Skip to main content
  • 181 Accesses

Abstract

Perhaps epiphytism could be thought to be primarily the utilization of any possible surface for holdfast and establishment, i.e. a conquest of space with epiphytes found in aquatic and terrestrial habitats made up of various combinations of lower and higher plants. In aquatic habitats, i.e. lakes, rivers and the sea, there are always algae growing on each other. This not only applies to unicellular and filamentous forms and their colonies, but also to macroalgae like kelp and red algae. In the mesic terrestrial climate many lower plants are epiphytic, like mosses and lichens and also some forms of small pleurococcoid aerial green algae as well as cyanobacteria (blue green algae). In the tropics lower plants may constitute massive formations of epiphytic biomass, e.g. the mosses in upper montane cloud forests (“moss-forests”, Fig. 4.1.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Badger MR, Pfanz H, Büdel B, Heber U, Lange 0 (1993) Evidence for the functioning of photosynthetic CO2-concentrating mechanisms in lichens containing green algal and cyanobacterial photobionts. Planta 191: 57–70

    CAS  Google Scholar 

  • Ball E, Hann J, Kluge M, Lee HSJ, Lüttge U, Orthen B, Popp M, Schmitt A, Ting IP (1991) Ecophysiological comportment of the tropical CAM-tree Clusia in the field. I. Growth of Clusia rosea Jacq. on St.John, US Virgin Islands, Lesser Antilles. New Phytol 117: 473–481

    Google Scholar 

  • Benzing DH (1982) Mycorrhizal infections of epiphytic orchids in southern Florida. Am Orchid Soc Bull 51: 618–622

    Google Scholar 

  • Benzing DH (1989a) The evolution of epiphytism. In: Lüttge U (ed) Vascular plants as Epiphytes. Evolution and Ecophysiology. Ecological Studies, vol. 76. Springer, Berlin Heidelberg New York, pp 15–41

    Google Scholar 

  • Benzing DH (1989b) The mineral nutrition of epiphytes. In: Lüttge U (ed) Vascular plants as epiphytes. Evolution and ecophysiology. Ecological studies, vol 76. Springer, Berlin Heidelberg New York, pp 167–199

    Google Scholar 

  • Benzing DH (1990) Vascular epiphytes. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Benzing DH, Atwood JT (1984) Orchidaceae: ancestral habitats and current status in forest canopies. Syst Bot 9: 155–165

    Article  Google Scholar 

  • Bertsch A (1966) CO2-Gaswechsel und Wasserhaushalt der aerophilen Grünalge Apatococcus lobatus. Planta 70: 46–72

    Article  Google Scholar 

  • Borland AM, Griffiths H, Maxwell C, Broadmeadow MSJ, Griffiths NM, Barnes JD (1992) On the ecophysiology of the Clusiaceae in Trinidad: expression of CAM in Clusia minor L. during the transition from wet to dry season and characterization of three endemic species. New Phytol 122: 349–357

    Article  CAS  Google Scholar 

  • Broadmeadow MSJ, Griffiths H, Maxwell C, Borland A (1992) The carbon isotope ratio of plant organic material reflects temporal and spatial variations in CO2 within tropical forest formations in Trinidad. Oecologia 89: 435–441

    Google Scholar 

  • Bruns-Strenge S, Lange O (1992) Photosynthetische Primärproduktion der Flechte Cladonia portentosa an einem Dünenstandort auf der Nordseeinsel Baltrum. III. Anwendung des Photosynthesemodells zur Simulation von Tagesläufen des CO2-Gaswechsels und zur Abschätzung der Jahresproduktion. Flora 186: 127–140

    Google Scholar 

  • Cochard H, Ewers FW, Tyree MT (1994) Water relations of a tropical vine-like bamboo (Rhipidocladum racemiflorum) root pressures, vulnerability to cavitation and seasonal changes in embolism. J Exp Bot 45: 1085–1089

    Article  Google Scholar 

  • Coley PD, Kursar TA, Machado J-L (1993) Colonisation of tropical rainforest leaves by epiphylls: effect of site and host plant leaf lifetime. Ecology 74: 619–623

    Article  Google Scholar 

  • Davidson DW, Epstein WW (1989) Epiphytic associations with ants. In: Lüttge U (ed) Vascular plants as epiphytes. Evolution and ecophysiology. Ecological studies, vol. 76. Springer, Berlin Heidelberg New York, pp 200–233

    Google Scholar 

  • Ehleringer JR, Ullmann I, Lange OL, Farquhar GD, Cowan IR, Schulze ED, Ziegler H (1986) Mistletoes: a hypothesis concerning morphological and chemical avoidance of herbivory. Oecologia 70: 234–237

    Article  Google Scholar 

  • Ewers FW, Fisher JB, Chiu S-T (1990) A survey of vessel dimensions in stems of tropical lianas and other growth forms. Oecologia 84: 544–552

    Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989a) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40: 503–537

    Article  CAS  Google Scholar 

  • Farquhar GD, Hubick KT, Condon AG, Richards RA (1989b) Carbon isotope fractionation and plant water-use efficiency. In: Rundel PW, Ehleringer JR, Nagy KA (eds) Stable isotopes in ecological research. Ecological studies, vol 68. Springer, Berlin Heidelberg New York, pp 21–40

    Chapter  Google Scholar 

  • Franco AC, Ball E, Lüttge U (1992) Differential effects of drought and light levels on accumulation of citric and malic acids during CAM in Clusia. Plant Cell Environ 15: 821–829

    Article  CAS  Google Scholar 

  • Freiberg ER (1994) Stickstoffixierung in der Phyllosphäre tropischer Regenwaldpflanzen in Costa Rica. Dissertation, Ulm

    Google Scholar 

  • Galloway DJ (ed) (1991) Tropical lichens: their systematics, conservation, and ecology. The Systematics Association Spec. Vol. No 43. Clarendon Press, Oxford, pp 275–277

    Google Scholar 

  • Gessner F (1956) Der Wasserhaushalt der Epiphyten und Lianen. In: Ruhland W (ed) Handbuch der Pflanzenphysiologie, Bd III. Pflanze und Wasser. Springer, Berlin Göttingen Heidelberg, pp 915–950

    Google Scholar 

  • Givnish TJ, Burkhardt EL, Happel RE, Weintraub JD (1984) Carnivory in the bromeliad Brocchinia reducta, with a cost/benefit model for the general restriction of carnivorous plants to sunny, moist, nutrient-poor habitats. Am Nat 124: 479–497

    Article  Google Scholar 

  • Goh CJ, Kluge M (1989) Gas exchange and water relations in epiphytic orchids. In: Lüttge U (ed) Vascular plants as epiphytes. Evolution and ecophysiology. Ecological studies, vol 76. Springer, Berlin Heidelberg New York, pp 137–166

    Google Scholar 

  • Green TGA, Lange OL (1991) Ecophysiological adaptations of the lichen genera Pseudo-cyphellaria and Sticta to south temperate rainforests. Lichenologist 23: 267–282

    Google Scholar 

  • Green TGA, Lange OL (1994) Photosynthesis in poikilohydric plants: A comparison of lichens and bryophytes. In: Schulze E-D, Caldwell MC (eds) Ecophysiology of pho- tosynthesis. Ecological studies, vol 100. Springer, Berlin Heidelberg New York, pp 319–341

    Google Scholar 

  • Green TGA, Kilian E, Lange O (1991) Pseudocyphellaria dissimilis:a desiccation-sensitive, highly shade-adapted lichen from New Zealand. Oecologia 85: 498–503

    Google Scholar 

  • Griffiths H (1989) Carbon dioxide concentrating mechanisms and the evolution of CAM in vascular epiphytes. In: Lüttge U (ed) Vascular Plants as epiphytes: evolution and ecophysiology. Ecological studies, vol 76. Springer-Verlag, Berlin Heidelberg New York, pp 42–86

    Google Scholar 

  • Griffiths H, Smith JAC (1983) Photosynthetic pathways in the Bromeliaceae of Trinidad: relations between life forms, habitat preference and the occurrence of CAM. Oecologia 60: 176–184

    Article  Google Scholar 

  • Haag-Kerwer A, Franco AC, Lüttge U (1992) The effect of temperature and light on gas exchange and acid accumulation in the C3-CAM plant Clusia minor L. J Ex Bot 43: 345–352

    Article  CAS  Google Scholar 

  • Holbrook NM, Putz FE (1996a) Physiology of tropical vines and hemiepiphytes: plants that climb up and plants that climb down. In: Mulkey SS, Chazdon RL, Smith AP (eds) Tropical forest plant ecophysiology. Chapman and Hall, New York, pp 363–394

    Chapter  Google Scholar 

  • Holbrook NM, Putz FE (1996b) From epiphyte to tree:differences in leaf structure and leaf water relations associated with the transition in growth form in eight species of hemiepiphytes. Plant Cell Environ 19: 631–642

    Article  Google Scholar 

  • Holthe PA, Sternberg L da SL, Ting IP (1987) Developmental control of CAM in Peperomia scandens. Plant Physiol 84: 743–747

    Article  CAS  PubMed  Google Scholar 

  • Johansson DR (1975) Ecology of epiphytic orchids in West African rain forests. Am Orchid Soc Bull 44: 125–136

    Google Scholar 

  • Johansson DR (1977) Epiphytic orchids as parasites of their host trees. Am Orchid Soc Bull 46: 703–707

    Google Scholar 

  • Kress WJ (1989) The systematic distribution of vascular epiphytes. In: Lüttge U (ed) Vascular plants as epiphytes. Evolution and ecophysiology. Ecological studies, vol 76. Springer, Berlin Heidelberg New York, pp 234–261

    Google Scholar 

  • Lange OL, Kilian E, Ziegler H (1986) Water vapor uptake and photosynthesis of lichens:performance differences in species with green and blue-green algae as phycobionts. Oecologia 71: 104–110

    Article  Google Scholar 

  • Lange OL, Green TGA, Ziegler H (1988) Water status related photosynthesis and carbon, isotope discrimination in species of the lichen genus Pseudocyphellaria with green or blue-green photobionts and in photosymbiodemes. Oecologia 75: 494–501

    Article  Google Scholar 

  • Lange OL, Büdel B, Heber U, Meyer A, Zellner H, Green TGA (1993) Temperate rainforest lichens in New Zealand:high thallus water content can severely limit photosynthetic CO2 exchange. Oecologia 95: 303–313

    Article  Google Scholar 

  • Lange OL, Büdel B, Zellner H, Zotz G, Meyer A (1994) Field measurements of water relations and CO2 exchange of the tropical cyanobacterial basidiolichen Dictyonema glabratum in a Panamanian rainforest. Bot Acta 107: 279–290

    Google Scholar 

  • Lüttge U (1983) Ecophysiology of carnivorous plants. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology III. Responses to chemical and biological environment. Encyclopedia of plant physiology NS. Springer, Berlin Heidelberg New York, pp 489–517

    Google Scholar 

  • Lüttge U (1985) Epiphyten: Evolution und Ökophysiologie. Naturwissenschaften 72: 557–566

    Article  Google Scholar 

  • Lüttge U (1987) Carbon dioxide and water demand:crassulacean acid metabolism (CAM), a versatile ecological adaptation exemplifying the need for integration in ecophysiological work. New Phytol 106: 593–629

    Article  Google Scholar 

  • Lüttge U (1989) Vascular epiphytes:Setting the scene. In: Lüttge U (ed) Vascular plants as epiphytes. Evolution and ecophysiology. Ecological studies, vol 76. Springer, Berlin Heidelberg New York, pp 1–14

    Google Scholar 

  • Lüttge U (1991) Clusia: Morphogenetische, physiologische und biochemische Strategien von Baumwürgern im tropischen Wald. Naturwissenschaften 78:49–58

    Google Scholar 

  • Lüttge U, Ball E, Kluge M, Ong BL (1986) Photosynthetic light requirements of various tropical vascular epiphytes. Physiol Vég 24: 315–331

    Google Scholar 

  • Lüttge U, Kluge M, Bauer G (1994) Botanik, 2. Aufl. VCH, Weinheim

    Google Scholar 

  • Mägdefrau K (1956) Paläobiologie der Pflanzen. G Fischer, Jena

    Google Scholar 

  • Marshall JD, Ehleringer JR (1990) Are xylem-trapping mistletoes partially heterotrophic? Oecologia 84: 244–248

    Google Scholar 

  • Martin CE (1994) Physiological ecology of the Bromeliaceae. Bot Rev 60:1–82 Martius CFP von, 1840–1906: Flora brasiliensis, vol. 1–15. München and Leipzig

    Google Scholar 

  • Mez, C (1904) Physiologische Bromeliaceen-Studien. I. Die Wasser-Ökonomie der extrem atmosphärischen Tillandsien. Jahrb Wiss Bot 40: 157–229

    Google Scholar 

  • Nadkarni NM (1981) Canopy roots:convergent evolution in rainforest nutrient cycles. Science 124: 1023–1024

    Article  Google Scholar 

  • Nobel PS (1983) Biophysical plant physiology and ecology. Freeman, San Francisco

    Google Scholar 

  • Orozco A, Rada F, Azocar A, Goldstein G (1990) How does a mistletoe affect the water, nitrogen and carbon balance of two mangrove ecosystem species? Plant Cell Environ 13: 941–947

    Article  CAS  Google Scholar 

  • Pate JS, True KC, Kuo J (199la) Partitioning of dry matter and mineral nutrients during a reproduction cycle of the mistletoe Amyema linophyllum (Fenzl.) Tieghem parasitizing Casuarina obesa Miq. J Exp Bot 42: 427–439

    Google Scholar 

  • Pate JS, True KC, Rasins E (1991b) Xylem transport and storage of amino acids by S.W. Australian mistletoes and their hosts. J Exp Bot 42: 441–451

    Google Scholar 

  • Pittendrigh CS (1948) The bromeliad-Anopheles-malaria complex in Trinidad. I. The bromeliad flora. Evolution 2: 58–89

    Article  CAS  PubMed  Google Scholar 

  • Putz FE, Holbrook NM (1986) Notes on the natural history of hemiepiphytes. Selbyana 9: 61–69

    Google Scholar 

  • Rada F, Jaimez R (1992) Comparative ecophysiology and anatomy of terrestrial and epiphytic Anthurium bredmeyeri Schott in a tropical andean cloud forest. J Exp Bot 43: 723–727

    Article  Google Scholar 

  • Rey L, Sadik A, Fer A, Renandiu S (1991) Trophic relations of the dwarf mistletoe Arcen-thobium oxycedri with its host Juniperus oxycedrus. J Plant Physiol 138: 411–416

    Article  CAS  Google Scholar 

  • Richards PW (1952) The tropical rainforest. An ecological study. Cambridge University Press, London

    Google Scholar 

  • Richter A, Popp M, Mensen R, Stewart RG, von Willert DJ (1995) Heterotrophic carbon gain of the parasitic angiosperm Tapinanthus oleifolius. Aust J Plant Physiol 22: 537–544

    Article  CAS  Google Scholar 

  • Ruinen J (1953) Epiphytosis. A second view on epiphytism. Ann Bogor 1: 101–157

    Google Scholar 

  • Ruinen J (1961) The phyllosphere. I. An ecologically neglected milieu. Plant Soil 15: 81–109

    Article  Google Scholar 

  • Ruinen J (1965) The phyllosphere. III. Nitrogen fixation in the phyllosphere. Plant Soil 22: 375–395

    Article  Google Scholar 

  • Ruinen J (1974) Nitrogen fixation in the phyllosphere. In: Quispel A (ed) The biology of nitrogen fixation. North Holland Publishing, Amsterdam, pp 121–167

    Google Scholar 

  • Sallé G, Frochot H, Audary C (1993) Le gui. Recherche 24: 1334–1342

    Google Scholar 

  • Schimper AFW (1888) Botanische Mitteilungen aus den Tropen. I I. Epiphytische Vegetation Amerikas. G Fischer, Jena

    Google Scholar 

  • Schmitt AK, Lee HSJ, Lüttge U (1988) The response of the C3-CAM tree Clusia rosea, to light and water stress. I. Gas exchange characteristics. J Exp Bot 39: 1581–1590

    Google Scholar 

  • Schmitt AK, Martin CE, Lüttge U (1989) Gas exchange and water vapour uptake in the atmospheric CAM bromeliad Tillandsia recurvata L.:The influence of trichomes. Bot Acta 102: 80–84

    Google Scholar 

  • Schmucker T, Linnemann G (1959) Carnivorie. In: Handbuch der Pflanzenphysiologie, vol XI. Springer, Berlin Göttingen Heidelberg

    Google Scholar 

  • Schulze E-D, Turner NC, Glatzel G (1984) Carbon, water and nutrient relations of two mistletoes and their hosts: A hypothesis. Plant Cell Environ 7: 293–299

    Google Scholar 

  • Seifriz W (1924) The altitudinal distribution of lichens and mosses on Mt. Gedeh, Java. J Ecol 12: 307–313

    Article  Google Scholar 

  • Sipes DL, Ting IP (1985) Crassulacean acid metabolism and crassulacean acid metabolism modification in Peperomia camptotricha. Plant Physiol 77: 59–63

    Article  CAS  PubMed  Google Scholar 

  • Sipman HJM (1989) Lichen zonation in the Parque los Nevados transect. Stud Trop Andean Ecosyst 3: 461–483

    Google Scholar 

  • Sitte P (1991) Morphologie. In: Sitte P, Ziegler H, Ehrendorfer F, Bresinsky A (eds) Stras-burger Lehrbuch der Botanik. G Fischer, Stuttgart, pp 13–238

    Google Scholar 

  • Smith JAC (1989) Epiphytic bromeliads. In: Lüttge U (ed) Vascular plants as epiphytes. Evolution and ecophysiology. Ecological studies, vol. 76: Springer, Berlin Heidelberg New York, pp 109–138

    Google Scholar 

  • Smith JAC, Griffiths H, Lüttge U (1986a) Comparative ecophysiology of CAM and C3 bromeliads. I. The ecology of the Bromeliaceae in Trinidad. Plant Cell Environ 9: 359–376

    Google Scholar 

  • Smith JAC, Griffiths H, Lüttge U, Crook CE, Griffiths NM, Stimmel K-H (1986b) Comparative ecophysiology of CAM and C3 bromeliads. IV. Plant water relations. Plant Cell Environ 9: 395–410

    Google Scholar 

  • Stewart GR, Schmidt S, Handley LL, Turnbull MH, Erskine PD, Joly CA (1995) 15N natural abundance of vascular rainforest epiphytes:implications for nitrogen source and acquisition. Plant. Cell Environ 18: 85–90

    Google Scholar 

  • Tietze M (1906) Physiologische Bromeliaceen-Studien. II. Die Entwicklung der wasseraufnehmenden Bromeliaceen-Trichome. Zeitschrift für Naturwissenschaften, Halle 78: 1–50

    Google Scholar 

  • Ting IP, Bates L, O’Reilly Sternberg L, DeNiro MJ (1985) Physiological and isotopic aspects of photosynthesis in Peperomia. Plant Physiol 78: 246–249

    Article  CAS  PubMed  Google Scholar 

  • Treseder KK, Davidson DW, Ehleringer JR (1995) Absorption of ant-provided carbon dioxide and nitrogen by a tropical epiphyte. Nature 375: 137–139

    Article  CAS  Google Scholar 

  • Vareschi V (1980) Vegetationsökologie der Tropen. Ulmer, Stuttgart

    Google Scholar 

  • Walter H, Breckle S-W (1984) Ökologie der Erde, vol. 2. Spezielle Ökologie der tropischen und subtropischen Zonen. G Fischer, Stuttgart

    Google Scholar 

  • Winter K, Wallace BJ, Stocker GC, Roksandic Z (1983) Crassulacean acid metabolism in Australian vascular epiphytes and some related species. Oecologia 57: 129–141

    Article  Google Scholar 

  • Zotz G, Winter K (1994a) Photosynthesis and carbon gain of the lichen, Leptogium azu- reum, in a lowland tropical forest. Flora 189: 179–186

    Google Scholar 

  • Zotz G, Winter K (1994b) Annual carbon balance and nitrogen-use efficiency in tropical C3 and CAM epiphytes. New Phytol 126: 481–492

    Article  CAS  Google Scholar 

  • Zotz G, Tyree MT, Cochard H (1994) Hydraulic architecture, water relations and vulnerability to cavitation of Clusia uvitana Pittier: a C3-CAM tropical hemiepiphyte. New Phytol 127: 287–295

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lüttge, U. (1997). Epiphytes, Lianas and Hemiepiphytes. In: Physiological Ecology of Tropical Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03340-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03340-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03342-5

  • Online ISBN: 978-3-662-03340-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics