustaceans and other animals. The seasonal variation in crayfish spectral sensitivity and spectral sensitivity change in single stomatopod species from different depths provide two examples of this. Other oddities such as the need to see the heat from hydrothermal vents, color dances in water-fleas, and the possible influences of temperature on the spectral tuning of visual pigments are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Autrum, H. (1950). Die Belichtungspotentiale and das Sehen der Insekten (Untersuchungen an Calliphora und Dixippus). Z. Vergleich. Physiol. 32:176–227.

    Article  Google Scholar 

  • Autrum, H. (1958). Electrophysiological analysis of the visual systems in insects. Exp. Cell. Res. 5:426–439.

    Google Scholar 

  • Ball, E.E. (1977). Fine structure of the compound eyes of the midwater amphipod Phronima in relation to behavior and habitat. Tissue Cell 9:521–536.

    Article  PubMed  CAS  Google Scholar 

  • Barnes, H., and Klepal, W. (1972). Phototaxis in stage I nauplius larvae of two cirripedes. J. Exp. Mar. Ecol. 10:267–273.

    Article  Google Scholar 

  • Bayliss, L.E., Lythgoe, J.N., and Tansley, K. (1936). Some forms of visual purple in sea fishes with a note on the visual cells of origin. Proc. R. Soc. Lond. B. 120:95–114.

    CAS  Google Scholar 

  • Benguerrah, A., and Carricaburu, P. (1976). L’ electroretinogramme chez les Crustacea isopodes. Vision Res. 16:1173–1177.

    Article  PubMed  CAS  Google Scholar 

  • Boden, B.P, Kampa, E.M., and Abott, B.C. (1961). Photoreception of a planktonic crustacean in relation to light penetration in the sea. In: Progress in Photobiology (Christensen, B., and Buchamann, B., eds.), pp. 189–196. New York: Elsevier North-Holland.

    Google Scholar 

  • Bridges, C.D.B. (1972). The rhodopsin-porphyropsin visual system, In: Handbook of Sensory Physiology, Vol. VII/1: Photochemistry of Vision (Dartnall, H.J.A., ed.), Berlin, Heidelberg, New York: Springer-Verlag.

    Google Scholar 

  • Briggs, M.H. (1961). Visual pigment of grapsoid crabs. Nature 190:784–786.

    Article  CAS  Google Scholar 

  • Bröcker, H. (1935). Untersuchungen über das Sehvermögen der Einsiedlerkrebse. Zool. Jahrb. Abt. Allgem. Zool. Physiol. Tiere 55:399–430.

    Google Scholar 

  • Bruno, M.S., Mote, M.I., and Goldsmith, T.M. (1974). Spectral absorption and sensitivity measurements in single ommatidia of the green crab, Carcinus. J. Comp. Physiol. 82:151–163.

    Article  Google Scholar 

  • Bruno, M.S., Barnes, S.N., and Goldsmith, T.H. (1977). The visual pigment and visual cycle of the lobster, Homarus. J. Comp. Physiol. 120:123–142.

    Article  CAS  Google Scholar 

  • Caldwell, R.L., and Dingle, H. (1975). Ecology and evolution of agonistic behavior in stomatopods. Naturwissenschaften 62:214–222.

    Article  Google Scholar 

  • Carleton, K.L., Harosi, F.I., and Kocher, T.D. (2000). Visual pigments of African cichlid fishes: Evidence for ultraviolet vision from microspectrophotometry and DNA sequences. Vision Res. 40:879–890.

    Article  PubMed  CAS  Google Scholar 

  • Chiao, C.C., Cronin, T.W., and Marshall, J. (2000). Eye design and color signaling in a stomatopod crustacean, Gonodactylus smithii. Brain Behav. Evol. 56:107–122.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, G.L. (1936). On the depth at which fishes can see. Ecology 17:452–456.

    Article  Google Scholar 

  • Crandall, K.A., and Cronin, T.W. (1995). Opsin evolution in crayfishes: Effects of functional constraints. In: Current Topics on Molecular Evolution (Nei, M., and Takahata, N., eds.), pp. 19–27. Institute of Molecular Evolutionary Genetics, Pennsylvania State University.

    Google Scholar 

  • Crescitelli, F., McFall-Ngai, M., and Horwitz, J. (1985). The visual pigment sensitivity hypothesis: Further evidence from fishes of varying habitats. J. Comp. Physiol. 157:323–333.

    Article  CAS  Google Scholar 

  • Cronin, T.W. (1985). The visual pigment of a stomatopod crustacean, Squilla empusa. J. Comp. Physiol. 156:679–687.

    Article  CAS  Google Scholar 

  • Cronin, T.W. (1986). Optical design and evolutionary adaptation in crustacean compound eyes. J. Crust. Biol. 6:1–23.

    Article  Google Scholar 

  • Cronin, T.W. (1994). Polychromatic vision in mantis shrimps. Sensorie Systemy 8:95–106.

    Google Scholar 

  • Cronin, T.W., and Caldwell, R.L. (2002). Tuning of photoreceptor function in mantis shrimp species occupying a range of depths. II. Filter pigments. J. Comp. Physiol. A. 188:187–197.

    Article  Google Scholar 

  • Cronin, T.W., and Forward, R.B. Jr. (1988). The visual pigments of crabs. I. Spectral characteristics. J. Comp. Physiol. A. 162:463–478.

    Article  CAS  Google Scholar 

  • Cronin, T.W., and Frank, T.F. (1996). A shortwavelength photoreceptor class in a deep-sea shrimp. Proc. Roy. Soc. Lond. B. 263:861–865.

    Article  Google Scholar 

  • Cronin, T.W., and Goldsmith, T.H. (1982). Quantum efficiency and photosensitivity of the rhodopsinmetarhodopsin conversion in crayfish photoreceptors. Photochem. Photobiol. 36:447–454.

    Article  PubMed  CAS  Google Scholar 

  • Cronin, T.W., and Hariyama, Y. (2002). Spectral sensitivity in crustaceans. In: The Crustacean Nervous System (Wiese, K., ed.), pp. 499–511. Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Cronin, T.W., and Jinks, R.N. (2002). Ontogeny of vision in marine crustaceans. Am. Zoologist 41: 1098–1107.

    Article  Google Scholar 

  • Cronin, T.W., and Marshall, N.J. (1989a). Multiple spectral classes of photoreceptors in the retinas of gonodactyloid stomatopod crustaceans. J. Comp. Physiol. A. 166:267–275.

    Article  Google Scholar 

  • Cronin, T.W., and Marshall, N.J. (1989b). A retina with at least ten spectral types of photoreceptors in a stomatopod crustacean. Nature 339:137–140.

    Article  Google Scholar 

  • Cronin, T.W., and Marshall, J. (2001). Parallel processing and image analysis in the eyes of mantis shrimps. Biol. Bull. 200:177–183.

    Article  PubMed  CAS  Google Scholar 

  • Cronin, T.W., and Marshall, J. (in press). The visual world of mantis shrimps. In: Complex Worlds from Simpler Nervous Systems (Prete, F.R., ed.), Boston: MIT Press.

    Google Scholar 

  • Cronin, T.W., Caldwell, R.L., and Erdmann, M.V. (2002). Tuning of photoreceptor function in mantis shrimp species occupying a range of depths. I. Visual pigments. J. Comp. Physiol. A. 188:179–186.

    Article  Google Scholar 

  • Cronin, T.W., Caldwell, R.L., and Marshall, J. (2001). Tunable colour vision in a mantis shrimp. Nature 411:547–548

    Article  PubMed  CAS  Google Scholar 

  • Cronin, T.W., Marshall, N.J., and Caldwell, R.L. (1993). Photoreceptor spectral diversity in the retinas of squilloid and lysiosquilloid stom-atopod crustaceans. J. Comp. Physiol. A. 172:339–350.

    Article  Google Scholar 

  • Cronin, T.W., Marshall, N.J., and Caldwell, R.L. (1994a). The intrarhabdomal filters in the retinas of mantis shrimps. Vision Res. 34:279–291.

    Article  PubMed  CAS  Google Scholar 

  • Cronin, T.W., Marshall, N.J., and Caldwell, R.L. (1994b). The retinas of mantis shrimps from lowlight environments (Crustacea; Stomatopoda; Gonodactylidae). J. Comp. Physiol. A. 174:607–619.

    Article  Google Scholar 

  • Cronin, T.W., Marshall, N.J., and Caldwell, R.L. (1996). Visual pigment diversity in two genera of mantis shrimps implies rapid evolution. J. Comp. Physiol. A. 179:371–384.

    Article  Google Scholar 

  • Cronin, T.W., Marshall, N.J., Caldwell, R.L., and Pales, D. (1995). Compound eyes and ocular pigments of crustacean larvae (Stomatopoda and Decapoda, Brachyura). Mar. Freshwater Behav. Physiol. 26:219–231.

    Google Scholar 

  • Cronin, T.W., Marshall, N.J., Caldwell, R.L., and Shashar N. (1994c). Specialization of retinal function in the compound eyes of mantis shrimps. Vision Res. 34:2639–2656.

    Article  PubMed  CAS  Google Scholar 

  • Cronin, T.W., Marshall, N.J., Quinn, C.A., and King, C.A. (1994d). Ultraviolet photoreception in mantis shrimp. Vision Res. 34:1443–1452.

    Article  PubMed  CAS  Google Scholar 

  • Cronly-Dillon, J., and Sharma, S.C. (1968). Effect of season and sex on the photopic spectral sensitivity of the threespined stickleback. J. Exp. Biol. 49:679–687.

    PubMed  CAS  Google Scholar 

  • Crozier, W.J., and Wolf, E. (1939). The flicker response contour for the crayfish. J. Gen. Physiol. 23:1–10.

    Article  Google Scholar 

  • Crozier, W.J, Wolf, E., and Zerrahn-Wolf, G. (1939). The flicker response contour for the isopod Asellus. J. Gen. Physiol. 22:451–462.

    Article  Google Scholar 

  • Cummins, D., and Goldsmith, T.H. (1981). Cellular identification of the violet receptor in the crayfish eye. J. Comp. Physiol. 142:199–202.

    Article  Google Scholar 

  • Cummins, D., Chen, D.-M.-Y., and Goldsmith, T.H. (1984). Spectral sensitivity of the spiny lobster, Panulirus argus. Biol. Bull. 166:269–276.

    Article  Google Scholar 

  • de Souza, J.M., and Ventura, D.F. (1989). Comparative study of temporal summation and response form in hymenopteran photoreceptors. J. Comp. Physiol. A. 165:237–245.

    Article  PubMed  Google Scholar 

  • Denton, E.J. (1990). Light and vision at depths greater than 200 metres. In: Light and Life in the Sea (Herring, P.J., Campell, A.K., Whitfield, M., and Maddock, L., eds.), pp. 127–148. Cambridge: Cambridge University Press.

    Google Scholar 

  • Denys, C.J. (1982). Ommachrome pigments in the eyes of Euphausia superba (Crustacea, Euphausiacea). Polar Biol. 1:1–10.

    Article  Google Scholar 

  • Denys, C.J., and Brown, P.K. (1982). The rhodopsins of Euphausia superba and Meganyctiphanes norvegica (Crustacea, Euphausiacea). J. Gen. Physiol. 80:451–472.

    Article  PubMed  CAS  Google Scholar 

  • Douglas, R.H., and Marshall, N.J. (1999). A review of vertebrate and invertebrate ocular filters. In: Adaptive Mechanisms in the Ecology of Vision (Archer, S., Djamgoz, M.B.A., Loew, E., Partridge, J.C., and Vallerga, S., eds.), pp. 95–162. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Eaton, B.P., and Brown, C.M. (1970). Photoreception in the nauplius eye of Pandalus borealis Kröger: Decapoda, Crustacea. Canad. J. Zool. 48:119–121.

    Google Scholar 

  • Edwards, A.S. (1969). The structure of the eye of Ligea oceanica L. Tissue Cell 1:217–228.

    PubMed  CAS  Google Scholar 

  • Eguchi, E. (1973). Orthogonal microvillus pattern in the eighth rhabdomere of the rock crab Grapsus. Z. Zellforsch. 137:145–157.

    Article  PubMed  CAS  Google Scholar 

  • Eguchi, E., and Waterman, T.H. (1967). Changes in the retinal fine structure induced in the crab Libinia by light and dark adaptation. Z. Zellforsch. 79:209–229.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez, H.R. (1965). A survey of the visual pigments of decapod Crustacea of South Florida. PhD dissertation. Coral Gables, FL: University of Miami.

    Google Scholar 

  • Fernandez, H.R. (1973). Spectral sensitivity and visual pigment of the compound eye of the galatheid crab Pleuroncodes planipes. Mar. Biol. 20:148–153.

    Article  Google Scholar 

  • Fisher, L.R., and Goldie, E.H. (1959). The eye pigments of a euphausiid crustacean, Meganyctiphanes norvegica (M. Sars). Proc. XV Intern. Congr. Zool. Lond. pp. 533–535.

    Google Scholar 

  • Fisher, L.R., and Goldie, E.H. (1961). Pigments of compound eyes. In: Progress in Photobiology (Christensen, B.B., and Buchamann, B., eds.), pp. 153–154. New York: Elsevier North-Holland.

    Google Scholar 

  • Forward, R.B.J., Cronin, T.W., and Douglass, J.K. (1988). The visual pigments of crabs. II. Environmental adaptations. J. Comp. Physiol. A. 162: 479–490.

    Article  CAS  Google Scholar 

  • Frank, T.M. (1999). Comparative study of temporal resolution in the visual systems of mesopelagic crustaceans. Biol. Bull. 196:137–144.

    Article  Google Scholar 

  • Frank, T.M. (2000). Temporal resolution in mesopelagic crustaceans. Phil. Trans. Roy. Soc. Lond. B. 355:1195–1198.

    Article  CAS  Google Scholar 

  • Frank, T.M., and Case, J.F (1988a). Visual spectral sensitivities of bioluminescent deep-sea crustaceans. Biol. Bull. 175:261–273.

    Article  Google Scholar 

  • Frank, T.M., and Case, J.F. (1988b). Visual spectral sensitivity of the bioluminescent deep-sea mysid, Gnathophausia ingens. Biol. Bull. 175:1–10.

    Google Scholar 

  • Frank, T.M., and Widder, E.A. (1994a). Comparative study of behavioural-sensitivity thresholds to near-UV and blue-green light in deep-sea crustaceans. Mar. Biol. 121:229–235.

    Article  Google Scholar 

  • Frank, T.M., and Widder, E.A. (1994b). Evidence for behavioural sensitivity to near-UV light in the deep-sea crustacean Systellaspis debilis. Mar. Biol. 118:279–284.

    Article  Google Scholar 

  • Frank, T.M., and Widder, E.A. (1996). UV light in the deep-sea: In situ measurements of downwelling irradiance in relation to the visual threshold sensitivity of UV-sensitive crustaceans. Mar. Fresh. Behav. Physiol. 27:189–197.

    Google Scholar 

  • Frank, T.M., and Widder, E.A. (1999). Comparative study of the spectral sensitivities of mesopelagic crustaceans. J. Comp. Physiol. A. 185:255–265.

    Article  Google Scholar 

  • Goldsmith, T.H. (1978). The spectral absorption of crayfish rhabdoms: Pigment photoproduct and pH sensitivity. Vision Res. 18:463–473.

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith, T.H., and Cronin, T.W. (1993). The retinoids of seven species of mantis shrimp. Visual Neurosci. 10:915–920.

    CAS  Google Scholar 

  • Hallberg, E. (1977). The fine structure of the compound eyes of mysids (Crustacea: Mysidacea). Cell Tiss. Res. 184:45–65.

    Article  CAS  Google Scholar 

  • Hallberg, E., and Nilsson, D.E. (1983). The euphausid compound eye: A morphological reinvestigation (Crustacea: Euphausidacea). Zoomorphologie 103:59–66.

    Article  Google Scholar 

  • Hallberg, E., Nilsson, H.L., and Elofsson, R. (1980). Classification of amphipod compound eyes: The fine structure of the ommatidial units (Crustacea, Amphipoda). Zoomorphologie 94:279–306.

    Article  Google Scholar 

  • Hamacher, K.J., and Kohl, K.D. (1981). Spectroscopical studies of the Astacus visual pigment. Biophys. Struct. Mech. 7:338–343.

    Article  Google Scholar 

  • Hamacher, K.J., and Stieve, H. (1984). Spectral properties of the rhodopsin-system of the crayfish Astacus leptodactylus. Photochem. Photobiol. 39: 379–390.

    Article  CAS  Google Scholar 

  • Hariyama, T, Tsukahara, Y., and Meyer-Rochow, V.B. (1993). Spectral responses, including a UV-sensitive cell type, in the eye of the isopod Ligia exotica. Naturwissenschaffen 80:233–235.

    Article  Google Scholar 

  • Hays, D., and Goldsmith, T.H. (1969). Microspectrophotometry of the visual pigment of the spider crab Libinia emarginata. Z. Vergl. Physio. 65:218–232.

    Article  Google Scholar 

  • Hazlett, B.A. (1979). The meral spot of Gonodactylus oerstedii Hansen as a visual stimulus (Stomatopoda, Gonodactylidae). Crustaceana 36: 196–198.

    Article  Google Scholar 

  • Hertel, H. (1972). Aspekte zur photorezeption von Artemia salina. Verh. Dtsch. Ges. Zool. Erlangen. 14–78.

    Google Scholar 

  • Hiller-Adams, P., Widder, E.A., and Case, J.F. (1988). The visual pigments of four deep-sea crustacean species. J. Comp. Physiol. A. 163:63–72.

    Article  PubMed  CAS  Google Scholar 

  • Hillman, P., Dodge, F.A., Hochstein, S., Knight, B.W., and Minke, B. (1973). Rapid dark recovery of the invertebrate early receptor potential. J. Gen. Physiol. 62:77–86.

    Article  PubMed  CAS  Google Scholar 

  • Horridge, G.A. (1967). Perception of polarization plane, colour, and movement in two dimensions by the crab, Carcinus. Z. Vergl. Physiol. 55:207–224.

    Article  Google Scholar 

  • Horridge, G.A. (1978). The separation of visual axes in apposition compound eyes. Phil. Trans. Roy. Soc. Lond. B. 285:1–59.

    Article  CAS  Google Scholar 

  • Houde, A.E., and Endler, J.A. (1990). Correlated evolution of female mating preferences and male color patterns in the guppy Poecilia reticulata. Science 14:1405–1408.

    Article  Google Scholar 

  • Howard, J., Dubs, A., and Payne, R. (1984). The dynamics of phototransduction in insects. J. Comp. Physiol. 154:707–718.

    Article  Google Scholar 

  • Hyatt, G.W. (1975). Physiological and behavioural evidence for colour discrimination by fiddler crabs (Brachyura, Ocypodidae, genus Uca). In: Physiological Ecology of Estuarine Organisms (Vernberg, F.J., ed.), pp. 333–365. Columbia, SC: University of South Carolina Press.

    Google Scholar 

  • Jacobs, G.H., and Deegan, J.F.I. (2000). Photopigments and colour vision in New World monkeys from the family Atelidae. Proc. Roy. Soc. Lond. B. 268:695–702.

    Article  Google Scholar 

  • Jerlov, N.G. (1976). Marine Optics. Amsterdam: Elsevier.

    Google Scholar 

  • Johnson, M.L., Shelton P.M.J., and Gaten, E. (2000). Temporal resolution in the eyes of marine decapods from coastal and deep-sea habitats. Mar. Biol. 136:243–248.

    Article  Google Scholar 

  • Jutte, P.A., Cronin, T.W., and Caldwell, R.L. (1998). Retinal function in the planktonic larvae of two species of Pullosquilla, a lysiosquilloid stomatopod crustacean. J. Exp. Biol. 201:2481–2487.

    PubMed  Google Scholar 

  • Kampa, E.M. (1955). Euphausiopsin: A new photosensitive pigment from the eyes of euphausiid crustaceans. Nature 175:996–998.

    Article  CAS  Google Scholar 

  • Kelber, A. (1996). Colour learning in the hawkmoth Macroglossum stellatarum. J. Exp. Biol. 199: 1127–1131.

    PubMed  Google Scholar 

  • Knowles, A., and Dartnall, H.J.A. (1977). Habitat and visual pigments. In: The Eye, Vol. 2B: The Photobiology of Vision (Davson, H., ed.), pp. 581–641. New York: Academic Press.

    Google Scholar 

  • Lall, A.B., and Cronin, T.W. (1987). Spectral sensitivity of the compound eyes in the purple land crab Gecarcinus lateralis (Freminville). Biol. Bull. 173:398–406.

    Article  Google Scholar 

  • Land, M.F (1981a). Optics and vision in invertebrates. In: Handbook of Sensory Physiology, Vol. VII/6B (Autrum, H., ed.), pp. 471–592. Berlin: Springer-Verlag.

    Google Scholar 

  • Land, M.F. (1981b). Optics of the eyes of Phronima and other deep-sea amphipods. J. Comp. Physiol. 145:209–226.

    Article  Google Scholar 

  • Land, M.F. (1984). Crustacea. In: Photoreception and Vision in Invertebrates (Ali, M.A., ed.), pp. 401–438. New York: Plenum.

    Google Scholar 

  • Land, M.F. (1989). The sight of deep wet heat. Nature 337:404.

    Article  Google Scholar 

  • Land, M.F., and Nilsson, D.-E. (2002). Animal Eyes. Oxford, New York: Oxford University Press.

    Google Scholar 

  • Land, M.F., Burton, F.A., and Meyer-Rochow, V.B. (1979). The optical geometry of euphausiid eyes. J. Comp. Physiol. 130:49–62.

    Article  Google Scholar 

  • Laughlin, S.B., and Weckstrom, M. (1993). Fast and slow photoreceptors: A comparative study of the functional diversity of coding and conductances in the Diptera. J. Comp. Physiol. 172:593–609.

    Article  Google Scholar 

  • Latz, M.I., Frank, T.M., and Case, J.F. (1988). Spectral composition of bioluminescence of epipelagic organisms from the Sargasso Sea. Mar. Biol. 98:441–446.

    Article  Google Scholar 

  • Lindsay, S.M., Frank, T.M., Kent, I, Partridge, J.C., and Latz, M.I. (1999). Spectral sensitivity of vision and bioluminescence in the mid-water shrimp, Sergestes similis. Biol. Bull. 1:1–11.

    Google Scholar 

  • Loew, E.R., and Lythgoe, J.N. (1978). The ecology of cone pigments in teleost fishes. Vision Res. 18: 715–722.

    Article  PubMed  CAS  Google Scholar 

  • Lythgoe, J.N. (1966). Visual pigments and underwater vision. In: Light as an Ecological Factor (Bainbridge, R., Evans, G.C., and Rackham, O., eds.), Oxford: Blackwell.

    Google Scholar 

  • Lythgoe, J.N. (1968). Visual pigments and visual range underwater. Vision Res. 8:997–1012.

    Article  PubMed  CAS  Google Scholar 

  • Lythgoe, J.N. (1979). The Ecology of Vision. Oxford: Clarendon Press.

    Google Scholar 

  • Manning, R.B., Schiff, H., and Abbott, B.C. (1984). Eye structure and classification of stomatopod crustaceans. Zool. Scripta 13:41–44.

    Article  Google Scholar 

  • Marshall, N.J. (1988). A unique colour and polarization vision system in mantis shrimps. Nature 333:557–560.

    Article  PubMed  CAS  Google Scholar 

  • Marshall, N.J., and Land, M.F (1993a). Some optical features of the eyes of stomatopods. I. Eye shape, optical axes and resolution. J. Comp. Physiol. A. 173:565–582.

    Google Scholar 

  • Marshall, N.J., and Land, M.F. (1993b). Some optical features of the eyes of stomatopods. II. Ommatidial design, sensitivity and habitat. J. Comp. Physiol. A. 173:583–594.

    Article  Google Scholar 

  • Marshall, N.J., and Oberwinkler, J. (1993). Electrophysiology of mantis shrimp retina. Abstracts of the British Photobiology Society.

    Google Scholar 

  • Marshall, J., and Oberwinkler, J. (1999). The colourful world of the mantis shrimp. Nature 401: 873–874.

    Article  PubMed  CAS  Google Scholar 

  • Marshall, N.J., Cronin, T.W., and Shashar, N. (1999a). Behavioural evidence for polarisation vision in stomatopods reveals a potential channel for communication. Current Biology 9:755–758.

    Article  PubMed  CAS  Google Scholar 

  • Marshall, N.J., Jones, J.P., and Cronin, T.W. (1996). Behavioural evidence for color vision in stomatopod crustaceans. J. Comp. Physiol. A. 179:473–481.

    Article  Google Scholar 

  • Marshall, N.J., Kent, K., and Cronin, T.W. (1999b). Pigments in eyes of marine crustaceans. In: Adaptive Mechanisms in the Ecology of Vision (Archer, S.N., Djamgoz, M.B.A., Loew, E.R., Partridge, J.C., and Vallerga, S., eds.), pp. 285–327. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Marshall, N.I, Land, M.F, King, C.A., and Cronin, T.W. (1991a). The compound eyes of mantis shrimps (Crustacea, Hoplocarida, Stomatopoda). I. Compound eye structure: The detection of polarised light. Phil. Trans. R. Soc. Ser. B. 334:33–56.

    Article  Google Scholar 

  • Marshall, N.J., Land, M.F., King, C.A., and Cronin, T.W. (1991b). The compound eyes of mantis shrimps (Crustacea, Hoplocarida, Stomatopoda). II. Colour pigments in the eyes of Stomatopod crustaceans: Polychromatic vision by serial and lateral filtering. Phil. Trans. R. Soc. B. 334:57–84.

    Article  Google Scholar 

  • Martin, F.G., and Mote, M.I. (1982). Colour receptors in marine crustaceans: A second class of retinular cell in the compound eyes of Callinectes and Carcinus. J. Comp. Physiol. 145:549–554.

    Article  Google Scholar 

  • McFarland, W.N. (1991). The visual world of coral reef fishes. In: The Ecology of Fishes on Coral Reefs (Sale, PP., ed.), pp. 16–38. San Diego: Academic Press.

    Google Scholar 

  • McFarland, W.N., and Munz, F.W. (1975). Part II: The photopic environment of clear tropical seas during the day. Vision Res. 15:1063–1070.

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Rochow, V.B., and Tiang, K.M.(1984). The eye of Jasus edwardsii (Crustacea, Decapoda, Palinuridae): Electrophysiology, histology and behaviour. Zoologica 134:1–61.

    Google Scholar 

  • Minke, B., and Kirschfield, K. (1978). Microspectrophotometric evidence for two photointerconvertible states of visual pigment in the barnacle lateral eye. J. Gen. Physiol. 71:37–45.

    Article  PubMed  CAS  Google Scholar 

  • Moeller, J.F., and Case, J.F. (1995). Temporal adaptations in visual systems of deep-sea crustaceans. Mar. Biol. 123:47–54.

    Article  Google Scholar 

  • Munz, F.W., and McFarland, W.N. (1973). The significance of spectral position in the rhodopsins of tropical marine fishes. Vision Res. 13:1829–1874.

    Article  PubMed  CAS  Google Scholar 

  • Münz, F.W., and McFarland, W.N. (1977). Evolutionary adaptations of fishes to the photic environment. In: The Visual System in Vertebrates (Crescitelli, F., ed.), pp. 193–274. Berlin, Heidelberg, New York, Springer.

    Google Scholar 

  • Nathans, J. (1989). The genes for colour vision. Sci. Amer. 1989:28–35.

    Google Scholar 

  • Nilsson, D.E. (1983). Evolutionary links between apposition and superposition optics in crustacean eyes. Nature 302:818–821

    Article  Google Scholar 

  • Nilsson, D.E., Hallberg, E., and Elofsson, E. (1986). The ontogenetic development of refracting superposition eyes in crustaceans: transformation of optical design. Tissue Cell 18:509–519.

    Article  PubMed  CAS  Google Scholar 

  • Nosaki, A. (1969). Electrophysiological study of color encoding in the compound eye of crayfish, Procambarus clarkii. Z. Vergl. Physiologie. 64: 318–323.

    Article  Google Scholar 

  • Osorio, D., Marshall, N.J., and Cronin, T.W. (1997). Stomatopod photoreceptor spectral tuning as an adaptation for colour constancy in water. Vision Res. 37:3299–3309.

    Article  PubMed  CAS  Google Scholar 

  • Pelli, D.G., and Chamberlain, S.C. (1989). The visibility of 350°C black-body radiation by the shrimp Rimicaris exoculata and man. Nature 337:460–461.

    Article  PubMed  CAS  Google Scholar 

  • Pirenne, M.H. (1967). Vision and the Eye. London: Chapman & Hall.

    Google Scholar 

  • Pirenne, M.H., and Denton, E.J. (1952). Accuracy and sensitivity of the human eye. Nature 170: 1039–1042.

    Article  PubMed  CAS  Google Scholar 

  • Ruck, P., and Jahn, T.L. (1954). Electrical studies on the compound eye of Ligia occidentalis Dana (Crustacea: Isopoda). J. Gen. Physiol. 37:825–849.

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto, K., Hisatomi, O., Tokunaga, F., and Eguchi, E. (1996). Two opsins from the compound eye of the crab Hemigrapsus sanguinensis. J. Exp. Biol. 199:441–450.

    PubMed  CAS  Google Scholar 

  • Scherer, C., and Kolb, G. (1987). The influence of colour stimuli on visually controlled behaviour in Aglais urticae L. and Parage aegeria L. (Lepidoptera). J. Comp. Physiol. A. 161:891–898.

    Article  Google Scholar 

  • Schiff, H. (1963). Dim light vision of Squilla mantis L. Am. J. Physiol. 205:927–940.

    PubMed  CAS  Google Scholar 

  • Schiff, H., Manning, R.B., and Abbott, B.C. (1986). Structure and optics of ommatidia from eyes of stomatopod crustaceans from different luminous habitats. Biol. Bull. 170:461–480.

    Article  Google Scholar 

  • Scott, S., and Mote, M.I. (1973). Spectral sensitivity in some marine Crustacea. Vision Res. 14:659–663.

    Article  Google Scholar 

  • Shand, J., Hart, N.S., Thomas, N., and Partridge, J.C. (2001b). Developmental changes in the visual pigments of black bream. Invest. Ophthalmol. Visual Sci. 42:S362.

    Google Scholar 

  • Smith, F.E., and Baylor, E.R. (1953). Colour responses in the cladocera and their ecological significance. Am. Nat. 87:49–55.

    Article  Google Scholar 

  • Smith, K.C., and Macagno, E.R. (1990). UV photoreceptors in the compound eye of Daphnia magna (Crustacea, Branchiopoda): A fourth spectral class in a single ommatidia. J. Comp. Physiol. A. 166:597–606.

    Article  PubMed  CAS  Google Scholar 

  • Snyder, A.W. (1979). The physics of vision in compound eyes. In: Handbook of Sensory Physiology: Comparative Physiology and Evolution of Vision in Invertebrates (Autrum, H., ed.), pp. 225–313. Berlin, Heidelberg, New York: Springer-Verlag.

    Google Scholar 

  • Srinivasan, M.V., and Bernard, G.D. (1975). The effect of motion on visual acuity of the compound eye: A theoretical analysis. Vision Res. 15:515–525.

    Article  PubMed  CAS  Google Scholar 

  • Stearns, D.E., and Forward, R.B., Jr. (1984). Photosensitivity of the calanoid copepod, Acartia tonsa. Mar. Biol. 82:85–90.

    Article  Google Scholar 

  • Stowe, S. (1980). Rapid synthesis of photoreceptor membrane and assembly of new microvilli in a crab at dusk. Cell Tiss. Res. 211:419–440.

    Article  CAS  Google Scholar 

  • Stowe, S., Fukudome, H., and Tanaka, K. (1986). Membrane turnover in crab photoreceptors studied by high-resolution scanning electron microscopy and by a new technique of thicksection transmission electron microscopy. Cell Tiss. Res. 245:51–60.

    Article  Google Scholar 

  • Suzuki, T., Makino-Tasaka, M.,and Eguchi, E. (1984). 3-dehydroretinal (vitamin A2 aldehyde) in crayfish eye. Vision Res. 24:783–787.

    Article  PubMed  CAS  Google Scholar 

  • van Dover, C.L., Szuts, E.Z., Chamberlain, S.C., and Cann, J.R. (1989). A novel eye in “eyeless” shrimp from hydrothermal vents of the mid-Atlantic ridge. Nature 337:458–460.

    Article  PubMed  Google Scholar 

  • Wald, G., and Hubbard, R. (1957). Visual pigment of a decapod crustacean: The lobster. Nature 180:278–280.

    Article  PubMed  CAS  Google Scholar 

  • Wald, G., and Seidin, E.B. (1968). Spectral sensitivity of the common prawn, Palaemonetes vulgaris. J. Gen. Physiol. 51:694–700.

    Article  PubMed  CAS  Google Scholar 

  • Warrant, E.J. (1999). Seeing better at night: Life style, eye design and the optimum strategy of spatial and temporal summation. Vision Res. 39:1611–1630.

    Article  PubMed  CAS  Google Scholar 

  • Widder, E.A., Hiller-Adams, P., and Case, J.F (1987). A multichannel microspectrophotometer for visual pigment investigations. Vision Res. 27: 1047–1055.

    Article  PubMed  CAS  Google Scholar 

  • Williams, B.G., Greenwood, J.G., and Jillet, J.B. (1985). Seasonality and duration of the developmental stages of Heterosquilla tricarinata (Claus, 1871) (Crustacea: Stomatopoda) and the replacement of the larval eye at metamorphosis. Bull. Mar. Sci. 36:104–114.

    Google Scholar 

  • Zeiger, J., and Goldsmith, T.H. (1989). Spectral properties of porphyropsin from an invertebrate. Vision Res. 29:519–527.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Marshall, N.J., Cronin, T.W., Frank, T.M. (2003). Visual Adaptations in Crustaceans: Chromatic, Developmental, and Temporal Aspects. In: Collin, S.P., Marshall, N.J. (eds) Sensory Processing in Aquatic Environments. Springer, New York, NY. https://doi.org/10.1007/978-0-387-22628-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-22628-6_18

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95527-8

  • Online ISBN: 978-0-387-22628-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics