Skip to main content

Plant life of western North American ultramafics

  • Chapter
The Ecology of Areas with Serpentinized Rocks

Part of the book series: Geobotany ((GEOB,volume 17))

Abstract

In Western North America, ultramafics occur with decreasing abundance from California, Oregon, Washington, to British Columbia. All the occurrences are now considered parts of ophiolite suites, and are associated with the north-south trending cordilleras and their plate tectonics. The greatest concentrations of ultramafics, mostly as serpentinized peridotite, are in northwestern California and southwestern Oregon.

Soils weathered from ultramafic rocks are either devoid of vegetation (barrens) or support sparse but often distinctive floras. Cation exchange capacities range from 5.2 to 43 m . equivs 100 g-1 dry soil; pH values are around neutral (6.0 to 8.8); Mg/Ca quotients are invariably greater than 1.0; deficiencies of nitrogen and phosphorus are common and can be corrected by the addition of these elements, only in the presence of adequate calcium. Tissue analysis of serpentine plants often reveals high concentrations of magnesium and nickel.

Vegetation on ultramafic soils takes the form of distinctive variants of conifer or mixed conifer-hardwood forest, chaparral, or grassland. Often the serpentine (S) vegetation is sharply delimited from adjacent nonserpentine (NS) types, both by physiognomy (e.g., chaparral on serpentine, forest on nearby nonserpentine), and by species composition. The most striking contrasts in vegetation (S vs. NS) are in California and Oregon. Contrasts in S-NS vegetation are lessened in the Pacific Northwest, possibly because of increased precipitation, or the short post-Pleistocene history of the region, or both. Proctor (Chapter VI) notes a similar lessening of contrasts in S-NS vegetation in the United Kingdom.

Floras on ultramafic soils can be strikingly unusual. Three types of floristic elements can be found: (1) serpentine endemics, (2) local or regional indicator species, and (3) bodenvag species, taxa widespread on S and NS habitats. Also many NS taxa may be excluded from adjoining S soils.

The greatest concentration of species endemic to serpentine is in the Klamath-Siskiyou mountain complex of northwestern California and southwestern Oregon, with secondary concentrations in the North Coast and South Coast ranges and the Sierra Nevada of California. Endemics occur in all life-forms: trees and shrubs (e.g., Cupressus sargentii, Quercus durata, Ceanothus jepsonii), herbaceous perennials (e.g., Calochortus tiburonensis, Fritillaria liliacea, Lilium bolanderi); and annuals (e.g., Streptanthus batrachopus, Layia discoidea, Clarkia franciscana). Endemics belong to genera abundantly represented in the regional flora.

Widespread species that appear as local or regional indicators of serpentine include trees like Calocedrus decurrens and Pinus jeffreyi, shrubs (e.g., Heteromeles arbutifolia, Adenostoma fasciculation, Ceanothus cuneatus) and herbs (e.g., Streptanthus glandulosus, Darlingtonia californica, Aspidotis densa, Xerophyllum tenax).

Indifferent or bodenvag species are often racially differentiated into tolerant and intolerant biotypes.

The fauna on western North American serpentines has received but scant attention, and merits closer study. Butterfly species are known to be closely tied to serpentine plants as food sources; one instance of plant mimicry of butterfly eggs is cited.

The evolution of a serpentine flora may involve a variety of speciational routes. The most probable sequence for diploid taxa could involve (1) genetic preadaptation to serpentine within a NS species; (2) racial fixation of the preadapted genotype; (3) further morphological and physiological divergence yielding an infraspecific variant; (4) attaining species status by further genetic and ecological isolation. This sequence is illustrated by Streptanthus, a genus of western North American crucifers, with varying degrees of fidelity and narrow endemism to California and Oregon serpentines. A more rapid mode of speciation on serpentine, saltational speciation by catastrophic selection, has been proposed.

Adaptation to ultramafic soils is likely to involve both physiological and morphological modifications. Xerophy-tism, nanism, glaucescence, plagiotropism and color changes (anthocyanic, chlorotic) are frequent attributes of serpentine species. A few species possess the ability to accumulate over 1000 μgg -1of nickel in their foliar dry matter (hyperaccumulators).

Western North American serpentines have been exploited for minerals, timber, grazing and agriculture, with consequent effects on their floras. Mining for mercury, nickel and chromium, as well as geothermal power develop-ments, have created the greatest disturbances to them. Only modest efforts have been made to preserve samples of serpentine vegetation. Some state and federal wilderness areas include serpentine vegetation; other serpentine areas are ‘protected’ either by neglect or because they are valued as watershed areas. A very few natural areas specifically for serpentine vegetation have been established in the three Pacific Coast states. None are known for British Columbia.

The red-rock forest may seem hellish to us, but it is a refuge to its flora…. it is the obdurate physical adversity of things such as peridotite bedrock which often drives life to its most surprising transformations. David Rains Wallace, The Klamath Knot (1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, E. B., W. E. Wildman & W. C. Lynn. 1985. Ultramafic (Serpentinitic) mineralogy class. In: Kittrick, J. A., et al. (eds.), Mineral Classification of Soils, Soil Sci. Soc. Amer., Madison, WI.

    Google Scholar 

  • Antonovics, J., A. D. Bradshaw & R. G. Turner. 1971. Heavy metal tolerance in plants. In: Advances in Ecological Re-search 7: 1–85.

    Article  Google Scholar 

  • Baldwin, E. M. 1959. Geology of Oregon. University of Ore-gon Cooperative Bookstore, Eugene, Oregon.

    Google Scholar 

  • Barbour, M. G. and J. Major. 1977. Terrestrial Vegetation of California. John Wiley and Sons, New York.

    Google Scholar 

  • Bradshaw, A. D. 1976. Pollution and evolution. In: Mansfield, T. A. (ed.), Effects of Air Pollutants on Plants, pp. 135–159. Cambridge Univ. Press.

    Google Scholar 

  • Brink, V. C., K. Fletcher & S. Parmar. 1972 (?). Trace ele-ment levels in plants growing on ultramafic (ultrabasic) rocks in British Columbia. First Report (mimeographed). Univ. of British Columbia, Vancouver.

    Google Scholar 

  • Brooks, R. R., R. S. Morrison, R. D. Reeves, T. R. Dudley & Y. Akman. 1979. Hyperaccumulation of nickel by Alys-sum Linnaeus (Cruciferae). Proc. Roy. Soc. Lond. Sec. B, 203: 387–403.

    Article  CAS  Google Scholar 

  • Brown, E. H. 1977. Ophiolite on Fidalgo Island, Washington. In: Coleman, R. G. and W. P. Irwin (eds.), North American Ophiolites, pp. 67–73. Bulletin 95, Oregon Department of Geology and Mineral Industries, Portland. Ore-gon.

    Google Scholar 

  • Christiansen, N. I. 1971. Fabric, seismic anisotropy, and tectonic history of the Twin Sisters dunite, Washington. Geol. Sci. Amer. Bull. 82: 1681–1994.

    Article  Google Scholar 

  • Clausen, J., D. D. Keck and W. M. Heisey. 1940. Experi-mental studies on the nature of species. I. Effect of varied environments on western North American plants. Carnegie Inst. publ. no. 520, Washington.

    Google Scholar 

  • Clausen, J., D. D. Keck & W. M. Heisey. 1948. Experimental studies on the nature of species. III. Environmental respon-ses of climatic races of Achillea Carnegie Inst. publ. no. 581, Washington.

    Google Scholar 

  • Cody, W. J. 1983. Adiantum pedatum ssp. calderi,a new subspecies in north-eastern North America. Rhodora 85: 93–96.

    Google Scholar 

  • Cody, W. J. and D. M. Britton. 1984. Polystichum lemmonü, a rock shield-fern new to British Columbia and Canada. Canadian Field-Naturalist 98: 375.

    Google Scholar 

  • Coleman, R. G. 1977. Ophiolites. Ancient Oceanic Lithosphere. Springer-Verlag, Berlin.

    Google Scholar 

  • Coleman, R. G. & W. P. Irwin. 1974. Ophiolites and ancient continental margins. In: Burk, C. A. & C. L. Drake (eds.), The Geology of Continental Margins, pp. 921–931, Springer-Verlag, New York.

    Google Scholar 

  • Coleman, R. G. & W. P. Irwin (eds.). 1977. North American Ophiolites. Bulletin 95. Oregon Department of Geology and Mineral Industries, Portland, Oregon.

    Google Scholar 

  • Dickinson, H. and J. Antonovics. 1973. Theoretical consider-ation of sympatric divergence. Amer. Nat. 107: 256–274.

    Article  Google Scholar 

  • Dyksterhuis, E. L. 1981. Soil Survey Grant County, Oregon. Central Part. U.S.D.A. Soil Conservation Service, Wash-ington, D.C.

    Google Scholar 

  • Forde, M. B. & D. G. Faris. 1962. Effect of introgression on the serpentine endemism of Querces durata Evolution 16: 338–347.

    Article  Google Scholar 

  • Franklin, J. F. & C. T. Dyrness. 1973. Natural vegetation of Oregon and Washington. U.S.D.A. Forest Service General Technical Report PNW-8 U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Funkhouser, A. 1980. [Unpublished data of student project - College of the Pacific, Stockton, California.]

    Google Scholar 

  • Furnier, G. R. and W. T. Adams. 1986. Geographic patterns of allozyme variation in Jeffrey pine. Amer. J. Bot. 73: 1009–1015.

    Article  Google Scholar 

  • Gordon, A. & C. B. Lipman. 1926. Why are serpentine and other magnesian soils infertile? Soil Sci. 22: 291–302.

    Article  CAS  Google Scholar 

  • Gould, S. J. and R. Lewontin. 1978. The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proc. R. Soc. London 205: 581–598.

    Article  Google Scholar 

  • Gray, J. G. 1979. The vegetation of two California mountain slopes. Madrono 25: 177–185.

    Google Scholar 

  • Griffin, J. R. 1965. Digger pine seedling response to serpen-tinite and non-serpentinite soil. Ecology 46: 801–807.

    Article  Google Scholar 

  • Griffin, J. R. & W. B. Critchfield. 1972. Distribution of forest trees in California. U.S.D.A. For. Serv. Res. Paper PSW-82.

    Google Scholar 

  • Hardham, C. B. 1962. The Santa Lucia Cupressus sargentii groves and their associated northern hydrophilous and en-demic species. Madrono 16: 173–178.

    Google Scholar 

  • Higgins, S. S. 1984. A comparison of plant responses to stress and competition on serpentine and zonal soil. PhD Thesis, Wash. State Univ., Pullman, Washington.

    Google Scholar 

  • Higgins, S. S. and R. N. Mack. 1987. Comparative responses of Achillea millefolium ecotypes to competition and soil type. Oecologia 73: 591–597.

    Article  Google Scholar 

  • Himmelberg, G. R. & R. G. Coleman. 1968. Chemistry of primary minerals and rocks from the Red Mountain-Del Puerto Ultramafic mass, California. U.S. Geol. Survey Prof. Paper 600-C: C18–C26.

    Google Scholar 

  • Hitchcock, C. L. & A. Cronquist. 1973. Flora of the Pacific Northwest. University of Washington Press, Seattle.

    Google Scholar 

  • Hitchcock, C. L., A. Cronquist, M. Ownbey & J. W. Thomp-son. 1964. Vascular Plants of the Pacific Northwest. vol. 2 (Salicaceae to Saxifragaceae). Univ. of Wash. Press, Seattle.

    Google Scholar 

  • Hobbs, R. J. & H. A. Mooney. 1985. Community and population dynamics of serpentine grassland annuals in relation to gopher disturbance. Oecologia 67: 342–351.

    Article  Google Scholar 

  • Holland, S. S. 1961. Jade in British Columbia. Annual Rept. Mines and Petroleum Resources, British Columbia, Vic-toria.

    Google Scholar 

  • Howell, J. T. 1970. Marin Flora, 2nd Ed. Univ. of Calif. Press, Berkeley.

    Google Scholar 

  • Huntting, M. T. 1961. Geological map of the State of Wash-ington. Wash. State Div. of Mines and Geol., Olympia.

    Google Scholar 

  • Irwin, W. P. 1977. Ophiolitic terranes of California, Oregon. and Nevada. In: Coleman, R. G. and W. P. Irwin (eds.), North American Ophiolites, pp. 75–92. Bulletin 95. Ore-gon Depart. of Geol. and Mineral Industries, Portland, Oregon.

    Google Scholar 

  • Istok, J. D. & M. E. Harward. 1982. Influence of soil moisture on smectite formation in soils derived from serpentinite. Soil Sci. Soc. of Amer. Journ. 46: 1106–1108.

    Article  Google Scholar 

  • Jenkinson, J. L. 1974. Ponderosa pine progenies: differential response to ultramafic and granitic soils. U.S.D.A. For. Serv. Res. Paper PSW-101.

    Google Scholar 

  • Jenny, H. 1941. Factors of Soil Formation. McGraw-Hill, New York.

    Google Scholar 

  • Jenny, H. 1980. The Soil Resource: Origin and Behavior. Springer-Verlag, New York.

    Google Scholar 

  • Johnson, M. P., A. D. Keith & P. R. Ehrlich. 1968. The population biology of the butterfly, Euphydryas editha VII. Has E. editha evolved a serpentine race? Evolution 22: 422–423.

    Article  Google Scholar 

  • Jones, M. B., C. E. Vaughn & R. S. Harris. 1976. Critical Ca levels and Ca/Mg ratios in Trifolium subterranean L. grown on serpentine soil. Agronomy Journ. 68: 756–759.

    Article  CAS  Google Scholar 

  • Jones, M. B., W. A. Williams & J. E. Ruckman. 1977. Fertilization of Trifolium subterranean L. growing on serpentine soils. Soil Sci. Soc. Amer. Journ. 41: 87–89.

    Article  CAS  Google Scholar 

  • Kazantzis, G. 1980. Mercury. In: Waldron, H. A. (ed.), Met-als in the Environment. pp. 221–261. Academic Press, New York.

    Google Scholar 

  • Koenigs, R. L., W. A. Williams & M. B. Jones. 1982a. Factors affecting vegetation on a serpentine soil. I. Princi-pal components analysis of vegetation data. Hilgardia 50: 1–14.

    Google Scholar 

  • Koenigs, R. L., W. A. Williams, M. B. Jones & A. Wallace. 1982b. Factors affecting vegetation on serpentine soil. II. Chemical composition of foliage and soil. Hilgardia 50: 15–26.

    Google Scholar 

  • Krause, W. 1958. Andere Bodenspezialisten. Handb. Pflan-zenphysiol. 4: 755–806.

    Google Scholar 

  • Kruckeberg, A. R. 1951. Intraspecific variability in the re-sponse of certain native plant species to serpentine soil. Amer. Journ. Bot. 38: 408–419.

    Article  CAS  Google Scholar 

  • Kruckeberg, A. R. 1954. The ecology of serpentine soils: A symposium. III. Plant species in relation to serpentine soils. Ecology 35: 267–274.

    Google Scholar 

  • Kruckeberg, A. R. 1964. Ferns associated with ultramafic rocks in the Pacific Northwest. Amer. Fern Journ. 54: 113–126.

    Article  Google Scholar 

  • Kruckeberg, A. R. 1967. Ecotypic response to ultramafic soils by some plant species of northwestern United States. Brit-tonia 19: 133–151.

    Google Scholar 

  • Kruckeberg, A. R. 1969a. Soil diversity and the distribution of plants, with examples from western North America. Madrono 20: 129–154.

    Google Scholar 

  • Kruckeberg, A. R. 1969b. Plant life on serpentinite and other ferromagnesian rocks in northwestern North America. Sy-esis 2: 15–114.

    Google Scholar 

  • Kruckeberg, A. R. 1979. Plants that grow on serpentine - A hard life. Davidsonia 10: 21–29.

    Google Scholar 

  • Kruckeberg, A. R. 1984. California serpentines: Flora, veg-etation. geology. soils and management problems. Univ. of Calif. Pubis. in Botany 78: 1–180.

    Google Scholar 

  • Kruckeberg, A. R. and J. L. Morrison. 1983. New Streptanthus taxa (Cruciferae) from California. Madrono 30: 230–244.

    Google Scholar 

  • Lindsley-Griffin, N. 1977. The Trinity ophiolite, Klamath Mountains, California. In: Coleman, R. G. & W. P. Irwin (eds.), pp. 107–120, North American Ophiolites. Bulletin 95. Oregon Depart. of Geol. and Mineral Industries, Port-land, Oregon.

    Google Scholar 

  • Lipman, C. B. 1926. The bacterial flora of serpentine soils. Journ. of Bacteriology 12: 315–318.

    CAS  Google Scholar 

  • Loew, O. & D. W. May. 1901. The relation of lime and magnesia to plant growth. I. Liming of soils from a physio-logical standpoint. II. Experimental study of the relaton of lime and magnesia to plant growth. U.S. Dept. of Agr. Plant Ind. Bull. I, 53 pp.

    Google Scholar 

  • Lolkema, P. C., M. H. Donker, A. J. Schouten and W. H. O. Ernst. 1984. The possible role of metallothioneins in copper tolerance of Silene cucuhahis Planta 162: 174–179.

    Article  CAS  Google Scholar 

  • Maas, J. L. and Stuntz. D. E. 1969. Mycoecology on serpent-tine soil. Mycologia 61: 11106–1116.

    Article  Google Scholar 

  • Madhok, O. P. and R. B. Walker. 1969. Magnesium nutrition of two species of sunflower. Plant Physiol. 44: 1016–1022.

    Article  PubMed  CAS  Google Scholar 

  • Main, J. L. 1974. Differential responses to magnesium and calcium by native populations of Agropyron spicatum. Amer. Journ. of Botany 61: 931–937.

    Article  CAS  Google Scholar 

  • Main, J. L. 1981. Magnesium and calcium nutrition of a serpentine endemic grass. Amer. Midland Naturalist 105: 196–199.

    Article  CAS  Google Scholar 

  • Martin, W. E., J. Vlamis and N. W. Stice. 1953. Field correc-tion of calcium deficiency on a ser-pentine soil. Agronomy Journ. 45: 204–208.

    Article  CAS  Google Scholar 

  • Mason, H. L. 1946a. The edaphic factor in narrow endemism. I. The nature of environmental influences. Madrono 8: 209–226.

    Google Scholar 

  • Mason, H. L. 1946b. The edaphic factor in narrow endemism. II. The geographic occurrence of plants of highly restricted patterns of distribution. Madrono 8: 241–257.

    Google Scholar 

  • McKee, B. 1972. Cascadia: The Geological Evolution of the Pacific Northwest. McGraw-Hill, New York.

    Google Scholar 

  • McMillan, C. 1956. The edaphic restriction of Cupressus and Pines in the Coast Ranges of central California. Ecol. Monogr. 26: 177–212.

    Article  Google Scholar 

  • McNaughton, S. J. 1968. Structure and function in California grasslands. Ecology 49: 962–972.

    Article  Google Scholar 

  • Miller, R. B. 1980. Structure, petrology and emplacement of the ophiolitic Ingalls Complex, North central Cascades, Washington. PhD Thesis, Univ. of Wash., Seattle.

    Google Scholar 

  • Monger, J. W. H. 1977. Ophiolitic assemblages in the Canadian Cordillera. In: Coleman, R. G. & W. P. Irwin (eds.), pp. 59–65, North American Ophiolites. Oregon Dept. of Geol. and Mineral Industries, Portland, Oregon.

    Google Scholar 

  • Moral, R. del. 1972. Diversity patterns in forest vegetation of the Wenatchee Mountains, Washington. Bull. Torrey Bot. Club 99: 57–64.

    Article  Google Scholar 

  • Moral, R. del. 1974. Species patterns in the upper North Fork Teanaway River drainage, Wenatchee Mountains, Washington. Syesis 7: 13–30.

    Google Scholar 

  • Moral, R. del. 1976. Wilderness in ecological research: an example from the Alpine Lakes. Pp. 173–194, in Terrestrial and Aquatic Ecological Studies of the Northwest, ed. R. A. Soltero, Eastern Washington State College Press, Cheney, Wash.

    Google Scholar 

  • Moral, R. del. 1982. Control of vegetation on contrasting substrates: herb patterns on serpentine and sandstone. Amer. Journ. Botany 69: 227–238.

    Article  Google Scholar 

  • Moral, R. del, A. F. Watson & R. S. Fleming. 1976. Vegetation structure in the Alpine Lakes region of Washington State: Classification of vegetation on granitic rocks. Syesis 9: 291–316.

    Google Scholar 

  • Munz, P. A. & D. D. Keck. 1959. A California Flora. Univ. of Calif. Press, Berkeley and Los Angeles.

    Google Scholar 

  • Norris, R. M. & R. W. Webb. 1976. Geology of California. John Wiley & Sons, New York.

    Google Scholar 

  • Novak, F. A. 1928. Quelques remarques relatives au problem de la vegetation sur les terrain serpentiniques. Preslia 6: 42–71

    Google Scholar 

  • Patton, W. W., Jr., I. L. Trailleur, W. P. Brosge & M. A. Lanphere. 1977. Preliminary report on the ophiolites of northern and western Alaska. In: Coleman, R. G. and W. P. Irwin, pp. 51–57, North American Ophiolites. Bull. 95, Dept. of Geol. and Mineral Industries, Portland, Oregon.

    Google Scholar 

  • Pegtel, D. M. 1980. Evidence for ecotypic differentiation in Lupinus-associated Rhizobium. Acta Bot. Neerl. 29: 429–441.

    Google Scholar 

  • Peterson, P. J. 1971. Unusual accumulations of elements by plants and animals. Science Progress, Oxford 59: 505–526.

    CAS  Google Scholar 

  • Pichi-Sermolli, R. 1948. Flora e vegetazione delle serpentine e delle altre ofioliti dell’alta valle del Trevere (Toscana). Webbia 6: 1–380.

    Google Scholar 

  • Proctor, J. 1970. Magnesium as a toxic element. Nature 227: 742–743.

    Article  PubMed  CAS  Google Scholar 

  • Proctor, J., W. R. Johnston, D. A. Cottam & A. B. Wilson. 1981. Field-capacity water extracts from serpen-ttine soils. Nature 294: 245–246.

    Article  CAS  Google Scholar 

  • Proctor, J. & S. R. J. Woodell. 1975. The ecology of serpentine soils. Adv. Ecol. Res. 9: 255–265.

    Article  Google Scholar 

  • Proctor, J. & Whitten, K. 1971. A population of the valley pocket gopher on a serpentine soil. Amer. Midi. Nat. 85: 517–521.

    Article  Google Scholar 

  • Rai, D., G. H. Simonson & C. T. Youngberg. 1970. Serpent-ine-derived soils in watershed and forest management. Report to the U.S. Dept. of Interior, Bureau of Land Management. Dept. of Soils, Oregon State Univ., Corvallis, Oregon (Mimeographed).

    Google Scholar 

  • Raleigh, C. B. 1965. Structure and petrology of an alpine peridotite on Cypress Island, Washington, U.S.A. Beitr. zur Mineralogie und Petrographie 11: 719–741.

    CAS  Google Scholar 

  • Ramp, L. and N. V. Peterson. 1979. Geology and Mineral Resources of Josephine County, Oregon. Bull. 100, Ore-gon Dept. of Geol. and Mineral Industries, Portland, Ore-gon.

    Google Scholar 

  • Rauser, W. E. & N. R. Curvetto. 1980. Metallothionein oc-curs in roots of Agrostis tolerant to excess copper. Nature 287: 563–564.

    Article  CAS  Google Scholar 

  • Raven, P. H. 1964. Catastrophic selection and edaphic en-demism. Evolution 18: 336–338.

    Article  Google Scholar 

  • Raven, P. H. & D. I. Axelrod. 1978. Origin and relationships of the California flora. Univ. of Calif. Pubis. in Botany 72: 1–134.

    Google Scholar 

  • Reeves, R. D., R. R. Brooks & R. M. Macfarlane. 1981. Nickel uptake by Californian Streptanthus and Caulanthus with particular reference to the hyperaccumulator S. polygaloides Gray (Brassicaceae). Amer. Journ. Bot. 68: 708–712.

    Article  CAS  Google Scholar 

  • Reeves, R. D., R. M. Macfarlane and R. R. Brooks. 1983. Accumulation of nickel and zinc by western North Amer-ican genera containing serpentine-tolerant species. Amer. Journ. Bot. 70: 1297–1303.

    Article  CAS  Google Scholar 

  • Ritter-Studnička, H. 1968. Die Serpentinomorphosen der Flora Bosniens. Botanische Jahrb. 88: 443–465.

    Google Scholar 

  • Robinson, W. O., G. Edgington and H. G. Byers. 1935. Chemical studies of infertile soils derived from rocks high in magnesium and generally high in chromium and nickel. U.S. Dept. of Agric. Tech. Bull. 471, pp. 1–28.

    Google Scholar 

  • Saleeby, J. 1977. Fracture zone tectonics, continental margin fragmentation, and emplacement of the Kings-Kaweah ophiolite belt, southwest Sierra Nevada, California. In: Coleman, R. G. and W. P. Irwin (eds.), North American Ophiolites, pp. 141–159, Bull. 95, Dept. of Geol. and Mineral Industries, Portland, Oregon.

    Google Scholar 

  • Samiullah, Y., A. R. Kruckeberg and P. J. Peterson. 1985. Hyperaccumulation of nickel by Arenaria rubella (Wahlenb.) J. R. Smith (Caryophyllaceae) from Washington, U.S.A. Unpbl. manuscript.

    Google Scholar 

  • Senkayi, A. L. 1977. Clay mineralogy of poorly drained soils developed from serpentinite rocks. PhD Thesis, Univ. of Calif., Davis.

    Google Scholar 

  • Shapiro, A. M. 1981. Egg-mimics of Streptanthus (Cruciferae) deter oviposition by Pieris sisyinbrii (Lepidoptera: Pieridae). Oecologia 48: 142–143.

    Article  Google Scholar 

  • Sharsmith, H. 1961. The genus Hesperolinon (Linaceae). Univ. of Calif. Pubis. in Botany 32: 235–314.

    Google Scholar 

  • Siddall, J. L., K. L. Chambers & D. H. Wagner. 1979. Rare, threatened and endangered vascular plants in Oregon - an interim report. Oregon Natural Area Preserves Advisory Committee, Salem, Oregon.

    Google Scholar 

  • Smith, J. P., Jr., R. J. Cole & J. O. Sawyer, Jr., in collabor-ation with W. R. Powell. 1980. Inventory of rare and en-dangered vascular plants of California. Special Publ. No. 1 (2nd ed.) Calif. Native Plant Soc., Berkeley.

    Google Scholar 

  • Soil Survey Staff. 1975. Soil Taxonomy. U.S.D.A. Agric. Handbook 436.

    Google Scholar 

  • Stansell, V. 1980. Darlingronia californica Geographical dis-tribution. habitat and threats. Endangered Species Office. U.S. Fish and Wildlife Serv., Portland, Oregon.

    Google Scholar 

  • Stebbins, G. L., Jr. 1942. The genetic approach to problems of rare and endemic species. Madrono 6: 241–272.

    Google Scholar 

  • Stebbins, G. L. 1980. Rarity of plant species: A synthetic viewpoint. Rhodora 82: 77–86.

    Google Scholar 

  • Stebbins, G. L., Jr. and J. Major. 1965. Endemism and speci-ation in the California flora. Ecol. Monogr. 35: 1–35.

    Article  Google Scholar 

  • Stebbins, R. 1949. Speciation in salamanders of the pletho-dontid genus Ensatina. Univ. of Calif. PubIs. in Zool. 48: 377–526.

    Google Scholar 

  • Tadros, T. M. 1957. Evidence of the presence of an edaphobiotic factor in the problem of serpentine tolerance. Ecol-ogy 38: 14–23.

    Google Scholar 

  • Thayer, T. P. 1956a. Preliminary Geologic Map of the Aldrich Mountain Quadrangle, Oregon. Mineral Investigations. Field Studies Map MF 49. U.S. Geol. Surv., Washington, D.C.

    Google Scholar 

  • Thayer, T. P. 1956b. Preliminary Geologic Map of the Mt. Vernon Quadrangle, Oregon. Mineral Investigations. Field Studies Map MF 50. U.S. Geol. Surv., Washington, D.C.

    Google Scholar 

  • Thayer, T. P. 1956c. Preliminary Geologic Map of the John Day Quadrangle, Oregon. Mineral Investigations. Field Studies Map FM 51. U.S. Geol. Surv., Washington, D.C.

    Google Scholar 

  • Thayer, T. P. 1977. The Canyon Mountain Complex, Oregon, and some problems of ophiolites. In: Coleman, R. G. and W. P. Irwin (eds.), North American Ophiolites, pp. 93–105. Bulletin 95, Oregon Dept. of Geol. and Mineral Industries, Portland, Oregon.

    Google Scholar 

  • Turitzin, S. N. 1981. Nutrient limitations to plant growth in a California serpentine grassland. Amer. Midland Naturalist 107: 95–99.

    Article  Google Scholar 

  • Vance, J. A. 1957. The geology of the Sauk River Area in the northern Cascades of Washington. PhD Thesis, Univ. of Wash., Seattle.

    Google Scholar 

  • Vlamis, J. 1949. Growth of lettuce and barley as influenced by degree of Ca saturation of soil. Soil Sci. 67: 453–466.

    Article  CAS  Google Scholar 

  • Vlamis, J. & H. Jenny. 1948. Calcium deficiency in serpentine soils as revealed by absorbent technique. Science 107: 549–551.

    Article  PubMed  CAS  Google Scholar 

  • Vogl, R. J. 1973. Ecology of knobcone pine in the Santa Ana Mountains, California. Ecol. Monogr. 43: 125–143.

    Article  Google Scholar 

  • Walker, R. B. 1948. Molybdenum deficiency in serpentine barren soils. Science 108: 473–475.

    Article  PubMed  CAS  Google Scholar 

  • Walker, R. B. 1954. Factors affecting plant growth on serpen-tine soils. In: Whittaker, R. H. (ed.), The ecology of ser-pentine soils: A symposium. Ecology 35: 258–266.

    Google Scholar 

  • Walker, R. B., H. M. Walker, and P. R. Ashworth. 1955. Calcium-magnesium nutrition with special reference to serpentine soils. Plant Physiol. 30: 214–221.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, A., M. B. Jones & G. V. Alexander. 1982. Mineral composition of native woody plants growing on a serpen-ttine soil in California. Soil Sci. 134: 42–44.

    Article  CAS  Google Scholar 

  • Wallace, D. R. 1983. The Klamath Knot: Explorations of Myth and Evolution. Sierra Club Books, San Francisco.

    Google Scholar 

  • Waring, R. H. 1969. Forest plants of the eastern Siskiyous: Their environmental and vegetational distribution. Northwest Science 43: 1–17.

    Google Scholar 

  • Waring, R. H., W. H. Emmingham, and S. W. Running. 1975. Environmental limits of an endemic spruce, Picea breweriana Canadian Journ. of Bot. 53: 1599–1613.

    Article  Google Scholar 

  • Waring, R. H. and J. Major. 1964. Some vegetation of the California coastal redwood region in relation to gradients of moisture, nutrients, light and temperature. Ecol. Mon-ogr. 34: 167–215.

    Article  Google Scholar 

  • Wells, P. V. 1962. Vegetation in relation to geological sub-stratum and fire in the San Luis Obispo quadrangle, Cali-fornia. Ecol. Mon-ogr. 32: 79–103.

    Article  Google Scholar 

  • Wherry, E. T. 1932. Ecological studies of serpentine-harren plants. I. Ash Composition. Proc. Pennsylvania Acad. Sei. 6: 32–38.

    CAS  Google Scholar 

  • White, C. D. 1967. Absence of nodule formation in Ceanorhus cuneatus in serpentine soils. Nature 215: 875.

    Article  Google Scholar 

  • White, C. D. 1971. Vegetation - soil chemistry correlations in serpentine ecosystems. PhD Thesis. University of Oregon, Eugene.

    Google Scholar 

  • White, M. J. D. 1978. Modes of speciation. Wh. H. Freeman and Co., San Francisco.

    Google Scholar 

  • Whittaker, R. H. 1954. IV. The vegetational response to serpentine soils. In: Whittaker. R. H. (ed.). The ecology of serpentine soils: A symposium. Ecology 35: 275–288.

    Google Scholar 

  • Whittaker, R. H. 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol. Monogr. 30: 279–338.

    Article  Google Scholar 

  • Whittaker, R. H. 1961. Vegetation history of the Pacific Coast states and the “central” significance of the Klamath region. Madrono 16: 5–23.

    Google Scholar 

  • Whittaker, R. H. 1975. Communities and ecosystems. 2nd Ed. MacMillan Publ. Co.. Inc., New York.

    Google Scholar 

  • Wildman, W. E., M. L. Jackson & L. D. Whittig. 1968a. Serpentinite rock dissolution as a function of carbon di-oxide pressure in aqueous solution. Amer. Mineralogist 53: 1252–1263.

    CAS  Google Scholar 

  • Wildman, W. E., M. L. Jackson & L. D. Whittig 1968b. Iron-rich montmorillonite formation in soils derived from serpentinite. Soil Sci. Soc. of Amer. Proc. 32: 787–794.

    Article  CAS  Google Scholar 

  • Woodell, S. R. J., H. A. Mooney & H. Lewis. 1975. The adaptation to serpentine soils in California of the annual species Linandni.s nndrosaceus (Polemoniaceae). Bull. Torrey Bot. Club 102: 232–238.

    Article  CAS  Google Scholar 

  • Zobel, D. G. and G. M. Hawk. 1980. The environment of Chanurecvpauis lou’toniana. Amer. Midi. Nat. 103: 280–297.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

B. A. Roberts J. Proctor

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kruckeberg, A.R. (1992). Plant life of western North American ultramafics. In: Roberts, B.A., Proctor, J. (eds) The Ecology of Areas with Serpentinized Rocks. Geobotany, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3722-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3722-5_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5654-0

  • Online ISBN: 978-94-011-3722-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics