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Preface

This book is focused on the potentials, opportunities, and challenges of fog
computing in developing and deploying intelligent IoT systems and services.
Specifically, Chap. 1 reviews key IoT technologies and several applications, which
include not only simple data sensing, collection, and representation but also complex
information extraction and behavior analysis. As 5G mobile networks are beginning
to be commercially deployed worldwide, intelligent IoT applications and services
are getting more and more important and popular in different business sectors and
industrial domains, thanks to more communication bandwidth, better data quality,
faster data rate, denser network connectivity, lower transmission latency, and higher
system reliability.

Chapter 2 introduces the architecture and key enabling technologies of fog
computing, as well as its latest development in standardization bodies and industrial
consortium. As the bridge connecting the cloud and things, fog computing plays a
crucial role in identifying, integrating, managing, and utilizing multitier computing,
communication, and storage resources in different IoT systems. Together with
feasible AI algorithms, fog nodes can combine various local/regional micro-
services and orchestrate more intelligent applications and services with different
user preferences and stringent performance requirements. For example, autonomous
driving and intelligent manufacturing require high security in data transmission
and storage, very low latency in data processing and decision-making, and super-
high reliability in network connectivity and service provisioning. Furthermore, the
challenges of developing more sophisticated services across multiple domains are
discussed.

Chapter 3 proposes an analytical framework for general Multi-Task Multi-
Helper (MTMH) fog networks and application scenarios, such as multi-robot
systems, wireless communication networks, intelligent transportation systems, and
smart home. Specifically, a comprehensive system model consisting of network
architecture, wireless channels, communication and computing models, and task
types is developed for a MTMH fog network. Based on different game theories,
the fundamental problems of computation offloading are formulated and analyzed
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for non-splittable and splittable tasks, respectively. Accordingly, two efficient
algorithms are designed and fully evaluated under different performance metrics.

Chapters 4–7 choose different intelligent IoT applications as real examples
to demonstrate the architecture, functions, technologies, and advantages of our
corresponding fog-enabled solutions. In particular, Chap. 4 introduces fog-enabled
solutions for robot SLAM, multi-robot smart factory, and multi-robot fleet formation
applications, which require large local computing power for timely constructing the
map of a working environment, calculating multiple robots’ exact positions, and
tracking their movement postures and orientations. Through a high-speed wireless
network, massive data and images collected by on-board and local sensors are
transmitted from the robots and intelligent infrastructure to nearby fog nodes,
where intelligent data processing algorithms are responsible for analyzing valuable
information and deriving the results in real time.

Chapter 5 introduces fog-enabled self-optimization techniques for wireless
communication networks, which provide end users a series of new functions and
capabilities such as distributed local caching, collaborative radio signal processing,
scalable service architecture, computation offloading, on-demand mobility manage-
ment, and cooperative resource allocation at base stations and within the network.

Chapter 6 introduces fog-enabled intelligent transportation systems, which sup-
port autonomous driving, cooperative driving, and shared vehicles for improving
user experience, traffic efficiency, and road safety. Our solution utilizes distributed
computing, storage, and communication resources in vehicle nodes, roadside
stations, and advanced wireless networks to realize the potential benefits of fog
computing.

Chapter 7 introduces fog-enabled smart home and user behavior recognition
applications, which enhance everyone’s home environment, personalized services,
quality of life, convenience, and safety, especially for the aging and disabled
population who need a comprehensive set of interactive technologies, models, and
algorithms for better assisted living experiences. Higher recognition accuracy can
be achieved when millimeter wave communication devices, multitier fog nodes, and
advanced algorithms are widely deployed in our buildings and neighborhood.

Chapter 8 concludes this book and suggests several key research topics for further
investigations.

July 2019 Yang Yang
Xiliang Luo
Xiaoli Chu

Ming-Tuo Zhou
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Chapter 1
IoT Technologies and Applications

1.1 Introduction

As a new dimension to the world of Information and Communication Technologies
(ICTs), the concept of Internet of Things (IoT) aims at providing “connectivity
for anything,” “by embedding short-range mobile transceivers into a wide array
of additional gadgets and everyday items, enabling new forms of communication
between people and things, and between things themselves,” according to the
seventh International Telecommunication Union (ITU) Internet Reports 2005 [1].
In recent years, different IoT technologies and standards have been actively
developed for different industrial sectors and application scenarios, such as smart
city, intelligent transportation system, safety and security, intelligent agriculture,
environmental monitoring, smart factory, intelligent manufacturing, smart home,
and healthcare. Gradually, specific IoT-centered business models and value chains
have become matured, consolidated, and popular, these IoT applications are effec-
tively accelerating the digitalization and informationization progresses of various
traditional industries [2]. As a result, they have generated tremendous economic
and social benefits to our society, as well as huge impacts on everyone’s daily life.

Sensors, machines, and user devices are the “things,” which are usually equipped
with limited energy resources and simple sensing, computing, communication,
motion, and control capabilities. By using a large number of sensors in the field,
a typical IoT system can effectively expand its service coverage and capability in
sensing, collecting, and processing different types of raw data obtained from the
physical world. Most redundant data with low values will be aggregated or filtered
for saving scarce communication resources, i.e., bandwidth, storage, and energy.
Selected data with potential values, e.g., characteristics of unexpected events, will
be transmitted from different sites through multi-hop communication networks to a
centralized computing facility, such as data center, for further in-depth investigation.
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New information will be extracted, or new events will be discovered, from this more
comprehensive analysis of massive data from a much larger area across multiple
sites and locations.

In early days, IoT systems are usually developed according to rigid rules or
requirements. The main purpose is to improve the perception of the physical
world, as well as the efficiency of data collection and analysis, in different IoT
applications such as environmental monitoring and emergency management. As a
well-known application-driven IoT architecture, the ISO/IEC 30141-IoT Reference
Architecture is often adopted in system designs and service deployments [2].
Firstly, data acquisition involves all kinds of sensors, such as RFID, MEMS,
bar code, and video camera. However, due to dynamic application scenarios and
environments, the key function and challenge for IoT systems is high-quality
data collection (transmission) through wireless ad hoc networks. Many wireless
access and networking technologies have been developed for ensuring timely
and reliable connectivity and transmission for data collection at low cost and
low energy consumption [3–5]. In addition to the existing standards for mobile
communications, the Internet, and broadcasting networks, a series of wireless
communication technologies have been developed for supporting short-distance
data transmissions in various IoT application scenarios, e.g., RFID, Wi-Fi, NFC,
ZigBee, LoRa, and Sigfox [6–11]. Finally, by collaboratively analyzing data from
multiple sensors in different areas, a more comprehensive perception of the actual
environment and a timely understanding of the exact situation will be achieved,
thus enabling better decision making and performance optimization for particular
industrial operations.

Nowadays, a series of advanced technologies on smart sensing, pervasive
computing, wireless communication, pattern recognition, and behavior analysis
have been widely applied and integrated for supporting more and more sophis-
ticated IoT applications, such as intelligent transportation system and intelligent
manufacturing. Such complex applications can greatly improve system automation
and efficiency in massive data analysis and task execution. To achieve this goal,
the key function and challenge for IoT systems is accurate information extraction,
which heavily depends on domain-specific knowledge, valuable experience, and
technical know-hows contributed by real experts and field workers. In order to make
IoT systems more accessible and deployable, the fourth-generation (4G) and fifth-
generation (5G) mobile communication standards have specified several important
IoT application scenarios, i.e., Narrow Band IoT (NB-IoT) in 4G, massive machine
type communications (mMTC), and ultra-reliable and low latency communications
(URLLC) in 5G [12–14]. Further, the latest advancements in cloud computing
and big data technologies enable fast and accurate analysis of huge volumes of
structured and non-structured data, thus creating lots of business opportunities for
the development of more sophisticated and intelligent IoT systems. The continuous
progresses and widespread deployments of IoT technologies have been transforming
many industrial sectors and commercial ecosystems. Now, IoT applications and
services are becoming indispensable to our daily lives and business models,
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e.g., remote control of door locks, lights and appliances at homes and offices;
real-time modeling of resource consumption patterns and streamline business
processes in factories; constant surveillance for property security, public safety, and
emergency management in cities.

To meet the fast-growing demands of various IoT applications and services
for different businesses and customers, many leading ICT companies, such as
Amazon, Google, Microsoft, Cisco, Huawei, Alibaba, MI and JD, have launched
their own cloud-based IoT platforms for common data-centric services. However,
these enterprise-level platforms are not designed for data sharing, nor service collab-
oration. General concerns of data security and customer privacy strictly prevent the
attempts of connecting and integrating them for much bigger commercial benefits
and global influences. Besides, it is even harder to overcome the existing barriers of
vertical industries and realize cross-domain information exchanges for minimizing
the redundancies and fragments at different but related IoT applications.

In the future, when AI technologies are widely adopted in most industrial sectors
and application domains, new links will be established between those domain-
specific island-like solutions. In most cases, they are not used to share original
data, but only to exchange necessary knowledge that is purposely learned from
separated/protected data sets for customized applications. To realize this ambitious
vision, the key function and challenge for future IoT systems is innovative knowl-
edge creation, which requires high-quality data, super-intelligent algorithms, and
more computing resources everywhere. Centralized cloud computing alone cannot
support this fundamental change, while dispersive fog computing technologies will
fill the computational gap along the continuum from cloud to things. Therefore,
future intelligent IoT systems will fully utilize the best available computing
resources in their neighborhoods and in the clouds to calculate novel effective
mechanisms and solutions, which are acceptable and executable across different
enterprise platforms, industrial sectors, and application domains. In this way, those
domain-specific IoT systems are not closed or isolated any more, they will become
much more powerful and influential by working collaboratively, thus significantly
saving global resources, improving overall performance, and maximizing potential
benefits in all systems. We have no doubt that future IoT applications and services
will be shifting from data-centric to knowledge-centric. Very soon, they will become
better than human-designed ones, since they are taught by us and powered by
accumulated data, sophisticated AI algorithms, endless computing resources, and
fast evolutions. Eventually, they will help us not only search and identify useful
information from massive raw data, but more importantly, discover and create new
knowledge to expand our horizons and capabilities.

The rest of this chapter is organized as follows. Section 1.2 reviews some well-
known IoT standards and technologies. Typical IoT applications are summarized
in Sect. 1.3. New challenges and future directions of IoT systems are analyzed in
Sect. 1.4. Finally, Sect. 1.5 concludes this chapter.
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1.2 Standards and Technologies

The IoT refers to the interconnection and exchange of data among devices/sensors.
Currently, with the explosive growth of the IoT technologies, an increasing number
of practical applications can be found in many fields including security, asset
tracking, agriculture, smart metering, smart cities, and smart homes. The short-
range radio technologies (e.g., Radio-frequency identification (RFID), Near Field
Communication (NFC), ZigBee) are widely used for building automation, automo-
tive, and monitoring devices as well. For example, Wi-Fi based on the IEEE 802.11
standards was used in most office environments. However, the short-range radio
technologies are not adapted for scenarios that require long range transmission.

Cellular networks are widespread and ubiquitous, covering 90% of the world’s
population, and other technologies like Wi-Fi do not have the same scale, requir-
ing users to search for and connect to a local network. RF providers, wireless
infrastructure companies, and carriers have made massive investments in cellular
networks to provide secure, reliable service to as many customers as possible. By
leveraging existing infrastructure and mature technology, cellular IoT can connect
millions of IoT devices with little additional investment. Solutions based on cellular
communications (e.g., 2G, 3G, and 4G) can provide larger coverage, but they
consume excessive device energy.

IoT applications’ requirements have driven the emergence of a new wireless
communication technology: low power wide area network (LPWAN), as shown in
Fig. 1.1 [15]. LPWAN is increasingly gaining popularity in industrial and research
communities because of its low power, long range, and low cost communication
characteristics. It provides long-range communication up to 10–40 km in rural zones
and 1–5 km in urban zones. In addition, it is highly energy efficient (i.e., 10+ years

Fig. 1.1 Required data rate vs. range capacity of radio communication technologies
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of battery lifetime) and inexpensive, with the low cost of a radio chip-set [15]. In
summary, LPWAN is highly suitable for IoT applications that only need to transmit
tiny amounts of data in long range. Many LPWAN technologies have arisen in the
licensed as well as unlicensed frequency bandwidth. Among them, Sigfox, LoRa,
and NB-IoT are today’s leading emergent technologies that involve many technical
differences [15].

Myriads of IoT connectivity solutions are available to support a wide range of
IoT application with miscellaneous requirements. Therefore, in order to select an
optimal technology for an application, various factors, such as power consumption,
security issues, deployment cost, communication range, data rate, and latency, are
required to be considered. A comparison of some typical IoT connecting solutions
(i.e., RFID, NFC, ZigBee, LoRa, Sigfox, and NB-IoT) on pre-specified factor is
given in Table 1.1. We will detail the connecting solutions in the next subsections.
Further, considered a subset of the IoT, we will introduce Web of Things (WoT)
which focuses on software standards and frameworks of IoT, such as REST, HTTP,
and URIs, to create applications and services that combine and interact with a
variety of network devices.

1.2.1 Radio Frequency Identification

The roots of radio frequency identification (RFID) date back to World War II.
Germans, for instance, used an interesting maneuver in which their pilots rolled
their planes as they return to base, so it would change the reflecting radio signal.
This simple procedure alerted the ground radar crew of German planes returning
and not allied aircraft. It can be considered one of the first passive ways to identify
an object by means of a radio frequency signal, which was known as “identify friend
or foe (IFF).” In the 1960s and 1970s, RFID systems were still embedded within a
context of “secret technology.” As an example, Los Alamos National Laboratory
was asked by the Energy Department of United States of America to develop a
system for tracking nuclear materials and control sensitive materials. In the 1990s,
MIT’s Auto-ID Center developed the global standard for RFID and other sensors,
which described the IoT as a system where the Internet is connected to the physical
world through ubiquitous sensors. In 2010s, the decreased cost of equipment and
tags, increased performance to a reliability of 99.9%, and a stable international
standard brought a major boost in the use of RFID systems.

There are two major initiatives regarding RFID standardization: International
Standard Organization (ISO) and EPCglobal. ISO uses a cross-industry perspective
with a generic approach. Meanwhile EPCglobal adopts a more application-specific
approach. The most recognized outcome of EPCglobal is the establishment of
Electronic Product Code (EPC), a unique code for item numbering, for identification
of objects by using a similar approach as bar code numbering. ISO works closely
with International Electro-technical Commission (IEC) responsible for general type
of RFID standards covering issues of air interface, data content, conformance, and
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Fig. 1.2 The architecture of a RFID system

performance. ISO/IEC standards cover certain areas of technology. For instance,
the ISO 18000 series standards are a series of standards that define air interface
standards consisting of channel bandwidth, EIRP, modulation, data coding, and
bit rate, ISO 15418 is a standard that defines data content. There are also many
separate standards that were already developed for livestock tracking (ISO 11785,
ISO 11784, and ISO 14223) [6, 16].

A typically RFID system is consisted of three main components: RFID tags,
reader, application system [6, 17], as shown in Fig. 1.2. RFID uses electromagnetic
fields to automatically identify and track tags attached to objects. The tags contain
electronically stored information. The RFID tags are known as transponders
(transmitter/responder), are attached to the objects to count or identify. Tags could
be either active or passive. Active tags are those that have partly or fully battery
powered, have the capability to communicate with other tags, and can initiate a
dialogue of their own with the tag reader. Passive tags collect energy from a nearby
RFID reader’s interrogating radio waves. Active tags have a local power source
(such as a battery) and may operate hundreds of meters from the RFID reader.
Tags consist mainly of a coiled antenna and a microchip, with the main purpose
of storing data. The reader is called as transceiver (transmitter/receiver) made up of
a radio frequency interface (RFI) module and control unit. Its main functions are to
activate the tags, structure the communication sequence with the tag, and transfer
data between the application software and tags. The application system is known as
data processing system, which can be an application or database, depending on the
application. The application software initiates all readers and tags activities. RFID
provides a quick, flexible, and reliable way for electronically detecting, tracking,
and controlling a variety of items. RFID systems use radio transmissions to send
energy to a RFID tag while the tag emits a unique identification code back to a data
collection reader linked to an information management system. The data collected
from the tag can then be sent either directly to a host computer, or stored in a portable
reader and up-loaded later to the host computer.

RFID technology has many advantages. RFID tag and reader should not be in
LOS to make the system work, and a RFID reader is capable of scanning multiple
tags simultaneously. Unlike bar codes, RFID tags can store more information.
Moreover, it follows instructions/commands of reader and provides location to
the reader along with its ID. RFID technology is versatile in nature and hence
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smaller and larger RFID devices are available as per application. Tags can be read
only as well as read/write unlike bar codes. However, RFID technology also has
disadvantages. Active RFID is costly due to use of batteries. Privacy and security are
concerns with the use of RFID on products as it can be easily tapped or intercepted.
RFID devices need to be programmed which requires enough amount of time.
The external electromagnetic interference can limit the RFID remote reading. The
coverage range of passive tags is limited which is about 3 m.

RFID takes the market in many different areas including inventory management,
personnel, and asset tracking, controlling access to restricted areas, supply chain
management, counterfeit prevention. The addition of other sensors around AIDC—
Automated Identification and Data Capture technologies such as infrared detectors,
radiation, humidity, and others in RFID applications contributed to the development
of IoT by extending it to reach intelligent services and providing local capabilities
for actuation. For example, in manufacturing, RFID technology offers many applica-
tions in the automotive industry. The RFID-based anti-theft vehicle anti-theft device
is a protection device installed in many vehicles. RFID also offers great promise for
the assembly and manufacturing process of automobiles, especially for flexible and
flexible production planning, spare parts, and inventory management. RFID tech-
nology not only helps automate the overall assembly process, but also significantly
reduces costs and shrinkage, but also provides better service for automotive users,
including more efficient replacement parts ordering and automatic generation of
maintenance reminders. The benefits that RFID brings to the automotive industry,
including production processes and end users, are visibility, traceability, flexibility,
and enhanced security. In the supply chain, managers will be able to monitor the
status of shipments like a crate filled with fruit. With sensors, RFID tags, and RFID
readers, the manager sees the exact location of the crate inside the warehouse, the
fruit’s point of origin, days until expiration, and temperature in real time. A visible,
transparent process improves efficiency, reduces waste, and allows traceability. If a
shipment is determined to be unsuitable for consumption due to disease or other
circumstances, the source or cause of the defection will quickly be discovered
because of the great wealth of information available.

In summary, the adoption of RFID is spurring innovation and the development
of the IoT, which are commonplace throughout households, offices, warehouses,
parks, and many other places. Industry and government mandates are regulating
RFID technologies leading to accepted standards across industries allowing for
interoperability among devices. Additionally, the cost and size of devices continue
decreasing which allows companies to embed smaller, common items with RFID
chips and sensors. Although promising, RFID is not without its challenges, which
arise from electromagnetic interference, security, and privacy issues. Commu-
nication between tags and readers is inherently susceptible to electromagnetic
interference. Simultaneous transmissions in RFID lead to collisions as readers
and tags typically operate on a same wireless channel. Therefore, efficient anti-
collision protocols for identifying multi-tags simultaneously are of great importance
for the development of large-scale RFID applications Due to its cost and resource
constraint limitations, RFID system does not have a sufficient security and privacy



1.2 Standards and Technologies 9

support. Many researchers and scientists work to implement low cost security and
privacy protocol to increase the applicability. Lots of lightweight solutions have
been proposed for RFID, but they are still expensive and vulnerable to the security
and do not fully resolve the security issues.

1.2.2 Near Field Communication

Near field communication (NFC) is a short-range wireless communication technol-
ogy. NFC technology uses magnetic coupling to send and receive signals. When
two NFC enabled devices are close enough (from touch to 10 cm), they create an
electromagnetic field between them. That electromagnetic field allows the active
NFC device to power up and communicate with the passive NFC device. The active
NFC device then picks up on variations in signal levels specific to the passive device
and reads those variations as a signal. A detector and decoder circuit in the active
NFC device is then used to comprehend the passive NFC signal and extract the
relevant information. NFC technology builds on RFID, which uses an ISO/IEC
standard. NFC was approved as an ISO/IEC standard in 2003 and is standardized in
ECMA-340 and ISO/IEC 18092. These standards specify the modulation schemes,
coding, transfer speeds, and frame format of the RF interface of NFC devices, as
well as initialization schemes and conditions required for data collision-control
during initialization for both passive and active NFC modes. They also define the
transport protocol, including protocol activation and data-exchange methods. NFC
incorporates a variety of existing standards including ISO/IEC 14443 Type A and
Type B.

The possible interaction styles among NFC devices provide three different
operating modes as shown in Fig.1.3 [18]. Three types of NFC devices are involved
in NFC communication: smartphones, NFC tags, and NFC readers. In reader/writer
mode, an active NFC device can read, write, or change the stored data in a passive
NFC tag. This mode is just like traditional RFID technology, where a terminal reads
the data from the embedded chip on the smart card. The maximum possible data
rate in this mode is 106 kbps. In peer-to-peer mode, two active devices can exchange
small amount of data in between them. As both devices are battery powered they can
establish radio link in between them. They set up bi-directional, half duplex channel
having maximum data rate of 424 kbps. In card emulation mode, the active NFC
devices work as a smart card based on ISO/IEC 14443 Type A and Type B. This
model is compatible with preexisting smart-card industry.

NFC has advantages in IoT application. One of the notable benefits or advantages
of NFC revolves around its simplicity and expansive applications. It is easier to
set up and deploy than Bluetooth because it does not require pairing or manual
configuration. The connection is automatic and takes a fraction of a second. It
also uses less power than other types of wireless communication technologies.
Another remarkable advantage of NFC is that it supports the widespread application
of contactless payment systems. Several companies have implemented payment
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Fig. 1.3 NFC system architecture

transactions based on this technology. However, NFC also has disadvantages. It
may prove to be much too expensive for companies to purchase and maintain related
machines and other equipment in IoT applications. So small companies could find
it difficult to sustain their existing turnover and enhance profits. Installing the
hardware and software and hiring technicians to maintain the same could result in
spiraling expenses for the concerned company. A critical limitation or disadvantage
of near field communication is that it is not as effective and efficient as Bluetooth or
Wi-Fi Direct when it comes to data transfer rates. NFC can only send and receive
very small packets of data. Its maximum transfer rate is 424 kbps while Bluetooth
2.1 has a transfer rate of 2.1 Mbps. While NFC transactions are undoubtedly more
secure than regular credit card payments, this technology is not completely free from
risk. Rapid evolution in technology always comes with an equally powerful negative
consequence. Mobile phone hacking is now rampant and attackers are coming out
with newer methods to gain unauthorized access into users’ personal, social security,
and financial data stored therein. This makes the entire system vulnerable and
insecure. The obvious lack of security could discourage both users and companies
from warming up to this technology in the near future.

NFC offers great and varied promise in services such as payment, ticketing,
gaming, crowd sourcing, voting, navigation, and many others. NFC technology
enables the integration of services from a wide range of applications into one
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single smartphone. NFC technology is typically used for payments and marketing
applications today. Payment using NFC integrated smart cards offers easier payment
compared to conventional multiple step payment process. Top payment services
like Visa and MasterCard are offering NFC embedded smart cards to customers.
NFC integrated smart cards can be used for fast payments at grocery shops, parking
tickets, adding shopping points, redeem coupons with just a single tap of the card.
All the major banks around the globe offer smart cards with NFC chips integrated.
NFC integrated system can be used in medicine and healthcare activities. NFC
offers greater accuracy and convenience in prescribing medicine, easier check-in,
payments, checking status of patients, tracking records by embedding NFC tags
to patient’s charts. NFC integrated devices can be easily paired and configured.
Medical professionals can easily check schedules and access medical devices and
equipment.

NFC is one major emerging technology of the last decade. Even though it remains
a comparatively newborn technology, NFC has become an attractive research
area for many researchers and practitioners due to its exponential growth and its
promising applications and related services. From the technical point of view, some
security issues in NFC technology are already solved and standardization is mostly
provided as well. However, there are still unsolved security issues. For example, new
protocols/mechanisms on off-line and on-line authentication of NFC tags should
be studied. NFC specific alternative key exchange protocols should be proposed to
prevent various attacks on RF communication.

1.2.3 ZigBee

ZigBee is a low cost, low data rate, and short distance wireless ad hoc networks
standard which contains a set of communication protocols. ZigBee is developed by
ZigBee Alliance based on IEEE 802.15.4 reference stack model and mainly operate
in two different frequency bands: 2.4 GHz and 868/915 MHz. ZigBee is used to
provide services such as small area monitor, security, discovery and profiling for
industrial control, household automatic control, and other places which deployed
sensor network-based applications.

The thought of ZigBee-style can be tracked to the end of 1990s which is proposed
by IEEE 802.15 group. After that, IEEE 802.15.4 (TG) group devoted to the bottom
standards. In 2001, ZigBee Alliance was founded by Honeywell and some other
companies which aims at creating, evolving, and promoting standards for ZigBee.
In 2004, ZigBee Alliance published the ZigBee 1.0 (a.k.a. ZigBee 2004) standards.
Then, the ZigBee 2006 that revised in former version was published in 2006. In
2007, the alliance published ZigBee PRO standard which contains two sets of
advanced commands. In 2009, a standard that is more flexible and has remote
control capability named ZigBee RF4CE was announced. From 2009, ZigBee
adopts IETF’s IPv6 standard as the standard of smart energy and committed to
forming a globally unified network.
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Fig. 1.4 ZigBee system architecture

In general, the system architecture of ZigBee is depicted by four layers, as shown
in Fig. 1.4 [19]. As mentioned before, ZigBee is developed on the top of IEEE
802.15.4 standard. ZigBee standard is built on the two lower layers: the physical
(PHY) layer and the medium access control (MAC) sublayer which were defined by
IEEE 802.15.4, then ZigBee Alliance providing the network (NWK) layer and the
framework for the application layer [9].

PHY IEEE 802.15.4 standard defines the PHY layer of ZigBee. The PHY layer
is the lowest layer and defines the interface between PHY channel and MAC
sublayer, it also provides data service and PHY layer management service. The PHY
layer data service directly controls and communicates with the radio transceiver
(transmitter and receiver). The PHY layer management service maintains the
database which related to the PHY layer parameters. The protocol stipulates that
the PHY layer operate in two separate frequency bands: 2.4 GHz and 868/915 MHz.

MAC IEEE 802.15.4 standard defines the MAC layer of ZigBee. The MAC layer
provides the interfaces between the PHY layer and the NWK layer and controls
access to the radio channel using a CSMA-CA mechanism. The MAC layer is
responsible for establishment, maintenance and termination of wireless links, and
synchronization between devices, and it transmits frames into the protocol system.

NWK The network layer provides interfaces between the MAC layer and the APL
layer and is responsible for managing the network and routing. The NWK layer
supports three topologies: star, tree, and mesh topologies. Managing the network
includes network establishment, end devices discovery, join and departure, and
these operations are controlled by the ZigBee coordinator. The ZigBee coordinator
not only responsible for assigning network address for devices in network but
also responsible for discovering and maintaining the path in network due to the
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terminal devices have no ability for routing. Routing is to choose the path to forward
information to the target devices.

APL The APL layer is the highest protocol layer in ZigBee standard. The APL
layer can be divided into three parts: application support sublayer (APS), application
framework, and ZigBee device object (ZDO). The APL layer is responsible for
mapping the variety of applications to ZigBee network, and it mainly includes
service discovery, convergence of multiple data stream, and security.

Zigbee has many advantages, and the main characteristics of ZigBee are low
data rate, low power consumption, low complexity, high security and support for a
variety of network topologies. However, there still exits some disadvantages: The
cost for the end devices is difficult to reduce at present, that makes it is not cheap
when deploy a large number of end devices. The communication distance is only
about 75–100 m, that is because the communication frequency mainly operates in
2.4 GHz. Signals at the frequency are difficult to penetrate through blocks, which
seriously affect the communication distance.

ZigBee is used to provide services such as small area monitor, security, discovery
and profiling, and so on for industrial control, household automatic control, and
other places which deployed sensor network-based applications. For example, Zig-
Bee can be used in the building energy consumption monitoring system due to low
cost, devices sparsity, low energy consumption, and self-organized characteristics.
The end devices which equipped with different sensors are used to monitor the
temperature, humidity and voltage, and so on. The end devices also can collect
the data from water meters, gas meters, and electricity meters. These data which
is gathered from variety of end devices will be sent to the upper computer, then
the policy will be made by the special system to achieve the goal which includes
energy consumption monitoring, temperature control, and energy-saving operation
management.

In summary, ZigBee provides a short distance, low complexity, low energy
consumption, low data rate, and low cost technology for wireless network and it
effectively compensates for the vacancies in the low cost, low power, and low rate
wireless communication market. ZigBee also has many facets that can be improved,
and we believe that the ZigBee technology never stops its step and there will be
more and more ZigBee-based applications emerge in our life.

1.2.4 LoRa

LoRa (short for long range) is an emerging technology in the current market, which
operates in a non-licensed band below 1 GHz for long-range communication link
operation. LoRaWAN defines the communication protocol and the system architec-
ture, while LoRa defines the physical layer. LoRa Technology offers compelling
features for IoT applications including long range, low power consumption, and
secure data transmission. The technology can be utilized by public, private, or
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hybrid networks and provides greater range than cellular networks. The bandwidth
has been established to ensure data rates from 0.3 kbps up to 50 kbps, which is not
much compared with IEEE 802.11 but enough for the majority of applications in
automation and data collection field, and also ensuring maximization of the battery
life in case of mobile or autonomous terminals. The concept is really affordable for
IoT applications, especially because of the reduce cost of implementation in long
range conditions.

LoRa was invented by a startup in France called Cycleo whose employees are
veterans of big semiconductor companies who wanted to build a long range low
power communication device. They filed a patent in 2008 titled “Fractional-N
Synthesized Chirp Generator” and another in 2013 titled “Low power Long range
transmitter.” Later this company was acquired by another French company named
Semtech that’s into manufacturing of analogue and mixed-signal semiconductors.
Semtech’s LoRa Technology has amassed over 600 known uses cases for smart
cities, smart homes and buildings, smart agriculture, smart metering, smart supply
chain and logistics, and more. 97 million devices are connected to LoRa networks
in 100 countries and the number of the devices is still growing. While Semtech
provides the radio chips featuring LoRa Technology, the LoRa Alliance, a non-profit
association and the fastest growing technology alliance, drives the standardization
and global harmonization of LoRaWAN, which is a media access control (MAC)
protocol for LoRa [10]. To fully define the LoRaWAN protocol, and to ensure
interoperability among devices and networks, the LoRa Alliance develops and
maintains documents to define the technical implementation, including MAC
layer commands, frame content, classes, data rates, security, and flexible network
frequency management, and so on.

A LoRa server architecture consists of end nodes, LoRa gateway, LoRa network
server, and LoRa application server. LoRa end nodes are the sensors or application
where sensing and control take place. These nodes are often placed remotely. The
nodes are the devices sending data to the LoRa network server. These devices could
be, for example, sensors measuring air quality, temperature, humidity, location,
and so on. The LoRa gateways are different from cellular communication where
mobile devices are associated with the serving base stations. The gateways are
receiving data from the devices and typically run an implementation of the packet-
forwarder software. This software is responsible for the interface with the LoRa
hardware on the gateway. The LoRa server component provides the LoRaWAN
network server component, responsible for managing the state of the network.
It has knowledge of devices active on the network and is able to handle join-
requests when devices want to join the network. When data is received by multiple
gateways, LoRa network server will de-duplicate this data and forward it once to the
LoRaWAN application server. When an application server needs to send data back
to a device, LoRa network server will keep these items in queue, until it is able to
send to one of the gateways. LoRa application server provides an API which can
be used for integration or when implementing your own application server. The
LoRa application server component implements a LoRaWAN application server
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Fig. 1.5 LoRa network architecture

compatible with the LoRa server component. It provides a web-interface and
APIs for management of users, organizations, applications, gateways, and devices
(Fig. 1.5).

Everyday municipal operations are made more efficient with LoRa Technology’s
long range, low power, secure, and GPS-free geolocation features. By connecting
city services such as lighting, parking, waste removal, and more, cities can optimize
the use of utilities and personnel to save time and money. LoRa Technology and
smart city IoT networking can offer street light solutions that increase energy
efficiency and reduce city operating costs. LoRa solutions are easy to implement
into existing infrastructure and allow smart monitoring of the grid over a LoRaWAN
network, LoRaWAN street light controller is LoRaWAN-alliance network com-
patible street light control system for street lights. The system provides a unique
identity to every light, allows independent control of street light on calendar and
timer basis, and allows instant manual control of lights from software control
system. LoRa Technology’s low power qualities and ability to penetrate dense
building materials make it an ideal platform for IoT-connected smart home and
building devices. In addition, the long range capabilities make it possible for LoRa-
enabled sensors to track assets that stray from home. Sensors in smart home
and building applications can detect danger, optimize utility usage and more to
improve the safety and convenience of everyday living. LoRa-enabled products can
include thermostats, sprinkler controllers, door locks, leakage monitors, and smoke
alarms. These devices connect to a building’s network and allow consistent, remote
monitoring to better conserve energy and predict when maintenance is necessary,
saving property managers money. LoRa Technology has the capacity to function in
high density environments, such as in large enterprise buildings or campuses, and
can handle thousands of unique messages per day.
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LoRa has advantages in IoT applications. LoRa uses industrial, scientific, and
medical (ISM) bands 868/915 MHz which is globally available. It has very wide
coverage range about 5 km in urban areas and 15 km in suburban areas. It consumes
less power and hence battery will last for longer duration. Single LoRa Gateway
device is designed to take care of 1000s of end devices or nodes. It is easy to
deploy due to its simple architecture. LoRa uses adaptive data rate technique to
vary output data rate output of end devices. This helps in maximizing battery life
as well as overall capacity of the LoRaWAN network. The physical layer uses a
spread spectrum modulation technique derived from chirp spread spectrum (CSS)
technology. This delivers orthogonal transmissions at different data rates. Moreover,
it provides processing gain and hence transmitter output power can be reduced with
same RF link budget and hence will increase battery life. However, LoRa also has
disadvantages. LoRaWAN network size is limited based on parameter called as duty
cycle. It is defined as percentage of time during which the channel can be occupied.
This parameter arises from the regulation as key limiting factor for traffic served
in the LoRaWAN network. LoRaWAN supports limited size data packets and has
longer latency. So it is not ideal candidate to be used for real-time applications
requiring lower latency and bounded jitter requirements.

In summary, the use of LoRa is strongly influenced by the characteristics of the
environment in which the technology is implemented. The type of IoT application
to be used needs to pay attention to these things. The use of LoRa in open areas
such as rural areas has advantages in power usage, wide range, and flexibility in
network development. However, for applications that require specific requirements
such as the amount of data exchanged per specific time period then, the network
configuration needs to be considered primarily for indoor implementations. The
LoRa network cannot transmit large amounts of data for a wider range of territories.
LoRa Technology is influenced by obstacles such as tall buildings and trees, which
leads to an increase in packet loss levels in the zone. The use of GPS in the LoRa
module has not been reliable, especially for real-time position tracking software
applications. The limitations identified in LoRa Technology become an opportunity
for future research.

1.2.5 Sigfox

Sigfox is a French global network operator founded in 2009 that builds wireless
networks to connect low power objects such as IoT sensors and smartwatches, which
need to be continuously on and emitting small amounts of data [11, 20]. Sigfox
wireless technology is based on LTN (Low Throughput Network). It is wide area
network based technology which supports low data rate communication over larger
distances. It is used for M2M and IoT applications which transmits only few bytes
per day. By employing ultra-narrow band in sub-GHz spectrum, Sigfox efficiently
uses the frequency band and has very low noise levels, leading to very low power
consumption, high receiver sensitivity, and low cost antenna design. Sigfox had
developed a simple communications protocol, running in the license-free ISM bands
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Fig. 1.6 Sigfox network architecture

at 868 and 915 MHz. It uses very low cost, standard chips, has a usable range of 5–
10 km and a battery life which can support years of low data rate transmission. At
first glance, it looked like the answer to an IoT maiden’s dream. The only problem
they had was how to deploy it. Unlike the roll-out of cellular connectivity, where you
could start with the areas of greatest use—typically capital cities, the IoT customer
base is much more diverse. Cities come into it, particularly if they are trying to be
smart, but there are plenty of applications in agriculture and transport which need
much wider coverage. Building their own network would have taken too long and
cost too much, so they persuaded mobile operators to partner with them and install
Sigfox’s gateways on their existing towers, providing a fairly rapid coverage. As
of October 2018, the Sigfox IoT network has covered a total of 4.2 million square
kilometers in a total of 50 countries and is on track to reach 60 countries by the end
of 2018.

Figure 1.6 depicts simple Sigfox network architecture [11, 20]. The Sigfox net-
work consists of objects (end user devices), Sigfox gateway or base stations, Sigfox
cloud and application servers. Sigfox objects are connected with gateway using star
topology. There is direct secure point-to-point link between Sigfox gateways and
Sigfox cloud. The cloud interfaces with servers using different protocols such as
SNMP, MQTT, HTTP, IPv6, etc., as per end applications. Sigfox offers a software
based communications solution, where all the network and computing complexity
is managed in the cloud, rather than on the devices. All that together, devices
connected through the Sigfox network only use the network when they are actually
required to transmit data, in this procedure much of the power consumption is
reduced.

Sigfox has advantages in IoT applications. Sigfox has designed its technology
and network to meet the requirements of mass IoT applications; long device battery
life-cycle, low device cost, low connectivity fee, high network capacity, and long
range. A device is not attached to a specific base station. Its broadcasted messages
are received by any base station in the range, which is 3 on average, and there is
no need for message acknowledgement. UNB intrinsic ruggedness coupled with
spatial diversity of the base stations offer great anti-jamming capabilities. UNB
is extremely robust in an environment with spread spectrum signals. Low bit rate
and simple radio modulation enable a 163.3 dB budget link for long-range commu-
nications. SIGFOX has tailored a lightweight protocol to handle small messages.
Less data to send means less energy consumption, hence longer battery life. With
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its simple approach to connectivity, Sigfox provides extremely price-competitive
connectivity subscriptions and even more importantly, enables extremely simple and
cost-efficient silicon modules. Sigfox is compatible with Bluetooth, GPS 2G/3G/4G,
and Wi-Fi. By combining other connectivity solutions with Sigfox, business
cases and user experience can be drastically improved. However, Sigfox also has
disadvantages. The narrow band spectrum emitted by single Sigfox end device
causes strong interference and collision to nearby existing wideband system. More
such Sigfox devices will further enhance the interference. Sigfox supports one-way
communication without acknowledgement. This necessitates multiple transmissions
if server does not receive data without errors. Due to the multiple transmissions,
power consumption will increase which depends on number of retransmissions. Due
to low data rate support, it cannot be used for high data rate applications.

Nowadays, pallets tracking to determine the location and goods condition are
highly desirable in logistics. In this application, the most requirements are low cost
sensors and long battery lifetime for asset tracking and status monitoring, in this
case Sigfox is a good solution. Logistics companies can have their own network so
they have a guaranteed coverage in their facilities. Low cost Sigfox devices could
be easily deployed on vehicles. Sigfox public base stations can be then used when
vehicles are outside the facilities or when goods arrive at customer locations. In the
retail and hospitality industries, keeping guests satisfied and customers engaged is
your number one priority. Now, the IoT is here to help. Sigfox-enabled IoT solutions
for retail and hospitality change the game by keeping you connected to all aspects
of your retail location, hotel, restaurant or Powered by Sigfox’s network dedicated
exclusively to the IoT, the latest IoT solutions improve upon earlier versions of
connectivity technology to provide a cost-efficient, user-friendly experience.

In summary, Sigfox is rolling out the first global IoT network to listen to billions
of objects broadcasting data, without the need to establish and maintain network
connections. This unique approach uses a compact and optimized wireless protocol
to reduce signaling overhead, based on which Sigfox nodes are not attached to the
network. However, in order to support a myriad of devices in IoT, the interference
between Sigfox devices and nearby existing wideband system should be mitigated in
further research. Further, new technologies and mechanisms should be investigated
to reduce retransmissions. Sigfox system works well in fixed location. There are
issues such as interference and frequency inaccuracies in the mobility environments,
which also presents challenges to further research and application.

1.2.6 NB-IoT

NB-IoT is a LPWAN technology based on narrowband radio technology. The
technology provides improved indoor coverage, support of massive number of
low throughput devices, low delay sensitivity, ultra-low device cost, low device
power consumption, and optimized network architecture. The technology can be
deployed by utilizing resource blocks within a normal LTE carrier, or in the unused
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Fig. 1.7 NB-IoT network architecture

resource blocks within a LTE carrier’s guard-band, or standalone for deployments
in dedicated spectrum. NB-IoT is standardized by the 3rd Generation Partnership
Project (3GPP). Its specification was published at Release 13 of 3GPP on June 2016
[21]. In December 2016, Vodafone and Huawei integrated NB-IoT into the Spanish
Vodafone network and send the first message conforming to the NB-IoT standard
to a device installed in a water meter. NB-IoT now has received strong support
from Huawei, Ericsson, and Qualcomm. The objectives of NB-IoT are to ensure a
device cost below 5 USD, uplink latency below 10 s, up to 40 connected devices
per household, a device with 164-dB coupling loss, and a 10-year battery life can
be reached if the user equipment transmits 200 bytes of data a day on average. NB-
IoT has entirely an extensive ecosystem that is available globally. This is primarily
due to its support from more than 30 of the world’s largest and top class operators.
These operators have global communication coverage that serves above 3.4 billion
customers and geographically serve over 90% of the IoT market [22].

NB-IoT network architecture is shown in Fig. 1.7. In order to send data to an
application, two optimizations for the cellular Internet of Things (CIoT) in the
evolved packet system (EPS) were defined, the User Plane CIoT EPS optimization
and the Control Plane CIoT EPS optimization [23]. Both optimizations may be used
but are not limited to NB-IoT devices. On the Control Plane CIoT EPS optimization,
data are transferred from the eNB (CIoT RAN) to the MME. From there, they may
either be transferred via the serving gateway (SGW) to the packet data network
gateway (PGW), or to the service capability exposure function (SCEF) which
however is only possible for non-IP data packets. From these nodes they are finally
forwarded to the application server (CIoT Services). DL data is transmitted over the
same paths in the reverse direction. In this solution, there is no data radio bearer
set up, data packets are sent on the signaling radio bearer instead. Consequently,
this solution is most appropriate for the transmission of infrequent and small data
packets. The SCEF is a new node designed especially for machine type data. It
is used for delivery of non-IP data over control plane and provides an abstract
interface for the network services (authentication and authorization, discovery, and
access network capabilities). With the User Plane CIoT EPS optimization, data is
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transferred in the same way as the conventional data traffic, i.e., over radio bearers
via the SGW and the PGW to the application server. Thus it creates some overhead
on building up the connection; however, it facilitates a sequence of data packets to
be sent. This path supports both, IP and non-IP data delivery.

NB-IoT has advantages in IoT applications. As it uses mobile wireless network
it offers better scalability, quality of service, and security compare to unlicensed
LPWAN such as LoRa/Sigfox. It offers long battery life due to low power con-
sumption or current consumption. NB-IoT also offers extended coverage compare
to GSM/GPRS systems and co-exists with other legacy cellular systems such as
GSM/GPRS/LTE. The NB-IoT compliant devices can be deployed/scheduled within
any legacy LTE network. This helps them share capacity as well as other cell
resources with the other wireless connected devices. NB-IoT modules are expected
to be available at moderate costs. It offers better penetration of structures and
better data rates compare to unlicensed band based standards (e.g., LoRaWAN and
Sigfox). However, NB-IoT also has disadvantages. It offers lower data rate (about
250 Kbps download and 20 Kbps upload) compare to LTE. The bandwidth is about
200 KHz. Hence it is ideal to use NB-IoT for stationary devices. NB-IoT devices
need to connect to an operator network via licensed spectrum. Network and tower
handoffs will be a problem, so NB-IoT is best suited for primarily static assets, like
meters and sensors in a fixed location, rather than roaming assets.

The strong growth in the NB-IoT market has motivated many analyst firms to
create forecasts showing the expected numbers of connections as well as the revenue
potential. Generally, the global IoT market is expected to be worth trillions of dollars
by 2020. The NB-IoT market is a subset of this, and it is important for operators to
understand the revenue potential in the countries they operate in. Humans and their
pets share a good bond, unfortunately many users often face issues regarding lost or
stolen pets. Pet tracking use case is one application that helps the user to keep track
of its pets’ activities and most importantly location at all times. A small lightweight
device placed around the neck of the pet embedded with an NB-IOT chip-set helps
to send tracking information to its user’s device. The NB-IOT device collects and
sends location information leveraging GPS and location based services and this can
be done either periodically or in real time based on the users’ preferences. The user
can then receive the information with a tracking route that is already integrated with
the map. Furthermore, this device is embedded with several forms of alarms that can
alert the user when the device battery is running low [24]. Security has always been
a very important aspect of human living, people at all times want to be guaranteed
of home safety [24]. Alarms and event detection will help to rapidly inform that
user about a detected home intrusion. NB-IoT system will not only offer intelligent
protection from intrusion but will also offer intelligence for detected events that can
lead to a fire outbreak like a sudden increase in home temperature or smoke. Alarms
and events detectors will make use of sensors placed devices in ideal locations in
the home that constantly communicates with the NB-IoT network, this use case will
make use of a very low data throughput and battery life of the devices will be ultra-
critical.

In summary, NB-IoT is a promising technology for IoT applications. It can
connect low power IoT devices that are placed in weak coverage environments
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such as apartment basements. This is done by allowing devices to repeat signal
transmissions while operating at very low power. Compared to LoRa and Sigfox,
NB-IoT relies on the existing cellular infrastructure instead of new ones, thus
the investments on a utility-dedicated communication infrastructure and the time
required for deployment of applications are reduced. However, it is difficult to
implement firmware-over-the-air (FOTA) or file transfers. Some of the design
specifications for NB-IoT make it such that sending larger amounts of data down
to a device is hard.

1.2.7 Web of Things

The emergence for the concept of Web of Things (WoT) benefits from the
development and application of World Wide Web (WWW). In parallel the devel-
opment of WWW, more and more sensors and devices which have computing and
communication capabilities are deployed in some special areas or around persons.
Connect these devices with Internet for data acquisition and action control is the
basic thought of IoT. However, varieties of devices with different functions may
adopt incompatible protocols, so that the heterogeneous network is isolated. Then,
Web of Things has been proposed to avoid this situation. The WoT benefits from
what made the web so successful and applies it to the embedded devices in order to
unify the IoT standards [25]. The goal of WoT is connecting the things to the web
using the protocols such as HTTP and HTML that adopted in the web and makes
the applications have common interfaces which are consistent with developing web
[26].

The start of WoT can be tracked to 2000, and a project which uses URLs to
address the physical things and uses HTTP protocol to interact with things appeared
in 2002. The application of IoT that invoke web was proposed by Dominique
Guinard and Vlad Trifa in 2007, they started the WoT online community and
published the WoT manifesto. In 2011, Guinard and Trifa founded EVRYTHNG
which is a company use WoT to serve industry needs, and other startups also started
the same time. In 2014, the World Wide Web Consortium (W3C) organized the
workshop on the WoT and lead to the creation of the WoT Interest Group and
the submission of the Web Tings Model. In the same time, other company started
projects about the WoT, such as Google and Siemens.

The system architecture of WoT is described in four layers (These four layers’
architecture is defined by functionality): the accessibility layer, findability layer,
sharing layer, and composition layer as shown in Fig. 1.8 [25].

Accessibility Layer The accessibility layer is the lowest layer in the system
architecture. Varieties of things offer web APIs so that they can be accessed
to the Internet through the access layer. The layer is responsible for turning
things into programmable web things. The operation orders are like this: physical
things expose their services through RESTful APIs (REST refers to a set of
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Fig. 1.8 WoB network architecture

architectural constraints and principles for web services. Web services that satisfy
these constraints and principles are RESTful web services). If any real-world things
can provide RESTful APIs over HTTP, then they will get URLs and integrate these
things into the existing World Wide Web (WWW).

Findability Layer The real-world things have become seamlessly part of web
after the accessibility layer. However, other applications or users do not know
what the services have been provided by these web things. So the findability layer
is responsible for describing things and their services that enabled by semantic
annotations and make them findable and useable. This layer makes the things can
be searched through the web indexes and search engines by other applications.

Sharing Layer The real-world things can be searched and shared by humans and
applications through several ways on the Internet. Then, how can users obtain and
use the things’ data efficiently and safety? The sharing layer takes the responsibility
for establishing the mechanisms to ensure the appropriate data can be shared and
used safety. While the HTTP protocol already provides the mechanisms for securely
sharing data in WWW, there needs more perfect authentication mechanisms for
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WoT due to the new characteristics. A promising mechanism which uses fine-
grained sharing has been proposed on the top of RESTful APIs [25].

Composition Layer The composition layer is the highest layer in the system
architecture. The responsibility of this layer is simplifying the process of creating
new applications which are made from things and web services. The mashups
process can use some web tool-kits (such as JavaScript SDKs), dashboards that with
programmable widgets and mashup tools (such as Node-RED). These tools make it
convenient for users and applications.

WoT is a promising settlement that can break the heterogenic isolation dilemma
in IoT and it is a specification of IoT by integrating the things into web architecture.
All the resources and services are formed into web service APIs for humans and
applications that will simplify the process of applications development. However,
shortcomings are inevitable, such as data security and local privacy. WoT as a unified
web that makes it more vulnerable than IoT networks. WoT is not the ultimate
solution for connecting all things and perceiving the world.

The range that WoT will be applied is wide, such as industrial control, household
device control, smart city and environmental monitor. WoT makes that easier
for varieties of devices and network interconnection. Many applications have
been developed based on WoT architecture. For example, in a smart home case,
many types of sensors and cameras are deployed in a home for monitoring some
parameters, such as brightness, temperature, and shoot video. WoT will adopt its
four layers’ architecture to integrate the sensors into the WWW, so that the hardware
of the sensors can be presented at web. Meanwhile, the resources will be provided
through web service APIs form. Then, users can do their mashups more easily.

In the past few years, the devices which have computing and communication
capacities have experience an explosive growth, and the growth will continue in the
future. WoT was expected to solve the all things interconnection problem, and some
progress has been made. Nevertheless, there still exits many problems to settle in
the present, such as devices accessibility, sharing mechanisms designation, and data
authority and privacy. Although the WoT is faced with some problem, it is still a
promising architecture in the future, and we believe the new applications of WoT
will spring up.

1.3 Typical Applications

1.3.1 Environmental Monitoring

Environmental monitoring is an important application area of the IoT. The auto-
matic and intelligent characteristics of the IoT are very suitable for monitoring
environmental information. Generally speaking, the structure of the environmental
monitoring based on IoT includes the following parts: The perception layer: The
main function of this layer is to obtain environmental monitoring information,
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Fig. 1.9 Sensor (left) and gateway (right) at the bottom of a birdhouse

such as temperature, humidity, and illumination, through sensor nodes and other
sensing devices. Figure 1.9 (see Fig. 12 in [27]) shows the application of IoT in
birdhouse monitoring. Because environmental monitoring needs to be perceived in
a wide geographical range and contains a large amount of information, the devices
in this layer need to be formed into an autonomous network through wireless
sensor network technology, extract useful information by means of collaborative
work, and realize resource sharing and communication through access devices
with other devices in the Internet. The accessing layer: The main function of this
layer is to transfer information from the sensing layer to the Internet through the
wireless communication network (such as wired Internet network, ZigBee, LPWAN,
WLAN network, GSM network, TDSCDMA network), satellite network, and other
infrastructure. The network layer: The main function of this layer is to integrate
the information resources within the network into a large intelligent network that
can be interconnected, and establish an efficient, reliable, and trusted infrastructure
platform for the upper layer of service management and large-scale environmental
monitoring applications. The service management layer: The main function of this
layer is to conduct real-time management and control of the massive information
obtained by environmental monitoring within the network through a large central
computing platform (such as high-performance parallel computing platform), and
provide a good user interface for the upper application. The application layer: The
main function of this layer is to integrate the functions of the bottom layer of the
system and build the practical application of the industry oriented to environmental
monitoring, such as real-time monitoring of ecological environment and natural
disasters, trend prediction, early warning and emergency linkage, etc. Through
the above parts, environmental monitoring based on IoT can realize collaborative
perception of environmental information, conduct situation analysis, and predict the
development trend.
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1.3.2 Infrastructure Health Monitoring

The deployment of IoT is important for infrastructure health monitoring. As
an engineering feat, China’s massive South-to-North Water Diversion Project is
a stunner. The massive Internet-of-Things (IoT) network that has been quietly
overseeing the middle route is impressive in its own right. More than 100,000
individual sensors stud the 1400 km waterway, which connects the Danjiangkou
reservoir to Beijing and Tianjin. For the last year, it has been scanning the canal for
structural damage, tracking water quality and flow rates, and watching for intruders,
whether humans or animals. There are many challenges in the South-to-North
Water Diversion Project. The water traversed regions prone to earthquakes, making
infrastructure vulnerable to damage. The water’s flow would need to be controlled
so that none of it would go to waste. Its quality would also need to be checked
periodically to ensure no pollutants or toxins made their way into city drinking
water supplies. In some places, local villagers scaled the fence to fish or swim
in the water. That created safety risks. After careful analysis, these challenges are
divided into three broad categories—infrastructure, water, and security—and, after
some discussions, settled on more than 130 different kinds of Internet-connected
sensors to install along the canal. Infrastructure sensors measuring stress, strain,
vibration, displacement, earth pressure, and water seepage were embedded in the
ground adjacent to the canal and in the concrete banks and bridges as well as
the 50 dams built to control the water’s flow. Probes that measure water quality
and flow rate were attached to the steel support columns that hold up the bridges.
Video cameras were spaced every 500 m along the entire structure, as shown in
Fig. 1.10. The smart gateway was developed to receive data continuously from local
sensors and then transmit it to a cloud server using whatever signal was available
at the moment. That could include fiber, Ethernet, 2G, 3G, 4G, Wi-Fi, or ZigBee.
The smart gateway periodically transmits data to the nearest server, which may be
any one of 47 regional branch servers in counties along the canal. Under normal
circumstances, the transmissions occur at intervals of 5–30 min, or once a day,
depending on location and water resources in the area. If some special event happens
such as an earthquake or a chemical spill, the data will be sent immediately and
continuously to the cloud. From there the data is stored or forwarded to any of the
five administrative servers in provincial cities between the Danjiangkou reservoir
and Beijing, to ultimately reach the main server center in Beijing. A Web platform
and interface are designed. They allow people working at the server stations to
read the data and respond to any alerts via a website, thus enabling the central
management team in Beijing to always learn the latest developments at remote
sites and make the right decisions in real time. Meanwhile, because the network
is isolated from the World Wide Web, there is less of a risk that the data will be
hacked by outsiders.
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Fig. 1.10 Internet-connected sensors installed along the canal include video cameras (left), as well
as intrusion detection (top right) and water level sensors (bottom right)

1.3.3 Public Safety Surveillance

The public safety surveillance based on IoT with the characteristic of wide coverage
of public security monitoring, multiple monitoring indicators, high continuity
requirements, unsuitable environment for manual monitoring, and close correlation
between perceived information content and people’s lives employs the technology
of IoT especially the technology of sensor network to construct an information
system engineering composed of perception layer, network layer and application
layer, which mainly includes the monitoring to ensure the safety of all kinds
of production scenes, the monitoring of producer safety, the monitoring of the
safety of specific items, the monitoring of densely populated places, the monitoring
of important equipment and facilities, and the information collection of scenes,
personnel, and items during the emergency treatment of accidents. Public security
is the cornerstone of national security and social stability. In order to effectively
withstand all kinds of man-made or natural disasters, countries will strengthen
public security measures as the focus of government work. The IoT for public safety
monitoring provides a new way to solve the problems faced about public safety
surveillance at present. The establishment of a complete public safety surveillance
based on IoT will provide effective prevention mechanism for existing safety
problems such as bridge tunnel collapse, hazardous material leakage, etc. The
nationwide public safety surveillance based on IoT enables the timely, powerful
and transparent resolution of major safety incidents. Therefore, the public safety
surveillance based on IoT should be given priority by the whole society. Figure 1.11
describes the network architecture of public safety surveillance based on IoT, which
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Fig. 1.11 The network architecture of public safety surveillance

is similar to the whole architecture of IoT and consists of three parts: perception
layer, network layer, and application layer. However, due to the particularity of the
application scene of public safety surveillance based on IoT, it has some technical
characteristics that other IoT applications do not have, which are summarized as
follows:

In the perception layer, the types of perceived information are diverse, and
the real-time requirement is high. The perception of most information (such as
the safety of bridge buildings, monitoring of dangerous goods, etc.) requires high
accuracy and is difficult to detect by manual means. Because of the high uncertainty
of the information type of potential security hazards, a large number of different
types of sensors should be deployed in densely staffed or high-risk production sites
for a long time. Higher requirements are put forward for the networking strategy of
perception layer, energy management, transmission efficiency, QoS, sensor coding,
address, frequency, and electromagnetic interference. These problems are also the
key to the mature application of public safety surveillance based on IoT. Because
the information perceived by public safety surveillance based on IoT involves the
national key industries and the daily life of the people, once the information is
leaked or improperly used, it may endanger national security, social stability, and
people’s privacy. Therefore, it is necessary for the information content of public
safety surveillance based on IoT to be transmitted through the private network or 4G
mobile network after taking security precautions to ensure the security, authenticity,
and integrity of the information. It is necessary to establish a proprietary platform
for public safety surveillance based on IoT with different levels in view of the
massive data information and the serious harm that security hidden danger may
bring. The service platform not only has a strong ability of information processing
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and integration, but also timely links relevant functional departments to deal with
emergencies in case of public safety emergencies, so as to minimize losses and
impacts. In addition, the interconnection of public security IoT platforms of different
levels is conducive to the maximum allocation of resources according to the hazard
level of security incidents, so as to facilitate the timely, effective, and transparent
resolution of public security incidents.

1.3.4 Smart City

It is expected that 70% of the world six billion peoplewill live in cities and surround-
ing regions’s population, over by 2050. So, cities need to be smart, if only to survive
as platforms that enable economic, social, and environmental well-being. Smart city
is the one that uses information and communications technologies (ICTs) to make
the city services and monitoring more aware, interactive, and efficient. Smartness
of a city is driven and enabled technologically by the emergent IoT, a radical
evolution of the current Internet into a ubiquitous network of interconnected objects
that not only harvests information from the environments (sensing) and interacts
with the physical world (actuation/command/control), but also uses existing Internet
standards to provide services for information transfer, analytics, and applications.
As illustrated in Fig. 1.12, the smart cities have six characteristics: smart economy,
smart people, smart governance, smart mobility, smart environment, and smart
living. It is implied that the capability to achieve measurement, understanding,
and visualization of multiple urban environment parameters is a key criterion in
developing a smart city.

A number of specific application domains have also been identified that could
utilize smart city IoT infrastructure to service operations in health services (noise,
air, and water quality), strategic planning (mobility), sustainability (energy usage),

Fig. 1.12 The characteristics of smart cities
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tourism (visitor services and tourist activity), business and international (city usage
and access), and city safety. The end goal of smart city IoT platform is to have
plug-and-play smart objects that can be deployed in any environment with an
interoperable backbone allowing them to blend with other smart objects around
them. In order to realize this goal, there are many technological hurdles including
architecture, energy efficiency, security and privacy, QoS, cloud computing, data
analytics, and GIS-based interpretation. Standardization of frequency bands and
protocols plays an important role in accomplishing this goal. Several projects and
activities detailed above are addressing these critical challenges in the next decade, a
clearer picture regarding the usefulness of IoT in making the smart city will emerge.
Due to the scale of activities, participation of large companies and the government
will play a pivotal role in the success of this emerging technology.

1.3.5 Smart Manufacturing

With the increasing scale of industry, there have many issues and restrictions in
the process of development, especially in some particular industry, such as the
manufacturing of nuclear fusion device. Fusion device is generally the piecework
and the manufacturer prefers to use traditional manufacturing process than to
develop intelligent manufacturing process. The traditional manufacturing technol-
ogy restricts the development of fusion device as a result of low automation and
backward production management. There has a major impact on manufacturing
and upgrading of fusion device through improving the management level. Product
quality tests are also an important link to improve production efficiency. Therefore,
improving the management of the manufacture, assembly, and testing level is the
key to increase the quality of product. The application of intelligence will greatly
improve the efficiency of manufacturing system. The intelligent manufacturing
system is widely used to indicate the design innovations. With the fast development
of information technology and intensification of trend in economic globalization,
highly competitive business environment forces the managers to continuously make
the best decisions in the shortest possible time. The application of IoT has penetrated
into various industries. Based on IoT technology, the intelligent manufacturing
system can greatly facilitate the production efficiency, improve the management
level, and expand production scale. Intelligent manufacturing system has become
the development trend of manufacturing technology. Unquestionably, IoT will
bring high impact to manufacturing field. The interconnecting smart objects on the
global network can be realized though Internet technologies and the development
of corresponding supporting technologies. The evolution of IoT also brings a lot
of challenges for many fields. Manufacture, as a very important application field
nowadays, has been involved into IoT. Based on IoT, intelligent manufacturing
system allows the combination of the virtual word and physical word anytime
and anywhere. The purpose is to improve the context which the users needed
and adopting the resources based on the requirements. The architecture of IoT for
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Fig. 1.13 The architecture of IoT for manufacturing field

manufacturing field has been proposed, as shown in Fig. 1.13 (see Fig. 1 in [28]).
The architecture of IoT for manufacturing field includes application layer, manage-
ment and control layer, network layer, access layer, and sensing layer where each
layer contains a functional aspect. The application layer of this architecture consists
of product manufacture, logistic system, and other system related manufacturing
system. Its main function is to integrate the bottom systems and establish the various
applications. The management and control layers consist of various platforms in
order to provide a well users’ environment to support the application of upper
layer, such as management platform, information processing platform, intelligent
computing platform, and so on. The network layer is to integrate the information
resources from access layer into a larger intelligence network though the Internet
platform and build a reliable and efficient infrastructural platform for upper layers.
The access layer is responsible for transferring information to network layer by
various networks, such as wireless networks, mobile networks, satellite networks,
wireless LANs, and other infrastructure. The sensing layer is to acquire information
by various sensors, RFID, and other identify intelligently. Then, it will share the
information in the network. The service is throughout the entire architecture of IoT
for manufacturing field.
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1.3.6 Intelligent Transportation System

With the acceleration of urbanization, motorization, the pace of modernization,
the urban population increase, growing faster vehicles, urban traffic congestion
and clogging growing, urban transport system overwhelmed, the consequent envi-
ronmental noise, air pollution, energy waste and other factors plaguing today’s
transportation in major cities have become a serious problem around the world now
in industrial countries and developing countries. So, with the advance of information
technology and globalization, the traditional means of transportation technology
can no longer meet the requirements of economic and social development. The
intelligent transportation is the inevitable choice for urban transport development,
and is a revolution in urban transport undertakings. Things appear to intelligent
transportation industry breakthrough brings rare opportunities to bring new horizons
for the development of intelligent transportation, smart transportation to provide
a wider space for development, and therefore modern urban transport calling for
“Internet of things.” “The new generation of intelligent transportation” develop-
ments provide important technical support for the realization of real-time, efficient,
accurate, safe, energy-saving intelligent transport objectives and provide technical
support for the IoT technology, networking technology will bring a new upgrade for
intelligent urban traffic.

Roadside infrastructure, vehicles, and end users will form a network based on
Intelligent Transportation System on IoT as shown in Fig. 1.14 (see Fig. 13.1 in
[29]). The functions of the network in the transportation system are multifaceted:

1. Traffic departments can obtain and release traffic information in time through the
network to effectively manage traffic infrastructure and road traffic.

Fig. 1.14 Intelligent transportation system scenario overview
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2. The traffic infrastructure can automatically adjust intelligently according to the
traffic condition.

3. Traffic participants can obtain more comprehensive traffic information, travel
advice, and road services and obtain efficient and safe traffic services.

4. In terms of energy conservation and environmental protection, the more efficient
operation of the entire transportation network will improve energy efficiency and
reduce environmental pollution.

However, due to the particularity of the application scene of Intelligent Trans-
portation System based on IoT, it has some technical characteristics that other IoT
applications do not have, which are summarized as follows:

1. The data acquisition of the sensing layer is mainly used to collect the state
and data of objects on the road, including the position information and running
state of various vehicles, the state of various intelligent mobile terminals on the
road, and the real-time data of some roadside sensors. Intelligent Transportation
System based on IoT data collection involves sensor, RFID, wireless com-
munication, multimedia information collection, and other technologies. Sensor
network networking and collaborative information processing technology realize
short distance transmission of data acquired by sensor, RFID and other data
acquisition technologies, self-organizing network, and collaborative processing
of data information by multiple sensors.

2. The network layer realizes a wider range of interconnection functions and can
transfer the information collected by the perceptive layer to the application layer
of the Intelligent Transportation System based on IoT without any barrier, with
high reliability and security. Meanwhile, the Intelligent Transportation System
based on IoT data and instructions can also be transferred to the corresponding
devices of the perceptive layer in an efficient, real-time, and safe manner. It
requires the integration of sensor network, mobile communication technology,
and Internet technology. With the development and application of LTE mobile
communication technology and Internet technology, it can better meet the needs
of Intelligent Transportation System based on IoT data transmission.

3. The application layer mainly includes intelligent navigation, intelligent parking,
safe driving, intelligent transportation, and other application systems.

1.4 New Challenges

IoT has contributed a lot in different areas such as environmental monitoring,
smart manufacturing where the entire factory can be connected to the Internet be
controlled via smart phone. IoT has also played a tremendous role in infrastructure
health monitoring and public safety surveillance sector. Despite all mentioned
achievements, what are the main challenges facing the IoT? [30–34]:
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1. Many of devices in IoT networks will require their own batteries. The lifetime of
the devices is limited by the capacity of the batteries. Will energy scavenging and
enormously low power circuits eliminate the need for batteries? Can the devices
harvest energy from the energy resource in surrounding environment, such as
wind, solar, thermal energy, and kinetic energy, to enable the realization of self-
sustainable communication? Research must be conducted in order to develop
systems that are able to harvest energy from the environment and optimize the
energy consumption of a IoT system. This means that it is not reasonable to waste
the energy by unnecessary data transmissions, protocol overheads, and so on.

2. As many things are connected to Internet it is necessary to have an adequate
architecture that permits easy connectivity, control, communications, and useful
applications. This has created a complex interoperability and integration chal-
lenge to realize large-scale heterogeneous IoT ecosystems. The communications
between these heterogeneous devices need to be adaptive to allow dynamic
interconnectivity and support decentralized nature. Trillions of objects will be
connected by the Internet. Many things or set of things must be disjoint and
protected from other devices. Therefore, it is important to protect, authenticate,
authorize, and name these diverse devices.

3. In IoT there will exist a vast amount of raw data being continuously collected. It
will be necessary to develop techniques to convert raw data into usable knowl-
edge. For example, this can be more helpful in medical stream by monitoring the
person heart rate, pulse, blood pressure and that raw data should be converted into
usable knowledge by giving precautions to person or doctor like medical streams.
It can be implemented in many fields like industrial, home appliances. On the
other hand, for some applications, such as target tracking, ocean monitoring, etc.,
we will require multi-source data sensing, which will result in data redundancy.
Therefore, we will face the challenge of data fusion inevitability. If the data of
the same type of sensor is directly integrated from the data layer, that is, data
layer fusion. If the sensor is not homogeneous and the data is heterogeneous,
then feature fusion or decision fusion is used to mask the heterogeneity of the
data itself. If multiple sensors are observing the same source of information, the
resulting data must be correlated, so correlation operations are required.

4. For IoT, there is no single wireless technology that optimizes operation costs,
bandwidth, range, power, and architecture for all applications and requirements.
Even if two devices share the same wireless, they may not share the same
communication protocol. Will a Panasonic refrigerator talk to a LG washing
machine, a Lenovo computer, an Apple iPhone, an OSRAM smart LED, and a
Samsung TV? Probably it is impossible for a while. However, the smart gateway
is a better selection. It has two functions, one is the protocol conversion, and the
other is wireless routing. The information can wirelessly interact between the
different smart terminals by using the smart gateway. In the smart home, there is
a wireless routing function to realize information aggregation and controlling of
the smart terminal.

5. With IoT gradually becoming a reality, the huge amount of data collected from
billions of devices could possibly paralyze big data and information technology
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(IT) companies. Presently, many companies have already had some difficulties
to organizing and analyzing their existing data. They are also worried about the
number and type of devices to be connected to the Internet. In fact, current IT
infrastructures that are stretched to their limits today may come crashing down
as we approach the IoT/IoE era. In order to overcome these problems, big data
and IT companies need to use data-reduction methods such as model building,
sampling, and aggregation. They could also use visualization techniques or visual
analytics to analyze the results.

6. Security not only provides an essential pillar for Internet but also introduces a
major challenge for the IoT. As the time goes the trend of IoT inflates from
millions of devices to tens of billions. As increasing the number of connected
devices, the chance to exploit security vulnerabilities is also increase, like in
cheap or low standard designed devices, and due to incomplete data streams
the chances of data theft is increased. Many IoT arrangements will also include
collections of similar or adjacent similar devices. This homogeneity expands the
potential impact of any single security weakness by the total number of devices
that all have the same features. In IoT, the security challenge is mainly embodied
in the following aspects:

• Many IoT systems have both hardware and software vulnerability that remain
unpatched. If a hacker exploits those vulnerabilities, there will be zero-day
attacks. That could be a disaster for the entire organization, and it will be
hard to mitigate those attacks because the manufacturers were not aware of
vulnerabilities.

• IoT is exposed to larger attack surface. Because devices are connected each
other, many attacks are possible not to one device but to the entire network.

• Consumers have low knowledge of IoT; people enjoy IoT, but few understand
how it works and they do not pay attention to the security issues.

The fundamental problem that is pervasive computing in the Internet today
that must be solved is dealing with security attacks. Security attacks are
problematic for the IoT because of the minimal capacity of things be used,
the physical accessibility sensors, actuators and objects, and the openness of
the system, including the fact that most devices will communicate wirelessly.
Backdoor is the most concern in IoT security which can be caused by vendors
while updates of things happen. Identifying and naming of the object is also an
important thing in IoT. And use of wireless sensor networks plays a crucial role
in IoT which may leads to security issues.

7. Authenticity, trustworthiness, and confidentiality are important for IoT. Cur-
rently, the data networks are still delicate. The cloud storage operation is still
in the emerging stage. Transmit the data to a cloud service for processing,
sometimes includes a third party. The gathering of this information leaks legal
and regulatory challenges facing data protection and privacy law. In order to
realize the opportunities of the IoT, some new strategies will be required to
address privacy issues, and innovate technologies and services will be developed
through a broad range of expectations. Privacy is the most concern in IoT, the data
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which storing in cloud using big data should not be seen by any other person. To
solve these problems privacy policies for each system should be specified. Once
specified either the individual IoT applications or the IoT infrastructure must
enforce privacy.

8. In IoT, many applications work on the basics of sensing, automation, and
computation platform. In these deployments, it is common for devices to know
their locations, have synchronized clocks, know their neighbor devices when
cooperating and have coherent set of parameter settings such as consistency,
sleep, awake schedules, and appropriate power levels for communication. How
to achieve cross-platform information integration and how to enhance security
and privacy will be the challenges that the future IoT needs to face. Looking
at the development of IoT, we can see that data collection is the foundation,
information extraction is the key point, knowledge creation is the core, and cross-
border integration is the key. As an extension to cloud computing, fog computing
enables service provisioning along the continuum from the cloud to things for
reducing latency and bandwidth demands, and for empowering end users in their
vicinity [5]. Specifically, fog computing can pool resources anywhere along this
continuum and can deploy its service anywhere in this range, including in the
cloud, at the edge or on the things. It is foreseeable that based on fog computing,
mass sensory terminal deployment, and mass IoT information storage, the
development of IoT is bound to shift from informatization and intelligence to
knowledge-based. In order to promote the development of intelligent IoT, a
flexible and ubiquitous software/hardware platform has become an urgent need
to achieve cross-sectoral and cross-platform information integration.

1.5 Conclusion

This chapter has reviewed some well-known IoT technologies and related standards,
including RFID, NFC, ZigBee, LoRa, Sigfox, NB-IoT, and WoT. Their system
architectures and technical advantages are briefly discussed. Then, some typical IoT
applications are introduced. When more and more IoT systems are deployed for
different industrial sectors, it is very challenging to overcome the vertical barriers
and mitigate the fragmentation problem across multiple application domains. It is
also very difficult to guarantee system security and customer privacy while connect-
ing and integrating several enterprise-level IoT platforms with heterogeneous data
structures.

At the same time, we regard these challenges as new research and development
opportunities, especially when advanced communication technologies, fog and edge
computing resources, and sophisticated AI algorithms are available in the neighbor-
hoods of different application environments. As the focus of 5G standardization and
commercialization is shifting to two IoT scenarios, cloud, fog and edge computing
technologies will jointly make future IoT systems and applications more and more
intelligent and innovative.
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Chapter 2
Fog Computing Architecture and
Technologies

2.1 Introduction

IoT is now emerging to support tens of billions of resource-limited devices such
as smartphones around us connected to the networks [1]. It is driving a digital
transformation in all aspects of our lives and businesses. Future IoT devices could,
in particular, be widely deployed for tasks such as environmental monitoring, city
management, and medicine and healthcare, requiring data processing, information
extraction, and real-time decision making. The growing number of connected
devices is creating data at an exponential rate, and increasingly more applications
have strict delay requirements. The current computing paradigm which heavily
relies on the cloud platform in addition to the host itself will not be able to keep
up with this trend and meet the following challenges [2]:

1. Low Latency Requirement: Many applications in IoT have rigorous service delay
requirements, especially for the industrial use cases and the Internet-of-Vehicles.
Particularly, the smart manufacturing systems necessitate end-to-end latencies in
the order of millisecond. The vehicle-to-vehicle communications and the drone
flight controls typically require latencies below a few tens of milliseconds. All of
these scenarios will not be handled adequately with only the remote clouds.

2. Limited Link Bandwidth: With the growing number of wirelessly connected IoT
devices, the link bandwidth is also getting more and more congested. It becomes
obvious that we should not try to convey all the information, e.g., the collected
data at the sensors, to the remote clouds for further processing. On the one hand,
the wireless spectrum is limited and we do not have enough bandwidth to send
all the data to the cloud. On the other hand, researches indicate that most of the
data generated by the end-points can be processed locally without jeopardizing
the overall system performance.

3. Limited Computing Power: The IoT devices typically have limited computing
power due to the cost and energy constraints. The current solution is to offload
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the computation burden to the remote clouds. However, this will inevitably
incur additional communication and processing delays to the offloaded tasks.
In addition to offloading to the remote clouds, we should try to offload the
computing task to the neighboring edge nodes as well as to exploit the available
computing power in the network effectively.

Fog computing provides the missing link in the cloud-to-thing continuum.
Fog computing selectively moves compute, storage, communication, control, and
decision making closer to the network edge where data is being generated in order to
solve the limitations in current infrastructure to enable mission-critical, data-dense
use cases. By definition [3], fog computing is a horizontal, system-level architecture
that distributes computing, storage, control, and networking functions closer to the
users along a cloud-to-thing continuum.

According to the definition, fog computing is a scenario where a huge number of
heterogeneous, ubiquitous, and decentralized devices communicate and potentially
cooperate among them and with the network to perform storage and processing
tasks without the intervention of third parties [4]. Therefore, fog infrastructure
will not only be at the network perimeter but also span along the cloud-to-things
continuum, including in the cloud, at the edge, or on the things, and to also pool
these distributed resources to support applications [2]. According to this trend in fog
infrastructure, compute, storage, and networking services are the building blocks
of the cloud and the fog that extends it. In this way, the processing of latency-
sensitive applications can take place at the edge of the network, while resource
hungry applications with delay-tolerant and computational intensive can take place
in the cloud. Hence, with the ability to enable processing to take place at the network
edge as specific locations near the end devices by the so-called fog nodes (FNs), the
fog can provide advantage of low latency. Furthermore, ubiquitous FNs such as
base stations (BSs), access points (APs), and routers positioned at the network edge
offer densely distributed points for gathering data and task computation. With the
advantages of fog computing, it is widely acknowledged that cloud computing is not
viable for most of the IoT applications and fog could be used as an alternative [5].

Evolving from cloud computing, fog computing and cloud computing are not
alternative but interdependent. However, they are different from each other. At
first, due to the centralized feature, cloud computing is used for global tasks, so
the resource can be optimized in a global view, whereas fog computing is used
for scheduling and managing the local tasks. Also, due to close integration with
the intelligence enabled front-end devices, fog computing is capable of efficiently
enhancing the overall system performance [6]. In addition, fog computing extends
a substantial amount of data storage, computing, communication, and networking
of cloud computing near to the end devices. Although there are many cloud
services that have already been applied for commercial use, the unreliable wireless
connections, e.g., deep fading, often lead to packet loss and intolerable wide area
network (WAN) delay between mobile devices and clouds [7]. Therefore, fog
computing is a viable solution to the resource-constraint devices. Last but not least,
although the fog computing achieves significant performance improvement in end-
to-end latency, the reliability of the applications is still better in cloud computing.
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Another similar concept we need to distinguish is edge computing. Cloudlet is
one of the first edge computing concepts, which is cloudlet-based cyber foraging
and provides computing and resource storage closer to the edge [7]. Then, based
on the constrained resource, it allows mobile devices to offload computation in one
or more virtual machines (VMs). Thanks to the VM technology, cloudlets provide
cloud service to the mobile users instead of providing Internet connectivity as in
Wi-Fi [8], thereby guaranteeing real-time application services. Using cloudlets,
the resource-poor mobile users can find their preferable cloudlets to offload their
intensive computations. Moreover, the cloudlets can act as a full cloud on the
edge in a stand-alone environment, since cloudlets can be supported without the
intervention of the cloud. Despite the benefits of cloudlets, it is hard to fulfill the QoS
of the mobile devices as cloudlets are not an integral part of a mobile network [9].
However, fog computing tightly linked to the existence of a cloud, it cannot operate
in a stand-alone mode.

To overcome the drawbacks of cloudlet and provide cloud computing capabilities
at the edge of mobile network and within the radio access network (RAN), the
industry specification group (ISG) within ETSI integrated edge computing into
the mobile network architecture in 2014, which can be outlined as mobile edge
computing (MEC) [10]. In March 2017, the ETSI has expanded the scope of
MEC and after that replaced the term “mobile” by “multi-access.” The edges of
non-mobile networks are also being considered in multi-access edge computing
(MEC) [9]. Similarly, a key difference between MEC and fog computing is that
MEC functions only in stand-alone mode, how it could interact with a distant cloud
is still an open issue.

In conclusion, it should be noted that cloudlets, MEC, and fog computing aim
at computing at edge, however, there is a significant difference between these
technologies that need to be pointed. First, MEC is mainly driven by an industry
consortium. According to the aim of OpenFog consortium, it focuses on the devel-
opment of fog architecture and standardization details. Thus, fog and cloudlets are
driven by research and development. Another difference is that cloudlets rely only
on VM for virtualization, while both fog and MEC can consider other virtualization
technologies other than VMs [11]. In addition, cloudlet mainly focuses on mobile
offloading, whereas MEC aims to handle more applications from either mobile
or non-mobile edge networks that are better provisioned. However, through the
optimization of offloading decisions and the involved resource allocation to satisfy
a substantial amount of latency-sensitive applications for resource-constraint end
devices, fog computing overlaps between edge and cloud [11]. Finally, note that
MEC works only in stand-alone mode until today. With regard to the cloudlets,
although there is a lack of detailed literature review about how to interact between
cloud and cloudlets, the cloudlets can function in either stand-alone mode or cloud
mode by connecting to the cloud. Different from the above approaches, fog is
designed as an extension to the cloud, which needs the support of the cloud for
the task computation that cannot be computed in the resource-constraint fog layer.

Due to the elastic architectures and enabling technologies, fog computing has
great potential in many application scenarios. But as any new technology in infancy,
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there also exist many challenges for practical fog deployments. In this chapter, we
will discuss fog computing architectures and technologies. More specifically, we
will first introduce fog computing architectures in industry and academia, termed
OpenFog reference architecture and multi-tier computing network, respectively.
Then, we will discuss the enabling technologies for fog deployments, including
networking technologies, computing technologies, storage technologies, virtualiza-
tion technologies, and artificial intelligence (AI). Finally, we will describe some
detailed use cases of fog computing and look into how they would benefit from fog
computing and what challenges would exist as well.

2.2 Fog Computing Architecture

2.2.1 Reference Architecture

OpenFog reference architecture for fog computing was first published by OpenFog
Consortium (OPFWP001.0216, OPFRA001.020817) in 2016, 2017 [3, 12], and
further adopted by IEEE standard (IEEE Standard 1934–2018) in 2018 [13]. It is
a structural and functional prescription of an open, interoperable, horizontal system
architecture for distributing computing, storage, control, and networking functions
closer to the users along a cloud-to-thing continuum of communicating, computing,
sensing, and actuating entities [13]. OpenFog reference architecture is particularly
suited to IoT systems and facilitates deployments which highlight interoperability,
performance, security, scalability, programmability, reliability, availability, service-
ability, and agility [12].

OpenFog reference architecture is built on a set of core principles called pillars.
These pillars form the belief, approach, and intent that guide the definition of
OpenFog reference architecture and represent the key attributes of the systems [3].

1. Security: Security has many different descriptions and attributes such as privacy,
anonymity, integrity, trust, attestation, verification, and measurement. These are
key attributes for the OpenFog reference architecture. OpenFog architecture will
enable the flexible creation of environments that address a broad spectrum of
security concerns spanning from IoT devices to cloud and the fog layers in
between.

2. Scalability: Scalability involves scalable performance, scalable capacity, scalable
reliability, scalable security, scalable hardware, scalable software, and so on. It
is essential for OpenFog architecture to adapt to workload, performance, system
cost, business needs, and so on. Due to the variety of the application scenarios
for fog computing, OpenFog architecture should enable elastic scaling of modest
deployments through large mission critical deployments based on demand.

3. Openness: Openness includes composability, interoperability, open communi-
cation, location transparency, and so on. It is essential for the success of a
ubiquitous fog computing ecosystem for IoT applications. OpenFog architecture
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can support portability and fluidity of applications and services at instantiation,
and enable the flexible discovery, collection, and redistribution of computing,
network, and storage resources anywhere in the network.

4. Autonomy: Autonomy supports the autonomy of discovery, autonomy of orches-
tration and management, autonomy of security, autonomy of operation, cost
saving, and so on. It is essential for the continue provision of functionality, and
it is supported throughout the hierarchy. OpenFog architecture enables decision
making to be made at all levels of a deployment’s hierarchy including near the
device or higher order layers.

5. Programmability: Programmability benefits adaptive infrastructure, resource
efficient deployments, economical operations, enhanced security, and so on. It
is the basis of openness, autonomy, and agility. OpenFog architecture supports
highly adaptive programming at the software and hardware layers.

6. Reliability, Availability, and Serviceability (RAS): RAS has three main areas:
hardware, software, and operations. It is resident throughout successful system
architectures and takes on great importance in OpenFog architecture. OpenFog
architecture will continue to deliver designed functionality under normal and
adverse operating conditions and ensure continuous management and orchestra-
tion, and correct operation.

7. Agility: Agility focuses on transforming huge volume of data into actionable
insights. It also deals with the highly dynamic nature of fog deployments and the
need to respond quickly to change.

8. Hierarchy: Hierarchy involves many dimensions, including but not limited to
devices in the hierarchy, monitoring and control in the hierarchy, operational
support in the hierarchy, surrogacy in the hierarchy, and business support in the
hierarchy. It is not required for all OpenFog architectures, but it is still expressed
in most deployments. The resources of OpenFog reference can be seen as a
logical hierarchy based on the functional requirements of an end-to-end IoT
system.

As aforementioned, although hierarchy is not required for all OpenFog archi-
tectures, it is still expressed in most deployments. In most fog deployments, there
are usually N-tiers of nodes. Figure 2.1 shows a subset of the combination of
fog and cloud deployed to address various domain scenarios as framed by the
layered view of IoT systems. Each fog element may represent a hierarchy of fog
clusters fulfilling the same functional responsibilities. Depending on the scenario,
multiple fog and cloud elements may collapse into a single physical deployment (the
rightmost case). Each fog element may also represent a mesh of peer fog nodes in
use cases like connected cars, electrical vehicle charging, and closed loop traffic
systems. Generally speaking, nodes at the edge are typically focused on sensor
data acquisition/collection, data normalization, and command/control of sensors and
actuators. Based on the collected data, nodes in the next higher tier are focused on
data filtering, compression, and transformation. They may also provide some edge
analytics required for critical real-time or near real-time processing. Nodes at the
higher tiers or nearest the back-end cloud are typically focused on aggregating data
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Fig. 2.1 IoT system deployment models [3]

and turning the data into knowledge [3]. This means that the multi-tier architecture
uses a multitude of computational clients or edge devices, and it is important to note
that the farther from the true edge, the greater the insights that can be realized.

OpenFog architectures offer several unique advantages, which are termed CEAL
[2, 3].

1. Cognition: Awareness of client-centric objectives to enact autonomy. OpenFog
architecture can be aware of customers’ requirements and determine where to
carry out the computing, network, and storage functions along the cloud-to-thing
continuum.

2. Efficiency: Dynamic pooling of unused resources from nodes along the cloud-
to-thing continuum. OpenFog architecture can discover, collect, and redistribute
computing, network, and storage resources anywhere along this continuum to
take full advantages of them.

3. Agility: Rapid innovation and affordable scaling under a common infrastructure.
OpenFog architecture will make it easier to create an open market place for
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individuals and small teams to use open software platforms and the proliferation
of mobile devices to innovate, develop, deploy, and operate new services.

4. Latency: Real-time processing and cyber-physical system control. OpenFog
architecture enables data analytics at the network edge and can support time-
sensitive applications for local cyber-physical systems.

It is worth noting that OpenFog reference architecture should be thought of as
complementary to, and an extension of the traditional cloud based architecture,
where different levels of the cloud’s functions can reside in multiple layers of the
network’s topology. Choosing between the cloud and OpenFog is not a binary
decision. They are interdependent and mutually beneficial: certain functions are
naturally more advantageous to carry out in fog while others are better suited to
cloud. The segmentation of what tasks go to fog and what goes to the cloud are
application-specific and could change dynamically based on the instantaneous state
of the network. In conclusion, the traditional cloud will continue to constitute an
important part of OpenFog architecture.

2.2.2 Multi-Tier Computing Network

Besides OpenFog reference architecture, a multi-tier computing network archi-
tecture integrating cloud computing, fog computing, edge computing, and sea
computing has been proposed as a promising way to the development of IoT
services [14]. Thus, a hybrid computing architecture is needed, which spans from
the edge (fog) to the core (cloud). Multi-tier computing involves collaborations
between cloud computing, fog computing, edge computing, and sea computing
technologies, which have been developed for regional, local, and device levels,
respectively [15].

IoT applications are increasingly intelligent due to more meaningful data,
powerful processors, and sophisticated algorithms. Typical IoT applications are
also shifting from simple data sensing, collection, and representation tasks towards
complex information extraction and analysis. However, the applications usually
follow rules and principles set by a specific industrial domain. Multi-tier com-
puting resources, when integrated with environment cognition, big data, and AI
technologies, could be used to develop a user-centric approach in which different
IoT services are autonomously customized according to specific applications and
user preferences.

Intelligent IoT networks and services with integrated, multi-tier computing
resources can be thought of as a large company with a top-down, multi-tier
organizational structure: managers and employees at different levels in the company
have different resources, capabilities, and responsibilities in terms of data access and
processing, task assignment, customer development, and decision making. Cloud
computing is equivalent to the top hierarchical level in the company, possessing
the most information sources, strongest analytical intelligence, maximum storage
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Fig. 2.2 Multi-tier computing network architecture, which integrates cloud, fog, edge, and sea
computing technologies to enable intelligent services for anything at anytime and anywhere

space, and the highest decision making authority. As such, cloud computing is
expected to handle challenging tasks at the global level, such as cross-domain data
analysis and processing, abnormal behavior diagnosis and tracing, hidden problem
prediction and searching, new knowledge discovery and creation, and long-term
strategic planning and decisions, shown as Fig. 2.2. Edge computing, on the other
hand, is equivalent to front-line staff, which have the least resources and capabilities
but can directly interact with customers in different application domains. Therefore,
edge computing is good at handling delay-sensitive tasks at the local level, such as
data collection, data compression, information extraction, and event monitoring.

Between the cloud and the edge within the IoT network, there is fog computing,
which is equivalent to mid-level management in the company. Like an efficient
management system with many levels of resources, duties, and responsibilities, fog
computing is a hierarchy of shared computing, communication, storage resources,
and AI algorithms that can collaboratively handle complex and challenging tasks
at the regional level, such as cross-domain data analysis, multi-source information
processing, and on-site decision making for a large service coverage. Because
user requirements are usually dynamic in terms of time and space, fog computing
can provide a flexible approach to incorporate distributed resources at different
geographical or logical locations in the IoT network, thus offering timely and
effective services to any customers [16–18].

The devices, or things, of the IoT network are equivalent to the customers of
the company, which have numerous different requests and demands for intelligent
applications and services. Each device has limited processing, communication,
storage, and power resources. But, collectively, they contribute to the concept of sea
computing at the device level, which supports data sensing, environment cognition,
mobility control, and other basic functions for individual things in real time [15].

To make the company a success, it is essential to have effective communi-
cation and collaboration mechanisms across different levels and units. Similarly,
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interaction and collaboration between cloud, fog, edge, and sea computing are
vital in order to create an intelligent collaborative service architecture. As a result,
this architecture actively connects shared computing, communication, and storage
resources of all the nodes in the IoT networks, and fully utilizes their capabilities
at different locations and levels, in order to provide intelligent, timely, and efficient
services according to dynamic user requirements. Since most applications and their
data do not require superior computing power, this architecture can significantly
improve service quality and user experience while saving time, resources, and
costs [14].

To make the above concepts reality, it will be necessary to provide a control and
orchestration architecture to allocate computing, communication, storage resources.
As a result, intelligent on-demand services can be created through the interoper-
ability and integration of multi-tier computing sources in the IoT networks. To best
meet the requirements of any user, centralized cloud computing with huge resources,
secure environment, and powerful algorithms are needed, but also distributed fog
and edge computing with shared resources, accessible environments, and simple
algorithms for real-time decision making.

With heterogeneous computing resources and the collaborative service archi-
tecture, future multi-tier computing networks can offer densely distributed points
for computation and storage, then effectively support a full-range of services in
different environments and applications. For example, smart cars and drones require
low-latency communications for receiving monitoring data and control messages.
Autonomous driving and three-dimensional virtual reality games need powerful
computing capabilities at device and edge levels, as well as broad communication
bandwidths. Industrial IoT and smart city management systems demand extreme
network reliability, data security, and service availability.

Fog computing is the bridge that connects centralized clouds and distributed
edges of the network and thus plays a crucial role in managing multi-tier resources.
It is, for example, responsible for vertical and horizontal interoperations, coordina-
tion of cross-domain collaborations, deployment of hierarchical rules and policies,
and integration of multi-level services. Together with the edge, fog computing
makes computing resources and intelligent services in the IoT networks more
accessible, flexible, efficient, and cost-effective.

It should be noted that the development and standardization of multi-tier
computing technologies have just begun and numerous technical challenges remain
[3, 13]. Specifically, in terms of security, trust, and privacy, end users should be able
to use a nearby shared computing node without compromising the protection of
identity and personal data. Virtualization and resource visibility capabilities need to
be developed to allow sharing of physical computing resources in different machines
and hardware. Efficient orchestration, which refers to managing the allocation of
heterogeneous resources and services, also requires interoperability between the
nodes within the network. Finally, the design of an architecture that is able to serve
various groups of users and is multi-tenant needs the development of a new business
model that encourages an ecosystem of shared resources and collaborative services.
These issues necessitate comprehensive research efforts using multi-disciplinary
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approaches across different technological and economic fields [11, 19, 20]. The
detailed description of the challenges will be discussed in the following subsection.

2.3 Fog Computing Technologies

2.3.1 Networking Technologies

In most fog deployments, networks facilitate collaboration among layers and
communication within the fog nodes to sensors and up to higher levels in the
hierarchy up to and including the cloud. Therefore, thing-to-edge, edge-to-fog, fog-
to-fog, and fog-to-cloud interconnection and communication are essential for the
fog computing architectures and deployments. According to the node’s purpose and
location, they can be connected with each other using a wired network or a wireless
network.

For wired connectivity, there are many standards, types, and interfaces for
physical connectivity that can be utilized to connect a fog node. Ethernet links
supported on copper or fiber links typically support speeds ranging from 10 Mbps
to 100 Gbps. For connections requiring higher speeds and longer reach, optical
fiber cables may be used. For connecting a fog node to IoT devices or sensors,
there are a variety of non-Ethernet protocols can be used. For example, in an
industrial environment, the fog node may be required to support a Controller Area
Network (CAN) bus or other fieldbus standards for communicating with lower layer
applications and processes. For industrial automation uses, guaranteed data delivery
is critical. This type of networking (usually using Ethernet) is called Time Sensitive
Networking (TSN) also known as Deterministic Ethernet. TSN uses standards-
based time synchronization technology (e.g., IEEE 1588) and bandwidth reservation
(class-based QoS) to prioritize control traffic in a standard Ethernet environment [3].

For wireless connectivity, it can be classified into three major areas: wireless
WAN (WWAN), Wireless LAN (WLAN), and wireless personal area networks
(WPAN). WWAN technologies are used when large geographic area coverage is
required. A variety of protocols and standards exist, including cellular technologies
(such as 3G, 4G LTE, and 5G), narrow band IoT (NB-IoT), low-power wide
area networks (LPWAN), and so on. WLANs utilize a variety of topologies and
protocols, but WLAN has become synonymous with Wi-Fi. WLANs are a good
choice for smaller geographical areas, often within a building or campus. WPAN
is characterized by a short communication range, low power consumption, and low
cost. WPANs may be used with wearable devices and home management systems.
The most common WPAN technologies are Bluetooth, infrared (IR), ZigBee, Z-
Wave, and IEEE 802.15.4 (Low Rate WPAN). Besides, near field communication
(NFC) may be used when fog nodes support devices that need to communicate in
very close proximity [3].
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2.3.2 Computing Technologies

As more and more data is generated and processed near end users under stringent
delay requirements, this will increasingly increase the computational requirements
of equipment, especially the edge devices. Additionally, as AI techniques are to
be widely deployed to realize the autonomy and agility of fog computing, having
general purpose computation at the edge will continue to be important. Typically,
compute is likely to be implemented as one or more multi-core Central Processing
Unit (CPU). In addition to traditional CPUs, some fog nodes, especially those
engaged in enhanced analytics, require CPU throughput in excess of what can be
economically (power or processing efficient) provided by standard current server
and enterprise CPU chips. In these cases, accelerator modules will be configured
next to the processor modules (or tightly integrated) to provide supplementary
computational throughput. Among them, Graphics Processing Unit (GPUs) and
Field Programmable Gate Arrays (FPGAs) are the most common.

GPUs often contain thousands of simple cores. For applications that can effi-
ciently exploit their massive parallelism, they can be an order of magnitude faster
and provide significant power and space savings. Multiple GPUs can be equipped
on each standard CPU. However, to achieve this capability power delivery and
physical and electrical connection to the node would need to be increased which
can increase the overall node power consumption. FPGAs are large collections of
gate-level programmable hardware resources. They can be configured with custom
logic designs to solve very specific problems very efficiently. However, depending
upon deployment the additional power reduction compared with other accelerators
may require additional lower level knowledge (e.g., VHDL). In many cases FPGA
provide better power efficiency compared with discrete GPUs [3].

2.3.3 Storage Technologies

As fog nodes collect and process data across the hierarchy, storage tiers which are
typically only seen in data centers will emerge on fog nodes. Thus, different types of
storage will be required in fog nodes. The most common ones include RAM arrays,
solid state drives, and fixed spinning disks.

As data is created from sensors, the node will need to operate on that data in
close to real-time operation. RAM arrays satisfy this requirement versus additional
latency when accessing non-volatile storage. Many fog nodes will also have on-
package memory to satisfy the latency aspects required for certain scenarios. Solid
state drives, or flash-based storage may be used for the majority of fog applications
because of its reliability, IOPs, low power requirements, and environmental robust-
ness. These include PCIe and SATA attached SSDs. Additionally, new classes of
solid state media are beginning to emerge with new programming models. These
include 3DXpoint and NVDIMM-P. For large, cost sensitive storage applications,
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fog nodes may contain rotating disks (fixed spinning disks), sometimes arranged as
Redundant Array of Inexpensive Disks (RAID) arrays [3].

For fog computing, storage devices should support encryption and key manage-
ment and authentication by supporting standards such as AES-256 and TCG Opal
etc. Besides, in virtualized fog computing architectures, the storage devices should
also support ID-based performance allocation by providing adjustable storage
resources (IOPS or bandwidth) to specific applications. Finally, supporting data
encryption, real-time information, early warnings about the health of the media,
and self-healing properties are also important in most fog deployments.

2.3.4 Virtualization Technologies

According to the fog computing architectures described above, fog computing
architectures are highly virtualized ones. Under such architectures, processing,
accelerators, storage and networking functions should all be virtualized to maximize
the efficiency, flexibility, and manageability of the fog system. Virtualization may
also incorporate aspects of containerization, depending upon the software layers
that run on the hardware. Therefore, both hardware virtualization technologies and
software virtualization technologies are needed through the infrastructure.

Hardware-based virtualization mechanisms are available in almost all processor
hardware that would be used to implement fog platforms. It may also play an
important role in system security. Hardware virtualization for I/O and compute
enables multiple entities to share the same physical system. Virtualization is
also very useful in ensuring that VMs may not utilize instructions or system
components that they are not by design supposed to utilize. Besides hardware-
based virtualization mechanisms, containerization technologies are also used in fog
computing to help with isolation. Containers may offer a lower weight isolation
mechanism within a fog computing environment. The isolation guarantees are only
made by the OS and not fully based in silicon. This shifts the isolation requirements
from the silicon to the software running on the silicon. The decision to use containers
or VMs for isolation are usually based on security considerations for a given use
case [3].

To provide hardware-based virtualization support and OS based isolation sup-
port for running software and application microservices, software virtualization
technologies are necessary. With the increasing use of Software Defined Net-
working (SDN) implementations to replace dedicated devices, these “appliances”
are increasingly being implemented as software solutions in virtual machines and
Linux containers. Software containers provide a good mechanism for fine-grained
separation of applications and microservices running on the software backplane. A
software container, unlike a VM, often does not require or contain a separate OS.
A container uses resource isolation of the CPU, memory, block I/O, network, etc.,
and separate namespaces to isolate the application’s view of the operating system.
Within a container, applications can be configured, resources isolated, and services
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restricted. Multiple containers share the same kernel, but each container can be
constrained to only use a defined amount of resources, such as CPU, memory, or I/O.
Containers facilitate highly distributed systems by allowing multiple applications to
run on a single physical compute node, across multiple VMs, and across multiple
physical compute nodes [3].

2.3.5 Artificial Intelligence

In most fog computing deployments, AI techniques are utilized to handle the
sophisticated analytics tasks and optimize the system operations. Taking smart
buildings as an example, each floor, wing, or even individual room could contain its
own fog node and form a hierarchical control system. Each fog node could perform
emergency monitoring, security functions, climate and lighting control and provide
a compute and storage infrastructure for building residents to support smartphones,
tablets, and desktop computers. Locally stored operational history can be aggregated
and sent to the cloud for large-scale analytics. These analytics can be applied to
artificial intelligence to create optimized models, which are then downloaded to the
local fog infrastructure for execution [3].

AI is in the forefront of research today. Generally, AI techniques or machine
learning methods can be grouped into three categories: supervised learning, unsu-
pervised learning, and reinforcement learning. Supervised learning is a type of
system in which both input and desired output data are provided. Input and output
data are labeled to provide a learning basis for future data processing. Supervised
learning mainly includes classification and regression. In contrast, unsupervised
learning is a method used to enable machines to classify both tangible and intangible
objects without providing the machines any prior information about the objects. The
most common unsupervised learning is clustering. Reinforcement learning allows
the machine or software agent to learn its behavior based on feedback from the
environment, in order to maximize its rewards.

Conventional machine learning techniques are limited in their ability to process
natural data in their raw form. Constructing a machine learning system usually
requires considerable engineering expertise to design a feature extractor. With the
efforts of Geoffrey Hinton, Yoshua Bengio, and Yann LeCun, deep learning has been
promoted to solve the problems of conventional machine learning techniques and
make a great success. Deep learning is a method that allows computational models
composed of multiple processing layers (termed neural networks) to learn represen-
tations of data with multiple levels of abstraction. These methods have dramatically
improved the state-of-the-art in speech recognition, visual object recognition, object
detection, and many other domains. Convolutional neural networks (CNN) are
designed to process data that come in the form of multiple arrays, for example, a
color image composed of three 2D arrays containing pixel intensities in the three
color channels. While for tasks that involve sequential inputs, such as speech and
language, it is often better to use recurrent neural networks (RNNs). A variation of
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RNN is the long short-term memory (LSTM) networks, which use special hidden
units to remember inputs for a long time. LSTM networks are specially suited to
deal with long-term time series data.

2.4 Applications and Challenges

2.4.1 Collaborative Robot System

Robots are popular now and have been entered people’s lives and industries in
many fields. They bring us much convenience in daily life, save huge manpower
in factories, and complete tasks mission-impossible for human beings. In the
real world, robots are often needed to explore a prior-unknown environment. For
example, when people are buried in a collapsed building in an earthquake, and
the space/condition does not allow rescue person/animal to enter, an advanced
method is to send a suitable size and shape robot to detect the location of the
lives, environment, and the living conditions like oxygen level and temperature, etc.,
mapping information is critical to rescue planning. This requires the explorer robot
to construct a map of the space. Meanwhile, to do so it needs to know its location
and orientation, too. In robotics, to perform concurrent construction of a map of
the environment and estimation of the robot state is simultaneous localization and
mapping (SLAM).

Generally, in above rescue use case, robot SLAM needs to be low cost, low-
power consumption, accurate, and speedy. However, these requirements restrict each
other mutually. First, tens or hundreds of rescue robots may be used in one saving
campaign so robot cost is a big concern. Popular SLAM sensors include laser radars
and cameras; however, although generally laser radars perform better in accuracy,
they are much expensive than usual cameras, so the latter is more suitable for mas-
sive rescue robots. Second, accurate mapping and localization are very important
to rescue path planning, to achieve this it needs high-performance computing unit,
especially at the step of optimization that involves many advanced algorithms, and
this of course, is contradictory to the low-cost requirement aforementioned. Third,
rescue robots use battery; hence, battery life is a key consideration. To reduce
computing tasks of robots, e.g., to use low-performance algorithms is an effective
way to save robot energy consumption; however, it may lead to inaccurate SLAM.
Fourth, as all know, time is critical in many rescue cases; hence, it requires robots to
move as quick as possible and perform fast SLAM, imposing much pressure to the
onboard computing unit. Similarly, low-complexity algorithms may be used to save
SLAM time; however, a sequence is that the SLAM accuracy may be affected. Fifth,
in a large area where multiple robots are used, it requires collaborations between
the robots in SLAM and to merge the maps finally, thus a network is needed and
one robot needs to be a leader in SLAM and to merge maps, this leader robot, of
course, will consume additional energy. However, network is usually not available
in disaster scenarios.
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An effective solution to robot SLAM issues is fog computing. OpenFog has
identified eight pillars that a fog network needs to consider. They are also challenges
and requirements faced by fog-enabled robot SLAM.

• Security: Robot SLAM enabled by fog has privacy critical, mission critical, and
even life critical aspects, particularly in rescue applications. Connecting robot
to a fog network and cloud exposes both robots and SLAM process to possible
hacking and may suffer loss of map data and/or tampered SLAM process.

• Scalability: It needs to address dynamic technical and business needs behind
deployment of fog network for robot SLAM, meaning the performance, capacity,
security, reliability, hardware, and software of the fog network should be scalable.
A FN may scale its internal capacity though addition of hardware and software,
and a fog network may scale up and out by add new node if computing tasks are
too heavy.

• Open: Openness is essential to the success of a ubiquitous fog network. It
needs diverse vendors for consideration of cost, quality, and innovation. With
interoperability and software technologies, fog computing can be deployed or
defined at anywhere. A robot can perform fog-enabled SLAM when it has
connection to a network nearby with required software.

• Autonomy: It requires the fog network can assist SLAM when its external
service or connection is loss. This eliminates the need of a centralized processing,
e.g., at cloud. In disaster scenarios where cloud connection is usually not
available, it requires the fog network could perform SLAM as well. If any
working FN is lost, then the remaining FNs need to take over the tasks and
continue SLAM processes.

• RAS: Reliability is essential to fog-enabled robot SLAM. The network, software,
hardware need to be all reliable. Rescue robots are usually deployed in harsh
environments like earthquake, fire, storm, etc., very robust communication is
required. Availability, measured by uptime, is required for continuous support
to robot SLAM and serviceability, meaning correct operation of the fog-enabled
robot SLAM, imposes requirement of self-healing, autonomous configuration,
etc.

• Agility: It needs the fog network response quickly when robots moving in the
environment, or the environment is dynamic and changes fast. In the case of
rescue robots saving lives, it is critical for the fog networks to map and position
as fast as it can.

• Hierarchy: When multiple robots are used to building map jointly, then a master
FN merges the maps from different robots. A master FN is a higher layer node
comparing to other FNs and may coordinate other FNs behavior. Moreover, if
there are other applications associated with SLAM, like rescue, then SLAM
function may need to interact with higher layer services like path planning,
monitoring, business operation, etc.

• Programmability: SLAM may dynamically change with environment, network
topology, and so on, so the fog network and nodes may highly adaptively program
at hardware and software layer. The computing FN or the group FNs may be re-
tasked automatically to accommodate the changes.
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2.4.2 Wireless Communication Network

As one fundamental cornerstone of the global digital economy and our connected
society, wireless communication networks are and will continue to provide diverse
services for people and things. Meanwhile, we see the wireless networks are also
experiencing an unprecedented traffic growth and are expected to offer an increasing
variety of services and applications with different traffic patterns and QoS and
quality of experience (QoE) requirements. For example, some services demand
ultra-high data rates, while some necessitate ultra-high reliability and ultra-low
latency. The popular smart user devices, such as the smart phones, the laptops, and
the tablets, are now pushing the current wireless networks to their limits. To cope
with the continuing traffic growth and service expanding, future wireless networks
will have to be heterogeneous and densely deployed, featuring the coexistence of
different radio access technologies (RATs) including LTE/LTE-Advanced, Wi-Fi,
IoT, 5G new radio (NR), etc.

Accordingly, future wireless networks will be significantly more complex to
deploy and operate than the existing 3G/4G mobile networks, due to the dense
deployment of small BSs and the heterogeneities of network nodes, RATs, and
services (and hence traffic patterns). The increasing management complexity of
wireless networks has made it evident for the necessity of wireless network
self-optimization, where wireless networks are automated to minimize human
intervention and to proactively optimize network deployment, operation, and multi-
RAT resource allocation to meet increasing service demand from people and things.

The concept of self-organizing networks (SONs) was first introduced in 3GPP
Release 8 with the aim to automate the operation and management of wireless
networks. SON functionalities can be generally classified into self-configuration,
self-healing, and self-optimization. In subsequent 3GPP releases, SON concepts
and technologies have been extensively developed. Nowadays, SON technologies
are widely expected to:

1. enhance the intelligence and autonomous adaptability of wireless networks,
especially the RANs;

2. reduce the capital and operational expenses (CAPEX and OPEX) for wireless
network operators;

3. improve both network-wide performance and user specific QoS and QoE.

Moreover, future wireless networks will require (near) real-time and scalable SON
solutions that are tailored for multi-vendor and multiple RAT networks, as well as
for M2M communications and IoT systems.

Wireless network self-optimization comprises various mechanisms that optimize
network parameters during operation according to measurement data taken at
different parts of the network. The number of network parameters that need to
be self-optimized are still increasing and would be enormous in the near future.
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Nevertheless, most existing SON solutions are mainly based on heuristics, with
the automated information processing limited to relatively simple methods. Many
open challenges of SON remain unsolved. For example, the automated coordina-
tion between different SON functions and the trade-off between centralized and
distributed SON implementations are still open research problems.

Fog computing has been considered as a promising paradigm shift to enable
autonomous management and operation of wireless networks. Fog computing
features a distributed computing infrastructure, its proximity to the network edge
and end users, and the dense geographical distribution of FNs. These allow
fog computing to exploit the local signal processing and computing, cooperative
resource management, and distributed storing/caching capabilities at the network
edge.

A FN is typically a virtualized platform hosted on either a dedicated comput-
ing node, which is equipped with communication interface(s), or a networking
node/device, such as a BS, an AP, a router, or a switch. This asks for the combination
of fog computing and two other emerging technologies: SDN and network function
virtualization (NFV). SDN implies a logically centralized network control plane,
which allows the implementation of sophisticated mechanisms for traffic control and
resource management. In SDN, the control plane carries signaling traffic, calculates
routes for data flows, and performs configuration and management for the network,
while the data plane is responsible for transporting data packets. NFV implements
network functions in software that can run on a range of industry standard server
hardware and that can be moved to or instantiated in various locations of the
network as required, without the need to install new equipment. Fog computing,
in conjunction with SDN and NFV, can bring extensive programmability and
flexibility into wireless networks, and thus enable distributed and intelligent SON
functionalities in (near) real-time.

In a fog-enabled wireless network, a large amount of signal processing and
computing is performed in a distributed manner, and local data can be stored and
processed in edge devices, such as BSs, APs, and user devices, thus providing
support for applications that require very low and/or predictable latency and offering
mobility support, geo-distribution, location awareness, and low latency [21]. For
instance, mobile application processing delays can be reduced by offloading the
associated computationally intensive tasks to the FNs that are close to the corre-
sponding mobile applications.

We envision that the fog computing paradigm will allow the self-optimized
computing, control, caching, storage, and networking functions to be dynamically
relocated among the cloud, the fog, the network edge, and the things, as well
as allow self-optimized management of network function and service lifecycles.
Accordingly, fog computing will lead to new opportunities in the design of SON
for wireless networks, by exploring the various trade-offs between distributed and
centralized operation, between local and global optimization, etc.
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2.4.3 Intelligent Transportation System

Currently, transportation systems are an indispensable part of human activities.
As people become more dependent on transportation systems, the transportation
systems themselves are facing not only many opportunities, but also lots of
challenges, such as traffic congestion, accident risks, and efficient transportation
management. Intelligent transportation system (ITS) is proposed to establish a real-
time, accurate, and efficient transportation management system, using information,
communication, control, computer technology, and other current technologies. ITS
is an integrated system of people, roads, and vehicles, utilizing a variety of advanced
technologies in communication, automation, computing, etc. An ITS uses the data
collected from various sources, such as cameras, sensors, global positioning system
(GPS) receivers, and other vehicles, to optimize the system’s performance in terms
of traffic flow, safety, delay, and fuel consumption. As the number of vehicles
grows rapidly and vehicles become more autonomous, ITS will face more critical
challenges, which can be summarized as follows:

• Explosive computing workload
With the popularity of autonomous driving (AD) technology, the vehicles are
expected to create significant amounts of data by 2020. An AD vehicle will
generate and consume roughly 40 terabytes of data for every 8 h of driving [2].
The huge amount of data brings tremendous burden to the in-vehicle computing
processors due to the limitation on power, space, and heat dissipation. One
solution is to upload the computing workload to cloud, which has powerful
computing and storage capabilities. But the data transmission between vehicle
and cloud comes at the expense of network resources, while the real-time
requirements cannot be satisfied because of the limited fronthaul capacity.
Therefore, it is necessary to introduce a new architecture to deal with the
explosive computing workload with low latency and cost.

• Ultra-reliable and low-latency communications
To guarantee the transportation safety, especially for AD vehicle, the vehic-
ular communication systems have extremely high requirements on reliability
and transmission latency. For ultra-reliable and low-latency communications
(URLLC), a general reliability requirement for one transmission of a packet is
1-10-5 for 32 bytes with a user plane latency of 1ms. This requirement is a great
challenge to the existing RAT. On the other hand, when the vehicle is running in
regions where there is no AP with cellular connection, the connection between
vehicle and network may be broken off and the vehicle has to rely on expensive
data communication over satellite. Thus, novel RAT and network architecture
need to be designed to satisfy the reliability and latency requirements, as well as
providing continuous connectivity to vehicles.

• Security and privacy
ITS has strict security and privacy requirements on computing, communications,
and many other parts of platform architecture. Security and privacy considera-
tions in ITS include:
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– Safe Driving: This is highly coupled with vehicles sensing capabilities and the
ability to adapt the automated driving based on variable road conditions and
situations sensed locally.

– Platform Security: This necessitates functional safety features in the in-vehicle
platforms, the road side units (RSUs), and the network platforms.

– Secure Communication: This requires mutual authentication between all pairs
of communicating parties as well as powerful encryption mechanisms.

– Trust and Trustworthiness: This includes trust between pairs of communicat-
ing nodes as well as passengers’ trust of AD vehicles, which creates the need
for new in-vehicle experiences.

– Privacy: Assurance that the data generated about the vehicle, its owners, its
passengers, and location can meet privacy preservation requirements, which
may be established early in the data lifecycle, for example, by policies
attached to the data, the system, and/or conditioned on the context.

• Data sharing across operational silos
In order to alleviate traffic congestion and avoid traffic accidents, transportation
information, such as road conditions, driving status, and traffic information,
should be shared in time across different vehicles and infrastructures. However,
due to the differences of protocols, interfaces, and implementations, the devices
from different operators are difficult to share data with each other, which forms
the so-called operational silos. To improve the performance of ITS, a general
platform should be provided to the devices from different operators, which allows
data sharing across the operational silos.

Fog computing provides a critical architecture for today’s connected world as it
enables slow latency, high reliable, and high efficient operations, as well as provides
strong support for mobile applications. Based on the above features, fog computing
enables the critical functions of ITS by collaborating, cooperating, and utilizing
the resources of underlying infrastructures within roads, smart highways, and smart
cities. Fog computing will address the technical challenges in ITS and will help
scale the deployment environment for billions of personal and commercial smart
vehicles.

• Security: Fog requires every FN in the cloud-to-thing continuum to have
high-assurance security mechanisms, which can provide on-demand security
services to resource-constrained devices as well as offer trustworthy information
processing, storage, and transport throughout the fog-enabled ITS.

• Scalability: The scalability of fog architecture includes the hardware or software
adaptation of individual FNs, the addition of FNs in the fog network, and the
storage, network, and other services scaled with the fog infrastructure. Besides,
the breakdown of operations between in-vehicles, RSUs, infrastructures, and
cloud eases scalability, management, and orchestration.

• Openness: For fog-enabled ITS, interoperability and data sharing take place
at different phases and layers. Vehicle manufacturers, fleet owners, insurance
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companies, and government regulators all participate to establish an open
multi-party ecosystem to improve their cost, functionality, safety, and rate of
innovation.

• Autonomy: Each FN from vehicle to cloud has certain capabilities of processing,
storage, and decision making. Vehicles and RSUs are autonomous and can
perform critical functions without the assist of cloud resources.

• RAS: Having each vehicle, RSU with compute and storage, and access network
infrastructure with compute and storage as a FN can ensure RAS in the ITS.
In addition, a group of vehicles can act as federated resources for compute and
path planning, which ensures RAS even if there is no connectivity to the access
network (e.g., in rural areas or in a tunnel).

• Agility: Each FN from vehicle to cloud can agilely make immediate decision.
Pushing the dynamic location update schemes from the cloud to the lower layer
FN will greatly increase the agility of the system by enabling real-time reactions
to location-based traffic patterns or services provided. Agility allows the fog
network to adapt quickly to changing conditions or changing customer needs.

• Hierarchy: Smart vehicles require connectivity along the fog hierarchy to
distribute computing workload and data storage. This takes place through thing-
to-fog, fog-to-fog, and fog-to-cloud. This hierarchy will greatly improve the
paging resolution from the cloud, as a vehicle may be handed over between
RSUs at a rapid pace, and those RSUs will connect to a single infrastructure
that maintains a connection to the cloud.

• Programmability: Programmability is at the heart of a fog-enabled ITS and per-
vades all operations involving computing, storage, communications, and layering
through a fog hierarchy. Federation of computing, storage, and communication
enable dynamic adjustment of platform capabilities depending on needs.

2.4.4 Smart Home

Smart home is a house system that incorporates advanced automation systems to
provide the inhabitants with sophisticated monitoring and control over the building’s
functions. The UK Department of Trade and Industry (DTI) came up with the
following definition for a smart home: “A dwelling incorporating a communications
network that connects the key electrical appliances and services, and allows them
to be remotely controlled, monitored or accessed.” For example, a smart home may
control lighting, temperature, multi-media, security, window, and door operations,
as well as many other functions. Smart home is a typical intelligent IoT system,
where each smart appliance/device is able to connect to the Internet and carry out
some computing tasks. Each appliance/device can be viewed as an IoT node and
they form a local network.
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A smart home may contain thousands of sensors to measure various building
operating parameters, including temperature, humidity, door open/close, security,
and air quality. These sensors capture telemetry data at various intervals and
transmit this information to cloud or a local storage server. Once this information
is processed or analyzed, controller-driven actuators will adjust building conditions
as necessary. However, it is difficult and inefficient to transmit all the data to the
cloud. For example, some visual data from camera sensors, which is huge in size,
is impractical to be transmitted to the cloud to obtain real-time insights. Besides,
some of the processing and response of the data is extremely time-sensitive. For
example, turning on fire suppression systems in response to a fire event or locking
down an area if an unauthorized person tries to gain entry. Therefore, to guarantee
efficient management and real-time response, processing in close proximity to the
infrastructure devices is required.

Fog computing provides a beam of light to the implementation of smart home.
Using the hierarchical design of the fog computing, each floor, wing, or even
individual room could contain its own fog node and create a hierarchical control
system. Each fog node could be responsible for performing emergency monitoring
and response functions and building security functions, and controlling climate and
lighting. They could also provide a more robust compute and storage infrastructure
for building residents to support sensors, smartphones, and desktop computers.
Local sensors can first transmit sensing or monitoring data to local fog nodes.
Fog nodes will preprocess these data and make simple analysis. For some time-
sensitive tasks, fog nodes will make quick response to actuators. Otherwise, the
preprocessed data can be aggregated and sent to the cloud for large-scale analytics.
These analytics can be applied to machine learning to create optimized models,
which are then downloaded to the local fog infrastructure for execution.

2.5 Conclusion

By selectively moving compute, storage, communication, control, and decision
making along the cloud-to-thing continuum closer to the network edge, fog
computing has been promoted to solve the key challenges of future intelligent
IoT systems. In this chapter, we have discussed fog computing architectures and
technologies. More specifically, we first introduced fog computing architectures
in industry and academia, termed OpenFog reference architecture and multi-tier
computing network, respectively. Then, we discussed the enabling technologies
for fog deployments, including networking technologies, computing technologies,
storage technologies, virtualization technologies, and AI. Finally, we described
some detailed use cases of fog computing and look into how they would benefit
from fog computing and what challenges would exist as well.
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Chapter 3
Analytical Framework for Multi-Task
Multi-Helper Fog Networks

3.1 Introduction

Fog computing [1–3] has become an attractive technology to support delay-
sensitive IoT applications [4–6]. Different from the centralized cloud computing,
fog computing distributes the shared and flexible communication, computation,
and storage resources along the continuum from cloud to things [2]. Specifically,
the customized or pre-existing end, edge, and access equipment along the cloud-
to-things continuum, which is collectively called fog node (FN), can form a
resource pool and share resources with each other. As a result, more delay-sensitive
applications can be served by various neighboring FNs with diverse resources and
capabilities, instead of remote cloud servers. Benefiting from such a “Fog as a
Service Technology” (FA2ST) trend [7], the service efficiency can be efficiently
improved, and the service delay will also be greatly reduced.

Although fog computing shows great potential advantages over legacy cloud
computing, it also poses huge challenges in many aspects, especially in task
offloading and resource allocation, which are key to reap the full benefits of fog
computing [8]. To be specific, in a typical heterogeneous fog network, numbers
of varied FNs are commonly distributed in different geographical locations. Due
to the large scale, geographic dispersion, and node heterogeneity, the computa-
tional complexity may grow exponentially with the network size, and the global
information may be difficult to obtain, for the conventional centralized methods.
Thus, the self-organizing distributed methods, which require low complexity and
local information, are preferred. Besides, the way that FNs make decisions by
themselves can balance each FN’s interest and stimulate them to participate. Taking
the general heterogeneous fog network in Fig. 3.1 as an example, it consists of
many randomly distributed FNs with diverse resources and capabilities. Some FNs
have delay-sensitive tasks to process, and thus they are called task nodes (TNs).
While some have spare resources to help neighboring TNs to process tasks, and
thus they are called helper nodes (HNs). How to effectively map multiple tasks
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(a)

(b)

Fig. 3.1 A general heterogeneous MTMH fog network with TNs, HNs, and BNs. They are with
different computation resources and capabilities, which are distinguished by the size of cycles. (a)
Non-splittable tasks. (b) Splittable tasks
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or TNs into multiple HNs to minimize every task’s delay in a distributed manner
is a fundamental challenge, which is called the Multi-Task Multi-Helper (MTMH)
problem [9]. It is worth noting that such a MTMH network and the corresponding
problem is quite general and can be applied in different application scenarios. For
fog-enabled robot systems, TNs can be the robots, and HNs can be the idle robots,
edge nodes in the room, factory. For fog-enabled wireless communication networks,
TNs can be the mobile users, and HNs can be the AP, BS in the vicinity. For
fog-enabled intelligent transportation systems, TNs can be the vehicles, and HNs
can be the roadside units around. For fog-enabled smart home, TNs can be the
heterogeneous sensors, devices, and HNs can be the routers, local edge nodes in
the house.

Many previous works have investigated the task offloading problem in fog net-
works with a single TN and multiple HNs [10–12], or multiple TNs but a single HN
[13–17]. Meng et al. [10] gave a closed-form solution to the energy-minimization
workload allocation problem with delay constraints. Dinh et al. [11] proposed
an optimization framework of minimizing both the execution delay and energy
consumption by jointly optimizing the task allocation decision and device’s CPU
frequency. Yang et al. [12] developed an analytical model for maximizing the overall
energy efficiency in homogeneous fog networks by considering the task allocation
and time slots allocation. Nowak et al. [13] investigated the delay-minimization task
offloading problem in a time division multiple access (TDMA) based fog network
and calculated a closed-form solution to the workload allocation. Zhao et al. [14]
considered an energy-minimization task offloading problem by jointly optimizing
the offloading selection, radio resource allocation, and computation resource allo-
cation and proposed two algorithms based on the Branch-and-Bound method and
greedy method, respectively. Chen et al. [15] studied an overhead-minimization task
offloading problem in a multi-channel wireless interference/contention environment
and designed an efficient distributed algorithm to decide the offloading decision and
channel allocation.

Notably, increasingly more attention is devoted to the MTMH task offloading
problem [18–24]. Mansouri et al. [18] and Yang et al. [19] studied the overhead-
minimization task offloading problem in hierarchical fog-cloud networks and edge
computing empowered small-cell networks, respectively. Tran et al. [20] and Pham
et al. [21] investigated how to jointly schedule tasks and allocate resources to
maximize the utility and minimize the overhead in multi-cell edge computing
networks, separately. Li et al. [22] considered how to minimize the system energy
consumption in a novel non-orthogonal multiple access (NOMA) based edge
computing network, by jointly scheduling tasks and allocating resources. Zhao
et al. [23, 24] analyzed the delay-energy tradeoff in task offloading and resource
allocation for homogeneous and heterogeneous fog networks, respectively.

The existing works [23–29] studied the MTMH problems in fog networks
by considering different objectives from diverse perspectives. However, most of
them [23–28] were devoted to optimizing the overall system performance, using
centralized methods. Nonetheless, the centralized methods with system objectives
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may be faced with several challenges, especially in large-scale fog networks with
heterogeneous and dispersive FNs.

• Due to the heterogeneity of FNs and with the enhancement of capabilities,
FNs may make decisions by themselves to pursue their individual objectives.
Therefore, they may not follow the strategy optimizing the system objectives,
and thus unilaterally deviate from it to maximize their own utilities.

• Due to the explosion of network size and lack of central node, the global
information may be difficult to obtain, and the computational complexity may
grow exponentially with the network size. In consequence, the centralized
methods with global information demand and high computational complexity
may be difficult to be deployed in practice.

As a result, the self-organized distributed task offloading algorithms with individual
objectives, which require local information and low complexity, may be more
desirable.

Furthermore, from the view of tasks, tasks can be grouped into two classes:
non-splittable tasks and splittable tasks. For non-splittable tasks, they need to be
processed as a whole. That is to say, a task can be either executed by its own
TN or entirely offloaded to one neighboring HN, as shown in Fig. 3.1. While for
splittable tasks, such as face detection, they can be divided into multiple subtasks
and processed on multiple computation nodes in parallel [30], as shown in Fig. 3.1.
Most works have focused on the non-splittable tasks, and to the best knowledge of
ours, there are only a handful of studies considering the splittable tasks, especially
for the MTMH problem [26, 31, 32]. Li et al. [31] considered that the tasks could be
only processed on local TN and one HN in parallel. Liu et al. [32] simply assumed
that a HN could only accommodate the task from single TN. More complex and
general case was considered in [26], where tasks could be divided into multiple
subtasks and offloaded to multiple HNs for parallel processing, and HNs might
accommodate tasks from multiple TNs. They adopted the dynamic programming
to develop a centralized heuristic algorithm to minimize the overall system delay.

In this chapter, we will investigate the task offloading problem in MTMH fog
networks under the case of non-splittable tasks and splittable tasks, respectively. We
propose a game theory based analytical framework and a corresponding distributed
algorithm for each. To be specific, we will first introduce the general MTMH fog
networks and the corresponding task offloading problem for non-splittable tasks and
splittable tasks, respectively. Then, we will discuss the fundamentals of game theory
and how to apply it to formulate and tackle the task offloading problems introduced
above. More specifically, a Paired Offloading of Multiple Tasks (POMT) game
based on potential games and a Parallel Offloading of Splittable Tasks (POST) game
based on Generalized Nash equilibrium problem (GNEP) are formulated and studied
thoroughly. The corresponding distributed algorithms, namely POMT and POST,
are also designed. Finally, extensive simulations are conducted to demonstrate the
performance of the proposed POMT and POST algorithms.
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3.2 System Architecture and Analytical Models

3.2.1 Multi-Task Multi-Helper Fog Networks

Consider a general heterogeneous fog network consisting of many randomly
distributed FNs with diverse computation resources and capabilities. For the sake
of description and analysis, the quasi-static scenario is considered, where the time
is divided into identical small time slots, such that the network condition and user
distribution can be treated as static in each time slot. As shown in Fig. 3.1, at any
specific time slot, the FNs can be further classified as (1) TNs, which have a task
to process, (2) HNs, which have spare resources to help their neighboring TNs to
process tasks, or (3) busy nodes (BNs), which are busy with processing previous
tasks and thus have no spare resources. It is worth noting that TNs, HNs, and BNs
are not fixed. To be specific, TNs and BNs can be HNs when they are idle and
available in the following time slots, and vice versa.

Such an MTMH fog network is a quite general model and can be applied in
different application scenarios. For fog-enabled robot systems, TNs can be the
robots, and HNs can be the idle robots, edge nodes in the room, factory. For
fog-enabled wireless communication networks, TNs can be the mobile users, and
HNs can be the AP, BS in the vicinity. For fog-enabled intelligent transportation
systems, TNs can be the vehicles, and HNs can be the roadside units around. For
fog-enabled smart home, TNs can be the heterogeneous sensors, devices, and HNs
can be the routers, local edge nodes in the house. For the MTMH fog networks,
many elements need to be considered, such as task scheduling, resource allocation,
mobility management, security mechanism, and so on. In this chapter, we mainly
take the task scheduling as an example. More specifically, we will focus on the
task scheduling problem in MTMH fog networks under two different types of tasks:
non-splittable tasks and splittable tasks.

As aforementioned, tasks with strict delay requirements may not be accom-
plished in time on the local devices, and thus they need to be offloaded to
neighboring available HNs. Task scheduling studies how to schedule tasks to HNs.
Take the cases in Fig. 3.1 as examples. For non-splittable tasks, a task can be either
executed by the local TN/device, or entirely offloaded to one neighboring HN. While
a HN, if its spare resources and capabilities permit, can accommodate multiple
tasks from different TNs. For example, as shown in Fig. 3.1a, TN-1 executes its
task on local device, which may be due to (1) HN-2 does not have sufficient
computation/storage resources for accommodating the task from TN-1, or (2) the
communication channel between TN-1 and TN-2 is not good at this slot. TN-
2 offloads its task to HN-1, because HN-1 has more computation resources and
better communication channel than HN-2. HN-4 accommodates multiple tasks
from TN-3 and TN-4 simultaneously as it has sufficient resources and capabilities.
While for splittable tasks, a task can be divided into multiple independent subtasks
and offloaded to multiple HNs for parallel processing. For example, as shown in
Fig. 3.1b, TN-1 processes its task on local device, which may be due to that the
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neighboring BNs are busy with processing previous tasks and TN-1 is also out of
the coverage of HN-1. TN-2 is in the coverage of HN-3, and thus it divides the
task into two subtasks, i.e., subtask 2-1 and subtask 2-2. It processes subtask 2-1
by itself, and meanwhile offloads subtask 2-2 to HN-3 for parallel processing. TN-3
can access both HN-2 and HN-3. It divides its task into three subtasks, i.e., subtask
3-1, subtask 3-2, and subtask 3-3, and processes them on local device, HN-2, and
HN-3 meanwhile. As a result, the task of TN-3 is processed on TN-3, HN-2, and
HN-3 in parallel. HN-3 accommodates subtask 2-2, subtask 3-3 from TN-2, TN-3
simultaneously as it has sufficient resources and capabilities.

For the sake of analysis, denote the set of TNs (i.e., tasks) and the set of HNs by
N = {1, 2, . . . , N} and K = {1, 2, . . . , K}, respectively. For convenience, we use
the task n interchangeably for the task of TN n in the following context. Then, the
task offloading problem is indeed the task allocation problem between N TNs and
K HNs. To be specific, the task allocation strategy can be mathematically described
by the matrix A ∈ [0, 1]N×(K+1), whose (n, k)-th entry is denoted by ak

n ∈ [0, 1],
n ∈ N , k ∈ {0} ∪ K . ak

n is the portion of task n processed on HN k. It is worth
noting that for non-splittable tasks, ak

n ∈ {0, 1}, n ∈ N , k ∈ {0} ∪ K . Obviously,
a0
n + ∑

k∈K
ak
n = 1 should be satisfied. Notably, index 0 represents the local TN.

Specifically, taking TN n as an example, a0
n of the task n is processed on local

device and ak
n of the task n is offloaded to HN k. Rewrite A = (aT

1 , aT
2 , . . . , aT

N)T ,
where an = (a0

n, a
1
n, . . . , a

K
n ) is the task allocation strategy of TN n.

In this chapter, we focus on the delay-minimization task offloading problem.
When it comes to the task offloading, a three-phase protocol usually needs to be
considered. The TNs first transmit tasks to HNs, and then after the computation
of HNs, the results are transmitted back to TNs from HNs. Thus, to characterize
the delay experienced by tasks, both communication delay and computation delay
need to be involved. Here, it is worth noting that similar to most previous works
[13, 15, 18–21, 31], the phase that HNs transmitting results back to TNs can be
ignored because the size of results is negligible compared to that of tasks.

With regard to the communication aspect, we assume that all FNs are equipped
with single antenna and HNs occupy orthogonal wireless channels, i.e., no inter-
ference between different HNs [11]. In this work, the channel is pre-allocated,
which is beyond the scope of discussion. We also assume that the HNs serve the
TNs via TDMA or frequency division multiple access (FDMA) scheme, which is
consistent with most current wireless standards [23]. Thus, the TNs will share or
compete for the communication resources, e.g., time frames [12] or resource blocks
[26], when they transmit tasks to the same HN. Here, taking TDMA scheme as an
example, the TNs are assumed to equally share the time slots. Further, we assume
that a HN begins computing tasks until all subtasks offloaded to it have finished
transmitting. The benefits of these assumptions are two-folds. First, it circumvents
the complex transmission scheduling or resource allocation problem [10, 33], and
thus the problem can be simplified. Second, the resulted transmission time can be
taken as an estimate or upper bound of the actual transmission time [13]. Thus, the
time of transmitting subtask from TN n to HN k can be represented as [9]
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T k,trans
n =

∑

n∈N
ak
n

zn

Rk
n

, (3.1)

where zn is the size of task n in bits. Rk
n is the data rate of transmitting task n to HN

k and can be computed by the Shannon formula

Rk
n = Bk log2

(

1 + png
k
n

�0

)

, (3.2)

where Bk is the bandwidth occupied by HN k. pn is the transmit power of TN n. gk
n

is the channel gain between TN n and HN k. And, �0 is the white noise power. In
this work, FNs are assumed to have full channel state information (CSI).

With regard to the computation aspect, the computation time can be characterized
by dividing the computation workload by the computation capability of devices,
which are both in CPU cycles. Typically, computation load of each subtask is
proportional to the size of subtask [30]. Thus, as many previous works, the time
of computing TN n’s subtask a0

n on local device, i.e., local computing, is given by

T
0,comp
n = a0

n

znγn

fn

, (3.3)

where γn is the processing density of task n, i.e., the CPU cycles required to
process a unit bit of data, and fn is the computation capability of TN n, i.e., the
CPU clock frequency (in CPU cycles per second). Different from local computing,
for subtasks offloaded to HNs, i.e., HN computing, there may be competition or
sharing among tasks for the computation capability of HNs. That is because the
computation capability of single HN is usually limited and cannot be exclusively
used by single task. Here, it is assumed that every HN assigns its spare computation
resources to all the existing tasks in proportion to their computation workloads.
Again, this assumption avoids the complex computation scheduling problem and
the resulted computation time can be taken as an estimate or upper bound of the
actual computation time [9]. Therefore, the time of computing task n’s subtask on
HN k can be written as

T
k,comp
n =

∑

n∈N
ak
n

znγn

fk

, (3.4)

where fk is the spare computation capability of HN k.
In conclusion, for local computing, since no communication is necessary, the

time required to process TN n on local device can be represented as

T 0
n = a0

n

znγn

fn

. (3.5)
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For HN computing, it involves both communication delay and computation delay.
According to the communication model and the computation model introduced
above, the time required to process TN n on HN k can be represented as

T k
n =

∑

n∈N
ak
nzn

(
1

Rk
n

+ γn

fk

)

. (3.6)

For ease of exposition, we define Ok
n � zn(1/Rk

n + γn/fk), which represents the
amount of time that task n contributes to the total time for offloading. Thus, T k

n =∑
n∈N ak

nO
k
n .

3.2.2 Non-Splittable Task and Paired Offloading

For non-splittable tasks, a task is either executed on the local device, or entirely
offloaded to one neighboring HN. Thus, the MTMH problem is actually the pairing
strategy between TNs and HNs for achieving the minimum processing delay of
every task. For ease of presentation and analysis, we redefine the task allocation
strategy of TN n as the pairing strategy an = k, where k : ak

n = 1 for k ∈ {0} ∪ K ,
and the overall pairing profile as a = (a1, a2, . . . , aN). To be specific, we have
an > 0, if TN n is paired with HN an; we have an = 0, if TN n decides to
process its task on local device. Since a task is either executed on the local device,
or entirely offloaded to one neighboring HN, the time required to process task n can
be represented as

Tn(an, a−n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

znγn

fn

, an = 0

∑

m�=n

Oam
m I{am=an} + Oan

n , an > 0
, (3.7)

where I{x} is an indicator function and a−n = {a1, . . . , an−1, an+1, . . . , aN } is the
pairing strategies of all TNs except n. Specifically, if x is true, I{x} = 1; otherwise,
I{x} = 0.

Introduce a matrix C = (cT
1 , cT

2 , . . . , cT
N)T to represent the connectivity between

TNs and HNs, where cn = (c1
n, . . . , c

K
n ). Specifically, if ck

n = 1, then TN n can
access HN k; otherwise, TN n cannot access HN k. The connectivity matrix can
be determined by the distance or the signal to interference plus noise ratio (SINR).
Every TN aims to minimize the time required to process its own task, i.e.,

min
an

Tn(an, a−n), ∀n ∈ N

s.t. an ∈ {0} ∪ {k ∈ K |ck
n = 1},∀n ∈ N .

(3.8)



3.2 System Architecture and Analytical Models 69

Such a problem is a complicated combinatorial optimization problem, which is
NP hard to be solved. The pairing strategies between TNs and HNs are coupled.
Specifically, the time required to process task n depends on not only the pairing
strategy of TN n, but also other TNs’ pairing strategies, for the reason that there
exists competition for the communication resources and computation capabilities of
HNs among different TNs.

3.2.3 Splittable Task and Parallel Offloading

For splittable tasks, a task can be divided into multiple independent subtasks and
offloaded to multiple HNs for parallel processing. Thus, the final execution time of
tasks is decided by the most time-consuming subtask and the total time required to
process task n can be represented as

Tn(an, A−n) = max
k∈{0}∪K

{T k
n }, (3.9)

where A−n = (aT
1 , . . . , aT

n−1, aT
n+1 . . . , aT

N)T is the task allocation strategies of all
TNs except n. It is worth noting that how to combine results is out of the scope of
this work, and the corresponding time is ignored in this work.

In this work, every TN wants to make decisions by themselves and aims to
minimize the time required to process its own task, i.e.,

min
an,Tn

Tn, (3.10a)

s.t. a0
n

znγn

fn

≤ Tn, ∀n ∈ N , (3.10b)

ak
n

[
∑

n∈N
ak
nO

k
n

]

≤ ak
nTn, ∀k ∈ K , (3.10c)

a0
n, a

k
n ≥ 0, ∀k ∈ K , (3.10d)

a0
n +

∑

k∈K
ak
n = 1, ∀n ∈ N , (3.10e)

ak
n ≤ ck

n,∀k ∈ K . (3.10f)

Constraint (3.10b) shows that the local computing time should be less than the total
time, while constraint (3.10c) indicates that the HN computing time should also be
less than the total time. Constraints (3.10d)–(3.10e) ensure that tasks are completely
accomplished. Constraint (3.10f) guarantees that no TN can offload tasks to HNs,
which it cannot access.
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Such a problem is a complicated non-convex and non-integer optimization
problem, which is also NP hard to be solved. Compared with the counterpart
problem for non-splittable tasks, this problem is somehow more challenging: (1)
the task allocation strategies of TNs are also coupled, (2) not only the HN selection
problem but also the task division problem need to be tackled.

3.3 Theoretical Preliminaries

3.3.1 Potential Game

Potential games are an important branch of game theory, more specifically the non-
cooperative games. Thus, before looking into the potential games, let us first briefly
introduce the fundamentals of non-cooperative games.

Game theory can be viewed as a branch of applied mathematics as well as of
applied sciences. It has been used in the social sciences, most notably in economics,
but has also penetrated into a variety of other disciplines such as political science,
biology, computer science, philosophy, and, recently, wireless and communication
networks. Non-cooperative game theory is one of the most important branches of
game theory, focusing on the study and analysis of competitive decision-making
involving several players. It provides an analytical framework suited for charac-
terizing the interactions and decision-making process involving several players with
partially or totally conflicting interests over the outcome of a decision process which
is affected by their actions [34].

A non-cooperative game can be defined by the strategic or normal form which
has three components: the set of players, their strategies, and the payoffs/costs or
utilities. More formally, it can be defined as follows [34]:

Definition 3.1 A non-cooperative game in strategic or normal form is a triplet G =
(N , (Si )i∈N , (ui)i∈N ), where

• N is a finite set of players, i.e., N = {1, . . . , N}.
• Si is the set of available strategies for player i.
• ui : S → R is the utility (payoff/cost) function for player i, with S = S1 ×

· · · × Si × · · · × SN (Cartesian product of the strategy sets).

Given the definition of a strategic game, for any player i, every element si ∈ Si

is the strategy of player i, s−i = [sj ]j∈N ,j �=i denotes the vector of strategies of
all players except i, and s = (si, s−i ) ∈ S is called as the strategy profile. If the
sets of players’ strategies Si are finite for all i ∈ N , the game is called finite;
otherwise, it is called infinite. And if each player i ∈ N selects a strategy si ∈ Si

in a deterministic manner, i.e., with probability 1, then this strategy is known as a
pure strategy.

For game theory, one important solution concept is the Nash equilibrium (NE).
An NE is a state where no player can improve its utility or reduce its payoff/cost by
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changing its strategy, if the other players maintain their current strategies. Formally,
when dealing with pure strategies, i.e., the choices of players are deterministic, the
NE is defined as follows [34]:

Definition 3.2 A pure-strategy NE of the non-cooperative game G =
(N , (Si )i∈N , (ui)i∈N ) is a strategy profile s∗ ∈ S such that

ui(s
∗
i , s∗−i ) ≥ ui(si, s∗−i ), ∀i ∈ N , ∀si ∈ Si . (3.11)

If ui(s
∗
i , s∗−i ) > ui(si, s∗−i ), ∀i ∈ N , ∀si ∈ Si , si �= s∗

i , ∀i ∈ N , the NE is
said to be strict. In other words, a strategy profile is a pure-strategy NE if no player
has an incentive to unilaterally deviate to another strategy, given that other players’
strategies remain fixed.

When studying the NE of a game, the key points of interest are existence,
multiplicity, and efficiency. It has been proven that a non-cooperative game can
admit zero, one, or multiple NEs (may be the mixed NE), but the pure-strategy NE
is not guaranteed to exist. Efficiency says that an NE is not necessarily the best
outcome, from the perspective of payoff.

When solving the non-cooperative games, the concept of the best response
function is useful, which is defined as follows [34]:

Definition 3.3 The best response function bi(s−i ) of a player i to the profile of
strategies s−i is a set of strategies for that player such that

bi(s−i ) = {si ∈ Si |ui(si, s−i ) ≥ ui(s
′
i , s−i ), ∀s′

i ∈ Si}. (3.12)

Hence, for a player i, when the strategies of the other players are fixed as s−i ,
any strategy in bi(s−i ) is at least as good as every other available strategy in Si .
The best response function is set-valued as it associates, for a player i, a set of
strategies with any strategy profile s−i of the other players. Every element of the
best response function bi(s−i ) is a best response of player i to s−i . In other words,
the best response of a player i implies that, if each of the other players adheres to
s−i , then player i cannot do better than to choose a member of bi(s−i ).

The concept of the best response function leads to an alternative characterization
of a pure-strategy NE [34].

Theorem 3.1 A strategy profile s∗ ∈ S is a pure-strategy NE of a non-cooperative
game if and only if every player’s strategy is a best response to the other players’
strategies, i.e.,

s∗
i ∈ bi(s∗−i ), ∀i ∈ N . (3.13)

After briefly introducing the fundamentals of game theory, let us look into
potential games. Among different non-cooperative games, potential games are an
important branch. What make potential games attractive are their useful properties
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concerning the existence and attainability of their NE. Potential game has four
different types: ordinal potential games, weighted potential games, exact (cardinal)
potential games, and generalized ordinal potential games. Due to the space limit, we
will only introduce the ordinal potential games, weighted potential games, and exact
(cardinal) potential games. For more details about potential games, readers can refer
to [35].

Definition 3.4 The game G is an exact (cardinal) potential game if and only if a
potential function Φ(s) : S → R exists such that ∀i ∈ N ,

ui(s
′
i , s−i )−ui(si, s−i ) = Φ(s′

i , s−i )−Φ(si, s−i ),∀si, s
′
i , ∀s−i ∈ S−i . (3.14)

In exact potential games, the change in a single player’s utility due to his/her own
strategy deviation results in exactly the same amount of change in the potential
function.

Definition 3.5 The game G is a weighted potential game if and only if a potential
function Φ(s) : S → R exists such that ∀i ∈ N ,

ui(s
′
i , s−i ) − ui(si, s−i ) = wi(Φ(s′

i , s−i ) − Φ(si, s−i )),∀si , s
′
i , ∀s−i ∈ S−i ,

(3.15)

where (wi)i∈N is a vector of positive numbers, known as the weights. In weighted
potential games, a player’s change in payoff due to his/her unilateral strategy
deviation is equal to the change in the potential function but scaled by a weight
factor. Clearly, all exact potential games are weighted potential games with all
players having identical weights of one.

Definition 3.6 The game G is an ordinal potential game if and only if a potential
function Φ(s) : S → R exists such that ∀i ∈ N ,

ui(s
′
i , s−i ) − ui(si, s−i ) > 0 ⇔ Φ(s′

i , s−i ) − Φ(si, s−i ),∀si, s
′
i , ∀s−i ∈ S−i .

(3.16)

In ordinal potential games, if player i gains a better (worse) utility from switching
his/her strategy, this should lead to an increase (decline) in the potential function,
and vice versa. Clearly, exact (cardinal) potential games and weighted potential
games are both ordinal potential games.

As aforementioned, potential games have good properties concerning the exis-
tence and attainability of their NE, which is concluded as [35]:

Theorem 3.2 Every finite (ordinal) potential game admits at least one pure-
strategy NE.

Theorem 3.3 For finite exact (cardinal) potential games, every improvement path
is finite and every sequence of better and best responses converges to an NE,
regardless of its starting point. This is known as the finite improvement property.
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3.3.2 Generalized Nash Equilibrium Problem

The GNEP is an important model that has its roots in the economic sciences
but is being fruitfully used in many different fields [36]. As the GNEP lies at
the intersection of many different disciplines, it has a number of different names
in the literature including pseudo-game, social equilibrium problem, equilibrium
programming, coupled constraint equilibrium problem, and abstract economy.

Formally, the GNEP also consists of players, strategies, and utility/payoff/cost
functions. But different from common non-cooperative games, each player’s strat-
egy must belong to a set Si (s−i ) that depends on the rival players’ strategies and that
we call the feasible set or strategy space of player i. The aim of player i, given the
other players’ strategies s−i , is to choose a strategy si that solves the maximization
problem (for utility functions)

maximizesi ui(si , s−i ) subject to si ∈ Si (s−i ). (3.17)

The solution to the problem (3.17) can be taken as the best response function
introduced above, and thus the NE of GNEP can also be defined as Theorem 3.1.
It is worth noting that if the feasible set Si (s−i ) do not depend on the rival players’
strategies, i.e., Si (s−i ) = Si , the GNEP reduces to the standard Nash equilibrium
problem.

3.3.3 Matching Theory

When applying the conventional non-cooperative games to solve practical problems,
it may come into some problems. First, classical game-theoretic algorithms, such as
the best response mechanism, require the knowledge of other players’ actions, thus
limiting their distributed implementations. Second, most game-theoretic solutions,
such as the NE, investigate the one-sided (or unilateral) stability notions in which
the equilibrium deviations are evaluated unilaterally. Such unilateral deviations may
not be practical when investigating the assignment problems between distinct sets
of players. Last, but not least, the tractability of equilibrium in the game-theoretic
methods requires having certain form of structure in the objective function, which
cannot be satisfied in some practical applications.

Matching theory has emerged as a promising technique which can overcome
some limitations of the conventional non-cooperative games. Matching theory is a
Nobel Prize winning framework that provides mathematically tractable solutions for
the combinatorial problem of matching players in two distinct sets, depending on the
individual information and preference of each player. The advantages of matching
theory for network management include: (1) suitable models for characterizing
interactions between the heterogeneous nodes, each of which has its own type,
objective, and information, (2) the ability to define the general “preferences” that
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can handle the heterogeneous and complex considerations related to the quality-
of-service (QoS) requirements, (3) suitable solutions, in terms of stability and
optimality, that can accurately reflect different system objectives, and (4) efficient
algorithmic implementations that are inherently self-organizing [37].

The simplest and oldest version of the matching problem is the marriage problem.
The problem involves a set of M of men and a set W of women. Each m ∈ M has
a strict preference ordering over the elements of W and each w ∈ W has a strict
preference ordering over the men. The preference ordering of agent i will be denoted
i and x i y means that agent i ranks x above y. A matching is an assignment of
men to women such that each man is assigned to at most one woman and vice versa.
Mathematically, this matching can be defined as:

Definition 3.7 A matching for marriage problem is μ : M ∪ W ⇒ 2M∪W such
that:

• μ(m) ⊆ W such that |μ(m)| ≤ 1 for all m ∈ M .
• μ(w) ⊆ M such that |μ(w)| ≤ 1 for all w ∈ W .
• m = μ(w) if and only if μ(w) = m for all m ∈ M and w ∈ W .

In matching theory, stable is an important concept. To proceed, we need to first
introduce the blocking pair.

Definition 3.8 The pair (m,w
′
) is called a blocking pair if

• m is matched to w.
• m

′
is matched to w

′
.

• w
′ m w and m 

w
′ m

′
.

Definition 3.9 The matching μ is called stable if it has no blocking pairs.

The marriage problem is the most basic matching problem, which belongs to
the One-to-one matching. Matching problems cover a wide range of problems and
can be classified in different ways [37]. One way is as follows, which considers the
capacity/quota allowed for each agent:

• One-to-one matching: It means each member of one set can be matched to at most
one player from the opposite set. Examples include marriage problem, forming
roommate pairs, and so on.

• Many-to-one matching: It means each agent of one set can be matched to more
than one member from the opposite set up to the capacity, while agents from
the opposite side can only be matched to one agent at most. Examples are like
allocating residents to hospitals, assigning school leavers to universities.

• Many-to-many matching: It means agents from both matching sets can be
matched to more than one agent up to their capacities. Examples include creating
partnerships in P2P networks and assigning workers to firms problem.
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Another popular classification way is:

• Bipartite matching problems with two-sided preferences: Here the participating
agents can be partitioned into two disjoint sets, and each member of one set
ranks a subset of the members in the other set in order of preference. Example
applications include assigning junior doctors to hospitals, pupils to schools, and
school leavers to universities.

• Bipartite matching problems with one-sided preferences: Again the participating
agents can be partitioned into two disjoint sets, but this time only one set of
players rank the subsets of the members in the other set in order of preferences.
Example applications include campus housing allocation, DVD rental markets
and assigning reviewers to conference papers.

• Non-bipartite matching problems with preferences: Here, all the participating
agents form a single homogeneous set, and each agent ranks a subset of the others
in order of preferences. Example applications include forming pairs of agents for
chess tournaments, finding kidney exchanges involving incompatible (patient,
donor) pairs, and creating partnerships in P2P networks.

3.4 Game Formulation and Algorithm Design

3.4.1 Paired Offloading of Multiple Tasks

To analyze the task offloading for non-splittable tasks, we can formulate the
interactions among TNs as a potential game. As mentioned above, every TN wants
to minimize the time required to process its own task, while the pairing strategies
among TNs are coupled. To be specific, if too many TNs choose to offload tasks
to the same HN, they may incur serious execution time increase to each other (as
shown in formula (3.7)). Thus, we can model the interactions among TNs as a non-
cooperative game. But, the way to define the individual execution time of tasks as the
cost of TNs usually greatly damages the system performance. Therefore, to balance
the TNs’ selfishness and the system performance, the local altruistic behavior among
TNs is introduced when constructing the cost function [38, 39].

Formally, we define our POMT game [9] as G1 = (N , (Sn)n∈N , (un)n∈N ),
where Sn : {0} ∪ {k ∈ K |ck

n = 1} is the pairing strategy space of TN n and un is
the cost function which can be expressed as

un(an, a−n)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

znγn

fn

, an =0

∑

m�=n

(
Oam

m +Oan
n

)
I{am=an}+Oan

n , an >0
. (3.18)
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Notably, different from (3.7), we include the influence to others incurred by TN n

(the first O
an
n term in the second line of (3.18)) when constructing the cost function,

i.e., local altruistic behaviors.
We next study the existence of pure-strategy NE for POMT game G1, which is

concluded in the following Proposition 3.1.

Proposition 3.1 The POMT game G1 possesses at least one pure-strategy NE and
guarantees the finite improvement property.

Proof We first prove that the POMT game G1 is an exact (cardinal) potential game
with potential function

Φ(an, a−n) =1

2

∑

n∈N

∑

m�=n

(Oam
m + Oan

n )I{am=an}I{an>0}

+
∑

n∈N
Oan

n I{an>0} +
∑

n∈N

znγn

fn

I{an=0},
(3.19)

such that

Φ(a′
n, a−n) − Φ(an, a−n) = cn(a

′
n, a−n) − cn(an, a−n),

∀ an, a′
n ∈ An, a−n ∈

∏

m�=n

Am.
(3.20)

Case 1: an > 0, a′
n > 0

Φ(a′
n, a−n) − Φ(an, a−n)

= 1

2

∑

m�=n

(Oam
m +O

a′
n

n )I{am=a′
n}+ 1

2

∑
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(O
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n +Oam
m )I{a′
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− 1

2

∑
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−
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n )I{am=an} − Oan
n

= cn(a
′
n, a−n) − cn(an, a−n)

(3.21)
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Case 2: an = 0, a′
n > 0

Φ(a′
n, a−n) − Φ(an, a−n)

= 1

2
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m�=n

(Oam
m +O
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n
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2
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fn
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n )I{am=a′
n} + O

a′
n

n − znγn

fn

= cn(a
′
n, a−n) − cn(an, a−n)

(3.22)

Case 3: an > 0, a′
n = 0

Similar to case 2, it is straightforward to show that Φ(a′
n, a−n) − Φ(an, a−n) =

cn(a
′
n, a−n) − cn(an, a−n).

In conclusion, the POMT game G1 is an exact potential game with the potential
function as given in (3.19). For finite potential games, there exists at least one pure-
strategy NE. Furthermore, every sequence of better and best responses converges to
an NE, regardless of its starting point, i.e., the finite improvement property [40].

As stated in Theorem 3.2, any asynchronous better or best response update
process is guaranteed to reach a pure-strategy NE within a finite number of
iterations, regardless of its starting point and the order of updates. By employing
such a property, we can design a distributed computation offloading algorithm called
POMT to obtain an NE for the POMT game, as shown in [15].

Consider a slotted time structure, and every offloading time slot is further divided
into multiple decision slots. To begin with, every TN chooses local computing, i.e.,
an(0) = 0 (line 2). Then, at every decision slot t :

1. TNs broadcasting parameters to HNs: the TNs simultaneously broadcast the
parameters message to the achievable HNs, i.e., the HNs within whose coverage
they are (line 5). The message informs the HNs of the task information, i.e., the
task size and processing density, the transmit power, and so on.

2. HNs broadcasting measurements to TNs: the HNs first estimate the channel
conditions and calculate the measurements of total processing time, i.e.,∑

n∈N
Ok

nI{an=k}. Then, they broadcast the measurements back to the TNs

(line 6).
3. TNs computing the best response functions and contending for the update

opportunity: based on the measurements from the HNs, the TNs can compute
the best response functions, i.e., bn(a−n(t)) (line 7), and then decide whether
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to contend for the update opportunity (line 8–9). To be specific, if an(t) /∈
bn(a−n(t)), i.e., TN n can further reduce its cost by choosing an ∈ bn(a−n(t)),
TN n sends a request to update (RTU) message to the corresponding HN an ∈
bn(a−n(t)) to contend for the pairing strategy update opportunity.

4. HNs deciding the updated TN and broadcasting the update message: once
receiving the RTU messages, the HNs collaborate with each other to decide the
TN which wins the update opportunity. For example, this can be realized by
the following way: a master HN is in charge of gathering all RTU messages from
other HNs and then randomly decides the TN which wins the update opportunity.
After deciding the updated TN, the HNs broadcast the update-permission (UP)
message to the TNs to inform them that which TN is permitted to update its
pairing strategy.

5. TNs updating the pairing strategies: If TN n is permitted to update its pairing
strategy, then it updates its pairing strategy as an(t + 1) ∈ bn(a−n(t)) at the next
decision slot (line 11). Otherwise, it maintains the current pairing strategy at the
next decision slot (line 13).

If no TNs want to update the current pairing strategy, i.e., no RTU messages are sent
to the HNs, the HNs will broadcast the END message to all TNs and the algorithm
terminates (line 18). The whole procedure is shown as Algorithm 1.

Algorithm 1 POMT algorithm
1: initialization:
2: every TN n chooses the pairing strategy an(0) = 0.
3: end initialization
4: repeat for every TN n and every decision slot in parallel:
5: broadcast the parameters message to the achievable HNs.
6: receive the measurements of

∑

n∈N
Ok

nI{an=k} from the achievable HNs.

7: compute the best response function bn(a−n(t)).
8: if an(t) /∈ bn(a−n(t)) then
9: send RTU message to the corresponding HN for contending for the pairing strategy update

opportunity.
10: if not permitted to update the pairing strategy then
11: update the pairing strategy an(t + 1) ∈ bn(a−n(t)) for the next decision slot.
12: else
13: maintain the current pairing strategy an(t + 1) = an(t) for the next decision slot.
14: end if
15: else
16: maintain the current pairing strategy an(t + 1) = an(t) for next slot.
17: end if
18: until END message is received from the HNs.
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3.4.2 Parallel Offloading of Splittable Tasks

When it comes to splittable tasks, potential game theory and finite improvement
proper are no longer suitable to analyze the task offloading, because the strategy
sets of players are infinite. Therefore, we resort to the GNEP theory and formulate
the task offloading for splittable tasks as a GNEP [41]. Formally, we define the
corresponding POST game for splittable tasks as G2 = {N , {Sn}n∈N , {Tn}n∈N },
where Sn =

{

an ∈ [0, 1]1×(K+1) | a0
n, ak

n ≥ 0, a0
n + ∑

k∈K
ak
n = 1, ak

n ≤ ck
n ,

a0
n

znγn

fn
≤ Tn(an, A−n), ak

n

[
∑

n∈N
ak
nO

k
n

]

≤ ak
nTn, ∀k ∈ K

}

is the task allocation

strategy space of TN n and Tn = Tn(an, A−n) is the cost of TN n. Notably, this is a
GNEP because the strategy set of a player depends on the rival players’ strategies.

For the POST game, the existence of NE is not straightforward for the reason that
the optimization problem (3.10) is non-convex (see contents on the joint convex
GNEP, short for joint convex generalized Nash equilibrium problem, in [36]). To
understand this point, let us see the constraint (3.10c). For ak

n = 0, this constraint
is automatically fulfilled, and thus vanishes. Such a constraint is called vanishing
constraint, which is non-convex [42].

As stated above, although the existence of NE cannot be guaranteed by the
joint convex GNEP theory, it cannot be claimed that the POST game does not
possess an NE. To further prove the existence of NE for POST game, we first study
the structural properties of solutions to problem (3.10), which are summarized in
Propositions 3.2–3.4.

Proposition 3.2 For the optimal solution (a∗
n, T

∗
n ) to the problem (3.10), it satisfies

a0
n

∗ znγn

fn

= T ∗
n , (3.23)

and

∑

m�=n

ak
mOk

m + ak
n

∗
Ok

n = T ∗
n , ∀k : ak

n

∗
> 0. (3.24)

Proof Define An := {k ∈ K |ak
n > 0}, and choose ân as the solution of

∑

m�=n

ak
mOk

m + âk
nO

k
n = â0

n

znγn

fn

, k ∈ An,

â0
n +

∑

k∈An

âk
n = 1.

(3.25)
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Therefore,
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Thus, all âk
n for k ∈ An are given by the solution of the L × L linear equations
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where L = |An|.
Rewrite (3.27) as

⎛

⎜
⎜
⎜
⎝
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(
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n, . . . , OL

n
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⎟
⎠

ân = b, (3.28)

where e is a L-dimensional column vector of all ones.
Since D is nonsingular and vT D−1e �= −1, we can calculate ân using the

Sherman–Morrison formula, which is given in (3.29).

ân =
(

D−1 − D−1eνT D−1

1 + νT D−1e

)

b

=D−1b − D−1eνT D−1b

1 + νT D−1e
.

(3.29)
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D−1b =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
O1

n

( znγn

fn
− ∑

m�=n

a1
mO1

m

)

1
O2

n

( znγn

fn
− ∑

m�=n

a2
mO2

m

)

...
1

OL
n

( znγn

fn
− ∑

m�=n

aL
mOL

m

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.30)

D−1eνT D−1b=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
O1

n

znγn

fn

∑

l∈An

1
Ol

n

( znγn

fn
− ∑

m�=n

al
mOl

m

)

1
O2

n

znγn

fn

∑

l∈An

1
Ol

n

( znγn

fn
− ∑

m�=n

al
mOl

m

)

...
1

OL
n

znγn

fn

∑

l∈An

1
Ol

n

( znγn

fn
− ∑

m�=n

al
mOl

m

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.31)
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Therefore, for every k ∈ An, we have
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Then,
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Obviously, (̂an, T̂n) is a feasible solution to problem (3.10).
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a contradiction to the optimality of (a∗
n, T
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a contradiction to the optimality of (a∗
n, T

∗
n ). Thus, for all optimal solutions, we have
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Proposition 3.2 can be explained as follows. Imagine HNs as containers and
compare offloading tasks to HNs to pouring water to containers, then the execution
time is just like the water level. To keep the highest water level as low as possible,
water should be poured to containers such that the water level of every container
maintains the same. It is just like the famous water-filling algorithm for power
allocation problem in wireless communications.

Proposition 3.3 For TN n, the solution an to problem (3.10) for a given A−n is
given by (3.39), which is a continuous function. Here, An is the set of active HNs of
TN n, i.e., the HNs to which TN n offloads subtasks, and can be represented as
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Proof Let (a∗
n, T

∗
n ) be the optimal solution to (3.10) and define An := {k ∈

K |ak
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> 0}. Then, according to Proposition 3.2, for every HN k ∈ An, we have
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Additionally,
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For k /∈ An,
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Together, this yields
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The set An in Proposition 3.3 is defined in an implicit form, which is not
desirable. Proposition 3.4 in the following gives an explicit formulation of An and
shows that An is unique.

Proposition 3.4 There is exactly one set An, and it is of the form
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in the case of
∑

m�=n

a1
mO1

m ≤ ∑
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m ≤ · · · ≤ ∑
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aK
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m .1

Proposition 3.4 can be explained as follows.
∑

m�=n

ak
mOk

m is the additional time

consumption incurred by other TNs except n and can be interpreted as the current
water level of container k. Proposition 3.4 shows that we can choose containers
in the ascending order of the current water level until we cannot lower the water
level any more. From Proposition 3.4, it is straightforward to show that the optimal
solution to problem (3.10) is also unique.

Proposition 3.5 The POST game G2 has an NE.

Proof Define F (A) = a1(A−1) ⊗ a2(A−2) ⊗ · · · ⊗ aN(A−N), where ⊗ is the
Cartesian product. From Lemma 2, we know that F (A) : S → S is continuous,
where S = S1 ⊗ S2 ⊗ · · · ⊗ SN is convex and compact (S1,S2 · · · ,SN are
polytopes). According to the Brouwer’s fixed point theorem, F (A) has at least one
fixed point on S , which is an NE point of the POST game [36].

Among methods of finding NE points of GNEP, Gauss–Seidel-type method is the
most popular in practice because its rationale is particularly simple to grasp [36].
Based on this, we design a distributed task offloading algorithm, namely POST, to
obtain an NE of the POST game, shown in Algorithm 2.

Consider a slotted time structure, and every task offloading time slot is further
divided into multiple decision slots. To begin with, every TN chooses local
computing, i.e., an(0) = [1, 0, . . . , 0] (line 2). Then, at every decision slot t :

1 For TN n and HN k such that bk
n = 0, we have

∑

m�=n

aK
m Ok

m = ∞.
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Algorithm 2 POST algorithm
1: initialization:
2: every TN n chooses local computing, i.e., an(0) = [1, 0, . . . , 0].
3: end initialization
4: repeat for every TN n and every decision slot in parallel:
5: broadcast the parameters message to the achievable HNs.
6: receive the measurements of

∑

m�=n

ak
mOk

m, Ok
n from the achievable HNs.

7: calculate the optimal solution to problem (3.10) according to (3.23)–(3.44).
8: if Tn(t) − T ∗

n (t) > ε then
9: send RTU message to HNs for contending for the strategy update opportunity.

10: if not permitted to update the task offloading strategy then
11: update the strategy an(t + 1) = a∗

n(A−n(t)) for next slot.
12: else
13: maintain the current strategy an(t + 1) = an(t) for next slot.
14: end if
15: else
16: maintain the current strategy an(t + 1) = an(t) for next slot.
17: end if
18: until END message is received from the HNs.

1. TNs broadcasting parameters to HNs: the TNs simultaneously broadcast the
parameters message to the achievable HNs, i.e., the HNs which they can access
(line 5). The message informs the HNs of the task information, transmit power,
and so on.

2. HNs broadcasting measurements to TNs: the HNs first estimate the channel
conditions and calculate the measurements of current processing time, i.e.,∑

m�=n

ak
mOk

m, and potential extra processing time Ok
n . Then, they broadcast the

measurements back to the TNs (line 6).
3. TNs calculating the optimal solution to problem (3.10) and contending for the

strategy update opportunity: based on the measurements from HNs, the TNs can
calculate the optimal solution to problem (3.10) according to (3.23)–(3.44) (line
7), and then decide whether to contend for the strategy update opportunity (line
8–9). To be specific, if Tn(t)−T ∗

n (t) > ε, i.e., TN n can further reduce its cost by
ε, TN n sends a request to update (RTU) message to an available HN to contend
for the task offloading strategy update opportunity.

4. HNs deciding the updated TN and broadcasting the update-permission (UP)
message to TNs: once receiving the RTU messages, the HNs collaborate with
each other to decide the TN which wins the update opportunity. For example,
this can be realized by designating the update order in advance. After deciding
the updated TN, the HNs broadcast the UP message to TNs to inform them that
which TN is permitted to update its strategy.

5. TNs updating the task offloading strategies: If TN n is permitted to update its
task offloading strategy, then it updates its strategy as an(t + 1) ∈ bn(a−n(t)) at
the next decision slot (line 11). Otherwise, it maintains the current strategy at the
next decision slot (line 13).
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If no TNs wants to update the current strategy, i.e., no RTU messages are sent to
the HNs, the HNs will broadcast the END message to all TNs and the algorithm
terminates (line 18).

3.5 Performance Evaluation

3.5.1 Price of Anarchy

We first make some theoretical analysis of the proposed solutions. In game theory,
price of anarchy (PoA) is usually used to evaluate the efficiency of an NE solution.
It answers the question that how far is the overall performance of an NE from the
socially optimal solution. PoA is defined as the ratio of the maximum social welfare,
i.e., the total utility, achieved by a centralized optimal solution, to the social welfare,
achieved by the worst case equilibrium [34]. Here, since we consider the cost
function, we define the PoA as the ratio of the system-level average delay, achieved
by the worst case equilibrium, over the system-level average delay, achieved by
the centralized optimal solution. In this case, the smaller the PoA, the better the
performance is.

To be specific, let Γ be the set of NEs of the POMT game G1 and a∗ =
{a∗

1 , a∗
2 , . . . , a∗

N } be the centralized optimal solution that minimizes the system-level
average delay. Then, the PoA is defined as

PoA =
max
a∈Γ

∑
n∈N Tn(a)

∑
n∈N Tn(a∗)

. (3.45)

For the POMT game G1, we have the following proposition.

Proposition 3.6 For the POMT game G, the PoA of the system-level average delay
satisfies that

1 ≤ PoA ≤
∑N

n=1 min{Omax,
znγn

fn
}

∑N
n=1 min{On,min,

znγn

fn
} , (3.46)

where Omax =: max
k∈K

∑

n∈N
Ok

n and On,min =: min
k∈K

Ok
n .

Proof Let ā ∈ Γ be an arbitrary NE of the game G1. Since the centralized optimal
solution a∗ minimizes the system-level average delay, we have that PoA ≥ 1.

For the NE solution ā, if ān > 0, then we have Tn(ā) = ∑
m�=n O

am
m I{am=an} +

O
an
n ≤ max

k∈K
∑

n∈N
Ok

n = Omax. Omax is the maximum delay that TN n can achieve in

the worst case where all TNs choose to offload tasks to the same HN. Moreover, if
znγn

fn
< Omax and ān > 0, then the system-level average delay can be further reduced
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by letting TN n switch to the local computing. This is because that switching to the
local computing will not increase the execution time of other TNs. As a result, we
know that

Tn(ā) ≤ min

{

Omax,
znγn

fn

}

. (3.47)

For the centralized optimal solution a∗, if a∗
n > 0, then we have Tn(a∗) ≥ O

a∗
n

n ≥
min
k∈K

Ok
n = On,min. On,min is the minimum delay that the TN n can achieve in the

best case where only TN n chooses HN computing while the other TNs choose local
computing, i.e., no competition. Moreover, if znγn

fn
< On,min and a∗

n > 0, then the
system-level average delay can be further reduced by letting TN n switch to the
local computing. As a result, we know that
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. (3.48)

In conclusion,
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Similarly, for the POST game G2, we have the following proposition.

Proposition 3.7 For the POST game G2, the PoA in terms of the system average
delay satisfies that

1 ≤ PoA ≤
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fn
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where Osum
n,max � max

k∈K
∑

n∈N
Ok

n , On,min � min
k∈K

Ok
n , Kn = {k ∈ K |bk

n = 1} and

|Kn| is the cardinality of set Kn.

Proof Let Ā ∈ Γ be an arbitrary NE of the POST game G2. Since the centralized
optimal solution A∗ minimizes the system-wide average delay, we have that
PoA≥ 1.

For the NE solution Ā, if TN n chooses to offload part of its task to HNs, i.e.,
ān �= e1, where e1 is a unit 1 × (K + 1) vector with the first entry being 1, then
we have Tn(ān, Ā−n) = ∑

m�=n

āk
mOk

m + āk
nO

k
n ≤ max

k∈{k∈K |bk
n=1}

∑

n∈N
Ok

n = Osum
n,max.

Osum
n,max is the maximum delay that TN n can achieve in the worst case where all

TNs choose to offload entire tasks to the same HN. Moreover, if znγn

fn
< Osum

n,max and
ān �= e1, then the system-wide average delay can be further reduced by letting TN
n switch to the local computing, i.e., ān = e1. This is because that switching to the
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local computing will not increase the execution time of other tasks. As a result, we
know that

Tn(ān, Ā−n) ≤ min

{

Osum
n,max,

znγn

fn

}

. (3.51)

For the centralized optimal solution A∗, if a∗
n �= e1, then we have Tn(a∗

n, A∗−n) ≥
min

an∈Sn

Tn(an, 0) ≥ 1
1+|Kn| min{On,min,
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fn
}, where On,min � min

k∈K
Ok

n , Kn =
{k ∈ K |bk

n = 1} and |Kn| is the cardinality of set Kn. It indicates the minimum
delay that the TN n can achieve in the best case where only TN n chooses HN
computing while the other TNs choose local computing, i.e., no competition. In this
case, by offloading tasks to at most |Kn| HNs, the delay can be reduced to at most

1
1+|Kn| min{On,min,

znγn

fn
}.

In conclusion,
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(3.52)

3.5.2 System Average Delay

We then evaluate the performance of the proposed POMT algorithm and POST
algorithm via simulations. Consider an 80 m × 80 m square area, and divide it
into 4 × 4, totally 16 grids. Deploy a HN in the center of every grid, which not
only possesses rich communication resource, but also provides strong computation
capability. Every HN has a coverage range of 20 m, a bandwidth of 5 MHz,
and a computation capability of 5 GHz [15]. The TNs are randomly scattered
in the area. To account for the heterogeneity of TNs and tasks: (1) the size
and processing density of tasks are randomly chosen from [500, 5000] KB and
[500, 3000] cycle/bit, which are in accordance with the real measurements in
practice2 [43]; (2) the computation capability of TNs is randomly selected from the
set [0.8, 0.9, 1.0, 1.1, 1.2] GHz3 [13]. Besides, the transmission power of all TNs
is set as 100 mW and the channel noise power is set to be −100 dBm. The channel
gain gk

n is modeled by (dk
n)−α , where dk

n is the distance between TN n and HN k

2For example, the data size and processing density of face recognition application are about
5000 KB, 3000 cycle/bit respectively [43].
3Here, we model the TNs as various mobile devices with limited computation capability. For
example, smartphones with ARM Cortex-A8 processors are with about 1 GHz clock speed [18].
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Fig. 3.2 System average delay with different number of TNs (non-splittable tasks)

and α = 4 is the pathloss factor [15]. Unless stated otherwise, ε is chosen as 10−3.
All simulation results are averaged over 500 simulation rounds, if not specified.

Figure 3.2 compares the proposed POMT algorithm with the following baseline
solutions in terms of the system average delay:

• local computing (Local): every TN chooses to process its task on local device.
• HDR offloading (HDR): every TN chooses to offload its task to the HN with the

highest data rate (HDR). It imitates the myopic behavior of individuals.
• random offloading (Random): every TN randomly chooses to process its task on

local device or offload it to a randomly selected HN.
• optimal offloading (Optimal): the centralized optimal solution in terms of system-

level average delay is obtained [44], utilizing the Cross Entropy method. The
Cross Entropy method is an efficient method for finding near-optimal solutions
to complex combinatorial optimization problems [45].

As illustrated in Fig. 3.2, the system average delay increases as the number of
TNs increases, except for the local computing. This is because that the commu-
nication resources and computation capabilities of HNs become insufficient when
the number of TNs increases. As a result, less TNs choose to offload tasks to HNs
rather than to process tasks on local device, and this results in the rise of the system
average delay. While for the local computing, it does not rely on the resources of
HNs, and thus it keeps unchanged. Besides, it can be observed that our POMT
algorithm can always achieve the near-optimal system average delay and thus reduce
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Fig. 3.3 System average delay with different number of TNs, under different schemes and ε

(splittable tasks)

27–74%, 40–67%, and 49–53% system average delay than the local computing,
HDR offloading, and random offloading, respectively. This confirms the derivation
above, i.e., the PoA of system average delay is bounded.

Figure 3.3 compares the POST algorithm with the following baselines in terms
of the system average delay:

• local computing (Local): every TN processes its task on local device.
• equal scheduling (Equal): every TN divides its task into multiple subtasks with

equal size, and all subtasks are processed on local TN and all available HNs
in parallel. This is a heuristic solution which utilizes all available computation
resources.

• POMT: this solution can be taken as a worst case or upper bound for our problem.

As shown in Fig. 3.3, the system average delay increases with the number of
TNs increasing. This is because that the communication resources and computation
resources become insufficient when the number of TNs rises. Therefore, less TNs
will offload tasks to HNs, and this results in the rise of system average delay.
Besides, it can be observed that the POST algorithm can always offer the best
performance and reduce over 50% and 25% delay than the Equal scheme and the
POMT scheme, under the ideal condition, i.e., no extra time cost for dividing tasks
and assembling results. It is also interesting to note that the value of ε almost has no
impact on the system average delay. Specially, as ε is smaller than the magnitude
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Fig. 3.4 System average delay with different number of TNs, under different schemes and extra
time costs (splittable tasks)

of 10−3, the system average delay achieved by the POST algorithm maintains the
same. This indicates that the POST algorithm possesses a good robustness.

To further study the impact of extra time cost for dividing tasks and assembling
results, Fig. 3.4 plots the POST algorithm with different extra time costs. Typically,
the time cost for dividing tasks and assembling results is proportional to the
complexity of tasks, and inversely proportional to the computation capability of
devices. Thus, the time cost for dividing tasks and assembling results is set to be
proportional to that of local computing, such as 10% (POST+10% Local), 20%
(POST+20% Local), and 30% (POST+30% Local).

It is interesting to notice that the parallel processing (POST) does not always
perform better than the non-parallel processing (POMT). It depends on the extra
time cost for dividing tasks and assembling results and the network size. Generally
speaking, the smaller the extra time cost for dividing tasks and assembling results is,
the more advantageous the POST algorithm is. While, the larger the number of TNs
is, the more advantageous the POST algorithm is. For example, if the time cost of
dividing tasks and assembling results is 10% of that of local computing, the POST
algorithm can obtain lower system average delay than the POMT scheme, as long
as the number of TNs is larger than 20. And, the performance gain becomes larger
as the number of TNs rises. While, if dividing tasks and assembling results take up
20% of the time cost of local computing, the POST algorithm performs worse than
the POMT scheme in terms of the system average delay, when the number of TNs
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is less than 100. While, the performance of POST algorithm and the performance of
POMT scheme almost maintain the same, as TNs are more than 100.

It is also worth noting that it seems that whatever the number of TNs, the
POMT scheme almost cannot achieve better performance than the POST+10%
Local scheme. It may be claimed that dividing tasks into subtasks and offloading
them to multiple HNs for parallel processing is a better choice, as long as the extra
time cost for dividing tasks and assembling results takes up less than 10% of the
time cost of local computing.

3.5.3 Number of Beneficial TNs

The beneficial TNs are those who can reduce its delay compared with local
computing, via offloading tasks to HNs, i.e., {n ∈ N |Tn < T 0

n }. This metric
answers the question that how many TNs can benefit from computation offloading,
i.e., reduce its delay via computation offloading. Therefore, it can not only reflect
the individual-level delay performance but also depict the satisfaction level of TNs
to the pairing result from individual respects.

As shown in Fig. 3.5, the number of beneficial TNs achieved by the POMT
algorithm increases with the number of TNs increasing and levels off. Moreover,

Fig. 3.5 Number of beneficial TNs with different number of TNs (non-splittable tasks)
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Fig. 3.6 Number of beneficial TNs with different number of TNs (splittable tasks)

the POMT algorithm can always achieve more number of beneficial TNs than
other three schemes, especially when the number of TNs is large. This is because
that, in the case of large number of TNs, there exists serious contention among
TNs for the resources of HNs. While all TNs offloading tasks to HNs will further
worsen such contention and finally damage each other’s interests, and thus the
number of beneficial TNs reduces. In contrast, the POMT algorithm can coordinate
the contention among TNs and achieve more beneficial TNs until the network is
saturated, i.e., the number of beneficial TNs levels off. As for the optimal solution,
it may sacrifice individuals’ interests for better system performance, and thus less
TNs would get benefits from computation offloading.

As demonstrated in Fig. 3.6, the number of beneficial TNs increases as the
number of TNs increases. Besides, the number of beneficial TNs achieved by
the POST algorithm is much larger than that achieved by the Equal scheme and
POMT scheme, especially when the number of TNs is large, i.e., the communication
resources and computation resources are insufficient. The reason is two-folds: (1)
by dividing the whole task into multiple subtasks and offloading them to multiple
HNs for parallel processing, the efficiency can be further improved, compared with
the POMT scheme; (2) by formulating the task offloading problem as a game, a
better negotiation can be achieved among TNs, compared with the Equal scheme.
Therefore, more TNs can benefit from computation offloading and the POST
algorithm can also offer much better performance in terms of the system average
delay, compared with the Equal scheme and POMT scheme. These advantages are
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much more evident when there are a large number of TNs in the network, because
there will be more serious contention among TNs. Again, as can be observed, ε

almost has no influence on the algorithm performance in terms of the number of
beneficial TNs, as long as ε is small enough.

3.5.4 Convergence

Figure 3.7 demonstrates the number of decision slots required for the POMT
algorithm and the POST algorithm to converge, with different number of TNs and
under different ε. As shown, the number of decision slots increases sub-linearly with
the number of TNs, regardless of ε. This indicates that both the POMT algorithm
and the POST algorithm scale well with the size of network. Besides, the number
of decision slots increases slightly as ε decreases. It is because that it takes more
efforts for the POST algorithm to get closer to the NE (when ε is smaller). But, as ε

is small enough, i.e., below the magnitude of 10−3, the number of decision slots does
not increase any more. Further, the number of decision slots required for the POST
algorithm is usually more than the number of decision slots required for the POMT
algorithm. The reason behind is intuitive and straightforward. As the competition
among TNs gets more serious and complex for dividing original tasks into multiple
subtasks, it is more difficult to reach an equilibrium among TNs.

Fig. 3.7 Number of decision slots with different number of TNs
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3.6 Conclusion

In this chapter, we investigated the task offloading problem in MTMH fog networks
under the case of non-splittable tasks and splittable tasks, respectively. We proposed
a game theory based analytical framework and a corresponding distributed algo-
rithm for each. To be specific, we first introduced the general MTMH fog networks
and the corresponding task offloading problem for non-splittable tasks and splittable
tasks, respectively. Then, we discussed the fundamentals of game theory and how to
apply it to formulate and tackle the task offloading problems introduced above. More
specifically, the POMT game based on potential games and the POST game based
on GNEP were formulated and studied thoroughly. The corresponding distributed
algorithms, namely POMT and POST, were also designed. Finally, extensive
simulations were conducted to demonstrate the performance of the proposed POMT
and POST algorithms.
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Chapter 4
Fog-Enabled Multi-Robot System

4.1 Introduction

Robots are used widely in many fields now. They bring us lots of convenience in
daily lives, save huge manpower in factories, and help to complete many mission-
possible tasks in some cases. However, in robot applications, it may suffer issues
of high cost, large power consumption, and low efficiency. For example, in a
logistic center employing huge number of automated guided vehicles (AGVs), high
performance algorithms must be used to avoid collisions. If all computing tasks
generated by a AGV are executed by itself, then it requires each AGV to have high-
performance computing unit and large capacity battery. While, this will introduce
issues of high cost and low efficiency.

An effective solution to robot application issues is to employ fog computing,
a new computing paradigm that is emerging in recent years. By the definition of
OpenFog [1, 2], fog computing utilizes all possible resources (vertically) along the
cloud-to-thing continuum and (horizontally) across networks and vertical industries
to perform computing, storage, control, and communication, and services can be
deployed anywhere in the network. In the paradigm of fog computing, routers,
switches, file servers, gateways, and base stations may serve as fog nodes (FNs) for
computing, storage, and control [3, 4]. With fog computing, if a robot is connected
to a fog network, then part of the heavy computing tasks can be offloaded to one
or a group of FNs that have much higher computing capacity, so to save onboard
unit cost, computing time, and energy consumption. Moreover, if multiple robots
are connected each other through a fog network, then the robots may collaborate
each other and improve general intelligence if machine learning algorithms are
employed and training data are shared. Cloud may offload computing tasks of
robot applications, too [4]. However, the robot applications may suffer intermittent
cloud connectivity. Cloud offloading also introduces much longer time delay and
consumes much more communication resources.
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This chapter serves to illustrate how fog computing helps robot applications in
saving cost and improve efficiency. Three cases are introduced: robot simultaneous
location and mapping (SLAM), robot smart factory applications, and robot fleet
formation. The applications may involve one single robot or multiple robots.
Meanwhile, it shows that how fog computing resource can be sold and service can be
provided via a virtual market in a blockchain platform. With economic stimulus, one
might be more willing to share fog computing power to meet others needs including
robot applications.

4.2 Simultaneous Location and Mapping

In the real world, robots are often needed to explore a prior-unknown environment.
For example, when people are buried in a collapsed building in an earthquake,
and the space/condition does not allow rescue person/animal to enter, an advanced
method is to send a suitable size and shape robot to detect the location of the
lives, environment, and the living conditions like oxygen level and temperature, etc.
Mapping information is critical to rescue planning in this case; thus, it requires an
explorer robot to construct a map of the space. Meanwhile, to do so it needs to know
its location and orientation in the map, too. In robotics, SLAM is a robot to perform
construction of an environment map and estimate its location concurrently.

4.2.1 System Architecture

SLAM is a process consisting of concurrent construction of a map of the environ-
ment and estimation of the position and orientation of the robot. SLAM is very
important in terms of, first, to support many tasks like path planning and intuitive
human operator visualization, and second, to limit the error committed in estimating
the state of the robot. At the IEEE Robotics and Automation Conference in 1986,
researchers proposed to apply the estimation-theoretic methods in mapping and
localization. Initially researchers used SLAM in robotics field to build a robot
environment map and estimate the location of the robot based on the map without
any prior knowledge.

Assuming a robot with sensors (e.g., camera) moves in an unknown environ-
ment, for purpose of convenience, it notes the time as discrete moments t =
{t1, t2, . . . , tk}, and the location as x = {x1, x2, . . . , xk}. The location x forms the
trajectory of the robot. Supposing the map consists of a number of signposts, at each
time moment, the sensor will measure some signposts and have the observed data.
Noting the map signposts as y = {y1, y2, . . . , yN }, SLAM is to estimate x and y,
using the movement measurement and sensing data. Figure 4.1 illustrates the SLAM
principles.
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Fig. 4.1 Principles of robot
SLAM

Fig. 4.2 Robot SLAM steps

Robot SLAM often uses two types of sensors, i.e., cameras and LIDAR. It names
the SLAM using only camera sensor as visual SLAM (vSLAM). Cameras have rich
vision information and low-cost hardware; so many robot SLAM adopts vSLAM.
High resolution LIDAR is usually expensive; however, some applications also use
relatively cheap LIDAR. As shown in Fig. 4.2, a classic robot SLAM involves
four steps, i.e., odometry, back-end optimization, loop closure, and mapping [1].
Robot SLAM involves a number of steps, i.e., collecting data by sensors, front-end
odometry, back-end optimization, loop closure, and mapping [1]. Sensors are used
to collect environment information. Odometry is to estimate the movement of the
robot based on the sensing data and optimization is to reduce noise and distortions in
the first two steps to improve accuracy. Loop closure is to recognize the intersecting
points of the movement, then to estimate the real environment topology. In these
steps, optimization has the heaviest computation tasks.

4.2.2 Technical Challenges

Generally, robot SLAM needs to be low-cost, low-power consumption, accurate,
and speedy. However, these requirements restrict each other mutually. First, tens
or hundreds of rescue robots may be used in one saving campaign so robot cost is
a big concern. Popular SLAM sensors include laser radars and cameras; however,
although generally laser radars perform better in accuracy, they are much expensive
than usual cameras, so the latter is more suitable for massive rescue robots. Second,
accurate mapping and localization are very important to rescue path planning,
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to achieve this it needs high-performance computing unit, especially at the step
of optimization that involves many advanced algorithms, and this of course, is
contradictory to the low-cost requirement aforementioned. Third, rescue robots use
battery; hence, battery life is a key consideration. To reduce computing tasks of
robots, e.g., using low-performance algorithms is an effective way to save robot
energy consumption; however, it may lead to inaccurate SLAM. Fourth, as all
know, time is critical in many rescue cases, as it requires robots to move as
quick as possible and perform fast SLAM, imposing much pressure to the onboard
computing unit. Similarly, low-complexity algorithms may be used to save SLAM
time; however, a sequence is that the SLAM accuracy may be affected. Fifth, in
a large area where multiple robots are used, it requires collaborations between
the robots in SLAM and to merge the maps finally, thus a network is needed and
one robot needs to be a leader in SLAM and to merge maps, this leader robot, of
course, will consume additional energy. However, network is usually not available
in disaster scenarios.

4.2.3 Fog-Enabled Solution

Fog computing is effective to alleviate robot SLAM issues. Figure 4.3 illustrates
multiple robots are connected to a fog network, by which each robot’s SLAM can
be offloaded to the FN. As the robots are mobile, they connect to the fog network via
wireless access, possibly Wi-Fi or 4G/5G. The fog network may connect to a cloud
but it is not a must, particularly in disaster scenarios where cloud is not available.
Computation offloading can be done by one FN or multiple FNs jointly. Note that
the fog network may consist of homogenous or heterogeneous networks, either wire
or wireless networks.

Fig. 4.3 Illustration of multiple robots supported by fog network
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The function interface between robots and FNs is called southbound interface
which defines information of the data plane and control plane. The data plane carries
key frames and poses information which are processed by robots or FNs. The control
plane carries commons which manage the whole work flows such as initializing,
stopping, getting key frames, and setting poses. FNs can communicate with each
other via horizontal interface. Multiple FNs can collaborate and realize CoMP (coor-
dinated multiple points), distribute storage system, or distribute computing system
to get more powerful capabilities of communication, storage, and computing. The
horizontal interface carries the control and data information supporting coordinating
functions. By utilizing FNs or fog network which are much closed to robots, the
latency of robots processing can be shortened to a 10ms level. FNs can communicate
with cloud via northbound interface. In robot SLAM, except collecting sensing data,
other computation steps can be offloaded to the fog network. In case cameras are
used, the video streams require high data rate wireless transmission, e.g., several
to tens Mbps. On the other hand, the front-end odometry needs (relatively) much
lower computing capacity than other steps, and the output data rate of the front-end
processing may be as low as tens kbps. Therefore, it is proposed to offload only
steps after odometry to the fog network.

Figure 4.4 illustrates the scheme for fog-enabled robot SLAM. It assumes that
the robots use cameras due to cost consideration and supports collaborations of
multiple robots SLAM. First, a FN initializes odometry process on a robot and then
the robot starts front-end processing like to abstract key frames and positing itself.
The robot reports key frame streams, which are the main visual capture representing
the environment, to the fog network to optimize the map. The fog network sends
back each robot the position information and the robot will correct position drift
accumulated. When cloud is available, it can merge maps from different robots.
If connection to cloud is not possible, then one master FN may merge maps from
different robots.

Fig. 4.4 Fog-enabled robot SLAM
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Fig. 4.5 Example OpenLTE
fog network supporting robot
SLAM

Fig. 4.6 Architecture view
of fog-enabled robot SLAM
with support of OpenLTE

To illustrate the fog-enabled robot SLAM more intuitively, the system uses
OpenLTE as communication means connecting robots and fog network [6].
Figure 4.5 shows example fog network supporting robot SLAM and employing
OpenLTE. Figure 4.6 shows its architecture view. OpenLTE is a software-defined
LTE system that runs on the general purpose processor (GPP) platform. It includes
software-defined eNodeB (SDN-eNB) and software-defined EPC (SDN-EPC). Both
the eNB and EPC could be a miniPC, a notebook, or a server, and could serve as
FNs to perform computing offloading of robot SLAM. In architecture view, a fog-
enabled robot SLAM system consists of hardware layer, software backplane layer,
fog application support layer, and applications layer.

• Hardware Layer: In the example of OpenLTE supported fog network, the
hardware include both eNB/EPC hardware, the robot hardware, and cameras,
laser radar, other sensors and actuators, etc.

• Software Backplane Layer: It manages the FNs hardware and FNs themselves,
so they include operation system like Linux and Android, communication
software, and FN and services discovery, etc. With OpenLTE, communication
software include eNB and EPC functions. FN discovery is a basic requirement
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of fog network, by which neighbor FNs are discovered and then it is possible
to perform resource sharing and distributed computing [7]. This layer may
include hardware virtualization and container. With virtualization technology,
computing and storage resource on a FN can be sliced for different applications
with good isolations. Another important component of backbone software layer
is robot operation system (ROS), which is a robotics middleware providing
services for heterogeneous computing clusters such as hardware abstraction, low-
level device control, implementation of commonly used functionality, message-
passing between processes, and package management. It has a modular design,
and each module can be deployed on different FNs in distributed manner. A
function module may publish message that others may subscribe and then data
flows among different nodes. ROS enables data exchange between robots and
FNs easily.

• Fog Application Support Layer: This layer supports fog applications and has a
broad spectrum. It supports security, storage, message, runtime engine, etc.

• Application Layer: A bound of applications that may be supported by fog
networks include robot SLAM, AI, etc.

Figure 4.7 shows the function view of fog-enabled robot SLAM. The function
modules include task process, communication, storage, deployment, security, and
interfaces. Considering low latency requirement and stream-oriented processing,
it may apply real-time streaming processing framework such as Storm and Spark.
Taking Storm as an example, the task process can be composed of application, task
scheduler, cluster coordination, supervisor, and worker. To be compatible with the
legacy mechanism, deployment manager may adopt ROS as well. Storage manager
can support distributed storage system and centralized databases. Distributed stor-
age systems are suitable for these delay insensitive applications while demanding
large storage. Centralized databases are suitable for delay sensitive systems. One
can select different storage scheme through deployment manager. Security manager
can manage different security functions such as authentication, encryption, privacy
protection, and so on. The southbound interface provides information exchange
of control plane, data plane, and manage plane between FNs and robots. The
horizontal interface supplies information exchange between FNs to realize fog-net-
based collaborative functions. The northbound interface is to exchange information
between FNs and cloud to support delay-insensitive, computing-intensive and huge-
storage tasks.

Table 4.1 shows how the challenges and requirements of fog-enabled robot
SLAM can be met.

A testbed of fog-enabled robot SLAM is shown in Fig. 4.8. We employed rescue
robot with relatively low price (shown in Fig. 4.8a). The robot was equipped with a
mobile phone and a fish eye camera was attached on the mobile phone to capture
environment video streaming. When there was no fog network connection, SLAM
computing was done by the mobile phone on the robots. However, the computing
capacity of the mobile phone is relatively weak.
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Fig. 4.7 Function view of fog-enabled robot SLAM

The FN was a server installed software-defined OpenLTE components including
eNB and EPC. USRP B210 was used to convert LTE RF signal to baseband. The FN
processed baseband signal, implemented eNB and EPC functions. LTE downlink
and uplink bandwidth were 10 and 5 MHz, and speed were 35 and 15 Mbps,
respectively. As the FN was computer in nature, it was easy to carry out information
processing like SLAM computation offloading. We installed customized SIM card
on the robot mobile phone so it could communicate with the FN by LTE signal.
Comparing to Wi-Fi, LTE has advantages of supporting to handover, and better QoS,
etc. A smooth handover is required when a robot moves to another cell.

Two FNs with OpenLTE protocols were developed and two robots were
employed in the testbed, and they formed a local LTE network without cloud
connection. Both the robots and FNs installed ROS. The robots executed first
two SLAM step modules, and the FNs run other SLAM step modules. One FN
served as the ROS master, coordinating ROS modules on different nodes. At the
fog network side, the two FNs monitored its resource real-time utilizations and
exchanged this information each other. The orchestrator on the FN running ROS
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Table 4.1 Proposed functions meeting challenges and requirements for fog-enabled robot SLAM

Challenges and
requirements Functions

Security 1. Robots ID authentication should be supported on SI

2. Data information encryption should be supported on SI, NI, and HI

3. The sensitive information included in key frames and map data should be
encrypted or erased before stored into databases

Scalability 1. Task scheduler can orchestrate computation, storage, communication
resources based on the task QoS requirements, status of robots, FNs, and
cloud-end

2. For delay sensitive tasks, task scheduler can assign them to robots or
neighboring FNs. For delay insensitive tasks, task scheduler can assign
them to cloud

3. Task scheduler should consider computing-communication tradeoff when
making decision on task scheduling

4. The FNs can form a collaborative network to support more powerful
communication, computing, and storage systems

Open 1. The information model, message primitives, and protocol stack of
application layer on SI, NI, and HI should be standardized based on the
common robot applications

2. The policies of task scheduling, resources orchestration, and modules
deployment can be open and defined by users

3. All kinds of resources should be visualized by GUI

Autonomy 1. The network topology should be flexible to support different application
scenarios, such as stand-alone robots, network of robot and FNs, network
of robot, FNs, and cloud-end network

2. Both robots and FNs can finish task independently

RAS 1. Robots can independently work without the connection with FNs and
cloud-end

2. Fog nodes can finish work without the connection with cloud-end

3. Fog nodes can organize a collaborative network to support much more
reliable communication, powerful communication, and huge storage

Agility 1. Machine learning functions can be deployed on FNs or cloud-end to
provide wiser schedule scheme

2. Robots can learn more experience and knowledge from big history data in
FNs or cloud-end

Hierarchy 1. The solution can be one (robots only), two (robots and fog nodes), or three
(robots, FNs, and cloud-end) layers

2. Each level can work independently

3. Fog nodes can provide distributed computing, storage solution for higher
QoS applications. Each level can work independently

Programmability 1. The work flow of applications can be programmed to achieve different
QoS requirements

2. The policies of task scheduling, resources allocation, information process
mechanism can be programmed by users
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Fig. 4.8 Developed testbed of fog-enabled robot SLAM with OpenLTE. (a) Rescue robot with
mobile phone; (b) FN running software-defined OpenLTE; (c) experiment area; (d) SLAM map
built on FN; (e) illustration of the OpenLTE architecture implemented

master coordinated resource usage, if one FN was short of computing resource, then
the SLAM computing tasks can be shifted to the other FN with the help of ROS.

In fog architecture view, the testbed consists of the following items:

• Hardware Layer: robot with mobile phone and fish eye camera, FN hardware
include i7 CPU, USRP, RF HW, and FPGA for acceleration, hard disk for data
storage, antenna, etc.
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• Software Backplane Layer: ROS, Android on mobile phone, Linux Ubuntu on
FN, orchestrator, resource monitor, task scheduler, etc.

• Fog Application Support: map storage, map viewing
• Application Layer: robot SLAM

Figure 4.8d illustrates SLAM mapping with fog network. It had been achieved
good results in terms of speed. The process was more fluent comparing to Wi-Fi
connection without fog-enabled SLAM.

4.3 Multi-Robot Smart Factory

Following the first three revolutions of mechanization, mass production, and digiti-
zation, the 4th industrial revolution, termed as Industry 4.0, has brought autonomous
technologies into the industrial realm. Consequently, traditional factories are trans-
forming into smart factories of the future with the help of recent advancement of
information technologies including Internet of Things (IoT), big data, and cloud
computing together with artificial intelligence and multi-robot systems. Generally,
industrial robots are deployed in factories to do tedious, repetitive, or dangerous
tasks, such as assembly, painting, packaging, and welding. These preprogrammed
robots have been very successful in industrial applications due to their high
endurance, speed, and precision in structured factory environments. To extend the
functional range of these robots or to deploy them in unstructured environments,
robotic technologies are further integrated with wired or wireless communication
networks to form networked robots [8], which address the concerns associated with
single robot by sharing the perceived data among robots and solving a task in a
cooperative and/or coordinated manner [9].

Due to hardware resource constraints, industrial robots still face enormous
computational and storage issues in compute intensive tasks, e.g., map recon-
struction, navigation and real-time response, etc. Although multi-robot cooperative
systems facilitate global cooperation through coordinated information exchange,
their information processing is often limited by the number of robots in the network
topology. The cooperative learning process also became complicated for the robots
in the dynamic working environment like smart factory, because it is usually
required for the machines and processes to communicate and negotiate with each
other so as to reconfigure themselves for a flexible production of multiple types
of products. Furthermore, the load balance of the network bandwidth is another
challenge for robot communication in smart factory [10].

To overcome these limitations, the concept of cloud computing has been
extended to multi-robot systems [11]. In such systems, cloud offers virtualized
instances, platform, and software services so that both local and remote resources
can be utilized to process the tasks [12]. The fourth industrial revolution intro-
duces an ideal opportunity for the inclusion of cloud-enabled robots in a factory
environment to improve productivity and reduce human intervention. Thanks to
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virtualization, decentralization, and real-time capability, smart factory is envisioned
to be a key area for infusion of these robotic technologies, especially in automating
applications such as sensing, actuating, and monitoring empowered by cloud
computing and wireless sensors. Indeed, industrial cloud robotics amalgamates the
design principle of robotic resources with the powerful computing and network
resources, which has extended its operational capabilities and produced a shift in
the modes of robotic applications from carrying out repetitive tasks towards solving
more complex multiobjective problems in uncertain environments [13, 14].

In essence, smart factory is an intelligent production system that utilizes the
encapsulation of manufacturing and services. It integrates communication process,
computing process, and control process to meet the industrial requirements. The
defining characteristics of the smart factory are visibility, connectivity, and auton-
omy [15]. Among them, the most fundamental one is its connectedness, for which
sensors are critical to linking devices, machines, and systems to provide data needed
in order to make real-time decisions. From the smallest node to the most complex
robotic system, a smart factory relies on connectivity [16]. In this case, the remote
cloud platform alone can hardly perceive environmental status timely and fulfill the
real-time demands within the smart factory [17]. Therefore, diverse applications are
required to migrate to the network edge with the help of fog computing to provide
edge intelligent services [18].

In this section, we discuss different components of fog-enabled multi-robot
system in smart factory and it is followed by two case studies including warehouse
management and emergency management. Then, we brief the challenges to incor-
porate fog technology within smart factory.

4.3.1 System Architecture

With the adoption of industrial IoT and robotics technologies in the factory,
the opportunity for innovation arises where the networked robots and sensors
are integrated with cloud infrastructure for intelligent perception and on-demand
shared resources, resulting in increased efficiency for environmental monitoring,
improved supply chains, reduced waste as well as enhanced safety and speed of
manufacturing. However, the rapid increases of terminal devices, massive data
analytics, and processing of things gradually raise up the burdens on manufacturing
cloud platform [19], making it insufficient to realize real-time requirements of smart
factory. On the basis of emerging fog computing, the industrial fog applications will
make the full use of computing capabilities of an intelligent equipment to achieve
the global perception and autonomous distributed information processing [17].
Given that, we will first present an integrated architecture of fog-aided multi-robot
system in smart factory (Fig. 4.9) as follows:
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Fig. 4.9 Fog-enabled multi-robot system environment in smart factory

Physical Layer

The industrial physical layer consists of two components: wireless sensor network
and robotic agents. The wireless sensor network (WSN) contains low-cost and
limited-energy smart sensor devices embedded in the machines, which is able to not
only communicate with each other, but also collect and analyze raw data necessary
for application specific tasks. The sensors provide directive information to the robot
through cloud orchestration. Based on that, several analytical computation is done
and a task is assigned to robots for visiting locations and conducting jobs that are
allocated to them. Here machine learning in sensors helps them to identify key
situations such as suggesting modifications or requirements for actions that can be
performed by robots.

The robots are the critical element that can perform actuation and help complete
the tasks. Depending on the type of application, the robot is able to share its
workload with the fog nodes or cloud by offloading the tasks for additional support.
Robots may also get guidance provided by the supervisory control center through



112 4 Fog-Enabled Multi-Robot System

the cloud. Based on all of that, tasks are shared among robotic, edge, and cloud
resources. As robots possess the distinctive attribute of mobility, they can plan their
routes in accordance and hence choose the suitable communication platform to
access the virtual resources while moving. As a result, it gains the best available
bandwidth for offloading tasks to either fog nodes or cloud. Robot offloading
with motion and connectivity as part of its decision-making could thus improve
communication with the cloud [14]. Finally, robots are also able to form their own
local ad hoc network to communicate and share information among themselves as
well as assist with offloading tasks to the edge or remote cloud. Therefore, the multi-
robot system is equipped to utilize both its surrounding local resources (available
robots and fog nodes) and global virtual resources (virtual machines in cloud) to
share workload.

Fog Network Layer

The industrial network layer consists of access points (APs), routers, or switches
that enable the robotic and sensor network to communicate with each other. It also
bridges the gap between cloud services and the physical layer components for data
collection and processing. In this context, the network resource is defined as a smart
device with Internet connection via which the robots access the cloud infrastructure.
The components in network layer also have the processing and storage capabilities,
playing the role as fog nodes, which help execute the latency sensitive tasks and
provide real-time interaction of the system. As there are multiple APs, the robots
could obtain different stream rates for communication depending on its location and
AP association in accordance with IEEE 802.11 WLAN protocol, for instance. It
means the bandwidth received by a robot may vary depending on the location it
offloads tasks from or the robot that is offloading or the AP it is selecting. Hence,
the tangible fog network layer enables the intangible information to flow freely by
integrating the physical components and information entities.

Cloud Network Layer

Cloud infrastructure refers to hardware and software components such as servers,
storage, and virtualization techniques that are needed to support the computing
requirements of the application. It includes an abstraction layer that virtual-
izes resources and logically presents them to users through application program
interfaces (API) and API-enabled command line or graphical interfaces. The orga-
nization of cloud typically consists of virtual machines (VMs) with shared power.
They often provide functionality needed to execute the entire high-density operating
systems and require massive computational capacity to handle unpredictable and
complex user (robot) demands. Some notable cloud service providers are Mendix,
Google App Engine, Amazon Web Services, etc. In particular, cloud services in
our context are the VMs, which virtualize computing resources as the back-end
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components and perform on-demand computational support (for offloaded task),
data storage (data collected from sensors), analytics (decision-making, verification)
to aid local robots.

Supervisory Control Layer

The supervisory control layer allows networked robots to be guided/monitored by
humans remotely through the cloud infrastructure. Here the information collected
from sensors and action reports performed by robots are passed on to cloud via fog
nodes and then made available for users to monitor through control terminals. As a
result, physical layer could communicate with users/engineers in remote locations
when required. In addition, possible big data analytics could also provide various
statistical results to the users for the purpose of supervisory control and the users
then verify/adjust system configuration accordingly.

4.3.2 Warehouse Management

The impact of Industry 4.0 applications is obviously being reflected in the ware-
house applications, e.g., material handling including conveyers, sorters, goods to
picker solution, where more operations are now moving towards running with
automation support. According to recent reports, around 15% of current warehouses
are mechanized and 5% are automated, but most of them still employ people in
key functions. It suggests that there is a large room for the implementation of
automated components like robotic agents. In fact, the inclusion of robots in the
warehouse management could be traced back to early 1990s, where the approach
initially started with teleoperation and later upgraded to automation [20]. Having
evolved with time, it has now reached the age of cloud networked robotics, where
cloud computing in robotic applications has made significant mark in the industrial
domain by enhancing operations of the robots via on-demand computation and
storage support.

In the context of our application, a pool of wireless sensors are deployed in static
warehouse machineries (e.g., goods packing, labeling, etc.) for data collection and
environmental monitoring in order to develop a common operating picture (COP).
These sensors are complemented by several dynamic robots that move on-demand
to perform object pickup, delivery, and drop-off. The integration of these cyber-
physical systems and wireless sensors enables proper communication over networks
for data sharing and automated processing of operations that start from production
line all the way to delivery. Since the design of industrial operations involves
numerous varieties of decision-making, the inclusion of cloud computing makes
an integrated architecture of networked robots and sensors a reality, which is able
to reconcile conventional warehouse problems and perform applications in a semi-
automated manner with minimal human supervisory oversight, increased efficiency,
and more safety and speed.
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Fig. 4.10 Floor schematic of a smart warehouse environment

Specifically, we present a parcel sorting and distribution application in an
automated warehouse environment as shown in Fig. 4.10. Being automated in
nature, the application deals with five major steps that require the primary mobile
robot to complete set of tasks necessary to carry out a parcel for delivery. In this
multi-robot system, the principal/primary robot is incorporated to complete the
major actuation-based tasks through interactions with different types of agents,
each with a specific job such as unloading objects from trucks, co-packing, picking
orders, checking inventory or shipping goods to assist. As for the supporting robots,
they provide analytical and computation support while completing their own set of
application related activities. Through robot-to-robot communication, the principal
robot can transfer tasks locally to other available ones and complete them on-board.
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Alternatively, it can also get help from the supporting robots regarding offloading a
task to cloud for utilizing its ubiquitous resources. In this manner, the other available
robots in this shared architecture work as a hub to provide assistance for local or
cloud based offloading of tasks (if required), whereas the principal robot carries out
fundamental aspects of the warehouse management application as well as necessary
decision-making. The workflow of automated parcel sorting and distribution in
smart warehouse is depicted in detail as Fig. 4.11.

• Parcel Request Generation Phase (stage 1): The warehouse distribution and
sorting centers are equipped with sensors; therefore, the complete application
will be coordinated through advanced warehouse management systems. Each
machinery is capable of tracking inventory movements and progressing orders
with a high degree of accuracy. As part of it, whenever a new order is set to be
sorted and delivered, information regarding its location and target will be sent to
the principal robot (R1), which in this case is a fetch and freight robot. Its primary
robot, called fetch, can extend its torso to reach pickup points, while a small
secondary robot, called freight, helpfully holds the tote that fetch will pick items
into. Each fetch robot can have several of these smaller freight robots supporting
the picking process. Moreover, due to their size they can smoothly move around
and collect objects throughout the warehouse and hence been chosen as our
principal multi-functioning robot. As a parcel sorting request for a new order
is generated, robot gets the location and plans its path from current location (P 1)
to go to the given area (P 2) for collecting the parcel.

• Pickup and Co-packaging Phase (stage 2): As the robot is reaching the location
(P 2) of the shelves, a mobile piece picking robot is placed in that area which
uses 3D cameras for identifying objects and implements a well-defined grasping
technique for collecting objects from the shelves. After the object is picked
and kept in a convenient location, the update is provided to the principal robot
through WSN, so that it could detect object and pick it up. The next portion
of the application involves co-packaging and customization for parcel according
to individual needs of the customer. In comparison to more traditional/manual
procedures, the robot in this setting carries the parcel to the co-packaging center
(P 3), where the well-known robot Baxter can complete the necessary steps of
packaging. During these applications, a lot of information and analytical tasks
are happening in parallel. That is why local or cloud based offloading may be
required for more efficient performance of the system.

• Package Collection Phase (stage 3): After the parcel is customized and co-
packaged, it is ready for delivery. At that point, they are placed on conveyer
belt to be sent to the collection center. As updated information is provided to
the principal robot (R1), it moves to the collection point (P 4) to pick up the
prepared parcel. While moving, the robot needs to plan its path and communicate
with the collection center to provide update to the main center. This creates the
opportunities to pass on heavy computational tasks to nearby supporting robots
for local computation or for assistance with offloading to the cloud.
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Fig. 4.11 Workflow of automated parcel sorting and distribution application in smart warehouse

• Drop-off for Delivery Phase (stage 4): As the robot reaches the collection point,‘
it detects the prepared parcel, and uses its own technology to pick it up. Then it
updates the main center and additionally creates an order for the delivery robots
from Starship technologies to be prepared for incoming parcel. At last, the robot
delivers the objects in the drop-off point (P 5) to be collected by delivery robot.
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Due to the nature of the application, it is time constrained, which is why
additional support from cloud and other available robots may improve the per-
formance. Through joint collaboration of cloud and multi-robot resources, parcel
distribution and sorting process in a smart warehouse is run autonomously to
make parcel ready for delivery, starting from distribution to the eventual drop-off.
Since task offloading is dependent on communication with the cloud, it requires
Internet availability. Depending on the location of robot and the selection of AP,
a robot gains access to the available bandwidth, which in turn may impact its
offloading process. In this way, it is quite clear that task offloading, path planning,
and AP selection are interdependent that allows robots to plan their path and
select the communication link while accommodating the offloading decisions. In
addition, local sharing among multiple robots has the potential of further minimizing
system energy by distributing the principal robot’s workload to others for either
computational support or assistance with offloading to the cloud. Therefore, the
collective consideration of decision-making for each task (i.e., task offloading, robot
selection for offloading, task location, and AP selection) could better utilize the
local resources in the multi-robot systems, and also the offloading process could be
further fastened, leading to successful task completion with less energy consumption
but more system performance enhancement [21]. On this basis, we formulate a four-
layer joint optimization problem with the objective of minimizing the overall system
energy by identifying the following key decisions: (1) which task to allocate to robot
and which task to offload to the cloud, (2) which robot would offload the task to
the cloud, (3) which location to complete a task, and (4) which AP to select for
offloading a particular task. The simulation results suggest that the implementation
of our genetic algorithm (GA) based scheme achieves near-optimal solutions and
in turn improves the overall system performance for cloud networked multi-robot
applications in smart factory.

Mathematically, the objective is to minimize the overall energy consumption
(Etotal) in order to meet the time constraint (TDeadline) and individual energy
constraint (Elimit(Rr)) of each robot (ERr ), which is represented as follows:

Find : {Iti }, {Rti }, {Lti }, {Ati },∀T = {vj , j = 1 : t},
and t = |T | to minimize : Etotal

s.t. : Ttotal ≤ TDeadline and ERr ≤ Elimit(Rr)

where Iti is the offloading decision for each task. In particular, Iti (= r) indicates the
task is executed on robot Rr ∈ R,∀r = 1 : n, and Iti (= 0) specifies that the task ti is
offloaded to cloud. We assume the total number of robots n = 3; hence, the possible
task allocation decisions on-board of robot are R1, R2, R3. Then, Rti is the selection
of robot Rr for offloading a task ti to the cloud, where Rti ∈ Iti = 0. This decision is
for identifying which robot will offload the task to cloud. Finally, Lti is the location
for each task where the set consists of total l values (L = 1 . . . l), and Ati is the
selected AP for offloaded task where AP set has total α values ( A = 1 . . . α). In our
formulation, l = 36 and α = 4.
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Experimental Results

We ran extensive simulations on different aspects of our GA scheme for the multi-
robot with cloud (GAMRC) approach, and compare it with single cloud-aided
robot (GASRC) and GA scheme for a multi-robot on-board (GAMRB) approach
where only robot–robot communication has been used for task completion. 40-node
taskflow defines tasks that need to be completed in the constrained scenario. The
time deadline for the proposed application is 150 s and population size for GA is
500. The stopping criteria for GA is self-maintained and trained to stop running
when no changes of results are found for 1500 generations. Among 36 cells in
workspace, 9, 18, 20, 33, 36 are considered as obstacle cells. For the multi-robot
approach, three robots are considered with processing power of R1 (Core i5-4460),
R2 (Core i5-7600), and R3 (Core i5-7600K), respectively. In comparison to the
robot processor, the cloud VM is considered to be a minimum M times faster than
the fastest robot. For communication modeling, an infrastructure using IEEE 802.11
WLANs is presented with a maximum bit rate of 54 Mbit/s and 8 available stream
bit rate (6, 9, 12, 18, 24, 36, 48, 54 Mbit/s). Based on this, the whole workspace is
designed with four APs where each AP has three users.

From Table 4.2, the results clearly highlight that GAMRC consumes much lower
energy (2836.50 J) than GASRC (4778.80 J) and GAMRB (7057.19 J). In terms
of time/delay, GAMRB fails to finish within the time constraint. As for GASRC,
even though the tasks are completed within the delay constraint, it is still higher
than the fastest GAMRC process. Because of their ability to offload more tasks
to the cloud, GASRC and GAMRC entail lower energy. The benefit of GASRC
is evident, since the single robot R1 allows for the offloading of 21 tasks to the
cloud. Despite the fact that only 14 tasks are offloaded for GAMRC, the added trait
of local robot–robot communication empowers the robot R1 to utilize the nearby
robots R2 and R3 for local completion of tasks or help with offloading tasks to the
cloud. This results in better access to resources (cloud VM and local robots) for
GAMRC (w.r.t GASRC), more execution of parallel tasks and faster completion
of tasks for cloud networked multi-robot systems. Also according to Table 4.2,
although the total distance covered by GAMRC (672.8 m) is higher than GASRC
(297.98 m), there are three active robots that are moving in tandem to get access
to better bandwidth for easier offloading. Besides, the robots are also utilizing their
local communication to cover more area effectively. Unfortunately for GAMRB, the
lack of cloud availability hampers the system performance. Even the robots cover

Table 4.2 Task offloading
performance comparison

Result parameters GAMRC GASRC GAMRB

Generation no. 11,524 8399 N/A

Offloaded task (cloud) 14 21 0

Minimal energy 2836.50 J 4778.80 J 7057.19 J

Total time 80.31 s 109.45 s 413.16 s

Total distance 672.8 m 297.98 m 1161.96 m
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Table 4.3 Comparison of robots performance among the three methods (Min: Etotal)

GAMRC GASRC GAMRB

Robots R1 R2 R3 R1 R1 R2 R3

Energy constraint 5000 J 1000 J 3000 J 5000 J 5000 J 1000 J 3000 J

Energy consumption 936.18 J 410.78 J 1489.53 J 4778.80 J 2532.2 J 1610.78 J 2914.21 J

the most distance (1161.96 m), it does not provide much benefit as some tasks are
too latent and consume high energy in the local processor. In contrast, for GAMRC,
the robots offload such tasks to the cloud by moving to the best location, which
saves valuable time and energy as reflected in the performance.

Given that each robot has its own energy constraint, proper utilization of energy
is a top priority in such applications. Thanks to the involvement of cloud, the energy
used for each robot was far within the energy limitation for our GAMRC approach
(refer to Table 4.3). By comparison, GASRC process that runs the operation with
robot R1 incurs an energy of 4778.80 J, significantly higher for a single robot.
The same can be said about GAMRB process, which results in a higher value of
overall energy as well as higher energy consumption for each of the robot (2532.2
J, 1610.78 J, and 2914.21 J for R1, R2, and R3, respectively). Among these three
methods, the lowest energy consumption for the principal robot R1 is indeed from
GAMRC (936.18 J).

4.3.3 Emergency Management

Through recent developments of IoT and cloud robotics, Industry 4.0 applications
could be possibly run with limited human involvement, increased efficiency, and
reduced cost [22]. Based on this observation, smart factories with challenges
of health, safety, and environment (HSE) are set as our motivation for robotic
inspection, maintenance, and repair (IMR). As in the previous setting, a pool of het-
erogeneous sensors is deployed throughout smart factory to perceive environmental
conditions, and cloud-aided robots can further complement this sensing operation
with action-oriented task such as inspection, fault diagnosis, etc. All smart factory
based applications require robots to continuously update intensive data in order to
execute tasks in a coordinated manner.

More specifically, we consider emergency fire management service in smart
factory as an illustrative use case scenario. This kind of service requires timely
execution to ensure the environmental safety within the factory environment. It
consists of multiple tasks such as fire origin and cause identification, human
victim and hazardous material detection, evacuation planning, navigation as well
as management of external help. Typically, these tasks are interdependent and
orchestrated through a directed acyclic graph (DAG) based workflow model. An
example workflow for fire emergency management service in the factory is shown
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Fig. 4.12 Workflow of fire emergency management service in a smart factory

in Fig. 4.12. The number of tasks in such DAG based workflow may vary from
application to application. Here, we focus on allocating computational resources
optimally for the tasks of such workflow to jointly minimize the makespan for
executing all the tasks, the total energy consumption of resources, and the total cost
requirement for executing the tasks on the computational resources.

Obviously, tasks of such emergency management services demand real-time
response and data transmission among robots and cloud, because higher inter-
communication latency of resources resists the whole system to meet these require-
ments. To address the limitations of cloud enabled multi-robot systems, the concept
of edge cloud infrastructure is introduced between the robot network and cloud
as shown in Fig. 4.13. Basically, edge computing is an extension of the cloud
computing paradigm, providing data, compute, storage, and application services
to end users on a so-called edge layer [11]. It thus assists multi-robot systems by
executing the latency sensitive and compute intensive services at closer proximity
of the working environment. According to the proposed system model, the edge
cloud is aware of the combined resource pool composed of both local and virtual
resources to facilitate resource allocation for the tasks.

It is noticed that the total cost of task execution over distributed resources and
their uneven energy consumption behaviors significantly affect the system perfor-
mance. In this case, computational resource allocation appears as a constrained
multiobjective optimization problem, when energy consumption of resources, the
overall makespan, and total monetary cost for task execution are targeted to
minimize simultaneously. Multiobjective evolutionary algorithms are well-known
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Fig. 4.13 Resource allocation for edge cloud based robotic workflow in smart factory

to generate Pareto-optimal solutions for such multiobjective optimization problems.
Therefore, to solve the resource allocation problem, we choose to extend the non-
dominated sorting genetic algorithm-II (NSGA-II) [23], capable of finding diverse
set of solutions. In more details, we augment the NSGA-II by defining a new
chromosome structure, pre-sorted initial population based on the task size and
processing speed of the resources. Besides, while crossing over the chromosomes,
rather than arbitrary selection, the chromosome having minimum distant solution
from the Pareto-front to the origin is selected to balance the values of all objectives
in subsequent generations. The results of our simulation experiments significantly
improve the existing multiobjective optimization approaches including benchmark
NSGA-II, multiobjective particle swarm optimization (MOPSO), strength Pareto
evolutionary algorithm II (SPEA2), and Pareto archived evolution strategy (PAES)
in terms of meeting the stopping criteria, satisfying data-dependency threshold, and
minimizing the total energy consumption, the makespan and the total system cost
for varying number of tasks and resources.
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Experimental Results

To conduct our experiments in Matlab, we use synthetic workload driven from
real-world references and select system parameters carefully on different trials for
fair evaluation [24, 25]. The parametric values for the simulation environment are
summarized in Table 4.4. The value of simulation parameters within a specific range
is set by discrete uniform distribution. Apart from proximity based classification of
computing resources (local and virtual), to reflect the resource heterogeneity, we
consider three types of resources (low, medium, and high) based on their processing
speed for ease of the simulation. Per unit energy consumption of resources vary time
to time according to their speed and computational processes running on them.

After 200 generations, the Pareto-optimal solutions of our augmented NSGA-II
along with benchmark NSGA-II, MOPSO, SPEA2, and PAES algorithms on fixed
number of heterogeneous tasks (50) and resources (30) are depicted in Fig. 4.14. In
this scenario, each Pareto-optimal solution of our optimization approach provides
better outcome for three objectives, compared to other benchmark strategies. The
initial population of the proposed approach that is determined based on the task’s
size and processing speed of resources inherently minimizes the overall makespan,
energy consumption, and total cost. Selection of the chromosome having minimum
distant solution from the origin for crossover further improves its performance.

Table 4.4 Simulation parameters

Parameter Value

Population size 50

No of generations 50–500

Mutation rate 0.5

Crossover rate 0.5

Number of tasks in a workflow 35–65

Number of computing resources 15–45

Processing speed of virtual resources 10,000–30,000 MIPS

Processing speed of local resources 8000–15,000 MIPS

Per unit time (s) energy consumption of virtual resources 50–150 W

Per unit time (s) energy consumption of local resources 40–90 W

Tasks data size 5000–10,000 MI

Per unit time (s) monetary cost of virtual resources 0.50–0.90 Cents

Per unit time (s) monetary cost of local resources 0.25–0.40 Cents

Allowable completion time of all tasks 4000–5000 ms

Maximum allowable energy consumption of workflow 1500–2500 W

Total budget 150–200 Cents

Data-dependency threshold 1200–1500 ms

Communication bandwidth 128–512 Kbps

Ratio of local and virtual resources in resource pool 1/3

Ratio of dependent and independent tasks 2/5
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Fig. 4.14 Comparison of Pareto-optimal solutions

Thus, after a fixed number of generations, it provides significantly better solution
than the random population used in benchmark NSGA-II. In the selection of
chromosome for generating the first child population from parent population, our
augmented NSGA-II approach selects the chromosome with the best fitness value. It
also complements finding better solutions compared to benchmark NSGA-II, where
all chromosomes are considered for applying genetic operators.

In addition, MOPSO follows a one-way information sharing mechanism, and the
evolution only looks for the best solution. In comparison to benchmark NSGA-II,
MOPSO multiplies the chances to keep individuals’ changes, making it easier to
maintain diversity in the solution space. However, in terms of Pareto-optimal set
quality, our augmented NSGA-II and benchmark NSGA-II algorithm give shorter
distinct non-dominated set while generating Pareto-optimal front. Our augmented
NSGA-II is relatively more robust as it is less dependent on a random technique.
Solutions by SPEA2 have significantly better diversity than NSGA-II ones due
to the better diversity maintenance strategy of SPEA2. However, SPEA2 is more
computationally expensive to run than NSGA-II and is hence more time consuming.
Moreover, in SPEA2 the search populations are randomly initialized, whereas in our
augmented NSGA-II a pre-sorted population is initialized heuristically. For these
reasons, our augmented NSGA-II gives better Pareto-optimal solutions than SPEA2.
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Fig. 4.15 Impact of edge cloud on interdependent tasks

On the other side, PAES uses local search from one current solution to generate a
new candidate and concurrently compare the current solution with the candidate
solution, and also maintains an archive to keep the best solutions found so far. To
maintain the archive, computational complexity of PAES algorithm is the highest
among others. This algorithm is also based on random initial population and for
larger number of objectives it cannot achieve good results as our augmented NSGA-
II and other studied approaches.

On fixed number of generations (200) and computing resources (30), the impact
of edge cloud in dealing with varying number of interdependent tasks of robotic
workflow is represented in Fig. 4.15. Compared to cloud based multi-robot system,
the edge cloud based system performs significantly better. Since, edge cloud
brings virtual computing resources closer to the robots, distributed placement of
interdependent tasks on both local and virtual resources does not violate the data-
dependency threshold of the dependent tasks. For validating the impact of edge
cloud on interdependent tasks, we use the percentage of satisfying data-dependency
threshold δ̂T as performance metric. It is calculated by the ratio of number of tasks
of a workflow that maintain the data-dependency threshold sT and the total number
of dependent tasks on that workflow dT as Eq. (4.1). The higher percentage denotes
higher efficiency of the system to handle interdependent tasks of a robotic workflow.

δ̂T = |sT |
|dT | × 100% (4.1)
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Figure 4.15 depicts that for increasing number of dependent tasks, the percentage of
satisfying data-dependency threshold remains constant with almost zero violation.
As the cloud is deployed geographically far from the edge cloud, with the increasing
number of dependent tasks, the violation of data-dependency threshold increases
due to higher communication latency.

4.4 Multi-Robot Fleet Formation

In some applications, there is a need for multiple mobile robots to collaborate on a
task. A fleet of robots in linear formation is the most common form of collaboration
which has a wide range of applications. For example, in the robot transport scenario,
the navigator has fully equipped sensors, capable of navigation and avoidance, while
the following robots in the convoy are designed for low cost and heavy load. Without
navigation, they can only track the pilot’s trajectory. Another example is that when
a mobile robot loses its navigation ability due to a fault, degenerating into the
following mode, it will need the guidance of a normal robot backing to the robot
port.

Most robot formation and follow methods rely on the global positioning infor-
mation of the robots, which limits the scope of use, since it is difficult to obtain the
global position in a strange or narrow environment.

Therefore, this section introduces a formation-control system scheme, making
use of speed information of the leading robot, and visual recognition results. In this
scheme, the relative position of leader and follower can be obtained from visual
recognition and leader speed information sharing; thus, the dependence of global
positioning information is eliminated. However, there comes inevitable challenges,
including the real-time transmission of a large amount of data, and computing
power requirements for image processing in the whole system. These issues can be
overcome by introducing the concept of fog computing and providing fog network
domain with general computing capacity from FNs. With fog-enabled SLAM, the
leading robot firstly builds a map with the help of FNs, and then uses the map to
lead its followers.

4.4.1 System Architecture

The architecture of robot fleet formation is shown in Fig. 4.16, which is composed
of the following components.

1. Mobile Robot
The robots are based on 4-wheel differential driving platforms, and all the mobile
robots are equipped with sensors including inertial measurement unit (IMU),
wheel encoder sensor. Raspberry pi 3b and Stm32 MCU on the robots are used
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Fig. 4.16 Architecture of the fog-enabled formation-control system

for calculation and control, respectively. Inputting desired linear velocity and
angular velocity to the motion controller, it will convert them into the motion of
robot, with PID control of wheel rotation. With a LIDAR sensor, the leader of
the fleet acts as a leader, it can navigate automatically.

2. Module of Visual Recognition
A camera is mounted on the central axis of each robot, and it continuously takes
pictures of the robots in front of it. A visual processing algorithm is used to
extract the feature points of the leading vehicle and estimate its relative distance
and pose, which is then going to be used in follow control algorithm.

3. Module of Follow Control
The main function of this module is to receive two inputs, the speed information
of the robot in front, the result of visual processing module, and then figures out
the speed control information of the following robot.

4. Fog Computing Node
In the context of fog computing paradigm, a FN refers in particular to the device
that has general computing, storage, and communication capabilities. The form
of device could be a router, a server, or even a smart phone. The role of the FN
is to provide task offloading for application in the network, for the consideration
of energy saving, performance improvement, etc.

5. Module of Communication
The communication module is responsible for information sharing and interac-
tion between different components. The communication module establishes a
local network domain. The robots are connected to the network via wireless,
while the fog computing nodes connect to the network by Ethernet.
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The system is based on ROS, which is a widely used open-source software
platform for robots. Thanks to its distributed feature, components of a service can be
run on any desired nodes. For example, module of visual processing requires a lot
of computing resources, so it is implemented on FN, while module of follow control
interacts directly with onboard MCU, and it is better run on raspberry pi computer
which is carried on the robot.

4.4.2 Fog-Enabled Solution

In the above architecture, the fog computing service can be sold in market. This
can encourage owners of free computer to share the computing power and receive
rewards. Both the computing power and application service can be sold on a
blockchain-based platform. End users and fog computing service providers can
complete the transactions online in a manner of “Pay-As-You-Go.” Here we use
iExec as an example blockchain platform for fog computing service transactions.

iExec is a blockchain-based decentralized cloud platform which makes use of
idle computing resources to handle delicate tasks, while the result of execution is
verified by PoCo, a smart contract on chain. Actually, there are three participation
roles in iExec, end user, resource provider, and Dapp provider. With the help of
iExec, the robot-rescue service can be shared as a Dapp deployed on its market. End
users may easily access the service by ordering the corresponding Dapp, and pay
for it in electronic currency. The components of iExce platform are as shown below,
which mainly consists of on-chain part and off-chain part shown in Fig. 4.17.

Fig. 4.17 The components of iExce platform
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– DApp:
The application that can be executed on iExec in the form of Docker image;

– Marketplace:
An online market lists available computing resources with each attributes,
including quantity, reputation, price, etc. Users are able to order a certain Dapp
on marketplace;

– Worker Pool:
The worker pool is composed of multiple workers, and its manager is responsible
for pricing and quoting in the market;

– Worker:
A worker usually joins a resource pool, and this is where the Dapp is actually
executed;

– PoCo:
An on-chain program to verify the credibility of the computing results.

The idea putting robot-rescue service to iExec market is to prove that those
vertical industry applications, especially in smart cities scenarios, can be organized
through a blockchain-based platform, benefiting both to provider and end user. To
this end, a script that can trigger local service is firstly created and is packaged into
Docker image. We push this image to Docker Hub and register to iExec platform.
From now on, it can be ordered by users, known as a Dapp. Once an end user decides
to use this service, he can order this Dapp via iExec marketplace, specifying custom
parameters. Then the rest of the work is atomically done by iExec platform—the
task is send to the worker pool scheduler, and eventually assigned to a worker.
When the worker receives the task, it pulls the Dapp image from Docker hub,
checking the hash value before running it. The started Docker container then sends
command to robot runtime environment and triggers the rescue service. Next, as
you would expect, the rescuer is sent out to explore the space, generating a map and
performing robot formation. The described work flow of service provider and end
user is illustrated in Fig. 4.18.

Based on the system architecture proposed above, a demonstration is imple-
mented to demonstrate how the formation-control system works on rescuing
malfunctioning robots. Moreover, the implementation has involved a blockchain-
based decentralized cloud computing platform, and the system has also connected
the robot-rescue service to this platform. That means, the rescue robot can be
remotely launched when the rescue service is ordered on the blockchain platform
with digital currency.

The whole demonstration is described as following and shown in Fig. 4.19.

1. Two robots lost navigation ability due to hardware malfunction and were trapped
in Zone A.

2. Fortunately, robot-rescue services are available nearby. With the blockchain-
based distributed cloud computing platform, owner of failure robots can choose
and order a desired rescue service, specifying the trapped location and safe
destination.
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Fig. 4.18 Work flow of service provider and end use

Fig. 4.19 (a) Rescue service is connected to blockchain-based platform. (b) Two trapped robots.
(c) The rescue robot approaches two trapped robots. (d) The robot fleet moving to destination
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3. The rescue robot is firstly sent out to explore the environment of trapped zone.
With support of fog computing, it builds a map, and then it plans a route to the
destination.

4. After that the rescue robot approaches the trapped robots, and requests them to
follow.

5. The rescue robot acts as a leader, along with other two trapped robots to form a
fleet, heading towards the destination.

4.5 Conclusion

Fog computing employs all possible resources for computing, storage, control, and
networking, and then to enable robot applications with lost cost and improved
efficiency. The fog computing provides a solution for robot applications to realize
the perception and autonomy of things on the edge of distributed information pro-
cessing. However, when designing and implementing a robot system, manufacturers
should consider how the physical technologies can work best for them. As such kind
of system requires to deal with massive amount of data from different components in
different formats, efficient data analytics and machine learning model is supposed to
enhance the system efficiency. In future, the fixed network structures will very likely
be replaced with dynamic network and edge intelligence. The researchers therefore
need to focus on resource optimization as well to reduce the energy consumption
and system development cost by effectively leveraging fog computing technologies.
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Chapter 5
Fog-Enabled Wireless Communication
Networks

Wireless networks are and will continue to be a fundamental cornerstone of the
global digital economy and our connected society, provisioning diverse services
for people and things. The proliferation of smart user devices, such as smart
phones, laptops, and tablets, is pushing the current wireless networks to their
limits. Wireless networks are experiencing an unprecedented traffic growth with
an estimated compound annual growth rate of 0.6–1.0 and an increasing variety of
services and applications, each with potentially different traffic patterns and quality
of service (QoS) and quality of experience (QoE) requirements, for example, ultra-
high data rate and/or reliability, and ultra-low latency. To cope with the continuing
traffic growth and service expanding, future wireless networks will have to be
heterogeneous and densely deployed, featuring the coexistence of different radio
access technologies (RATs), such as LTE/LTE-advanced, Wi-Fi, IoT, 5G NR, etc.

Accordingly, future wireless networks will be significantly more complex to
deploy and operate than the existing 3G/4G mobile networks, due to the dense
deployment of small BSs and the heterogeneities of network nodes, RATs, and
services (and hence traffic patterns). The increasing management complexity of
wireless networks has made their self-optimization a necessity, where wireless
networks are automated to minimize human intervention and to proactively opti-
mize network deployment, operation, and multi-RAT resource allocation to meet
increasing service demand from people and things.

Historically, 3GPP Release 8 first introduced the concept of self-organizing
networks (SONs), aiming to automate the operation and management of wireless
networks. SON functionalities can be generally classified into self-configuration,
self-healing, and self-optimization. In subsequent 3GPP releases, SON concepts
and technologies have been extensively developed. Nowadays, SON technologies
are widely expected to: (1) enhance the intelligence and autonomous adaptability
of wireless networks, especially the radio access networks (RANs), (2) reduce
the capital and operational expenses (CAPEX and OPEX) for wireless network
operators, and (3) improve both network-wide performance and user specific QoS
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and QoE [1]. Moreover, future wireless networks will require (near) real-time
and scalable SON solutions that are tailored for multi-vendor and multiple RAT
networks, as well as for machine-to-machine (M2M) communications and IoT
systems.

Wireless network self-optimization comprises various mechanisms that optimize
network parameters during operation according to measurement data taken at
different parts of the network. The number of network parameters that need to
be self-optimized are still increasing and would be enormous in the near future.
Nevertheless, most existing SON solutions are mainly based on heuristics, with the
automated information processing limited to relatively simple methods [2]. Many
open challenges of SON remain unsolved, for example, the automated coordina-
tion between different SON functions, and the trade-off between centralized and
distributed SON implementations.

In 2012, fog computing was proposed by Cisco as an extension of the centralized
cloud computing paradigm [3]. Since then, fog computing has been considered as
a promising paradigm shift to enable autonomous management and operation of
wireless networks. Fog computing features a distributed computing infrastructure,
its proximity to the network edge and end users, and the dense geographical
distribution of fog nodes (FNs). These allow fog computing to exploit the local
signal processing and computing, cooperative resource management, and distributed
storing/caching capabilities at the network edge [3].

A FN is typically a virtualized platform hosted on either a dedicated comput-
ing node, which is equipped with communication interface(s), or a networking
node/device, such as a BS, an AP, a router, or a switch. This asks for the combination
of fog computing and two other emerging technologies: software defined network-
ing (SDN) and network function virtualization (NFV). SDN implies a logically
centralized network control plane, which allows the implementation of sophisticated
mechanisms for traffic control and resource management. In SDN, the control plane
carries signaling traffic, calculates routes for data flows, and performs configuration
and management for the network, while the data plane is responsible for transporting
data packets [4]. As defined by the ETSI, NFV implements network functions in
software that can run on a range of industry standard server hardware and that can
be moved to or instantiated in various locations of the network as required, without
the need to install new equipment. Fog computing, in conjunction with SDN and
NFV, can bring extensive programmability and flexibility into wireless networks,
and thus enable distributed and intelligent SON functionalities in (near) real-time.

In a fog-enabled wireless network, a large amount of signal processing and
computing is performed in a distributed manner, and local data can be stored and
processed in edge devices, such as BSs, APs, and user devices, thus enabling
applications that require very low and/or predictable latency and offering mobility
support, geo-distribution, location awareness, and low latency [5]. For instance,
mobile application processing delays can be reduced by offloading the associated
computationally intensive tasks to the FNs that are close to the corresponding
mobile applications.
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Overall, the fog computing paradigm will allow the self-optimized computing,
control, caching, storage, and networking functions to be dynamically relocated
among the cloud, the fog, the network edge, and the things, as well as allow
self-optimized management of network function and service lifecycles. Hence,
fog computing will lead to new opportunities in the design of SON for wireless
networks, by exploring the various trade-offs between distributed and centralized
operation, between local and global optimization, etc.

In this chapter, we explore fog-computing enabled self-optimization for wireless
networks, which will act as the infrastructure to provision ubiquitous wireless
connectivity for the IoT. More specifically, we will first discuss different SON
architectures and how they would benefit from the fog computing paradigm, and
then look into how fog computing would provide new opportunities and enable
new features for several important SON functionalities, including mobility load
balancing, self-optimization of mobility robustness and handover, self-coordination
of inter-cell interference, self-optimization of coverage and capacity, and self-
optimized allocation of computing, storage, and networking resources in wireless
networks.

5.1 Introduction

Different network architectures have been considered for the realization of SON,
including centralized SON, distributed SON, and hybrid SON. The choice of
the SON architecture may affect the performance and/or efficiency of the SON
functionalities for wireless networks.

5.1.1 Centralized SON

In centralized SON (C-SON), the self-optimizing algorithms mainly reside in the
network management system (NMS) or in the operation and maintenance center
(OMC) [1], relying on the collection of information from all involved network nodes
to identify and tackle network-wide problems. It is intuitive to build C-SON on
a cloud radio access network (CRAN), which centralizes baseband processing in
a pool of baseband units (BBUs) centralized in a cloud server by decoupling the
baseband processing from the radio frequency (RF) transmissions of remote radio
heads (RRHs) [6]. C-SON may thus benefit from the available global information
about network status and key performance indicators (KPIs), as well as the powerful
computational capability at the cloud server to run self-optimizing algorithms for
a potentially large-scale wireless network. Since the self-optimizing algorithms
and network control are centralized, C-SON solutions are relatively robust against
potential network instabilities caused by the parallel operation of multiple SON
functions with conflicting objectives.
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However, the scalability of network monitoring and management remains a big
challenge to any centralized network architecture. With all processing and control
being centralized in a CRAN, the cloud server could be overloaded, and the user
experience of latency-sensitive applications may be affected by the potentially
large delays. Consequently, in heterogeneous networks (HetNets) with a dense
deployment of small cells, CRAN-based C-SON solutions may not be able to
respond quickly enough to the transient traffic demand from dense small cells.

The scalability and flexibility of C-SON solutions can be improved by exploiting
fog computing as a complement to cloud computing [5]. In a fog-computing enabled
RAN, fog computing can be combined with software-defined wireless networking
(SDWN), where the control plane and the user data plane are decoupled in FNs or
in a FN gateway. Each BS is connected to a nearby FN, which provides computing,
processing, and storage capabilities to all the associated BSs and mobile devices in
its coverage area, while the FNs are well connected with each other and to a central
cloud server [3].

SDWN provides application programming interfaces (APIs) to facilitate the
programmability of network operations. The APIs define the interactions between
a higher-layer controller and a lower-layer controller [7]. A higher-layer controller
defines specific policies and sends these policies to its associated lower-layer con-
trollers to instruct them how specific applications or services should be processed
based on their local information. The control-plane functions can be programmed
directly in the controllers of different hierarchical layers.

The fog-enabled SDWN can construct a hierarchical control plane [7, 8], where
a higher layer of controllers are deployed in the FN gateway, a lower layer
of controllers are deployed in the FNs, and the different controllers need to
cooperate for accomplishing specific networking functionalities [9]. If needed, more
hierarchical layers of logical controllers can be deployed in the cloud server, the
network edge nodes, and even user devices. A higher-layer controller manages a
number of lower-layer controllers. Specifically, a single control plane deployed in
a FN can make C-SON decisions for all the associated BSs and APs. The logically
centralized SON functions in the FNs (or in the FN gateway) can avoid the increase
in control signaling overhead even for a large number of distributed heterogeneous
network nodes [10]. Moreover, with the combination of fog computing and SDN and
NFV technologies, C-SON functions can be virtualized and run on general purpose
hardware, thus largely improving the scalability of C-SON.

5.1.2 Distributed SON

In distributed SON (D-SON), the SON functions are distributed across the edge
of the network, typically in BSs and APs. Although D-SON algorithms run sepa-
rately in corresponding network edge nodes, they can directly exchange necessary
information with each other in a local area, thus enabling the RAN to adapt to
local changes swiftly. Each BS or AP can initiate their SON functionalities and



5.1 Introduction 137

make self-optimization decisions independently or in coordination with neighboring
network nodes. Moreover, D-SON solutions are designed for offering near real-time
response, i.e., in seconds or even milliseconds, as required by small cells and dense
HetNets [1]. Therefore, the D-SON architecture is more flexible than the C-SON
architecture.

It is worth noting that the design and deployment of D-SON functions need to
consider practical aspects such as response time, computational complexity, size
of data sets, and the computational and storage capabilities of individual network
edge nodes. Meanwhile, since D-SON functionalities are typically designed as
stand-alone functions, D-SON solutions are likely to be vulnerable to network
instabilities caused by the parallel execution of multiple SON functions with
conflicting objectives. The distributed intelligence embedded in fog computing
can be exploited to support D-SON functions for frequent services and real-time
applications [7]. In a fog-computing enabled RAN, a local SON coordinator can
be deployed at a FN to coordinate the D-SON functionalities distributed across
the network edge nodes in the local area. When stand-alone D-SON functions are
executed concurrently in the same network edge node or in neighboring edge nodes,
the nearby FN will act as the local SON coordinator to avoid possible oscillations of
parameter settings caused by two or more SON functions trying to optimize a same
set of output parameters but for different objectives.

5.1.3 Hybrid SON

Hybrid SON (H-SON) combines the centralized network management and the
distributed SON functionalities. H-SON would be especially desirable for future
user-centric, service-aware, and/or content-centric wireless networks, where user
devices can be collectively served by all the nearby FNs and their associated small-
cell BSs [11]. Fog computing, in conjunction with cloud computing, provides the
opportunity to optimize the deployment locations for SON functions and to find a
good trade-off between the centralized and distributed SON implementations.

In a fog-computing enabled H-SON architecture, the centralized and distributed
SON functions are located in the cloud server and the FNs, respectively. Meanwhile,
a FN can also run some simple centralized SON functions to automate the control
of its associated network edge nodes and user devices. With fog computing
being combined with NFV and SDN, the logically centralized SDN controller
can maintain a global view of the wireless network, control data-plane devices,
and provide a programming interface for network management applications [4].
The communications between the SDN controller and the data plane devices are
typically based on the OpenFlow protocol [12], where the signaling latency between
the SDN controller and the SON functions will be kept very low. The SON
functions running in FNs can be coordinated and/or managed by the centralized
SON functions in the cloud server.
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In addition to enabling H-SON, fog computing can also reduce the traf-
fic/signaling burden on the fronthaul and backhaul and the design and computational
complexities of centralized SON functions in the cloud server. This is because
the FNs are able to undertake most data processing tasks locally, and forward
only necessary information to the cloud server, thus reducing the use of network
resources and the traffic burden on the fronthaul and the backhaul. Such a fog-
computing enabled H-SON architecture simplifies the design, configuration, and
management of SON functions, and improves the scalability of self-optimized
wireless networks.

5.2 Self-Optimization of Mobility Management

Future heterogeneous and dense wireless networks will feature the coexistence of
different RATs, including LTE/LTE-advanced, Wi-Fi, IoT, 5G NR, etc. Accordingly,
mobility management in wireless networks is evolving from handling simple single-
RAT handovers to managing complicated multi-RAT mobility events. The mobility
management complexity will be further increased by the envisioned (ultra-) high
density of network nodes in conjunction with the high mobility and high density of
user devices.

5.2.1 Mobility Load Balancing

Mobility load balancing (MLB) is a self-optimization function that aims to maxi-
mize the network capacity (or to optimize user QoS or QoE) through optimizing the
distribution of user traffic load across the network nodes and radio resources. As a
result, traffic overload or congestion at any network node can be avoided. MLB is
usually implemented in a distributed manner and relies on the traffic load estimation
and radio resource utilization status exchanged among neighboring network nodes
via the X2 interface [13].

Fog computing can be used to enhance the operations, administration, and
maintenance (OAM) processes for distributed MLB in support of multi-RAT
coordination [14]. To enable unified multi-RAT access and seamless mobility in
future wireless networks, a FN can be used to provide centralized management
for the associated multi-RAT BSs and/or APs in a local area. In a fog-computing
enabled RAN, a FN can timely collect and distribute the location information
of mobile devices of different RATs. Thus, useful information for MLB can be
extracted by collecting, classifying, and analyzing data streams in the network
edge. The fog-embedded SDN controller can reactively or proactively instruct the
data plane devices to identify and handle different traffic flows in the network
appropriately [12]. Local monitoring data of cells with a high handover rate can
be collected and processed at a nearby FN. Furthermore, to achieve autonomous
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MLB, reinforcement learning, e.g., distributed Q-learning, can be implemented at
FNs to learn for each traffic load state the best MLB action to take while maintaining
the required handover performance [15].

5.2.2 Mobility Management and Procedures

In mobile communications, handover management is one of the most critical
techniques to guarantee the QoS requirements of mobile users and to provision
seamless user experience. In a heterogeneous network (HetNet), high speed user
devices should be served by macrocells with large coverage areas and reliable
connections, while low mobility user devices should be served by small cells
that can provide a very high capacity to a small number of user devices in a
small coverage area [11]. In multi-tier HetNets, unnecessary handovers (e.g., ping-
pong handovers) or handover caused radio link failures are more likely to happen
as compared with conventional single-tier cellular networks, due to the smaller
coverage areas of small cells and severer inter-cell interference [16, 17]. Moreover,
frequent handovers in dense HetNets also cause a heavy overhead on the fronthaul,
the backhaul, and the core network [11, 18].

Mobility robustness/handover optimization (MRO) is a self-optimization func-
tion that minimizes the number of call drops, radio link failures, and unnecessary
handovers (including ping-pong handovers) by optimizing the handover parameter
settings (e.g., the time to trigger) or the cell reselection parameter settings for a
mobile device in the connected mode or in the idle mode, respectively. Similar
to MLB, MRO is typically implemented in a distributed manner. MRO related
control messages include S1-AP or X2-AP handover request, handover report, and
radio link failure indication message. To realize MRO, each mobile device needs to
register its location when it first connects to the network, and will need to report
its updated location information to the network periodically. A smart mobile device
should be able to identify its geographic location by employing one of the existing
wireless localization technologies, such as Wi-Fi based localization, LTE mobility
management, and Bluetooth low energy beacon based localization [8].

Fog computing enables scalable and on-demand mobility management, by
exploiting fog computing capabilities for mobile device location registration and
for handover management. In a fog-computing enabled wireless network, the home
subscriber servers can be distributed in the FNs, so as to shorten location registration
delays and to reduce the traffic load on the backhaul by making the home subscriber
servers closer to mobile devices. To avoid frequent handovers and to alleviate the
control overhead of handovers, many handover related functions such as handover
and admission control can be performed at FNs and their associated BSs or
APs, in conjunction with appropriate user-cell association mechanisms. Moreover,
macrocell BSs, small-cell BSs, and FNs can shift some handover related control and
decision-making to mobile devices [11].
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In a fog-computing enabled RAN, the handover decision for a handover between
two FNs is made between the source FN and the fog gateway. The event of a
handover happening on the border between two FNs may occur in two cases: (1) an
active user device, who has initialized a session outside the source FN coverage area,
moves across the source FN coverage area; and (2) a user device, who initializes
a session within the coverage of the source FN, remains in the active state while
moving out of the source FN coverage area. If the fog-enabled RAN architecture
deploys S1 and X2 interfaces, then the source and target FNs can communicate with
each other through the S1 interface. The handover signaling flow between the user
device, the source FN, and the target FN via the fog gateway is shown in Fig. 5.1
(see Fig. 3 in [11]), where the signaling in layers 1–3 and the transmissions of user
data can be divided into three stages: handover preparation, handover execution, and
handover completion.

The handover signaling overhead is composed of the processing overhead and the
transmitting overhead. The processing overhead consists of the signal processing
costs at the user device, the FN, the fog gateway, and the core network. The
transmitting overhead includes the transmission associated costs between the source
FN and the fog gateway, and between the fog gateway and the core network.

In a fog-enabled SDWN, where the control plane and the user data plane are
decoupled in FNs or in a FN gateway. The control plane deployed in a FN (or in the
FN gateway) can support centralized control-plane handover decisions for all the
associated BSs and APs. This can avoid the increase in control signaling overhead
due to frequent handovers in dense HetNets [10].

After a handover has been executed successfully, the data for the mobile user
will be transmitted through the target FN and the target BS/AP to the user. In
order to simplify multi-RAT cooperation in future HetNets, only IP protocols will
be used to support signaling interactions in the control plane. Existing interfaces
can be made open so that a unified interface protocol can operate flexibly. In
complicated handover scenarios, the hierarchical SDWN controllers located in the
cloud server, the FN gateway, the FNs, and the network edge nodes/devices will
need to cooperatively manage the mobility and complete the handover signaling
procedures.

The performance of the fog-computing enabled handover procedure was com-
pared with that in a conventional RAN in terms of system signaling overhead
through computer simulation in [11], where the signaling overhead was assumed
to be proportional to the delay required to send or process a signaling message and
had no unit. In the simulation, the session holding times were generated as random
variables following independent and identical exponential distributions. The session
arrivals were generated following a Poisson process with an average arrival rate of λ

(in number of sessions per minute). Figure 5.2 (see Fig. 4 in [11]) plots the signaling
overhead of the fog-computing enabled handover procedure (denoted by “FRAN”)
and that in a conventional RAN (denoted by “non-FRAN”) versus the average
session arrival rate λ for handovers between two femtocells in non-FRAN with or
without control-user-plane split, handovers between two FNs (referred to as “F-AP”
in Fig. 5.2) in FRAN, handovers between a femtocell and a macrocell in non-FRAN
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Fig. 5.1 The handover signaling flow between the user device (denoted by “F-UE”), the source
FN (denoted by “Source F-AP”), and the target FN (denoted by “Target F-AP”) via the fog gateway
(denoted by “F-AP gateway”) [11]

with or without control-user-plane split, and handovers between a FN and a macro-
RRH (MRRH) in FRAN. We can see that the fog-computing enabled handover
procedure results in a signaling overhead much lower than that of a conventional
RAN handover procedure. This is because the fog-computing enabled RAN takes
full advantage of the computing, processing, and caching capabilities in the FNs,
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Fig. 5.2 Signaling overhead of the fog-computing enabled handover procedure (denoted by
“FRAN”) and that in a conventional RAN (denoted by “non-FRAN”) versus the average session
arrival rate [11]

small-cell BSs, APs, and user devices, thus avoiding the transmission of the entire
data packets or a large amount of control signaling to a distant centralized server,
e.g., a BBU pool. At the same time, the handover decisions are made between FNs
and the fog gateway rather than in the BBU pool, leading to a significant reduction in
the transmitting overhead. Moreover, the processing overhead in the FNs, small-cell
BSs, APs, and user devices is much smaller than that in the mobility management
entity (MME) and the core network. Thus, the fog-computing enabled handover
procedure is able to achieve significant reductions in signaling overhead and in data
traffic as compared with the conventional RAN and the centralized cloud RAN, and
the long transmission delay and heavy burden on the fronthaul (usually seen in cloud
RANs) can be effectively alleviated.

5.2.3 Mobility Robustness and Handover Optimization

Fog-computing enabled wireless networks are expected to build on SDN and NFV
to reduce the management and configuration costs and to improve the scalability and
resource utilization of the wireless network [7]. Each user device is associated with a
clone in a FN or in the cloud server, where a VM executes the requested applications
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for the user device [19]. MRO becomes specially critical in fog computing, NFV,
and SDN enabled RANs because the composition, decomposition, and migration
processes of proxy VMs are determined by the locations of the proxy VMs’
registered mobile devices [8]. When a mobile device moves from one BS’s coverage
area into another BS’s coverage area, following the location updating procedure,
it should report its current location to the MME in the OpenFlow control layer
[8]. Thus, a proxy VM can always have the updated knowledge of the locations
of its associated mobile devices, and will perform proxy VM decomposition,
composition, and migration processes among the FNs accordingly.

Note that most of the memory in a proxy VM is used to store the semantic
models and device profiles, which do not usually change after the initial installation.
Some proxy VM migrations will not reduce the latency, but will increase the burden
on the core network. Hence, it is not always necessary to migrate the proxy VM
when a mobile device moves into the coverage area of a new BS. Meanwhile,
it has been reported that around 10–30% of all human movements are due to
social relationships, and 50–70% are attributed to periodic behaviors [20]. Most
users mainly settle in a limited number of areas covered by a few BSs. Therefore,
the dynamics of human mobility can be reasonably predicted using mathematical
models. Distributed cooperative Q-learning has been used to adjust the handover
settings in response to mobility pattern changes in wireless networks [21]. Based on
such predictions, it is possible to pre-allocate replicas of users’ proxy VMs in the
optimal FNs. For example, the replicas of a mobile device’s semantic models can be
pre-allocated to the FNs that are connected to the BSs frequently visited by the user,
e.g., the BS serving the user’s home or workplace. In this case, if a proxy VM needs
to migrate to a different FN that contains a replica of the proxy VM, then only the
difference between the proxy VM migration and its replica needs to be transferred,
instead of the whole memory of the proxy VM. Thus, the time duration and traffic
load of the proxy VM migration can be significantly reduced.

5.3 Self-Coordination of Inter-Cell Interference

In a multi-tier HetNet, different tiers of BSs (or APs) can either operate in a
dedicated frequency band each or share the same frequency band(s). In the former
case, inter-cell interference would only occur within the same tier, i.e., there is
no cross-tier interference; however, given the limited total available frequency
spectrum for wireless communications, the frequency bandwidth (and thus the
capacity) available to each tier of cells would be largely limited. In the latter
case, when there are a large number of densely deployed small-cell BSs and
APs, the cross-tier co-channel interference between cells will be the dominating
performance-limiting factor to the multi-tier HetNet. Over the past few years, the
co-channel deployment of multi-tier HetNets has received a higher popularity than
the dedicated-channel deployment [18, 22, 23].
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If inter-cell interference is not effectively mitigated, then it would be impossible
to achieve the high capacity, high area spectral efficiency, high energy efficiency,
or any other benefit promised by the dense deployment of HetNets [18]. Inter-cell
interference coordination (ICIC) and enhanced ICIC (eICIC) are self-optimization
functions that aim to minimize the mutual interference between neighboring cells
sharing the same radio spectrum by adaptively coordinating the radio resource
allocation and/or user scheduling among neighboring cells. In inter-cell interference
limited wireless networks, ICIC should be performed in both the uplink and the
downlink for the data channels.

Autonomous ICIC requires coordinated radio resource allocation among neigh-
boring cells, relying on frequent signaling among the cells via the X2 interface.
For instance, the signaling of the high interference indicator (HII) and the relative
narrowband transmit power (RNTP) between cells for proactive ICIC, and the
signaling of the overload indicator (OI) between cells for reactive ICIC [13].

In fog-computing enabled RANs, FNs are distributed and are connected to the
BBU pool via fronthaul links. Cooperative radio signal processing and coordinated
radio resource management can be executed in FNs and their associated BSs and
APs, which integrate not only the front radio frequency, but also caching, local
distributed radio signal processing, and radio resource management capabilities
[24]. The caching capabilities in fog-computing enabled edge devices can be used
to improve the spectral efficiency and the energy efficiency while maintaining a low
latency level [25].

It is expected that fog-computing enabled RANs will work in a user-centric
and/or content-centric manner, where mobile devices can be collectively served
by all available nearby FNs and their associated BSs and APs. Fog computing
will enable self-coordination among neighboring cells to avoid potential conflicts
between multiple ICIC related SON functions that are executed at the same time,
thus achieving user-centric and/or content-centric networking among collocated
small cells and macrocells. In [26], a distributed coalitional game based cluster for-
mation algorithm, where FNs and their associated BSs and APs can autonomously
form clusters, was proposed to mitigate inter-cell interference and maximize the
system throughput.

5.3.1 Interference-Aware Radio Resource Allocation

Game theory has been widely employed to alleviate co-channel inter-cell interfer-
ence in RANs [26, 27]. Under the game-theoretic framework, a utility function
can be defined according to the optimization objective and the characteristics of
the system model considered, including the modeling of inter-cell interference.
Accordingly, the optimization of radio resource allocation in a RAN can be
formulated as the maximization of the defined utility function under all necessary
constraints.
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In a fog-enabled HetNet under the co-channel deployment of all tiers, the
optimization of uplink subchannel and transmit power allocation can be modeled as
a non-cooperative game to achieve interference-aware allocation of radio resources,
considering the selfish and rational behavior of fog-enabled network nodes and
user devices [11]. As each fog-enabled user device has some caching capabilities,
a reward function can be defined to encourage the user devices to participate
in network edge caching [28]. Meanwhile, to mitigate the uplink interference
caused by user devices to their neighboring BSs, a convex pricing function that
is proportional to the transmit power of each user device can be introduced into
the user device’s utility function. Accordingly, in the non-cooperative game, the net
utility function of a fog-enabled user device is defined as its maximum achievable
data rate added by the reward function for the caching offered by it and subtracted
by the pricing function for the uplink interference caused by it. The computational
complexity of the joint optimization problem can be lowered by decomposing it
into two subproblems: subchannel allocation and power allocation. The subchannel
allocation is first optimized by maximizing the net utility function for each user
device. Given the optimized subchannel allocation, the power allocation problem
can be modeled as a super-modular game [11], for which the existence of Nash
equilibrium in each individual subchannel has been proven [29]. The Nash equilib-
rium can be reached by devising an iterative algorithm, where the transmit power
of each user device is initialized at the smallest possible power level and is then
iteratively updated following the super-modular game.

To further discuss fog-enabled interference-aware radio resource allocation, let
us consider a simple scenario where the fog-enabled HetNet contains only one
high-power macrocell BS and a number of low-power fog-enabled small-cell BSs
uniformly distributed in the coverage area of the macrocell BS. Within the coverage
area of each cell, the associated user devices are uniformly distributed. The small
cells share the same frequency band with the macrocell. Each fog-enabled small-cell
BS makes decisions on the subchannel allocation and the power allocation in each
subchannel for the user devices associated with it. For each subchannel, the wireless
channel model consists of distance-dependent path loss and Rayleigh flat fading.

Figure 5.3 (see Fig. 6 in [11]) shows the total net utility of all user devices
obtained from simulations in the above considered fog-enabled HetNet (denoted
by “FRAN”) and that of a conventional HetNet (denoted by “non-FRAN”) versus
the number of user devices served per small cell, for different numbers of small cells
per macrocell coverage area, where small cells are denoted by femtocells and F-APs
in non-FRAN and FRAN, respectively, while user devices are denoted by femto
users and F-UEs in non-FRAN and FRAN, respectively. It can be observed that the
fog-enabled interference-aware resource allocation scheme (denoted by “proposed
scheme for FRAN” in Fig. 5.3) significantly outperforms the conventional resource
allocation in the HetNet. The total net utility of all user devices in the fog-enabled
HetNet generally increases with the number of user devices per small cell, as well
as increases with the number of small cells per macrocell coverage area. This is
because based on the above described non-cooperative game between fog-enabled
user devices, the interference pricing function in the net utility function of a user
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device can effectively mitigate the uplink interference caused by user devices to the
nearby BSs, while the caching reward function in the net utility function encourages
fog-enabled user devices to offer local caching, thus relieving the traffic burden on
both the fronthaul and the backhaul and improving the total capacity of the fog-
enabled HetNet.

5.4 Self-Optimization of Coverage and Capacity

Coverage and capacity optimization (CCO) is a self-optimization function that
aims to find the best trade-off between coverage and capacity, either network wide
or per cell. The CCO associated optimization objectives include coverage, cell
throughput, cell edge throughput, etc. To achieve these optimization objectives,
CCO is usually combined with the optimization for ICIC and user scheduling.
For example, coverage optimization may be devised through coverage mapping,
coverage hole detection, or the detection of excessive interference spots.

Similar to autonomous ICIC, CCO functionalities can be executed in FNs and
their associated BSs and APs, while the CCO objectives can be achieved by the
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dynamical arrival and departure (or switch on and off) of FNs and their associated
BSs and APs [30]. The service orchestration for FNs, which covers automated
instantiation, replication, and migration of service instances on all the associated
FNs, can be logically centralized at the SDN controller [4]. In this case, the SDN
controller needs to collect and maintain up to date information about all the FNs,
network edge nodes, and end devices that are associated with it. The fog-node
features that need to be continuously or periodically updated include their available
memory resources, available storage, operating system(s), and software applications
[5]. The capabilities and status of network edge nodes that need to be kept updated
include the RATs used, link capacities, residual bandwidth, neighbor lists, etc. As
for the connected end devices, the SDN controller needs to know their supported
RATs, the types of services that they request, and the locations and moving speeds
of mobile devices.

Moreover, CCO can exploit the diversity offered by the four possible transmis-
sion modes in a fog-computing enabled RAN: device-to-device (D2D) and relay
mode, local distributed coordination mode, global centralized mode, and macrocell
mode [11]. The CCO functions running in FNs or network edge nodes enable
each associated user device to select the most appropriate transmission mode while
considering the user device’s movement speed, wireless communication range,
geographic location, QoS and/or QoE requirements, computing and processing
capabilities, and caching capability.

5.4.1 Deep-Learning Enabled Coverage and Capacity
Optimization

As a key enabling technology for the fifth generation (5G) of wireless com-
munication systems, massive MIMO using large numbers of transmitting and
receiving antennas has been widely expected to enhance the system performance in
terms of spectrum efficiency and energy efficiency [31–33]. In a wireless network
equipped with massive MIMO, there will be a huge number of CCO related system
parameters, including reference signal power levels, antenna tilting parameters,
scheduling parameters, etc. These make it very difficult and expensive to automate
CCO [34].

In the downlink of a multi-user massive MIMO network, the number of transmit
antennas at a base station is much larger than the total number of receive antennas of
all the scheduled user devices in the cell. In view of this, it would be more realistic to
achieve CCO by properly tuning the user scheduling parameters than optimizing the
antenna tilting parameters [34]. It is worth noting that the spectrum efficiency and
capacity of a multi-user MIMO network is mainly determined by a small number
of users with low SINR values, e.g., the cell-edge users. While scheduling the cell-
center users and the cell-edge users simultaneously, in order to avoid the network
capacity being lowered by the cell-edge users, it is necessary to align the users’
SINR values in the scheduled user group. To this end, deep reinforcement learning
based user scheduling schemes have been proposed to realize CCO [34].
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Reinforcement learning provides a model-free method to solve a Markov
decision process (MDP). An MDP typically consists of a state space S, an action
space A, a stationary transition distribution describing the environment dynamics
p(st+1|st , at ), which satisfies the Markov property, and a reward function rt , where
t denotes the timestep. In a general reinforcement learning setting, an agent observes
a state st of the environment and chooses an action at at timestep t . As a result of the
action, the state of the environment transits to st+1 and the agent receives a reward
rt . Although the agent has no a priori knowledge of the environment, it can learn to
take actions to maximize the expected cumulative discounted reward by randomly
choosing actions and observing the transitions of the environments.

At each timestep t , an agent’s decision-making procedure is characterized by a
policy, π(s, a) = Pr{at = a|st = s}, ∀s ∈ S, a ∈ A, which is the probability
that the agent takes action a in state s. In practical problems, the state space and
action space are usually very large, making it intractable to store the policy in a
tabular form. Consequently, function approximators have been used to parameterize
the policy as πθ (s, a) with a parameter vector θ , where θ ∈ �l , for l << |S|. Then,
training of the policy can be performed by following the gradient of the cumulative
discounted reward with respect to the parameter vector [35].

In the CCO orientated user scheduling scheme proposed in [34], in each
transmission time interval, the minimum required user SINR threshold SINRmin
and the users’ aligned signal strength R are dynamically configured by a deep
reinforcement learning algorithm. More specifically, each sector of the cell is
considered as an agent that aims to maximize both the cell average spectrum
efficiency and the cell-edge spectrum efficiency. The action space is constructed by
the combinations of all possible discrete levels of SINRmin and R. A deep neural
network (DNN) is used as the function approximator to compute the policy that
the agent should follow in a state, where the policy is chosen as the combination
of SINRmin and R with the largest probability of leading to the largest reward.
The advantage of using a DNN is that it does not require human crafted features.
Extensive simulation results have shown that the deep reinforcement learning based
user scheduling scheme can successfully track the dynamics in a multi-user massive
MIMO network, thus effectively achieving CCO [34].

5.5 Self-Optimization of Network Resources

Despite the continuing proliferation and developments of smart mobile devices, they
are still largely battery power limited and resource constrained, especially when the
number of computationally intensive mobile applications are increasing at an even
faster rate. These mobile applications would consume a large amount of energy and
computing capacity, and impose stringent constraints on processing and response
delays. To deliver satisfactory user experience, it has become necessary to offload
the computationally intensive tasks from mobile devices to more powerful nodes of
the mobile network infrastructure.
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Future user-centric wireless networks should be able to autonomously optimize
the resource provisioning for individual mobile applications at their runtime. In
current 4G wireless networks, it is difficult to simultaneously achieve user-centric
resource provisioning and network-wide load balancing, due to the lack of flexibility
in network operation [36]. To address this issue, the emerging NFV technology
slices a wireless network into dedicated end-to-end (E2E) virtual networks, each
containing a chain of virtual network functions (VNFs) to deliver a customized or
personalized service. VNFs implement network functions (such as load balancing,
routing, caching, security, etc.) using software and are connected through service
function chaining to create and deliver communication services within a NFV
infrastructure, which consists of both virtual and physical resources.

In fog-computing enabled RANs, resources are not just limited to radio
resources, but also include the caching and computing capabilities in network edge
devices. Accordingly, the resource management in fog-computing enabled RANs
goes beyond the traditional radio resource allocation to include also the allocation
of caching and computing resources at the network edge. As a result, future
fog-computing enabled HetNets would be different in networking, computing,
storage, and control as compared with conventional RANs and the cloud RAN. The
seamless integration of multiple RATs in HetNets would rely on the virtualization
of computational, storage, and networking resources [37]. For the optimization of
resource allocation and utilization, the objective would typically be to maximize
the overall energy efficiency for computing and networking, under the system
constraints and QoS or QoE requirements imposed by users and things [11]. In [38],
the weighted sum performance improvement in time saving and energy reduction
of the system was maximized by jointly optimizing the offloading decisions, the
allocation of local computational resources, and wireless transmission power.

5.5.1 Network Edge Caching

It has been observed that with the increasing popularity of location-based mobile
applications, a lot of social application data exchanged between neighboring user
devices shows a high degree of conformity. Some social applications would only
generate data traffic between user devices in physical proximity. Besides, users from
the same social group or having the same social interest(s) may request the same
contents over the downlink during a certain period of time.

In fog-computing enabled wireless networks, FNs integrate not only the fronthaul
radio frequency but also the physical-layer signal processing functionalities and
relevant procedures of the upper layers. Thus, FNs can implement collaborative
radio signal processing locally using their adequate computing capabilities and can
manage their storage and caching memories flexibly. Thus, a FN is able to collect
(or offload), store, process, and manage the application data and tasks from the
network edge nodes and mobile devices that are connected to it. For location-based
and/or social mobile applications, FNs and their associated network edge nodes
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can proactively prefetch and cache the contents that are highly locally popular
and/or relevant, so as to maximize the overall energy efficiency in mobile service
provisioning while guaranteeing the QoS and QoE requirements of users and things.

5.5.2 Computation Offloading

Computation offloading is a procedure that migrates resource-intensive computation
task(s) from a user device to the nearby resource-rich network node(s) [39].
Computation offloading decisions, such as whether or not to offload a computation
task, whether to fully or partially offload a computation task, and how to perform
the offloading, need to be optimized. Depending on the specific mobile application
that a computation task belongs to, there are three main criteria for computation
offloading decision-making [40]: (1) whether the application contains certain parts
that cannot be offloaded (e.g., user input, camera functions, or position acquisition
that need to be executed at the user device); (2) whether or not the application
requires continuous execution, which makes it difficult to estimate the amount of
data to be processed; and (3) whether or not there exists a mutual dependency
between individual parts to be processed.

Most existing computation offloading decision algorithms aim to minimize the
energy consumption at mobile devices while meeting the maximum acceptable
execution delay of the offloaded application, or to find an optimal trade-off between
the energy consumption and the execution delay for a mobile application [40].
The allocation of computational and networking resources was jointly optimized
to minimize the energy consumption while satisfying the latency requirements in
[41]. In [42], the energy consumption of a user device was minimized by jointly
optimizing the allocation of computational and radio resources in the offloading
process, where the processing of an application is partitioned between the user
device and a nearby RAN node. The total energy consumption of the user device
includes the energy consumed in the uplink transmission and downlink reception,
as well as the energy consumed for local processing at the user device. Meanwhile,
the execution of the application must finish within a time limit corresponding to
a given QoS requirement. The trade-offs between the energy consumption and
the transmission and processing delays for local processing and for computation
offloading (i.e., remote processing) were analyzed in [43, 44].

Fog computing, in conjunction with mobile cloud computing [45], has been
considered by both the industry and the academia as a promising way to enable
energy-efficient and low-latency computation offloading for mobile devices. Fog-
computing enabled wireless networks can readily support and further improve the
performance of computation offloading by properly forming a cluster of neighboring
FNs (or a local fog network) and optimally distributing the computation tasks
among the selected neighboring FNs and/or the cloud server, i.e., to optimize the
task distribution across the fog and the cloud [30]. The scheduling of computation
tasks should be optimized adaptively according to whether all necessary information
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about the formed local fog network is completely known to all the involved FNs;
or for a certain computation task, only partial (or even none) knowledge of the
computing and processing capabilities, availability of computing and networking
resources, or service loads of some involved FNs is available to the other FNs [30].
The computation offloading decisions and the associated allocation of computing,
storage, and networking resources are optimized in the FNs to achieve performance
improvements for the wireless network [41] and/or for individual user devices, e.g.,
improved energy efficiency and reduced delay.

Computation offloading from a mobile device to the cloud or to the fog can be
performed on the coarse-grained application level [41, 46], the fine-grained task
level [38, 47, 48], or a combination of the above two levels [42, 49]. The computation
offloading decisions can be made in a centralized manner or in a distributed manner
[50, 51], for individual user devices separately or jointly for multiple user devices all
together [38]. If computation offloading is performed for a single user device, then
the computation tasks need to be partitioned and an offloading decision needs to be
made for each task (i.e., whether or not to offload it) [43, 47, 48]. Task partitioning
and assignment have been studied for data partitioned oriented applications [42], of
which the amount of data to be processed is known a priori and different portions
of the data can be processed in parallel. If computation offloading is performed
jointly for multiple user devices at the same time, then the computational resources
available at a FN (or a cloud server) and the networking resources between the FN
(or the cloud server) and the multiple user devices need to be properly shared among
the user devices. To optimize the computation offloading decisions in a multi-user
multi-fog-node scenario, game theory based approaches can be used [50, 51].

5.5.3 Joint Optimization of Computation Offloading
and Resource Allocation

In fog-computing enabled wireless networks, the computation offloading decisions
can be jointly optimized with the allocation of computing resources, radio spectrum
resources, and transmit power [52–54]. For future user-centric wireless networks,
the design of a computation offloading scheme cannot just focus on system-level
performance improvement, because the optimization of network-wide performance
may not be able to guarantee the fairness among individual user devices. It is likely
that only those user devices with good channel conditions (e.g., high channel gains,
low interference levels, or both) can benefit from computation offloading, while user
devices under bad channel conditions may even experience degraded QoS or QoE.
It is thus critical to consider the QoS and/or QoE for each individual user device in
the optimization of offloading decisions and the associated resource allocation.

For ease of discussion, let us consider a simple fog-computing enabled RAN
scenario, which consists of N(N � 1) user devices, one FN, and one cloud server.
Each user device is connected to the FN via a wireless link. The FN is connected to
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the cloud server via a high-speed wired link. Each user device has one application
to be either executed locally (i.e., by itself) or offloaded for remote processing in
the FN or the cloud server. A computation offloading event is triggered by a user
device transmitting an offloading request to the FN [49]. The request should include
necessary information about the user device (e.g., its local processing capability
and power level) and properties of the application (e.g., the maximum tolerable
delay) [38]. According to all the received offloading requests from user devices and
the instantaneous channel state information, the FN decides where each application
should be processed, i.e., in the user device locally, in the fog, or in the cloud,
and sends the offloading decision to the corresponding user device. For analytical
tractability, it can be assumed that the delays due to offloading request queuing and
decision-making are negligible, i.e., the FN decides the offloading strategy for all
the received user requests at the beginning of an offloading period [55].

For many mobile applications, such as natural language processing and face
recognition, where the input data size is relatively small so that the application
offloading could be completed during a time shorter than the timescales of user
device mobility and the dynamics of wireless networks [52]. The system can thus be
assumed to be quasi-static, where all user devices and the wireless network remain
stationary during an offloading period [50].

The set of all user devices is denoted by N = 1, . . . , N . If an application is
offloaded from a user device to the FN for processing, then the user device is referred
to as a fog-processing device. The set of all fog-processing user devices is denoted
by N1. The total number of fog-processing user devices is given by N1 = |N1|. If
an application is offloaded from a user device to the cloud server for processing, then
the user device is referred to as a cloud-processing device. All the fog-processing
and cloud-executing user devices are collectively referred to as remote-processing
user devices and are put in the set N2. The total number of remote-processing user
devices is given by N2 = |N2|.

For remote processing in the cloud server, an application needs to be first
transmitted from a user device to the FN through a wireless link, and then forwarded
by the FN to the cloud server through a wired link. Since the cloud server should
have plenty of computing resources and the wired link between the FN and the
cloud server typically has a sufficiently large capacity, the allocation of these
resources among the remote-processing applications is less of a concern than the
limited wireless communication resources, which need to be shared among all the
remote-processing user devices for communicating with the FN. Denote the total
radio frequency bandwidth by B Hz and the portion of bandwidth assigned to the
nth remote-processing user device by an, where n ∈ N , and an ∈ [0, 1]. To
avoid interference between simultaneous transmissions to the FN, at any offloading
period, orthogonal radio channels are allocated to different remote-processing user
devices, i.e.,

∑
n∈N2

an � 1 [56, 57]. Since the output data after an application has
been processed is typically of a small size, the optimization of offloading decisions
and the associated resource allocation usually focuses on the uplink transmissions
only [19, 38, 43, 50].
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The application of the nth user device can be described by Jn =
{Dn,Appn, τ

max
n }, n ∈ N , where Dn denotes the size of input data (in bits),

Appn denotes the required processing density (in CPU cycles/bit), which depends
on the computational complexity of the application [49, 58], and τmax

n stands for the
maximum tolerable latency (in seconds) [52]. The number of CPU cycles required
to process the entire application Jn is given by Cn = DnAppn [42, 49]. In the
following, we assume that the FN knows the values of Dn, Cn, and Appn, e.g., by
employing program profilers [38, 59]. Supported by NFV and SDN technologies,
the FN constructs a clone for each user device, i.e., the program for processing
application Jn is backed up in the FN [43, 58] and can be downloaded by the cloud
server through a high-speed wired link if needed [41]. Therefore, in case of cloud
processing, only the data of Dn bits need to be transmitted from the nth user device
to the cloud server. It should be noted that Dn, Cn, Appn, and τmax

n are inherent
parameters of application Jn, and they do not change with where Jn is processed
[52].

In the following, we will look into the delay and power consumption for local
processing, fog processing, and cloud processing, respectively.

Local Processing

Let f loc
n and ploc

n (n ∈ N ) denote the local computation capability (in CPU
cycles/s) and the local executing power consumption (in watts) of the nth user
device, respectively. The delay and energy consumption for locally processing
application Jn at the nth user device are given, respectively, by [52]

T loc
n = Cn/f

loc
n , (5.1)

Eloc
n = ploc

n (Cn/f
loc
n ). (5.2)

Fog Processing

If application Jn is to be processed in the FN, then the nth user device needs to
transmit the input data of size Dn to the FN through a wireless link, and the FN
needs to allocate sufficient computing resources (in CPU cycles/s) for processing
application Jn. The achievable transmission rate of the nth user device is given by
[52]

rn = anBlog2

(

1 + ploc
n

anN0B

)

, (5.3)

where pcom
n is the transmission power of the nth user device, hn is the channel power

gain between the nth user device and the FN, and N0 is the additive white Gaussian
noise (AWGN) power spectral density (in mW/Hz).
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Under the assumption that the fog processing for an application starts only after
all the input data has been received by the FN, the delay and energy consumption of
fog processing for application Jn are given, respectively, by [52]

T
f og
n = Dn/rn + Cn/f

f og
n , (5.4)

E
f og
n = pcom

n (Dn/rn) + pid
n (Cn/f

f og
n ), (5.5)

where f
f og
n (in CPU cycles/s) denotes the computing resources allocated by the FN

to application Jn, and pid
n denotes the power consumption (in watts) of the nth user

device in the idle mode.

Cloud Processing

If application Jn is to be offloaded to the cloud server, then the nth user device
needs to first transmit the input data of size Dn through a wireless link to the FN,
which then forwards the received input data to the cloud server through a wired link.
Denote the data rate of the wired link allocated to the nth user device by R

f c
n (in

bits/s), and the cloud processing capability assigned to application Jn by f c
n (in CPU

cycles/s). Then, the delays caused by the wired transmission and cloud processing
are given by T

f c
n = Dn/R

f c
n and T c

n = Cn/f
c
n , respectively. Accordingly, the total

delay and total energy consumption of cloud processing for the nth user device are
given, respectively, by [52]

T cloud
n = Dn/rn + T

f c
n + T c

n , (5.6)

Ecloud
n = pcom

n (Dn/rn) + pid
n (T

f c
n + T c

n ). (5.7)

The computation offloading decision for the nth user device can be represented
by the following three binary indicators, xn, yn, zn ∈ {0, 1}, where xn = 1, yn = 1,
and zn = 1 indicate that application Jn is processed by the nth user device itself
locally, by the FN, and by the cloud server, respectively; otherwise, xn = 0, yn = 0,
and zn = 0. The three binary indicators are subject to the following constraint:

xn + yn + zn = 1,∀n ∈ N , (5.8)

which implies that application Jn is processed at one and only one location selected
from the nth user device, the FN, and the cloud server.

Therefore, the delay and energy consumption for processing application Jn

in the above considered fog-computing enabled RAN scenario can be expressed,
respectively, as [52]

Tn = T loc
n xn + T

f og
n yn + T cloud

n zn, (5.9)
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En = Eloc
n xn + E

f og
n yn + Ecloud

n zn. (5.10)

Accordingly, the cost of the nth user device can be defined as the weighted sum
of delay and energy consumption as

Costn = λt
nTn + λe

nEn, (5.11)

where λe
n, λt

n ∈ [0, 1], n ∈ N , denote the weights of energy consumption and delay
for the nth user device, respectively.

One way to ensure the fairness among all user devices is to minimize the
maximum cost among all the user devices, without exceeding the maximum
tolerable delay for each mobile application. This involves the joint optimization
of the computation offloading decisions for all user devices, π = [x, y, z] =
[x1, . . . , xN , y1, . . . , yN , z1, . . . , zN ], the fog-node computing resource allocation
among fog-processing user devices, f f og = [f f og

1 . . . , f
f og
N ], the assignment of

wireless channel bandwidth to remote-processing user devices, a = [a1, . . . , aN ],
and the transmission power allocation to remote-processing user devices, pcom =
[pcom

1 , . . . , pcom
N ].

The above described fairness-aware maximum-cost minimization problem is
formulated as [52]

(P1) : min
π ,ff og,pcom,a

max
n∈N

Costn (5.12)

Subject to

(C1) : xn, yn, zn ∈ {0, 1},∀n ∈ N ,

(C2) : xn + yn + zn = 1,∀n ∈ N ,

(C3) : ∑
n ∈ N f

f og
n � Ff og,

(C4) : f
f og
n � 0,∀n ∈ N ,

(C5) : 0 < an � 1,∀n ∈ N ,

(C6) : ∑
n ∈ N2an � 1,

(C7) : 0 � pcom
n � pmax

n ,∀n ∈ N ,

(C8) : Tn � τmax
n ,∀n ∈ N ,

where Ff og is the total computation capacity of the FN, pmax
n is the maximum

allowed transmission power of the nth user device; if xn = 1, i.e., local processing,
then pcom

n = 0 and an = 0; if xn = 1 or zn = 1, i.e., non-fog processing, then

f
f og
n = 0; (C1) and (C2) are the constraints on the binary offloading indicators

for each user device; (C3) indicates that the allocated fog computing resources
cannot exceed the total computation capability of the FN; (C4) is the non-negative
constraint on fog computing resource allocation; (C5) and (C6) are the constraints
on the wireless channel bandwidth allocation to remote-processing user devices;
(C7) is the transmission power constraint of each user device; and (C8) is to
guarantee that each application is executed within the maximum tolerable delay.
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Note that the optimization problem (P1) is not convex due to the min–max
formulation and the binary variables in π [52]. It is a mixed-integer non-linear
programming problem, which is NP hard in general [60]. To reduce the compu-
tational complexity, the optimization problem (P1) can be first transformed into
a quadratically constrained quadratic programming (QCQP) problem, which can
then be converted into a standard convex problem via semidefinite relaxation [52].
The resulting problem can be solved in polynomial time using a standard convex
optimization tool such as SeDuMi [61]. The above transformation, conversion,
and solution are summarized in the computation offloading and resource allocation
(CORA) algorithm [52, Algorithm 1].

In [52], the performance of the CORA algorithm was evaluated through Monte
Carlo simulation in comparison with the following three benchmarking algorithms:
(1) The offloading-only algorithm [50], where only offloading decisions are opti-
mized to minimize the weighted sum of energy consumption and delay for each
user device, without optimizing the resource allocation. (2) The resource-only algo-
rithm [56], where only the allocation of resources (including transmission power,
frequency bandwidth, and computing resources) is optimized to minimize the power
consumption of each user device, without optimizing offloading decisions. (3)
Local-only processing, where all user devices process their applications themselves
without any optimization for offloading decisions or resource allocation.

The scenario for simulation consists of one FN, one cloud server, and N user
device, as well as the TGn path loss model [62] and Rician fading with a 6 dB
Rician factor [63]. Unless otherwise mentioned, the simulation parameters are set
as follows [52]: N = 6, B = 15 MHz, N0 = −174 dBm/Hz, Ff og = 2G cycles/s,
pmax

n = 0.1 W, pid
n and ploc

n are independently and uniformly distributed in
the range of 0.001–0.01 W and in the range of 0.1–0.5 W, respectively, f c

n =
4G cycles/s, f loc

n is uniformly distributed in the range of 0.5–1.5G cycles/s, τmax
n =

4 s, Dn = 0.42 MB, Appn = 297.62 cycles/bit, and R
f c
n = 1M bits/s, ∀n ∈ N .

Figure 5.4 (see Fig. 7 in [52]) plots the maximum energy consumption among
all user devices versus the number of user devices for the four algorithms under
comparison. In this simulation, the optimization objective of the CORA algorithm
was set to minimize the energy consumption by setting λe

n = 1 and λt
n = 0,

n ∈ N . We can see that the maximum user-device energy consumption increases
with the number of user devices for all the four algorithms, with the CORA
algorithm achieving the lowest rate of increase. For any given number of user
devices, the CORA algorithm always achieves the lowest maximum user-device
energy consumption among the four algorithms.

Figure 5.5 (see Fig. 9 in [52]) shows the maximum energy consumption and the
maximum delay among all user devices of the four algorithms under comparison for
four different applications, which are the m-queens puzzle for m = 4, 5, 6, and 7
[46, 58]. The four applications possess the same size of data, i.e., Dn = 200 KB for
each given m, but with different sizes of processing density, where Appn = 87.8,
263, 1760, and 8250, for m = 4, 5, 6, and 7, respectively. We can see that both of
the maximum user-device energy consumption and delay increase with m, with the
CORA algorithm achieving the lowest maximum user-device energy consumption
and the shortest maximum user-device delay for each given m.
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Fig. 5.4 The maximum energy consumption among all user devices versus the number of user
devices [52]
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different applications [52]
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Fig. 5.6 The maximum saved energy among all user devices with respect to the local-only
processing versus the maximum tolerable delay τmax

n (s) [52]

Figure 5.6 (see Fig. 11 in [52]) shows the energy saving achieved by the CORA
algorithm, the offloading-only algorithm [50], and the resource-only algorithm [56]
with respect to the local-only case versus the maximum tolerable delay τmax

n . We
can see that for all the three algorithms shown, the energy saving increases with the
maximum tolerable delay. This is because a looser delay constraint will lead to more
offloaded mobile applications, and thus more conserved energy for the user devices.
For any given value of τmax

n , the CORA algorithm saves the most energy among the
three algorithms.

The above simulation results show that the joint optimization of offloading
decision-making and resource allocation in the CORA algorithm is able to effec-
tively reduce the energy consumption and delay for user devices in a fog-computing
enabled RAN.

5.6 Conclusion

In this chapter, we have looked into the various new opportunities and new
capabilities of self-optimized wireless networking, e.g., scalable and on-demand
mobility management, enabled by fog computing. Recent works have demonstrated
that fog computing, in conjunction with the emerging software-defined networking
and network function virtualization technologies, allows the self-optimized dynamic
relocation of computing, caching, and networking resources across the cloud, the
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fog, the network edge, and the things, as well as self-optimized management of
network functions and mobile applications. Fog-computing enabled wireless net-
works provide user devices with distributed local caching, computation offloading,
collaborative radio signal processing, and cooperative resource management at the
edge of the network.
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Chapter 6
Fog-Enabled Intelligent Transportation
System

6.1 Introduction

Currently, transportation systems are an indispensable part of human activities.
As people become more dependent on transportation systems, the transportation
systems themselves are facing not only many opportunities, but also lots of
challenges. First, traffic congestion has become a noteworthy worldwide issue as
the number of vehicles has grown dramatically over the past decades. Congestion
can further lead to an increase in fuel consumption, air pollution, and difficulties
in implementing plans for public transportation [1]. Second, accident risks increase
with the expansion of transportation systems. Every year, about 1.24 million people
are killed in car accidents worldwide [2]. Undoubtedly, there is a need to reduce
traffic accidents and to detect accidents once they have occurred to minimize their
impact. In addition, how to effectively manage the transportation system, provide
drivers with convenient information services, and support the ultimate autonomous
driving, these are all issues that the intelligent transportation system (ITS) needs to
be considered.

Foreseeing importance of intelligent transportation system, various countries
have launched their research programs on smart transportation systems [3].

United States
In the United States, electronic route guidance system (EGRS) was the initial stage
of ITS in 1970s. It is a destination-oriented system which can provide highway
guiding for motorists at intersections by exchanging messages between vehicle
and roadside [4]. In 1991, United States’ congress enacted integrated surface
transportation efficiency programs (ISTEA). Then, TEA-21 (Transportation Equity
Act for the twenty-first Century) was formulated in 1998 as a successor of project
ISTEA. During this bill’s covering period, 1997–2003, a large amount Federal
funding for highway was authorized, and the vehicle infrastructure integration (VII)
was also proposed. The VII provides a communication link between a vehicle to
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vehicle, and also to the roadside infrastructure. The key technology is emphasized
on the well-known dedicated short range communication (DSRC), which will be
mentioned later again.

On December 8, 2009, United States Department of Transportation (USDOT)
started its 5 year Strategic Plan, which defines the strategic direction for the
USDOT’s ITS research program for the next 5 years [5]. 2018–2022 is the third
5-year phase, reflecting the four strategic goals of: safety, infrastructure, innovation,
accountability [6].

European Union
European countries began to seriously study ITS technology in 1980s, with repre-
sentatives of UK, France, and Germany. PROMETHEUS (Programs for European
Traffic with Highest Efficiency and Unprecedented Safety) is believed to be the first
research program, and DRIVE (Dedicated Road Infrastructure for Vehicle Safety in
Europe), the second phase of Europe’s R&D part of the framework, in 1988.

In 1991, the EU further promoted the study of ITS and set up ERTICO, which is a
non-profit cooperative organization to strengthen cooperation between government
and private enterprises. CVIS is attributed to be a successful outcome. CVIS
(cooperative vehicle-infrastructure systems) is supposed to make cars be able to
communicate with each other and know the nearby roadside infrastructure [7].

Currently, cooperative-ITS (C-ITS) and its evolution to support full autonomous
driving is the motivation of research. The project COOPERS (Cooperative Systems
for Intelligent Road Safety) plans to connect vehicles on the motorway to the road
infrastructure via continuous bidirectional wireless communication.

Japan
Japan has got impressive benefits from investment in ITS and applying novel
technologies into the operational deployment. Japan began their research in 1996
and created the world’s first vehicle information communications system (VICS)
which has been available nationwide since 2003. VICS provides real-time traffic
information to vehicles in three technical ways, radio beacon, infrared beacon, FM
multi-frequency broadcast, covering the entire city road [8].

UTMS’21 (universal traffic management system) is Japan’s intelligent traffic
management system with continuous improvement. As one of the most advanced
ITS in the world, it can fully manage the traffic flow, committing to achieve a safe,
comfortable, and environmentally friendly transport society [9].

Others
As the largest developing country, China is facing serious traffic problems in its
development. Within some cities, China started its practice of intelligent traffic
management, intelligent public transportation system, and traffic information ser-
vice system since 1990s[10, 11]. In the “Made in China 2025” plan released by the
State Council in 2015, the overall planning and promotion of R&D of smart vehicles
are mentioned. Next stage, the use of novel intelligent and information technology
like big data analytics and cloud computing throughout the transport system will be
focused.
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In December 2000, South Korea ventilated a 20-year blueprint for ITS develop-
ment called National ITS Master Plan for the twenty-first century which singles
out seven potential application areas. The scope of the plan ranges from local
to national level to mitigate both immediate traffic problems and projected future
mobility threats from the long-term perspective [12]. The plan is divided into three
phases, and currently it is in the third phase of 2011–2020. This phase is to ensure
the system type connection, compatibility, and efficiency of operation and to plan
more advanced technology systems for the advanced stage. For now, this plan has
basically been completed.

Enabled by fog computing, ITS data and information can be processed not only
in cloud or on-board but also at any place in the continuum from vehicles to cloud.
It saves huge bandwidth as well as introduces much shorter time delay. This chapter
introduces architecture and key technologies of fog-enabled ITS and lists a number
of use cases.

6.2 Intelligent Transportation System

Generally, ITS is recognized as using information, communication, control, com-
puter technology, and other current technologies to establish a real-time, accurate,
and efficient transportation management system. Figure 6.1 from ETSI provides
a classical overview of the system concept: connecting vehicles, roadside (traffic)
infrastructure, and central infrastructure to improve safety and traffic efficiency on
roads.

6.2.1 Architecture and Key Components

Intelligent transportation systems (ITSs) are emerging as an effective means of
both reducing traffic congestion and enhancing transportation safety[13]. ITS is an
integrated system of people, roads, and vehicles, utilizing a variety of advanced
technologies in communication, automation, computing, etc. An ITS uses the data
collected from various sources, such as cameras, sensors, global positioning system
(GPS) receivers, and other vehicles, to optimize the system’s performance in terms
of traffic flow, safety, delay, and fuel consumption.

The core components of an ITS are ubiquitous road environmental sensing and a
vehicular communication system [14]. The sensing information, such as road condi-
tions, driving status, and traffic information, is processed and shared by vehicles and
RSUs. The communications medium among vehicles and RSUs is based on radio
frequency technologies specifically designed for vehicular communication.

In the vehicular communication system, vehicles and RSUs share transportation
sensing information via messages, as shown in Fig. 6.2. The messages may be
sent periodically or on-demand, transmitted in one or multiple hops. The vehicles
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Fig. 6.1 ETSI’s ITS scenario overview
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Fig. 6.2 Vehicular communication system
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usually use messages to share information about themselves, such as location,
speed, direction, and road condition events. RSUs send broadcast warning messages
mainly about road condition and environmental hazards, and sometimes provide
services to the vehicles. Such communication is commonly referred to as vehicle-
to-vehicle (V2V) communication or RSU-to-vehicle (R2V) communication.

6.2.2 Vehicle Categories and Requirements

ITS is a broad ecosystem that includes personal vehicles and commercial vehicles
that are on the roads as stand-alone vehicles or as vehicle fleets. There would be
much benefit to define the norm of the ecosystem clearly before we taking deeper
insight. Thus, several vehicles categories with different requirements are shown
below.

• Personal Vehicles: Personal vehicles are pioneers in the evolution of ITS.
Currently, some personal vehicles are already integrating some automatic driver
assistant services (ADAS), and are actively evolving to more advanced automa-
tion levels.

As vehicles become increasingly autonomous, they require

– Additional sensing capabilities to increase safety;
– Continuous awareness of vehicle and environmental status delivered to pas-

sengers;
– Regional services provision, such as maps services;
– Enhanced passenger comfort through contextual information, such as aug-

mented reality (AR);
– Assisted computing offered by the road infrastructure and other devices.

• Commercial Vehicles: Commercial vehicles include city buses, delivery vehi-
cles, long-haul trucks, employee shuttles, tour company buses, and so on.

The requirements of commercial vehicles include:

– Continuous connectivity;
– Coordinated driving for mobile platoon;
– Multiple radio access technology connectivity to match different purposes

ranging from supporting passenger productivity to enhancing tourist experi-
ence.

• Truck Fleets: Truck fleets can be seen as a special case of commercial vehicles.
The fleets could be composed of trucks from different companies having
different makes and models. The fleet operators want to closely monitor driving
conditions, fuel efficiency, overall scheduling of goods to be transported, and
route planning and optimization.
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The requirements of truck fleets include:

– Road condition monitoring, such as receiving advance notification of road
repair, congestion or accident;

– Detection of anomalous driving patterns, such as indication of stolen trucks;
– Truck condition monitoring and driver health monitoring;
– Maximizing fuel efficiently via convoying;
– Driving through regions without cellular connection.

6.3 Current Solutions and Technical Challenges

As described in Chap. 3, the challenges of ITS mainly focus on two aspects: com-
puting and communication, while security and interoperability are the prerequisites
of the system. Followings are some exiting solutions to these challenges.

6.3.1 On-Vehicle Computing

At present, there are a large number of computers or microprocessors in the auto-
mobile. Unlike that in consumer electronics devices, vehicular chips are working in
aggressive environment with vibration, electromagnetic interference, and extreme
temperatures. Related to the personal safety of passengers, it responds to higher
reliability requirements.

Vehicular chips are designed for specific functions and reliability guarantees,
such as error detection, authentication, etc. Qualcomm, NVIDIA, Intel, and so on
are marking capable chips for coming smart driving. Due to the high requirements
and complexity of automotive chips, in the face of rapidly growing intelligent
automotive applications, the production speed of chip hardware is becoming a
constraint. At the same time, the manufacturers are building their own camps
and have formed a multi-standing situation, resulting in a variety of incompatible
standards, which hindered the free development of smart vehicle applications.

In terms of in-vehicle networking, the bus network has been in the industry
to maintain a solid position, over the past few decades of development. Multiple
electronic control units (ECU) are connected by multiple in-vehicle LANs differing
in transmission speed and communication protocol, according to the features and
characteristics required for each application, exchanging information and coordinat-
ing control to allow more added value functions to be implemented [15]. Currently,
common bus standards include but are not limited to:

• CAN (Controller Area Network): Developed by Bosch, the leading standard for
over 20 years of automotive networks, it has a high level of safety and reliability
for the control of key components such as ABS, auxiliary driving, engines,
transmissions, and more.
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• LIN (Local Interconnect Network): Master–slave structure, using polling meth-
ods, commonly used in windows, seats, lighting, and other less real-time
demanding control.

• MOST (Media Oriented Systems Transport): The MOST bus networking is
responsible for vehicle media system control data and the exchange of media
data. It can be seen as a set of systems independent of driving control.

• FlexRay: FlexRay is a high-speed communication protocol that provides a
high degree of flexibility and reliability. It is the basis for active technology
development in Japan and worldwide. It uses time-triggered media access control
and strict message delivery cycle, mainly used for wire brake, remote control
throttle, and other emergency systems.

Figure 6.3 shows the architecture of the bus network in a present-day motor
vehicle.

Towards the Internet of vehicles era, the above-mentioned vehicular network is
still the basis of smart car or vehicle station. Facing with the need for intelligent
control and the Internet of cars, engineers naturally think of using existing platforms
to mount more hardware on the bus. For example, a transceiver can be used to
connect to other vehicles or road side infrastructures, and a powerful computer is
introduced to perform visual, location, and other data processing to realize assisted
driving. But as a result, complexity and security are worrying. But in this way,
reliability and security are fraught with complexity. Manufacturers are keen to

Fig. 6.3 Modern vehicle’s network architecture
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develop their own dedicated systems to provide vehicle connectivity control, but
vehicle-mounted mobile communication data connections are considered to be the
most secure and largest external interface. At Black Hat 2015, they demonstrated
the remote control of a Jeep Cherokee car with a laptop via an “0day” vulnerability
attacking onboard entertainment systems [16]. Some researchers also invaded a
simulated vehicle system and gained fatal authority[17].

The vehicle nodes supported by the fog calculation solve these problems, and we
will see below how the vehicle nodes can provide a unified and secure service using
emerging technologies.

6.3.2 Communication Network

In ITS, besides the transmission of external information (such as Internet informa-
tion), it is more common to employ a traffic-specific communication system for the
communication of critical information to ensure its performance. Therefore, ITS’s
communication network architecture is a combination of external domain and ITS
internal domain. In addition, ad hoc networking between vehicles is a promising
form, which is also worth mentioning. So, in the form of ITS networking, there are
three types defined as:

• ITS ad hoc network
• Access network (ITS access network, public access network, private access

network)
• Core network (e.g., the Internet)

According to this, the network structure of ITS is illustrated in Fig. 6.4. In the
figure, it contains the above three types of networks, divided into two domains, and
the connectivity between the network is also indicated. It is noteworthy that in the
traditional ITS architecture, services and resources are centrally deployed, which
means that most of the vehicle applications need access to the core network.

Be sure, in most cases not all of these networks have to be accessed, and a
part of the networks in the whole ITS architecture make up different scenarios,
basically. According to ETSI’s standard, they are grouped into four categories of
deployment scenarios [18]. These scenarios are shown in Figs. 6.5, 6.6, 6.7, and 6.8,
respectively: Deployment scenario A establishes a ITS ad hoc network, which can
access to the core network by means of ITS access network; Deployment scenario B
represents an ITS access network, which can be connected to the core network (e.g.,
the Internet). Deployment scenario C is based on a public access network, which
can also provide connectivity to the core network. Deployment scenario D uses a
private access network to connect to other networks or the core network.

Corresponding to the above architecture, the protocol stack of a single ITS station
is shown in Fig. 6.9. This protocol stack consists of four horizontal layers: access
technologies, networking and transport, facilities, and applications. In addition, it is
flanked by a management layer and a security layer [19].
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Fig. 6.4 Networks involved in the ITS architecture and their connectivity

Fig. 6.5 Scenario A: Ad hoc-centric

Fig. 6.6 Scenario B: ITS
access network-centric

Fig. 6.7 Scenario C: Public
access network-centric

Fig. 6.8 Scenario D: Private
access network-centric
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Fig. 6.9 Protocol stack of an ITS station

Till this moment, several organizations in different regions have defined the
network standards for ITS. In October 1999, Federal Communications Commission
(FCC) approved the frequency of 5.9 GHz (from 5850 to 5925 MHz) as the
dedicated frequency for the intelligent transportation services based on DSRC
technology, which is a milestone in the field of ITS [20, 21]. The standardization
organizations including Institute of Electrical and Electronics Engineers (IEEE)
and Society of Automotive Engineers (SAE) have jointly published a series of
DSRC standards for V2V and R2V, such as IEEE 802.11p, IEEE 1609 series,
SAE J2735 and J2945 standards, and the communication protocol of DSRC is
shown in Fig. 6.10. In 2009, the European Commission authorized ETSI, European
Committee for Standardization (CEN), and European Committee for Electro tech-
nical Standardization (CENELEC) to formulate a series of standards for intelligent
transportation. In February 2014, ETSI and CEN jointly released the first version of
the standard, which includes the ITS-G5 standard for safe driving and the emergency
call (eCall) standard that provides emergency call services over cellular networks.

With the development of intelligent transportation technologies, the scope of
ITS will be further expanded to the field of AD, smart navigation, automotive
information and entertainment services, and other security services, such as collision
warning and remote vehicle condition diagnosis.

6.4 Fog-Enabled Solution

Fog computing provides a critical architecture for today’s connected world as it
enables slow latency, high reliable, and high efficient operations, as well as provides
strong support for mobile applications.
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Fig. 6.10 Seven-layer DSRC communication protocol

Fog computing is an extension of the traditional cloud-based computing model.
Fog computing exploits the computing, storage, communication, and control func-
tions of the devices from cloud to network edge until terminal, which enables
services to be distributed anywhere along the continuum between cloud and things.
By flexibly allocating and managing the various resources in the cloud-to-thing
continuum, fog computing can efficiently and intelligently provide services for
multiple vertical industries and applications domains.

Based on the above features, fog computing enables the critical functions
of ITS by collaborating, cooperating, and utilizing the resources of underlying
infrastructures within roads, smart highways, and smart cities. Fog computing
will address the technical challenges in ITS and will help scale the deployment
environment for billions of personal and commercial smart vehicles.

6.4.1 Architecture and Key Technologies

In the hierarchical architecture as shown in Fig. 6.11, multiple FNs are distributed in
vehicle, RSU, infrastructures, and the cloud, which provides a computing platform
for ITS. Several different communication technologies, including wireless (e.g., 3G,
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Fig. 6.11 Network infrastructure of connected vehicles

4G, 5G, DSRC, etc.) or wired (e.g., cable or optical fiber) technologies, can be
used to provide secure inter-vehicle connectivity as well as the connectivity between
vehicles, RSUs, infrastructures, and the cloud(s).

The features and functions of FNs in the hierarchical architecture are described
as follows:

• In-vehicle FN
In-vehicle FNs take over a series of sensors, e.g., radar, LIDAR, camera, GPS,
gravity sensor, etc., which collect a massive amount of data for vehicle-to-
everything (V2X) interactions. Their main role is to continuously sense the status
of the vehicle and environment and to adapt the driving behavior by performing
complex analytics on the available data in order to identify the best course of
action. These analytics can be done by local computing processors, or with the
assist of central cloud, infrastructures, or RSUs. In addition to internal sensors,
the in-vehicle FN also extends its sensing capabilities through messages from
other vehicles or from RSUs.

• FN in RSU
FNs in RSUs with sensor capabilities can provide useful regional information to
vehicles:

– Serve as data aggregation points to analyze, simplify, and extract information
in raw data from vehicles;
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– Detect metrics such as vehicle density and ramp length;
– Connect to roadside sensors and cameras that monitor the road conditions.

And then the local analytics in the RSUs could analyze this data to determine
route and traffic guidance to communicate to nearby FNs and the cloud;

– Act as a relay between vehicles for cooperative driving.

• FN in infrastructure
FNs in infrastructures enable a variety of additional functionality, which
includes:

– Provide QoS through prioritization of variety of data being routed through it
to the cloud;

– Provide secure communication through authentication and encryption;
– Provide location-based services;
– Provide significant regional computational capabilities, which can be used for

tasks such as coordinating regional traffic patterns, optimizing smart highway
efficiency, and looking for safety or security problems in lower level FNs.

• Cloud
Cloud platforms are typically hosted in data centers and usually provide long-
term storage for traffic from vehicles, RSUs, and other fog devices. In addition,
cloud will build and train machine learning models that could be used for
detecting safety patterns and acting on them. Cloud platforms also provide
centralized services to all vehicles and devices, such as application lifecycle
management, configuration management, security, and software updates.

The fog architecture is based on eight pillars, including security, scalability,
openness, autonomy, RAS, agility, hierarchy, and programmability [22]. These
pillars can address the technical challenges and provide strong support for ITS as
shown below:

• Security
Fog requires every FN in the cloud-to-thing continuum to have high-assurance
security mechanisms. It also specifies the process by which fog computing
manages the physical interfaces, wireless protocols, and packets and data being
transferred, which ensures that the right packet gets to the right location.
Meanwhile, fog computing requires the FNs within the same service domain
to execute a common set of information security and privacy policies, in order
to form a distributed trusted computing platform. This distributed platform can
provide on-demand security services to resource-constrained devices as well as
offer trustworthy information processing, storage, and transport throughout the
fog-enabled ITS.

• Scalability
This breakdown of operations between in-vehicles, RSUs, infrastructures, and
cloud eases scalability, management, and orchestration. The scalability of fog
architecture includes the hardware or software adaptation of individual FNs, the
addition of FNs in the fog network, and the storage, network, and other services
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scaled with the fog infrastructure. Management and orchestration can ensure the
maintenance of service level agreements (SLAs) for transactions. Transaction is
treated as a unit for the purposes of satisfying a request between the consumer and
the provider. The transaction is managed via an orchestrator which understands
the soft-bounds of both consumer/provider and subcontractor service. SLAs
direct the behavior of the subcontractors to achieve the consumer/provider
contractual agreements within the predicted boundaries set in the SLA.

• Openness
The fog-enabled ITS considers compute and storage partition from vehicle-to-
cloud to address bandwidth and latency requirements. Interoperability and data
sharing take place at different phases and layers. In-vehicle FNs are used for
sensors fusion, image processing, and local analytics to trigger autonomous,
time-sensitive, and immediate action for tasks like path planning and safe driving.
In-vehicle storage is used to cache data from local sensors, and also to cache data
regarding hazards or route conditions communicated V2V. RSUs may gather
processed data from vehicles to be further processed to enable information
to be communicated to the cloud. Cloud provides deeper analytics for bigger
patterns, route planning, and guidance. These capabilities must be open. Vehicle
manufacturers, fleet owners, insurance companies, and government regulators
all participate to establish an open multi-party ecosystem to improve their cost,
functionality, safety, and rate of innovation.

• Autonomy
Each FN from vehicle to cloud has certain capabilities of processing, storage, and
decision-making. Vehicles and RSUs are autonomous and can perform critical
functions without the assist of cloud resources. To reduce latency and cost, it is
benefit to make decision and store data in the low layer of the fog hierarchy.

• RAS
Having each vehicle, RSU with compute and storage, and access network
infrastructure with compute and storage as a FN can ensure RAS in the ITS. By
decreasing the batch size of updates required either at the RSU or infrastructure
level, the risk of dropped connection can be decreased during a handover, which
is vital for both safety and navigation purposes. In addition, a group of vehicles
can act as federated resources for compute and path planning, which ensures
RAS even if there is no connectivity to the access network (e.g., in rural areas or
in a tunnel).

• Agility
Each FN from vehicle to cloud can agilely make immediate decision. Pushing
the dynamic location update schemes from the cloud to the lower layer FN
will greatly increase the agility of the system by enabling real-time reactions
to location-based traffic patterns or services provided. Agility allows the fog
network to adapt quickly to changing conditions or changing customer needs.

• Hierarchy
Smart vehicles require connectivity along the fog hierarchy to distribute comput-
ing workload and data storage. This takes place through:
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– Thing-to-Fog: sensors inside the vehicle connect to the in-vehicle FN, and
sensors on roads connect to FN in RSU;

– Fog-to-Fog: in-vehicle FN connects to an in-vehicle FN, in-vehicle FNs
connect to FN in RSU or FN in infrastructure;

– Fog-to-Cloud: in-vehicle FN connects to the cloud, FN in RSU connects to
the cloud, and FN in infrastructure connects to the cloud.

This hierarchy will greatly improve the paging resolution from the cloud, as a
vehicle may be handed over between RSUs at a rapid pace, and those RSUs will
connect to a single infrastructure that maintains a connection to the cloud.

• Programmability
Programmability is at the heart of a fog-enabled ITS and pervades all operations
involving computing, storage, communications, and layering through a fog
hierarchy. In-vehicle FNs are sufficient for target autonomous processing to
be performed within the vehicle. When additional processing is needed, the
partially processed information is conveyed to a more capable FN in nearby
RSU and infrastructure or to a cloud. Federation of computing, storage, and
communication enables dynamic adjustment of platform capabilities depending
on needs. In contrast, virtualization techniques such as network slicing enable
creation of individual logical resource spaces customized to the resource needs
of the application. Different constituencies may generate code that runs in
the fog-enabled ITS, which includes vehicle manufacturers, service providers,
fleet owners, insurance companies, third party customizers, vehicle owners, and
vehicle drivers.

6.4.2 Virtualized and Intensive Vehicle Stations

For vehicle nodes, the opportunity to step into a more advanced intelligent trans-
portation system is to (1) introduce the onboard Ethernet technology; (2) adopt
fog-enabled vehicle nodes. Using Ethernet technology to replace the current bus
network framework will bring obvious advantages in application cost, transmission
rate, and technical reserve. And the utilization of virtualization technology is the key
to promote the development of the onboard node. By building the vehicle station
into a fog computing node, forming a unified on-vehicle platform manageable and
interoperable, diversified applications can be easily deployed.

Virtualization is the main method to provide isolated environments in fog
computing and also the main factor of FN performance [23]. In response to an
intelligent transportation system, vehicles are increasingly equipped with computing
and storage capabilities. How to manage and schedule these resources while
providing security guarantee has become a new challenge. Virtualization technology
virtualizes physical devices into unified and resilient resources of storage, com-
puting, and communication, forming a standard software platform that facilitates
software development and deployment. Data between different services is isolated
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from each other, thereby increasing security. Virtualization technology also makes
it possible for rapid migration, allowing a component to migrate to a more suitable
physical location as needed during runtime. There are two main technologies for
virtualization, conventional virtual machine, and container. All of them can realize
resource virtualization on the physical machine. The difference lies in that the virtual
machine simulates a completely identical environment with the physical bare metal.
An operating system needs to be installed first and a running platform must be set
up before the application can be deployed. Container technology such as Docker
builds a lightweight virtual operating environment through software features, within
the same operating system. Containers are especially well-suited for resource-
constrained IoT hardware, taking the significant advantages of containerization in
terms of flexibility and easy deployment [24, 25].

Furthermore, after the vehicle FN is popularized, vehicle fog computing (FVC)
can be developed, and the concept of vehicle as a platform (VaaP) is proposed [26].
The proliferation of vehicle applications requires a greater demand for communi-
cations and computing infrastructure, without them, the Internet of vehicles and
novel services cannot be put into practice, but only stay beyond the concept. The
vehicle cloud can be set up to share the workload of the RSU by utilizing vehicles
traveling on the road and parked in the parking lot as FNs, which provide with
communications and computing resources for the whole. By discussing four types of
scenarios of moving and parked vehicles as the communication and computational
infrastructures, respectively, a quantitative analysis of the capacities of VFC is
obtained that initially proved the feasibility of this idea.

6.4.3 Distributed Resources in Communication Networks

Fog computing aims to build a continuum between end users and the cloud to take
full advantage of access network resources. From a perspective of communications
network, we are going to discuss the uniqueness of fog computing in vehicular
network architectures and the benefits of a fog-enabled network.

Vehicular ad hoc networks (VANETs) is a type of vehicle-specific ad hoc
networking technologies in ITS that consists of interconnected vehicles. In recent
years, VANET has attracted a lot of research, but because of limited connectivity
and QoS guarantees, it is difficult to promote the deployment. The introduction of
SDN technology and fog computing can enhance VANET performance, augmenting
V2V, vehicle-to-infrastructure (V2I), vehicle-to-base station communications. As
a result, a new SDN-based VANET architecture leveraging fog computing called
FSDN VANET is proposed [27]. SDN separates the control plane from the data
plane. The switch responsible for data forwarding does not need to be involved
in complex rule decisions and therefore can be implemented with inexpensive,
standardized equipment. OpenFlow is one example of such an SDN technology
proposed by Stanford University. On the other hand, the fog computing feature
moves resources down to the access network, providing low latency features, since
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Fig. 6.12 SDN-based and fog-enabled VANET architecture

computing tasks can respond as close as possible to the data source. As shown in
Fig. 6.12, the architecture of FSDN VANET consists of the following parts:

• SDN Controller: It has global intelligence and controls all the network behaviors
of the entire SDN-based VANET system. It also plays as fog orchestration and
resource management for the fog.

• SDN Wireless Nodes: The vehicles act as the end users as well as forwarding
element, equipped with OBU and operating OpenFlow. They are data plane
elements.

• RSU: RSU running OpenFlow and controlled by the SDN controller. It is a fog
device.

• Road-Side-Unit Controller (RSUC): A cluster of RSUs are connected to a
RSUC through broadband connections before accessing to the SDN controller.
RSUC is OpenFlow-enabled and controlled by SDN controller. Besides the
responsibility of forwarding data, RSUCs also store local road system infor-
mation and perform emergency services. RSUCs are fog devices, under the
orchestration of SDN controller.

• Cellular BS: In this proposal, BS is not simply carrying voice calls and con-
veying data, it is more sophisticated. BS is under the control of SDN controller,
running OpenFlow, capable of delivering fog services. Similar to RSUC, BS is
also a fog device under the control of SDN controller with local intelligence.

In short, the fog-enabled network is a distributed, heterogeneous, and horizontal
architecture. In the future, with the booming of smart car business and the surging
of data transmission volume, it is foreseeable that as a viable solution, fog-similar
network architectures will be the trend. How to manage and orchestrate resources,
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design an SDN controller suitable for telematics, as well as fall-back/backup
mechanisms in the event of a failure remain to be the research challenges in the
field of fog-enabled vehicle network.

6.4.4 Use Cases and Application Scenarios

Autonomous Driving

AD technologies are developing faster than anyone could possibly imagine. AD
vehicles bring a whole new ecosystem with new requirements on the network
architecture to support the huge amount of data processing workload and to
satisfy the real-time services requirements. For AD, precise operations during every
millisecond of driving time can have life-and-death consequence, which makes AD
become a mission-critical application.

AD vehicle is dependent on both sensing and large amounts of software, such
as situation awareness, route planning, vehicle control, etc. The sensing system and
the software can cooperate with each other to realize a whole AD application.

In the fog-enabled ITS, the AD vehicle is a mobile FN that can communicate with
the FNs in other vehicles, RSUs, or infrastructures. However, it must be capable of
performing all required in-vehicle operations autonomously if it cannot connect to
other FNs or the cloud.

The in-vehicle FN can directly communicate with the RSUs. The RSUs provide
road condition and traffic data that the mobile FN uses to make routing and driving
decisions, as well as deal with road conditions that it has not yet encountered from
its localized sensors (e.g., water, snow, ice, lane closures, etc.). The in-vehicle FNs
and FNs in RSUs allow multi-radio access to the vehicles to ensure continuous
connectivity and to support services access. The FNs in infrastructures will provide
road condition information to other traffic system FNs as well as to vehicles. And
the in-vehicle FNs may also connect to other cloud systems, such as one or more
service providers or government agency, in order to have the information available
for the community of cooperating FNs.

On the other hand, as vehicles become increasingly autonomous, the data volume
and computational complexity grow by an order of magnitude. In order to support
the computational needs of the complex system, each vehicle needs distributed com-
puting architecture with connectivity between multiple FNs supporting analytics,
storage, and other resources. By distributing computation, the fog architecture can
distill huge amounts of data generated by things closer to the data source. FNs can
also combine multiple incoming streams of data through aggregation, compression,
and others forms of processing and analyses, in order to assist the AD operations.

In summary, by applying fog computing into AD system, the following features
are available:

• Extract information at a lower level in the fog hierarchy to reduce latency;
• Conserve limited and expensive resources, e.g., bandwidth, memory, and storage;



6.4 Fog-Enabled Solution 181

• Combine sources in different ways to meet the needs of different applications;
• Set and execute data transformation, data extraction, and data analytics closer to

the data source to minimize the raw data transmitted to the cloud.

Cooperative Driving

Cooperative driving is important for fleets of vehicles that drive in a convoy and
requires a convoy leader to constantly update the other vehicles with the direction,
speed, and lane, road conditions, congestion, and other data. Cooperative driving is
also useful for road alerts (e.g., hazards, traffic, or weather conditions), where the
vehicles in the concerned area send alerts to other vehicles and also to RSUs for
broader coverage.

In the fog-enabled ITS, the in-vehicle FNs in a convoy can establish a LAN to
aggregate data traffic from multiple vehicles, and then transmit them over a cellular
network, instead of each vehicle sending data to the fog or cloud via expensive
cellular connection. This LAN is easy to set up as the vehicles in a fleet or convoy
usually move at constant speed and constant distance between two vehicles.

Furthermore, a fleet of vehicles can act as federated resources for computing
and path planning, which ensures reliability even if there is no connectivity to the
access network. The in-vehicle FNs can collect a bunch of data from sensors in
the convoy, and adapt the driving behavior based on variable road conditions and
situations sensed locally.

On the other hand, when the convoy leader is unable to connect to the cloud, it
can locate other FNs in the vicinity, which can provide continuous connectivity for
fleet management. Since the computational workload is distributed across the fog
infrastructure, including all the participating vehicles and nearby FNs, the convoy
leader can make its own control decisions, even it is based on a more limited data
set than the cloud might provide.

With fog computing, it enables a vehicle to leave the convoy and the convoy will
self-heal. Conversely, a vehicle can also join the convey on the way. The convoy
will be able to apply security mechanisms, such as discovery, authentication, and
a reputation score to allow the new vehicle to join the convoy and place it in the
correct position.

Shared Vehicles

Shared vehicle is a service that can complement the public transport. The users
can easily access to shared vehicles in a broad range of areas, including apartment
complexes, parking spaces, and large commercial districts without being limited
to rental outlets. However, shared vehicles still have issues, such as how can users
obtain the vehicle whenever and wherever they want.

The fog architecture for shared vehicles is shown in Fig. 6.13. The details are
described as follows.
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Fig. 6.13 Fog architecture for shared vehicles

When a user wants to rent a shared vehicle, he requests to the cloud A of company
A with a specific request in parking lot location and time. The cloud A requests to
FN A in parking lot A for finding vehicles matched to the request. If FN A does not
find the matched vehicle, it sends the same request to other company’s FNs. Cloud B
of company B answers best matched vehicle. Then cloud A informs the user of the
vehicle owned by company B. Cloud A also requests to the parking lot B near the
destination of the user for finding unoccupied space. If there is unoccupied space,
the user is scheduled to return the vehicle to parking lot B.

As soon as the user starts to drive the shared vehicle, the in-vehicle FN starts
operating. The recorder begins recording video in case of rule violations, accidents,
etc. The in-vehicle FN gathers real-time information from local sensors as well as
other FNs (including other vehicles, RSUs, or FNs for traffic information service).
The in-vehicle FN should react immediately when something may cause troubles.

If a shared vehicle causes an accident, the in-vehicle FN sends the video record
to nearby FN. The FN generates accident information from this record and sends
it to cloud A. Cloud A analyzes the accident information and arranges a tow truck
and another vehicle with an insurance agent. The tow truck then takes the accident
vehicle to a repair shop.

The benefits that fog computing provides to shared vehicles include:

• By data sharing among different companies, it is possible to immediately search
for a vehicle that matches the user’s requirements and a parking lot with
unoccupied space near the destination;

• By constantly monitoring the vehicle condition and the real-time traffic informa-
tion, the vehicles can react immediately to the emergency, which improves the
user experience;
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• When a traffic accident occurs, connections between FNs allow accident reports
to be sent to the required points instantly and securely, which speeds up the
accident handling.

6.5 Conclusion

Intelligent transportation system helps to improve traffic efficiency and ensure
traffic safety. The core of this system is the collection and analysis of sensor
data and vehicle communication technologies. Existing network architecture and
communication technology still cannot meet the demand for advanced intelligent
driving support and rapid development of intelligent transportation. As an emerging
concept, fog computing is proposed for various IoT scenarios and can address the
challenges in ITS. In this chapter, we first introduced the definition and development
of ITS, describing the ecosystem composition and their respective requirements.
Then, we explained the challenges and a stage-of-the-art of ITS, mainly focusing
on vehicle station and communication network. To present fog computing, the
architecture of fog-enabled ITS was provided. And we also discussed how fog
computing can address the technical challenges and provide strong support for
ITS. Finally, several use cases in fog-enabled ITS, including autonomous driving,
cooperative driving, and shared vehicles, are shown in this chapter, which further
verifies the benefits that fog computing can bring to ITS.
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Chapter 7
Fog-Enabled Smart Home and User
Behavior Recognition

7.1 Introduction

One typical fog-enabled intelligent IoT system is the smart home, where each smart
appliance/device is able to connect to the Internet and carry out some computing
tasks. Each appliance/device can be viewed as an IoT node. These IoT nodes form a
local network. In this scenario, to enable the home to better understand the humans
and subsequently respond correctly, an efficient and secure human machine interact
technology is necessary. Conventional remote controls are extremely inconvenient
due to the larger number of appliances and the dependence on the hardware. A
more efficient solution is to let the local network itself recognize the user behavior
directly.

Human behavior recognition schemes can be classified into three categories, i.e.,
video-based, sensor-based, and radio-based [1]. Video-based behavior recognition
uses cameras to capture the images or videos of humans and then extract the
behavior information from those images or videos [2, 3]. These approaches can
achieve high recognition accuracy. However, requirements for direct lines of sight
and good lighting conditions have restricted the application of the method. Further,
there are concerns about the privacy protection when cameras are utilized at home.

Sensor-based behavior recognition exploits the data obtained from the various
ambient sensors, such as the gyroscope, the accelerometer, etc., to recognize
behavior [4–6]. These approaches usually require users to wear the equipment and
are commonly used to recognize large-scale activities, e.g., running and eating.

Radio-based behavior recognition uses the received radio signals reflected by
humans to recognize different behaviors. The basic idea is that humans will scatter
the radio wave and the movements of humans will make differences in the received
signals. By analyzing the received radio signals, we can infer the information about
the movements. These approaches allow the users to get rid of the constraints of
hardware and will be able to protect privacy. Thus, radio-based behavior recognition
has advantages in smart home scenarios where comforts and privacy protection are
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of our major concern. Meanwhile, numerous wireless communications between the
IoT nodes in the smart home also facilitate the implementation of these approaches.
In this chapter, we will mainly focus on this type of behavior recognition.

There have been many works studying user behavior recognition with radios.
Considering the fact that the commercial Wi-Fi devices are ubiquitous, numerous
researchers endeavor to make full use of the current Wi-Fi devices to recognize
user behaviors. They extract the acquired CSI from the Wi-Fi chips with little
changes to the Wi-Fi device drivers. Based on the extracted CSI, various behaviors
can be recognized. A brief summary of existing researches in this area is listed as
follows.

• Activity Recognition
The concept of E-eyes [7] was proposed in 2014 which enabled recognizing both
in-place activities and walking movements in home by examining Wi-Fi CSI
features and matching the signal profiles. A CSI based human activity recognition
and monitoring system [8] was proposed later in 2015.

• Sleep Monitoring
Methods of monitoring the position changes [9] and respiration [10] of a sleeping
people were respectively proposed in 2014 and 2016. A way of tracking vital
signs of breathing and heart rates during sleep in both one-person and two-
person scenarios [11] was carried out in 2015, after which in 2017 a deep learning
framework [12] was applied to fulfill the task.

• Fall Detection
An interesting proposal of contactless fall detection through Wi-Fi devices [13]
was brought forward in 2014 and improved [13, 14] then in 2017.

• Smoking Detection
Rhythmic patterns that smoke left on Wi-Fi signals could be used to detect smoke
itself [15, 16], which was proposed in 2016.

• Finger Movement Detection
The concept of WiGest [17] that changes in Wi-Fi signals strength could be
leveraged to recognize hand gestures was proposed in 2015. Similar work named
WiFinger [18] was carried out in 2017. The authors in [19] even used Wi-Fi
devices to recognize keystrokes.

• Motion Direction Inferring
WiDance [20] was proposed in 2017 which used Wi-Fi devices to infer motion
direction and to realize a Wi-Fi based user interface for a dance game.

• Tracking
A Wi-Fi based decimeter-level passive tracking and velocity monitoring system
[21], namely Widar, was put forward in 2017. Its improved version, Widar 2.0
[22], was then proposed in 2018.

In addition to the off-the-shelf Wi-Fi, some researchers even developed new
radio chips to recognize user behavior. One recent example is Google’s Soli project
[23, 24], which integrated a millimeter wave radar into a chip and designed the
corresponding behavior recognition framework. Some researchers also tried to track
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the moving patterns to obtain quantitative input information [25, 26]. Note that,
as the range resolution of the radar heavily depends on the wavelength, short
wavelengths are preferable to achieve higher accuracy.

Besides, since the sound is also a kind of wave, some researchers took advantage
of the acoustical signals to track the moving objects. The frequency of sound is much
smaller than that of radio while they have the same wavelengths. The requirements
on the hardware to process the sound wave is much less stringent. The speakers and
microphones in cell phones can be employed to transmit or receive the sound signals
[26, 27].

This chapter summarizes the up-to-date researches on user behavior recognition
with radio waves, which will help gain insights into future smart homes when
combining fog computing. The organization of this remainder is as follows.
Section 7.2 provides a brief formulation of the problem. Section 7.3 summarizes the
passive user behavior recognition. Section 7.4 introduces the active user behavior
recognition and tracking. Section 7.5 discusses future directions.

7.2 User Behavior Recognition for Smart Home

In user behavior recognition, we usually predefine a set of behaviors, i.e., A =
{A1, A2, . . . , AP }, where P is the total number of predefined behaviors. As the user
performs a specific behavior Ai , the corresponding radio signals picked up at the
receiver can be written as

Y = {s1, s2, · · · sM}, (7.1)

where si represents one raw data stream and M is the total number of data streams.
For example, the receiver may receive M waveforms if it is equipped with M

antennas. The raw data may be the channel state information or the received
waveform in time domain. Our goal is to build a model G which can identify the
performed behavior given the input data y. In particular, the estimated behavior Â

is given by

Â = G(Y ). (7.2)

In most cases, the raw data cannot be utilized directly. We need to extract useful
features from the raw data. This procedure can be model as

F = F(Y ). (7.3)

Then the original behavior recognition problem can be modeled as

Â = G(F(Y )). (7.4)
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In general, the function F characterizes the aggregation of various signal processing
tasks and the function G represents a certain learning algorithm.

A typical user behavior recognition framework includes the following four steps,
i.e., base signal selection, preprocessing, feature extraction, and classification:

• Base signal selection:
The raw data are acquired at the receiver. For Wi-Fi devices, CSIs are the raw
data in most cases. For some specific hardware, such as the frequency-modulated
continuous-wave (FMCW) radar or the Soli chip, the received baseband signals
are the raw data. The useful information may lie in the amplitudes, phases, phase
differences, or the other transformed signals.

• Preprocessing:
The raw data need to be preprocessed before feature extraction. For example, the
Hampel filter can be used to remove the outliers [9]. The finite impulse response
(FIR) filters are utilized to remove the irrelevant information in the raw data.
Further, the principal component analysis (PCA) is frequently applied to remove
the redundancies in the raw data.

• Feature extraction:
Appropriate transformations are generally necessary as features in multiple
domains will be needed. One basic transformation is the Fast Fourier transform
(FFT) which transforms the data from time domain to frequency domain. How-
ever, FFT is primarily applied to stationary signals and not capable of capturing
the instantaneous frequency components caused by human dynamics. Therefore,
short-time Fourier transform (STFT) is often exploited [20]. STFT is a window
based Fourier and can capture instantaneous frequency components. Moreover,
discrete Wavelet transform (DWT) can be used to increase the frequency
resolution in some applications [17, 18]. The advantages of DWT over STFT
are that: (1) DWT has nice tradeoff between time and frequency resolutions;
(2) DWT groups frequencies that differ by several orders of magnitude into a
few levels so that both high speed and low speed movements can be captured;
(3) DWT can also reduce the data size to alleviate the compunction load. Various
features need to be extracted in multiple domains. Common time domain features
include standard deviation, average, correlation, range, and so on. Frequency
domain features include main-power band, profile feature, and so on. A typical
feature extraction example can be found in [23].

• Classification:
Once the features are gathered, we can recognize the corresponding behavior
based on the collected features. In general, there are two kinds of classifications,
one is the rule based classification and the other is the machine learning
classification. In some case, the feature differences between different behaviors
are apparent and can be easily explained. Accordingly, a simple rule based
classification works well [20]. Some works simply classify the data by comparing
the data with a series of templates and choosing the best matched one. However,
in most cases, the feature differences are not evident and the machine learning
based classification is utilized to find the inner differences. Various machine
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learning algorithms such as the support vector machine (SVM), the k-nearest
neighbor algorithm (KNN), the hidden Markov model (HMM), the convolutional
neural networks (CNN), the dynamic time warping (DTW), the Random Forest,
etc. can be applied to classify the data. Some algorithms can achieve high
recognition accuracy with high computation loads while the others are on the
opposite. The choice of one classification algorithm is thus a tradeoff between
the computing power and the desired recognition accuracy.

Typical radio-based behavior recognition can be classified into two categories
according to the utilized raw data. One is the “passive approach” which takes the
CSIs as the raw data. Many researchers adopt this approach in Wi-Fi framework
because of the ubiquitous Wi-Fi devices and the convenience in obtaining the CSIs.
The other is the “active approach.” In this approach, we can get out of the constraints
of the off-the-shelf commercial communication devices and transmit the signals
specially designed for the particular recognition tasks.

7.3 Passive Approach

The passive approach is generally based on Wi-Fi devices. When Wi-Fi devices
communicate with each other, CSIs are necessary to decode the received waveforms
correctly. Since the CSI measures the effects of the surrounding scatterers on the
radio waves, the dynamics in the CSI reflect the changes in the scatters. Thus
we can use the CSI as the raw data to carry out user behavior recognition. The
CSI information exists in commercial Wi-Fi chips and can be easily extracted out
with little changes to the hardware drivers [28]. Thus a majority of user behavior
recognition works are exploiting the Wi-Fi CSI framework. These approaches are
passive as they reuse the raw data designed for other purposes instead of utilizing
new data that are specially transmitted/received for the particular recognition tasks.

7.3.1 Signal Detection

Doppler Effect
The impacts of human behavior on the CSI are illustrated in Fig. 7.1. In the figure,
multiple paths are received at the receiver. The human body acts as a set of
scatterers. The human movements can be modeled as changes in the locations of
those scatterers, which lead to changes in CSI at the receiver. The channel frequency
response (CFR) at frequency f and time t results from the superimposition of the
responses from all individual paths [8, 20], i.e.,

H(f, t) =
∑

k

αk(t)e
−j2πf τk(t), (7.5)
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Fig. 7.1 An illustration of impacts of human moving on the CSI

where τk(t) is the delay of the k-th path and is determined by τk = dk(t)/c, dk(t)

is the path length, and c represents the speed of light. The Doppler shift of the k-th
path is

fD,k = −f
dτk(t)

dt
= −f

c

ddk(t)

dt
. (7.6)

Notice that some paths are not affected by human movements. Thus the channel
frequency response can be divided into two parts, i.e., the static component and the
dynamic component. In particular, we have

H(f, t) = Hs(f ) +
Pd∑

k=1

αk(t)e
−j2πf τk(t), (7.7)

where Hs(f ) is the static component which is the summation of those paths whose
lengths are fixed during the analysis. Those paths include the light-of-sight (LOS)
path and other paths reflected by the background static scatterers. The parameter Pd

denotes the total number of dynamic paths whose lengths will change over time.
Those paths are reflected by the moving scatterers. Different behaviors will lead to
different changing patterns in the path lengths.

In practice, the estimated CSI at the receiver will suffer from phase shifts due to
the carrier frequency offset (CFO) caused by hardware imperfection. The obtained
CSI in the presence of CFO becomes
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H̄ (f, t) = e−j2πΔf tH(f, t) = e−j2πΔf t

⎛

⎝Hs(f ) +
Pd∑

k=1

αk(t)e
−j2πf τk(t)

⎞

⎠ ,

(7.8)

where Δf stands for the CFO.

Preprocessing
There are two steps in the preprocessing of the signal, including removing unknown
phase shifts and useless signals. The two steps are explained respectively in
this section. Remove Unknown Phase Shifts: Since the movement information is
contained in τk(t) which is the phase of each path, we need to remove the unknown
phase shifts due to the CFO. The following methods can be used:

• Signal Antenna: We can exploit the CSI power [8] as follows:

|H̄ (f, t)|2 = |Hs(f )|2 +
Pd∑

k=1

|αk(t)|2 + 2
Pd∑

k=1

|Hs(f )αk(t)| cos(2πf τk(t))

+
Pd∑

k=1

Pd∑

i=1,i �=k

2|αk(t)αi(t)| cos(2πf (τk(t) − τi(t))). (7.9)

Clearly the total CSI power is the sum of a constant and a set of sinusoids whose
frequencies are functions of the path length changes or the user moving speeds.
However, this method loses the sign information in the Doppler shifts which
indicates the moving directions.

• Multiple Antennas: The unknown phase shift can be removed by multiplying the
CSIs from two antennas [20]. In the case of multiple antennas, the CSIs of those
antennas will have the same unknown phase shift. Thus multiplying the CSIs
of two antennas can remove the unknown phase shift. Assuming H̄1(f, t) and
H̄2(f, t) are the CSIs for two antennas, then we can have

H̄1(f, t)H̄2(f, t)∗ = Hs,1(f )Hs,2(f )∗

+
Pd∑

k=1

αk,1(t)Hs,2(f )∗e−j2πf τk,1(t)

+
Pd∑

k=1

Hs,1(f )αk,2(t)
∗ej2πf τk,2(t)

+
∑

k,i

αk,1(t)αi,2(t)
∗ej2πf τi,2(t)−j2πf τk,1(t). (7.10)

The first term is a static component which can be removed with a high-pass
filter. The last term is a cross term. The two terms in the middle are the target
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ones containing useful information. Note that the static component can dominate
the dynamic components due to a strong LOS path or large static reflectors
like the floor. Furthermore, the target terms are much stronger than the cross
term and they include the Doppler shifts of interest. As the static component is
almost constant and the dynamic component changes fast within a short analysis
time window, we can roughly approximate the static component by the averaged
CSI and approximate the relative strength of the dynamic components with the
variance of the CSI.

Remove Useless Signals The received CSI contains lots of irrelevant signals. As
a result, preprocessing is needed to obtain cleaner CSI. Since the Doppler shifts
caused by human behavior lie within a limited bandwidth, FIR can be exploited
to remove the useless signals. Further, note that Wi-Fi devices use orthogonal
frequency-division multiplexing (OFDM) modulation and each subcarrier reports
individual CSI. Thus the changes introduced in all the CSI streams by human behav-
ior are strongly correlated. To make full use of the correlation while compressing
the data, PCA is widely used to process the CSI stream. PCA of the CSI streams
results in a series of principal components. A few principal components are retained
and then passed to the following processing units. For example, the first principal
component is retained in [20] while the first principal component is discarded and
the next five principal components are retained in [8].

Feature Extraction and Recognition
After preprocessing the data, various features can be extracted. The features
can be pruned according to some predefined rules or selected by some machine
learning algorithms. Once we collect the features, the problem becomes a typical
classification problem. Typical machine learning algorithm can be used in this
phase. For example, SVM was used in [13], KNN was adopted in [19], and HMM
was exploited in [8].

In summary, a passive approach typically makes use of commercially available
Wi-Fi chips. The advantage lies in the low hardware cost. However, due to the
centimeter-level wavelength of the transmitted radio signal, the passive approach
can only recognize actions with relatively large moving ranges.

7.3.2 Wi-Fi Based Solution for Behavior Recognition

In 2017, Liu et al. from Tsinghua University reported their work on WiDance
[20]. In particular, commercial Wi-Fi devices were utilized to implement a human-
commuter interaction interface for a dancing game. The system can recognize eight
moving directions of the player. See also Fig. 7.2.

The WiDance system includes one transmitter with a single antenna and two
receivers with three antennas as illustrated in Fig. 7.3. First, during the preprocessing
step, each receiver obtained the raw CSI from each receive antenna and the effect
of CFO was eliminated by multiplying two carefully selected CSI streams from
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Fig. 7.2 Eight different
moving patterns detected by
WiDance

Fig. 7.3 The human–computer interface of WiDance

the three streams. A Butterworth passband filter was used for data sanitation.
After that, PCA was applied to all CSI subcarriers and only the first principal
component was preserved. Then an STFT with a Gaussian window was applied
to get the spectrogram. Second, movement detection and trace segmentation were
performed. The WiDance system calculated and smoothed the variations in the
power distribution of the spectrogram and claimed there existed movements if
the variance exceeded a predefined threshold. Since each behavior began with
moving in one direction and then retracted back, each behavior resulted in a pair
of peaks or valleys in the Doppler frequency shifts. Once a movement is detected,
the system averages the absolute values of Doppler frequency shifts of the two
links and takes the segment between two adjacent peaks as the spectrum of this
action. Classification is carried out next. Unlike the widely used machine learning
based classification, the WiDance system classified the behaviors according to
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the observed difference in the Doppler frequency shifts generated by difference
behaviors. Specifically, the differences in the angles between the moving direction
and the link direction would lead to differences in the amplitudes of the Doppler
frequency shifts. Thus the behaviors could be classified into four groups according
to the ratio between the accumulative absolute values of Doppler frequency shifts
associated with the two links. Each group included two behaviors corresponding to
two opposite moving directions. The two behaviors could be further identified based
on the order of appearance of the negative and positive Doppler frequency shifts in
the segment. An overall recognition accuracy of 92% was reported in [20].

7.3.3 Massive MIMO Based Behavior Detection and Ranging

With the growing demand of location-based services in wireless networks, e.g.,
indoor navigation, positioning has drawn increasing interest in both academia and
industry. The fundamental methods for localization can be divided into two cate-
gories. One is the geometry-based approach in RADAR or GPS, which calculates
locations via simple triangulation, but relies on the LOS propagation and the coop-
eration among multiple APs. The other is the fingerprint-based approach for indoor
or urban conditions with dense multiple paths and NLOS. Particularly, channel
features such as angle of arrival (AoA) and power profiles which characterizes
the scattering environment can be extracted as fingerprints for localization. The
positioning accuracy of fingerprint-based methods is determined by the performance
of feature estimates. However, the complexity of appropriate extraction method is a
severe burden [29].

Recently, massive multiple-input multiple-output (MIMO) as well as millimeter
wave (mmWave) has been envisioned as the key technology in next generation
wireless communications. By deploying a large antenna array at the AP and
exploiting a wide bandwidth for transmission, the high resolution can be obtained
in both angular and temporal domains, which provides feasibilities in improving
the localization performance. In [30–33], the AoA, the received signal strength
(RSS), or their combination was estimated from the large-scale mmWave channel
to compute the location of the target user. The Cramer-Rao lower bound studied in
these works proved that the positioning error could be reduced due to the channel
sparsity in mmWave and the accurate angle estimation.

Above approaches mainly utilize the angle, delay, or signal strength knowledge
at APs. However, additional information at the user side like the angle of departure
(AoD) is rarely considered and can be regarded as another degree-of-freedom for
localization. Meanwhile, in some applications such as indoor navigation, not only
the user position but also its behavior, e.g., the moving velocity and direction,
should be detected to predict and guide the user motion. Considering the benefits
of massive MIMO and mmWave, we proposed a novel mechanism called Massive
MIMO based Detection and Ranging (MIDAR) for joint localization and behavior
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Fig. 7.4 Indoor channel model in MIDAR

recognition. Specifically, thanks to the superb angular and temporal resolution
in mmWave massive MIMO, a direct but accurate enough approach for feature
extraction was provided to obtain the multi-dimensional channel power profiles, i.e.,
the angle-delay-Doppler power spectrum (ADD-PS). Exploiting this ADD-PS as the
3-D fingerprint of a particular position with a certain behavior, MIDAR achieved
joint localization and behavior recognition by fingerprint matching schemes or deep
learning techniques. In the following parts, we give a brief overview on MIDAR.

Consider an indoor scenario where a mmWave AP located at a known position
employs a large-scale antenna array of M antennas and serves several moving
users with single-antenna. The user’s location in the room is unknown and needs
to be estimated. For indoor case, the uplink channel from user-u to the AP is the
superposition of different propagation paths from L scatterers (e.g., surrounding
walls, roof, or ground surfaces), known as multipath components. The l-th multipath
component can be characterized by three position-related parameters: the delay τu,l ,
the AoA θu,l , and the AoD ϕu,l , as illustrated in Fig. 7.4.

Denote hu[t, n] ∈ C
M×1 as the discrete-time UL channel vector of user-u at

the n-th tap and in the t-th reference symbol (RS). Applying the wide-band OFDM
system, it can be expressed as

hu[t, n] =
L∑

l=1

αu,le
j2πfu,l ta(θu,l)δ

(

n − τu,l

Ts

)

, (7.11)

where αu,l represents the complex channel gain with zero mean and statistical power
ρu,l , fu,l denotes the normalized Doppler frequency shift, a(θ) stands for the array
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response, and Ts is the sampling interval within one OFDM symbol.1 To avoid the
inter-symbol interference, the delay should be less than the duration of cyclic prefix,
i.e., τu,l < NcpTs where Ncp is the cyclic prefix length. Assuming a uniform linear
array at the BS with antenna spacing dc and carrier wavelength λ, a(θ) has the
following form when the AoA is θ :

a(θ) =
[
1, e−j2π

dc
λ

cos θ , . . . , e−j2π
dc
λ

cos θ(M−1)
]T

. (7.12)

The normalized Doppler frequency shift fu,l is given by

fu,l := ‖vu‖ cos(ϕu,l − φu)

λ
· 1

fch
, (7.13)

where ‖vu‖ denotes the magnitude value of velocity vector vu, φu represents the
moving direction, and fch characterizes the density of channel observations in time.

By stacking hu[t, n] of all taps into a matrix H u[t] as H u[t] :=
[hu[t, 0], . . . ,hu[t, Ncp − 1]], we can project the channel into the angle-delay
domain as

Gu[t] = F
†
MH u[t], (7.14)

where [FM ]p,q := e−j2π
p(q−M/2)

M /
√

M , p, q ∈ [0,M − 1] is the M-dimensional
phase-shifted DFT matrix. Then, collect Gu[t] during T successive RSs and define
the temporal channel vector as gu,p,q = [[Gu[0]]p,q, . . . , [Gu[T − 1]]p,q ]T . The
angle-delay-Doppler frequency domain channel can be further obtained as

[Gu]p,q,s = [F T gu,p,q ]s , (7.15)

where Gu is the corresponding 3-D channel array, and [F T ]s,t := e−j2π
(s−T/2)t

T /
√

T ,
s, t ∈ [0, T − 1] stands for the T -dimensional phase-shifted DFT matrix. Since
Gu ∈ C

M×Ncp×T is actually a 3rd-order tensor comprised of channel gains in angle,
delay, and Doppler frequency domains, algorithms regarding tensor algebra should
be utilized for the feature extraction and further analysis.

Note that Gu still represents the instantaneous CSI. For fingerprint-based local-
ization and behavior recognition, the wide-sense stationary characteristics deter-
mined by the stable scattering environment needs to be further extracted. Denote

the ADD-PS Pu ∈ R
M×Ncp×T as [Pu]p,q,s = 1

MT
E
{∣
∣[Gu]p,q,s

∣
∣2
}

. When M and

T become large, it can be expressed as

1The sampled delay τu,l/Ts can be regarded as an integer due to the high resolution of channel
taps in wide-band mmWave systems. For example, Ts = 10 nm when the bandwidth is 100 MHz,
which means each tap can be discriminated well in the delay domain.
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Fig. 7.5 Example of the 3-D channel power spectrum with M = 256, N = 1024, T = 200, and
|fu,l · fch| ≤ 60 Hz

lim
M,T →∞[Pu]p,q,s =

L∑

l=1

ρu,lδ

(

p − Mdc cos θu,l

λ
− M

2

)

δ
(
q − τu,l

Ts

)
(7.16)

× δ

(

s − fu,lT − T

2

)

.

An example of the ADD-PS obtained from above extraction method is shown in
Fig. 7.5, where one colorful block represents a significant power value at the grid
point of the corresponding AoA, delay, and Doppler frequency shift. Clearly, since
each block contains both the propagation features and the activity information, the
ADD-PS can be utilized as the 3-D fingerprint uniquely labelling the corresponding
location and moving behavior.

In order to fulfill the objective of MIDAR, plenty of ADD-PSs corresponding
to different locations with different behaviors are first collected and stored as
reference points in a data set during the offline phase. Then, the detection is
finished by comparing the acquired ADD-PS of the target terminal with the data
set during the online phase. On the one hand, by transforming the problem into
pattern recognition, the joint localization and behavior detection can be achieved via
fingerprint matching methods. Since the ADD-PS is a multi-dimensional data array,
to leverage its geometrical structure, the similarity criterion based on the chordal
distance and Gaussian kernel as in [34] can be exploited. Compared with some other
metrics simply used in vector spaces, this criterion depends on the linear subspaces
coming from each unfolding matrix of a tensor and thus has potentials in providing
superior performance. On the other hand, by regarding the problem as non-linear
regression, the deep learning techniques such as CNN can be applied in MIDAR,
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which learns the complicated mapping from the fingerprint to the location as well
as the behavior. The learning method is able to reduce the computational complexity
during the online phase compared to the fingerprint matching approach, which needs
to match the acquired fingerprint to every reference point in the data set.

In reality, the UL channel is acquired at the AP through the channel estimation
while the estimation error due to the receive noise is inevitable. By employing the
massive MIMO and carrying out the simple projection operation, not only the higher
spatial resolution but also the better performance of power spectrum extraction can
be obtained. Additionally, due to the significant attenuation of mmWave channels,
the number of multipath components is limited, which means there are only a few
dominant values in the ADD-PS and others are approximate to 0. This phenomenon
can reduce the storage overhead of fingerprints and further eliminate the effect of
channel estimation error by only saving those major elements in Pu.

7.4 Active Approach

In this section, we will introduce active behavior recognition methods. In passive
behavior recognition, the source data is the CSI which is primarily designed
for the communication purpose. It cannot be arbitrarily configured due to the
limitations in wireless communication protocols and Wi-Fi chips. In recent years,
some researchers have tried to get out of the wireless CSI framework and accomplish
user behavior recognition with specially designed radio frequency equipment. These
works are thus called the active approaches. In the following subsections, we will
introduce some recent works along this direction.

7.4.1 Millimeter Wave Radar Based Behavior Detection

In order to explore new human–computer interaction schemes, Google developed
a new gesture sensing technology based on millimeter wave radar in 2015 [23].
They designed an all-in-one radar integrated circuit (IC) which integrated the
functionalities of radar into one chip, as illustrated in Fig. 7.6, and designed a
hardware abstract layer (HAL) to facilitate easy porting. This technology is called
Soli.

Unlike the traditional radars which rely on spatially resolving multiple part of the
target, Soli radar is mainly based on the high temporal resolution. In the following
sections, we will introduce the Soli technology from Google in more detail.

Hand Model
Soli models the hand as a series of dynamic scattering centers as depicted in Fig. 7.7.
This is a reasonable assumption as the wavelength is much smaller compared to
the hand’s spatial extent [35] and millimeter waves exhibit “optical” propagation
characteristics. The hand reflects the millimeter waves and the angles of the reflected
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Fig. 7.6 Soli: a millimeter
wave radar system

Fig. 7.7 The hand model used by Soli

waves are equal to the angles of the incident waves. This means that only parts of
the reflected signals can be received. Therefore, the hardware can only observe parts
of the hand and each part acts as a scatter at a different location. If the hand gesture
changes, the received signal will also change correspondingly. A multipath channel
impulse response (CIR) model can be utilized to characterize the channel between
the transmitter and the receiver, which is mainly determined by the hand gesture.
Further, we can mathematically describe the dynamic properties of the scatters at
the hand as

d(r, T ) =
Nsc∑

j=1

αi(T )δ(r − ri(T )), (7.17)

where r denotes the distance between the transmitter/receiver and the scatter center,
Nsc is the total number of observable scatter centers reflecting the transmitted
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millimeter waves back to the receiver, ri(T ) is the distance between the i-th
observable scatter center and the transmitter/receiver at time T , αi(T ) stands for
the complex-valued reflectivity parameter, and δ(·) is the Dirac delta function.

System Model
To realize a high temporal resolution, the Soli system sends out a periodically mod-
ulated waveform and measures the hand’s responses at extremely high frame rates.
Soli then extracts relevant features from the collected measurements and detects
the complex and subtle hand motions. Specifically, the transmitted periodically
modulated waveform is

x(t, T ) = u(t − T )ej2πfct , T = 0, T0, 2T0, . . . , (7.18)

where fc is the carrier frequency, u(t) denotes the complex envelope of one period
of the modulated waveform, and T0 stands for the signal repetition period. This
transmission scheme introduces two time scales, i.e., the fast time scale t and the
slow time scale T . Within a single modulation period T0, the transmitted signal is a
function of t . The received signal will be collected at a frequency of Fr = 1/T0
which varies between 1 and 10 kHz and is also known as the radar repetition
frequency. A high radar repetition frequency is essential for Soli to utilize the
scattering center hand model in Eq. (7.17). When the radar repetition frequency
is sufficiently high, the properties of the scatterer centers of the hand are almost
constant within one modulation period and only vary as a function of the slow time
T . The proposed hand model can be transferred to the following channel model:

h(t, T ) =
N∑

i=1

αi

r4
i (T )

δ

(

t − 2
ri(T )

c

)

, (7.19)

where the term 1/r4
i (T ) represents the path loss. The received signal is simply the

superimposition of all the signals reflected by the scatterers, i.e.,

yraw(t, T ) = x(t, T ) ⊗ h(t, T ) =
Nsc∑

i=1

yi,raw(t, T ), (7.20)

where ⊗ denotes the convolution operation, yi,raw(t, T ) denotes the signal compo-
nent reflected by scatterer i and can be expressed as

yi,raw(t, T ) = αi(T )

r4
i (T )

u

(

t − 2
ri(T )

c

)

exp

(

j2πfc

(

t − 2
ri(T )

c

))

. (7.21)

Signal Processing
Thanks to the fact that the signal is transmitted at two time scales, the received signal
within one modulation period offers information about the ranges of the scatterer
centers. Meanwhile, the variations at the slow time scale provide information
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about the dynamic properties of the scattering centers, such as velocity, change in
geometry, etc. Accordingly, the processing of the received signal is also classed into
two categories, i.e., fast time processing and slow time processing.

• Fast Time Processing: Soli mainly relies on the high temporal resolution
introduced by the high radar repetition frequency. The processing method at
the fast time scale is quite simple. Soli simply computes the fast time-frequency
spectrogram decomposition of the raw receive signal as:

SP (t, f, T ) =
∫ t+twin

t

yraw(τ, T )e−j2πf τ dτ, (7.22)

where twin denotes the length of the time window. The range resolution of Soli
with fast signal processing is limited. The detailed moving patterns of individual
scattering centers of the hand are not resolvable at the fast time scale in most
cases.

• Slow Time Processing: Since the transmitted signal is modulated, we need to
carry out demodulation at the receiver side. Furthermore, modulation-specific
filtering, such as the pulse compression and the matched-filtering, is also needed.
After these preprocessing, the received signal can be expressed as

yrec(t, T ) =
∑

yi,rec(t, T ), (7.23)

where yi,rec(t, T ) denotes the response from the i-th scattering center and it is
given by

yi,rec(t, T ) = αi(T )

r4
i (T )

exp

(

j
4πri(T )

λ

)

g

(

t − 2
ri(T )

c

)

. (7.24)

where λ is the wavelength, g(t) is the radar system point target response. Note
g(t) is determined by the modulation scheme, the transmission parameters, and
the preprocessing steps. The shape of the radar system point target response
function determines the range resolution. At the slow time scale, the dynamics
of the scattering center cause the phase changes in the received signal yrec(t, T ).
These changes can be utilized to extract the responses from different scattering
centers from the complex superposition as long as the radar repetition frequency
is sufficiently high. Assuming the i-th scattering center moves from ri(T1) to
ri(T2), the corresponding phase shift ΔΦi(T1, T2) is given by

ΔΦi(T1, T2) = 4π

λ
(ri(T2) − ri(T1)) mod 2π. (7.25)

When the radar repetition frequency is very high, the time interval between two
adjacent frames is small. If the time interval is less than the coherent time Tcpi ,
the velocity in this time interval can be regarded constant, i.e.,
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dri(T )

dT
= vi(T ) ≈ vi, for Tcpi > T0. (7.26)

The phase changes lead to the following Doppler frequency

fD,i(T ) = 1

2π

dΦi(T )

dT
= 2vi(T )

λ
. (7.27)

As different scattering centers exhibit different moving speeds, the Doppler
frequencies of multiple scattering centers can be resolved by computing the
spectrum of yrec(t, T ) within each fast time bin over the coherent processing
window Tcpi , i.e.,

S(t, f, T ) =
∫ T +Tcpi

T

yrec(t, τ )e−j2πf τ dτ. (7.28)

Combining Eqs. (7.27) and (7.28), the fast time-frequency mapping S(t, f, T )

can be transformed into the range-Doppler mapping as follows:

RD(r, v, T ) = S

(
2r

c
,

2v

λ
, T

)

. (7.29)

RD(r, v, T ) is a three-dimensional array which maps the reflected energy from
each scattering center to its range r and velocity v at time T . Thus two scattering
centers are distinguishable in the range-Doppler array as long as one of the
following conditions can be met:

– The range difference is greater than the range resolution, which is determined
by the radar spatial resolution, resr = c/(2BW), where c is the speed of light
and BW is the bandwidth of the transmitted waveform;

– The separation in velocity is greater than the Doppler velocity resolution
which is given by λ/(2Tcpi);

– They are detectable only in different coherent processing time windows.

Soli does not excel in spatial resolution as it does not adopt a large bandwidth.
Instead, Soli relies on the high temporal resolution to bring in high Doppler
velocity resolution.

Feature Extraction and Gesture Recognition
After processing the raw data as described above, Soli extracts miscellaneous fea-
tures and puts them into machine learning algorithm to perform gesture recognition.
The features Soli extracted can be divided into three groups:

• Explicit Scattering Center Tracking Features: Soli estimates the number of
resolvable scattering centers N̄sc, and for each scattering center, estimates its
range ri(T ), velocity vi(T ), acceleration dvi(T )/dT , and the reflectivity αi(T );

• Low Level Descriptors of the Physical RF Measurement: Simple velocity features
cannot make the scattering centers distinguishable as the fingers usually moves
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at similar speed. Thus Soli extracts low level abstracts features which depict
the energy distribution in the signal transformation space to describe the finger
dynamics. Those features includes: velocity profile centroid, relative displace-
ment, velocity profile dispersion, range profile dispersion, total instantaneous
energy, and total time-varying energy;

• Data-Centric Machine Learning Features: In order to reduce the dimensionality
of the data, Soli defines a region of interest (ROI) in transformation, and then
extracts data-centric features within the ROI, such as range-Doppler multichan-
nel integration, range-Doppler multichannel derivative, range-Doppler temporal
derivative, spectrogram multichannel integration, and other features.

Since Soli aims to recognize dynamic hand gestures instead of static hand
postures, features from multiple frames are needed. Soli extracts some features in
a sliding temporal window and stores them in a temporal buffer. Besides, meta
features such as means, root mean square deviation, and other basic static can be
computed based on the current contents of the buffer. The extracted features are
then input into a machine learning engine to recognize the hand gesture. Soli further
introduces a filter after the machine learning algorithm. Specifically, Soli first uses a
machine learning algorithm to infer the gesture coarsely and then utilizes a Bayesian
filter to improve the accuracy further.

Different machine learning algorithms such as SVM, HMM, or CNN, can be
used. When the computing power is limited, a random forest classifier can also be
chosen. The Bayesian filter predicts gesture ĝ among a series gesture gk, 1 ≤ k ≤
K , according to the following rule:

ĝ = arg max P(gk|f ), (7.30)

where P(gk|f ) is the posterior probability for gesture k given the feature vector f .
In particular, it can be computed as

Pgk |f = P(f |gk)P (gk)
∑

i P (f |gi)P (gi)
, (7.31)

where P(f |gk) is the raw prediction likelihood output by classifier and P(gk) is the
prior probability of gk . The value of P(gk) at time T can be calculated by

P(g
(T )
k ) = z

(T )
k

N∑

n=1

wnP (f (T −n)|g(T −n)
k )(T −n), (7.32)

where z
(T )
k is the contextual prior specified by high level application and wn is the

filter weight for previous prediction.
A human commuter interference with the Soli chip was demonstrated in the work

[23]. When a user performs a gesture, the user imagines he is operating a virtual tool,
such as a button or a slider. The random forest was utilized to recognize the gesture
in real time. The reported per-gesture recognition accuracy is around 92%.
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7.4.2 Acoustics Based Localization and Motion Tracking

In this subsection, we will introduce the phase-based acoustic motion tracking
(PAMT) system. In PAMT, the sources are static speakers, which transmit inaudible
acoustic signals. The receiver is the microphone of a cell phone, which collects the
acoustic signal frame by frame and the motion of the cellphone can be tracked based
on the phase changes of the acoustic signals. PAMT can achieve millimeter-level
accuracy for localization and motion tracking. The measurement errors are less than
2 mm in one-dimensional scenarios and 4 mm in two-dimensional scenarios.

To achieve high accuracy motion tracking, two challenges have to be addressed.
One is to calibrate the phase offsets caused by the asynchronous system clocks of
the transmitters and the receiver. The other one is to deal with the multiple paths
since the received signals are a superposition of the desired LOS signals and the
NLOS interference signals.

Calculating Phase Changes

Assume that a single tone acoustic signal, for instance, A cos(2πfct), is transmitted
from the transmitter. The mobile device acquires the acoustic signal Ri(t) via its
microphone. The signal first goes through a band-pass filter (BPF) with a center
frequency of fc and a narrow pass band. The filtered signal Rα(t) is then delayed
by a quarter of fundamental-wave period. The delayed signal is denoted by Rβ(t).
See also Fig. 7.8 and Rα(t), Rβ(t) can be written as

Rα(t) = A′ cos(2πfct − τ)

Rβ(t) = A′ sin(2πfct − τ)
. (7.33)

Fig. 7.8 Phase changes calculation



7.4 Active Approach 205

Fig. 7.9 The phase offset in frequency domain caused by the asynchronous system clocks

PAMT system then uses Park transformation to calculate the phase changes,
specifically, multiply a transformation matrix to Rα(t) and Rβ(t), i.e.

[
Rd(t)

Rq(t)

]

=
[

cos(2πfct) sin(2πfct)

− sin(2πfct) cos(2πfct)

] [
Rα(t)

Rβ(t)

]

=
[
A′ cos(τ )

A′ sin(τ )

]

. (7.34)

The phase delay at time t can be calculated by τ = arctan(Rq(t)/Rd(t)).
However, the asynchronous clocks will cause phase offset in the received signal.

According to the experiments, the phase offset is related to the frequency, as shown
in Fig. 7.9. Therefore, we measure the phase offsets at several frequencies from a
source at first, and then use a linear fitting to estimate the slop and intercept of
the linear phase shift in frequency domain. If the multiple speakers share the same
system clock, we can estimate the slop and the intercept via the signals from one of
the speakers, and apply them to the signals of all the speakers. After that, we can
compensate the frequency offset caused by the asynchronous clocks as follows:

τadjusted = τ − wt, (7.35)

where τ is the raw phase change at frequency fc, w = ξfc + μ is the phase offset
at frequency fc, ξ and μ are the estimated slop and intercept, respectively.

Combating Multipath Effect

In practical systems, the received signals are a superposition of the LOS signals
and the NLOS signals. This multipath effect would lead to periodic attenuation of
the received signals, which brings error in estimating the moving distance and the
direction.

To combat multipath effect, we leverage the fact that the multiple paths do not
always affect the phase- based measurements of different frequencies severely at
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the same time due to their different wavelengths and phases. Therefore, we let the
speakers send signals at different frequencies, and choose the signal which is less
affected by the multipath effect in each frame.

To measure the impacts of multipath effect, we define a multipath effect ration
(MER). If we plot the normalized signal’s trace diagram in a frame using Rα(t) and
Rβ(t). We find that

• When the mobile device is static, the trace of the signal at each frequency is a
circle.

• When the device moves, the trace of the signal at each frequency is a circular
ring. The width of the ring indicates the impact of multipath effects.

This is because the radius of the trace is a function of the amplitude and phase delay
of each path. When the device is static, these parameters remain constant, and so
will the radius, which results in a circle. When the devices moves, the radius will
change over the time, which results in a ring for each frequency. The width of the
ring reflects the dynamics in the radius, which is decided by the multipath effects.
Therefore, the MER of the signal at a specific frequency is defined as the ratio of
mean inter radius to the mean radius of the ring. Larger MER means less impact of
the multipath effect. Thus the signal with the largest MER is chosen to estimate the
moving distance in each frame.

One example is illustrated in Fig. 7.10. The speaker continuously transmits
acoustic signals at 17.2 and 18.8 kHz simultaneously. The MER over time of the
two signals are plotted in Fig. 7.10a, and the normalized signal’s trace of the chosen
frames (Frame A and Frame B indicated in Fig. 7.10a) are shown in Fig. 7.10c, d
respectively. The MER of the signal at 17.2 kHz is larger in Frame A while is smaller
in Frame B. Therefore, the signal at 17.2 kHz is chosen to estimate the distance in
Frame A while the signal at 18.8 kHz is chosen in Frame B. The estimated distance
is depicted in Fig. 7.10b. The four lines indicate the results of only using the signal
at 17.2 kHz, only using the signal at 18.8 kHz, using the MER to choose the used
signal, and the ground truth, respectively. The results of using the MER to choose
the used are close to the ground truth, which prove the effectiveness of this multipath
combining method.

Robust Phase-Based Ranging

In each frame, the moving distance Δd can be calculated according to the phase
change of the chosen signal with the largest MER.

Δd = −Δθ + 2πn

2π
λ, (7.36)

where Δθ is the wrapped phase change relative to initial phase, n is an integer
accounting for the phase wrapping, n increases (decreases) by one if the phase varies
from π to −π (from −π to π ), λ is the wavelength.
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Fig. 7.10 An example of combating multipath effect. (a) The MER of the two signals. (b) The
tracking results. (c) The traces of Frame A. (d) The traces of Frame B

Knowing the moving distance is not enough to track the cellphone because the
initial position is unknown. PAMT proposed a new method to estimate the position
of the reference point and take it as the initial position. Assume that two speakers
locate at point A and point B respectively. The cellphone moves parallel to the line
AB. Point C and point D are the chosen reference points at which the distance to
one of the speakers is minimum during the moving. Notation a, b, and c denotes the
distance from point A and to C, point A to point B, point A to point D, respectively.
The difference between a and c is denoted by dac = c − a, which can be measured

when the cellphone moves from point C to point D. Then a = b2−d2
ac

2dac
. Given the

distance and the direction of the two speakers, the cellphone can find the location of
the reference points without additional measurements (see also Fig. 7.11).
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Fig. 7.11 Estimating the location of the reference points

After knowing the position of the reference point and the moving distance, the
position of the cellphone can be derived based on the corresponding geometrical
relationship. Considering the estimation error, least square (LS) can be used here to
avoid solving the equation set.

7.5 Conclusion

This chapter summarizes current user behavior recognition methods which can be
used in fog-enabled smart home scenario. The passive approach which uses current
commercial Wi-Fi devices is easy to implement but the recognition capability is
limited. To achieve higher recognize accuracy with radio, millimeter wave must be
used. This will not be an issue in the future as millimeter wave communication is an
inevitable trend in the future.

In the future, behavior recognition and fog-enabled smart home are sure to
be integrated more closely. Most of the existing works focus only on situations
with single transmitter and relatively small numbers of receivers. The fact is
that, however, the reflected signal can be received in varieties of directions in
a smart house full of IoT nodes. The accuracy and the range of detection can
be further improved with these signals combined. Moreover, most, if not all, of
the current work employ center processing as far as we have known. Distributed
computation in fog-enabled smart can also be a boost in facilitating behavior
recognition considering the fact that, each IoT node has its own observation and
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center processing increases extra communication load, thus resulting in the waste of
computation resources. Every IoT node equipped with certain computing capability
can process raw data, transfer compressed features to center processing unit, or even
make local decisions. This could be a promising technique to improve behavior
recognition in the future work.
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Chapter 8
Conclusions

A huge variety of IoT devices have been widely deployed in our modern society for
environmental monitoring, infrastructure management, intelligent manufacturing,
operation optimization, safety and surveillance, remote healthcare, and so on, which
continue to generate more and more data and, therefore, demand efficient resource
sharing, data processing, information extraction, and decision making in real time.
This problem becomes much harder in mobile environments when tens of billions of
smartphones and vehicles are connecting to communication networks for different
mobile applications and interactive services, such as online gaming, high-resolution
video streaming, augmented/virtual reality, and autonomous driving.

Despite different industrial sectors and service scenarios, it is a clear trend
that IoT technologies, applications, and business models are fast evolving towards
more intelligent and sophisticated tasks such as cross-domain data analysis, pattern
recognition, and behavior prediction, in addition to traditional simpler tasks such
as data sensing, collection, and representation. In order to promote this trend, we
should develop a user-centric approach to enable different IoT applications being
automatically configured and customized according to specific user preferences,
service scenarios, and performance requirements in various industrial domains. This
approach requires ubiquitous deployments of multi-tier computing resources and
adaptive algorithms at global, regional, local, and device levels. However, as a
centralized solution, cloud computing alone cannot effectively support intelligent
IoT applications and services in different domains and scenarios, due to limited
communication bandwidth, intermittent network connectivity, and strict delay
constraints.

As an extension of cloud computing, fog computing is recently proposed and
deployed along the continuum from the cloud to things [1, 2], thus enabling
integration and collaboration of different computing resources at the cloud, in the
network, at the edge, and on the things (devices). In other words, fog computing
provides a new architecture to effectively pool dispersive computing resources
at different levels, and then bridge sophisticated service requirements with best
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available resources in the neighborhood. By doing this, it ensures timely data
processing, situation analysis, and decision making at the locations very close to
where the data is generated and should be used. Some aforementioned infrastructure
challenges, such as network connectivity, communication bandwidth, and service
latency, can be successfully addressed by fog computing for supporting more
intelligent IoT applications and services.

As discussed in previous IoT applications, fog computing manages and utilizes
the multi-tier computing, communication, and storage resources within the networks
between the cloud and things. It enables more intelligent services and makes those
applications more accessible, flexible, efficient, and cost-effective. Despite these
advantages, we are still facing many technical challenges in realizing the vision and
the full potential of fog computing. Here are some key research topics deserving a
further in-depth study.

1. Service Architecture and Orchestration: How to design a comprehensive archi-
tecture with new business models to consolidate the ecosystem of shared
resources and collaborative services? How to timely identify them and orches-
trate a sophisticated service to meet dynamic user requirements?

2. Interoperability and Interface: How to ensure smooth interoperations in vertical
and horizontal directions, i.e., between cloud, fog, and edge, and between
heterogeneous nodes? How to define proper interfaces between different network
entities and implement unified cross-domain policies and protocols?

3. Security and Privacy: How to safely find, use, and trust anonymous computing
nodes in your neighborhood? How to enjoy the benefits and convenience of
using shared computing resources without compromising any usera̧ŕs identity
or personal data?

4. Quality of Service: How to guarantee service quality in mobile environments
and multi-user scenarios, where dynamic network topologies, frequent node
handovers, and competing service requests will degrade system performance and
user experience.

5. Resource Virtualization and Management: How to accurately characterize the
capabilities and dynamics of different network resources in real time? How to
effectively model, virtualize, and manage them at device, local, regional, and
global levels?

6. Task Scheduling and Performance Optimization: How to divide a complex task
or service into several simpler ones, which could be processed in more efficient
ways by nearby computing resources? How to match sub-tasks with feasible
nodes for achieving the optimal performance and economic targets?
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