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Abstract

Benthic metazoans play a key role as test organisms in toxicity analyses of aquatic ecosystems. This report
gives an overview of the species of benthic metazoans used for the assessment of toxicity in freshwater and
marine sediments, as well as of the criteria relevant to the choice between test species and procedures. The main
applications of these organisms are mono-species bioassays, test-batteries, analyses of benthic communities and
bioaccumulation studies. Sediment toxicity assays, including acute and chronic exposures, have been developed
for nematodes, insects, oligochaetes, polychaetes, crustaceans, molluscs and echinoderms. At least 30 species
of freshwater and 71 species of marine and estuarine benthic metazoans have thus far been used in sediment
toxicity bioassays. Although aquatic pollution is a world-wide problem, most sediment toxicity bioassays have
been developed for organisms native to Europe and North America. The most common bioassay endpoints are
mortality, development, growth and behavioural responses. The value of genetic, biochemical, physiological and
pathological responses as toxicity endpoints is currently being investigated. The quest for additional test species
and protocols is still a worthwhile endeavour in sediment ecotoxicology.
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metazoans occupy a variety of trophic levels, acting
as prey, predators, herbivores, omnivores, collectors,
gatherers, shredders and filter feeders. In addition,
many meiobenthic species influence through preda-
tion the abundance and biomass of bacteria in the sedi-
ment, Hence, these organisms control to a large extent
the cycling dynamics of energy, nutrients and organ-
ic matter in the benthos and the water column (e.g.
Carpenter, 1988; Minshall, 1988). Contamination is
known to alter zoobenthic communities in freshwater
(e.g. Malueg et al., 1984a, b) and marine environments
(e.g. Becker et al., 1990), thus affecting significantly
the integrity of ecosystems. The disappearance of cer-
tain benthic species, e.g. of hydrocarbon-degrading
microorganisms, could reduce significantly the capac-
ity of the water system to recover from subsequent,
additional contamination (see Lee & Levy, 1989).

Benthic macroinvertebrates have been used as indi-
cators of aquatic ecosystem health at least since the
seminal work by Kolkwitz & Marsson (1909) early
this century (see Cairns & Pratt, 1993). Analyses of
composition and function of benthic communities, as
well as toxicity bioassays with single species, have
been used for tests of water quality, given the sensitive
response of benthic organisms to toxic compounds (e.g.
Bargos et al., 1990; Elder, 1990; Nelson, 1990). Ben-
thic metazoans, in addition to other organisms, have
long been used to assess the toxicity of a range of pol-
lutants in single contaminant tests of aqueous solutions
(reviews in Murphy, 1980; Hellawell, 1986; Coull &
Chandler, 1992). The routine use of these organisms
to assess the toxicity of effluents (e.g. Oshida et al.,
1981; US EPA, 1988, 1989) and sediments, in which
complex mixtures of chemicals interact, is a develop-
ment of the previous decade which acknowledges the
sensitivity of benthic meio- and macroinvertebrates as
indicators of ecosystem pollution (Burton et al., 1992;
Hill et al., 1993).

Most toxic pollutants of aquatic systems have a
strong affinity for particulate material and eventual-
ly become associated with the sediment. As a result,
sediments can accumulate concentrations of pollutants
which exceed by several orders of magnitude those
in the water column (contributions in Dickson et al.,
1984). Benthic organisms play an integral role in the
effects, fates and cycling of these contaminants in the
ecosystem (Nalepa & Landrum, 1988). These meta-
zoans are particularly vulnerable to toxic compounds,
given their close contact with sediment particles and
interstitial water for extended periods of their life cycle.
Catallo (1993) reviews the ecological effects of pollu-

tion in wetland ecosystems, including specific sections
on benthic organisms. Perturbations in the benthos due
to the toxic effect of introduced agents can be mani-
fested at various levels, including molecules and cells,
organisms, populations and communities, and whole
ecosystems, in decreasing order of response sensitiv-
ity (Burton, 1991). Most single-species tests of tox-
icity in sediments have focused on alterations within
organisms (gross morphology, cells and molecules),
their physiology, life history variables and behaviour.
Although the majority of such tests involves expo-
sure of live organisms to potential toxicants, there are
exceptions such as the in vitro enzyme inhibition test
for the cladoceran Daphnia and mayfly nymphs Hexa-
genia developed by Buikema et al. (1980b). Some ani-
mal welfare considerations relevant to bioassays with
invertebrates are found in Olson et al. (1991).

The various approaches used in sediment quali-
ty assessments with biological assays are summarized
briefly in Adams et al. (1992). Meanwhile, a vast num-
ber of sediment toxicity tests have been made with
benthic animals including field studies, laboratory tests
and analyses of micro- and mesocosms (see reviews
in Buikema & Cairns, 1980; Nebeker et al., 1984,
Chapman, 1986a, 1988; Ahif & Munawar, 1988; 1JC,
1988; Lamberson & Swartz, 1988; Giesy & Hoke,
1990; Giesy et al., 1990; Burton, 1991; Burton et al.,
1992; Coull & Chandler, 1992; Hamer et al., 1992;
Lamberson et al., 1992; Hill et al. 1993; Hooftman
& Gimeno, 1993; Ahif, 1994; US EPA 1994a, b;
and contributions in Burton, 1992). Methods for the
assessment of sediment toxicity in marine benthos are
described in Chapman (1986a, 1988), Chapman &
Becker (1986), Reish & Lemay (1988), Swartz (1987),
Clark et al. (1989), US EPA/US ACE (1991), ASTM
(1993a, 1995), Carr & Chapman (1992), Environment
Canada (1992), Lamberson et al. (1992); Hill et al.
(1993) and Luoma & Ho (1993). Only a small propor-
tion of these tests, however, have become established
in routine diagnoses of sediment toxicity. The aim of
this report is to give an overview of test procedures
with benthic metazoans for the assessment of sedi-
ment toxicity in freshwater and marine ecosystems, -as
well as of criteria relevant to the choice between such
bioassays. Introductory overviews to the terminology,
design and interpretation of aquatic toxicity tests are
found in Buikema et al. (1982) and Elder (1990). Defi-
nitions of commonly used technical terms are given in
Table 1.

Biological tests are widely recognized as an essen-
tial tool in toxicity assessments, given the limitations



Table 1. Definitions of some technical terms used in the text (adapted from Hill et al. 1993,

with some additions).

bioassay: an experiment in which single test-species are exposed in the laboratory to
samples of a field sediment (or extracts of this) potentially containing one or more conta-
minants, with the aim of measuring possible biological effects of those contaminants.

toxicity test: an experiment in which single test species are exposed in the laboratory to a
clean natural or artificial sediment which has been dosed (spiked) in the laboratory with
a known chemical or a mixture of chemicals, generally at a range of concentrations. The
purpose of the experiment is to measure the degree of response associated with specific
concentrations of the chemical(s).

whole sediment: the sediment and its interstitial water, also referred to as the solid phase.
interstitial water (pore-water): the water occupying the spaces between sediment parti-
cles, and that may be removed from the whole sediment by pressure/vacuum filtration,

centrifugation or compression.

elutriate: an extract of whole sediment, obtained by “washing” with water (aqueous
elutriate) or an organic solvent (organic elutriate).

overlying water: the water in the test chamber overlying the sediment, in a bioassay or
toxicity test.

short (acute) and long-term (chronic) tests: This categorization refers to the duration of
exposure to the test substance/s or of the monitoring of effects following exposure, relative
to the life-span of the test organism. A long-term exposure should allow sufficient time
for the contaminant to reach a steady state in the tissue of the test animals.

meiobenthos: organisms which pass a net with a mesh size of 0.5 or 1.0 mm and are
retained at a mesh size of 0.04 mm.

macrobenthos: organisms which are retained in a net with a mesh size of 0.5 or 1.0 mm.
microcosm: enclosures of aquatic ecosystems smaller than 1 m3.

mesocosm: enclosures of aquatic ecosystems larger than 1 m?(Hobbie & Wakeham, 1988).
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of chemical-analytical methods arising from lack of
knowledge about the bioavailability of most pollutants,
especially of heavy metals (Knezovich et al., 1987,
Landrum & Robbins, 1990; Pavillon, 1990; Hill et al.,
1993). Analytical quantification of the bioavailability
of sediment associated pollutants is complex, given the
great variation in concentrations and exposure modes
within the sediment, as well as the diversity of habits
of benthic organisms (Lee, 1991). In field sediments
contaminated with complex mixtures of chemicals,
biological-response-tests are currently the only way
to assess potential toxicity (Hill et al., 1993). More-
over, since sediment toxicity results from the action
of such mixtures, including synergistic and antago-
nistic effects, the bioassay with benthic organisms is
a method of pollution assessment whose validity is
not dependent on correlations with sediment chemistry

(Oakden et al., 1984a; Thomas et al., 1986; Swartz et
al.,, 1984, 1988). When identification of toxic com-
pounds in sediments is desired, bioassays can be used
to prioritize sites for chemical analysis (Giesy & Hoke,
1989). Several bioassay techniques have been used to
rank freshwater sediments on the basis of toxicity to
benthic organisms (e.g. Prater & Anderson, 1977b;
Samoiloff et al., 1983a; Malueg et al., 1984b; Le Blanc
& Surprenant, 1985).

Bioassays with benthic freshwater and marine
species have had important applications, beyond the
demonstration of sediment toxicity in areas of con-
cern. For example, these bioassays have generated data
required to set water and sediment quality criteria (e.g.
Zarba, 1988; Elder, 1990; van der Gaag et al., 1991; but
see Franklin, 1983), because toxicity tests with benth-
ic organisms are direct indicators of impact, whereas
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chemical concentrations per se are not. In addition, the
bioassays have been instrumental for the planning of
remedial action in (1) mapping sediment toxicity hori-
zontally and vertically, (2) prioritizing sites for further
analyses or potential remediation and (3) assessment
of the effectiveness of remedial action (Giesy & Hoke,
1989; Baudo et al., 1990; see also Cairns, 1988a). Fur-
thermore, the toxicity responses of benthic metazoans
have provided insight into the history of contamina-
tion based on vertical sediment profiles (e.g. Warwick,
1980; Swartz et al., 1991). Bioassays might even be a
useful tool in broadly identifying classes of toxic com-
ponents of contaminated substrates (e.g. soils: Thomas
et al., 1986).

The power of laboratory bioassays, however,
should be viewed in the light of problems and limi-
tations associated with their application to sediments.
These fall into four categories (Lamberson et al.,
1992): 1) alterations of the toxicological properties of
the sediment during sampling and handling, 2) sensi-
tivity of test organisms to natural sedimentary features
and laboratory conditions, 3) toxicological uncertain-
ties arising from the narrow range of contaminants as
yet tested and from the difficulties in measuring expo-
sure concentrations, and 4) poorly understood eco-
logical interactions and relevance. Minimizing these
problems, and the potential for over- and underesti-
mation of toxicity (Luoma & Carter, 1993), has been
and still remains a challenge in the development of
standardized protocols for sediment bioassays.

Sediment toxicity assays with benthic metazoans

Bioassays with 101 species of infaunal and epibenth-
ic metazoans for freshwater and marine sediments are
listed in Tables 2 and 3, respectively. In the ‘remarks’
column of the tables, reference is made to how well
established the bioassay has become. The three cat-
egories are ‘standard method’, ‘method widely used’
and no reference to this criterion, in decreasing order
of general acceptance. For the most common tests this
judgement is taken from Hill et al. (1993). In the
remaining cases, we based the judgement on our own
coverage of the literature. The degree of popularity and
standardization, however, is not necessarily a measure
of the adequacy of the bioassay, for recently devel-
oped test procedures of low present popularity, may
nevertheless already fulfill most requirements for ideal
bioassays. Table 4 lists a selection of toxicity bioas-
says with benthic metazoans, which have not been

specifically applied to sediments, but which enrich the
taxonomic range of potential applications in sediment
toxicology.

Choice of bioassay

An ideal laboratory bioassay should be rapid, simple,
replicable, inexpensive, standardized, sensitive, dis-
criminatory, ecologically relevant, relatable to field
effects and useful in developing regulatory criteria
(Giesy & Hoke, 1989). These criteria are closely ful-
filled by those biocassays which have been standard-
ized and widely recommended (see Tables 2 and 3).
In selecting an appropriate bioassay, however, the first
decision relevant to this review, is whether a test with
benthic metazoans should be included in the toxico-
logical evaluation of a particular area of concern. Sed-
iment toxicity assessments have been based on the bio-
logical responses of microbes, primarily bacteria and
algae, benthic and nektonic invertebrates, amphibians
and fish (overview in Giesy & Hoke, 1989). The specif-
ic aim of the toxicological study determines the choice
of organism. For a rapid and sensitive screening oper-
ation, microbial assays (e.g. bacteria bioluminescens:
Bulich, 1983, 1984) can yield the required informa-
tion both in freshwater (Giesy et al., 1988) and marine
environments (Becker et al., 1990). A more in depth
toxicological analysis, however, requires the inclusion
of bioassays with benthic invertebrates because of their
higher discriminatory power and ecological relevance
(Giesy et al., 1988; Becker et al., 1990).

The main applications of metazoan benthic species
to assess the toxicity of sediments are in mono-species
tests, test-batteries and analyses of benthic community
structure and function. Other applications of bioassays
with zoobenthic organisms include the monitoring of
sediment toxicity with multi-species tests, bioaccumu-
lation studies and analyses of morphological defor-
mities. Giesy & Hoke (1989) give guidelines for the
choice of test organism, test design and data analy-
sis, with reference to advantages and disadvantages
of sediment bioassays with some freshwater, benth-
ic metazoans (see also Elder, 1990; ASTM, 1993b).
Luoma & Ho (1993) describe the appropriate uses of
marine and estuarine sediment bioassays, with recom-
mendations for the choice of test organism and for the
collection and handling of sediment samples (see also
ASTM, 1991b, 1993b). Further guides to standardized
methods and recommended procedures for the assess-
ment of sediment toxicity are found in publications
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Tuble 4. Some benthic metazoans used in toxicity analyses, but not thus far applied in sediment bioassays

Organism Assay Endpoint Reference
FRESHWATER
Brachycentrus americanus (Trichoptera) mortality Anderson & Shubat (1984)

Branchiura sowerbyi (Oligochaeta)
degenerations
Chironomus attenuatus (Diptera)
Corbicula fluminea (Bivalvia)
Dugesia japonica (Turbellaria)
Elimia clavaeformis (Gastropoda)
G rus pseudoli 5
Glyptodentipes pallens (Diptera)
Ilyodrilus frantzi (Oligochaeta)
Isonychia bicolor (Ephemeroptera)

mortality

mortality
molt frequency

Limnephilus lunatus, L. bipunctatus (Trichoptera) mortality, adult emergence
mortality, development

Monhystera disjuncta (Nematoda)

Nais communis (Oligochaeta) mortality
Polypedilum nubifer (Diptera) reproduction
Pteronarcys dorsata (Plecoptera) mortality

Quistadrilus multisetosus (Oligochaeta) respiration rate

Spirosperma nikolskyi (Oligochaeta) respiration rate
MARINE

Ctenodiscus crispatus (Echinodermata)
Crassostrea virginica larvae (Bivalvia)
Ctenodrilus serratus (Polychaeta)

Elasmopus bampo (Amphipoda) mortality

Grandideriella lutosa, G. lignorum (Amphipoda) reproduction, population changes

respiration rate
respiration rate

Rhyacodrilus montana (Oligochaeta)
Variechaeta pacifica (Oligochaeta)

mortality, reproduction, development,

oxygen consumption, condition index
head regeneration
movements (in situ and lab.)

behaviour (activity)

physiology, behaviour
mortality, development
mortality, reproduction

Nagqui (1973), Casellato & Negrisolo (1989)

mortality, lipid, nitrogen, caloric content Thornton & Wilhm (1974)

Graney & Giesy (1988)
Yoshioka et al. (1986)
Burris et al. (1990)

Burton et al. (1989)

Heinis et al. (1990)
Chapman & Mitchell (1986)
Diamond et al. (1990)

LieB (1993)

Vranken et al. (1984)
Chapman & Mitchell (1986)
Hatakeyama (1987)
Anderson & Shubat (1984)
Brinkhurst et al. (1983)
Brinkhurst et al. (1983)

Shick (1976)

Roberts (1980)

Reish (1980)

Hong & Reish (1987)
Connell & Airey (1982)
Brinkhurst et al. (1983)
Brinkhurst et al. (1983)

by the American Society for Testing and Materials
(ASTM, 19914, b, 1993a, b, 1994a, 1995), the Society
for Environmental Toxicology and Chemistry - Europe
(Hill et al., 1993) and the U.S. Environmental Protec-
tion Agency (US EPA, 1994b). Publications by ASTM
are updated regularly, thus the reader is encouraged to
seek the latest issues for consultation. Overviews of
strategies to combine the various test procedures, with
recommendationsrelevant to the choice of strategy and
test species in the palaearctic, are found in Hill et al.
(1993) and Ahlf (1994, 1995).

Tabulated lists of some sediment toxicity bioas-
says, with rankings for sensitivity, ecological rele-
vance, replicability, amenability etc., are found in
Giesy & Hoke (1989) and Hill et al. (1993). The rel-
ative sensitivities of benthic organisms can vary con-
siderably both in marine (Swartz et al., 1979; Williams
L.G.etal., 1986; Chapman et al., 1985; Hong & Reish,
1987; Chapman, 1988; Becker et al., 1990; Long et al.,

1990; Pastorok & Becker, 1990; van den Hurk et al.,
1992) and freshwater sediment bioassays (Giesy et al.,
1988; Burton, 1989; West et al., 1993). Intermedi-
ate or low sensitivity to contaminants must not be a
drawback of certain test species, for bioassays with
these organisms can be used to rank highly contami-
nated sites, where more sensitive animals would fail to
detect differences.

In this report we describe the strengths and weak-
nesses of various bioassays with benthic metazoa and
of combinations thereof. It is generally agreed that no
single bioassay will usually fulfill the requirements of
a comprehensive sediment toxicity assessment. Here,
we avoid advocating a particular bioassay combina-
tion of apparent, general applicability. The choice of
tests and their application strategy is ultimately dic-
tated by the objectives of the study and the specific
budgetary and biological circumstances at the site of
concern. These variables affect the relative weighting



of the strengths and weaknesses described here, and
thus lead to highly individual rationales concerning
the choice of bioassays. The selection criteria for a
bioassay include the critical test variables considered
in the following sections.

Critical test variables

Consideration of several test variables is important in
categorizing and applying sediment toxicity bioassays.
These include overlying water quality, geochemical
characteristics of the sediment, sediment test phase,
exposure time, test species chosen, assay endpoints
and controls, all of which affect in different ways the
test sensitivity, its ecological relevance and the inter-
pretation of results (Burton et al., 1992). The overlying
water quality, which can affect organism responses,
is influenced by the contact time between sediment
and water (Burton et al., 1987). Contact times differ
between modes of exposure used, such as static, recir-
culating, static-renewal, flow-through systems and in
situ exposure, all of which have their strengths and
weaknesses (see Buikema et al., 1982). Also, tests
may need to include the range of environmental condi-
tions expected in the overlying water of the sediment
because water hardness, pH, and the sediment to water
ratio in the assay are known to affect sediment toxic-
ity (Anderson et al., 1984; Stemmer et al., 1990a, b).
The matching of geochemical properties of the sedi-
ment sample to the tolerance limits of the test species is
obviated in in situ tests, if native fauna are used as test
organisms. Such natural properties of the sediment,
however, could influence the bioavailability of toxi-
cants and, therefore, produce contrasting test results
between sites with similar effluent loads but different
sediment properties. Warwick (1981) proposed the use
of the nematode to copepod ratio as an indicator of
differences in sediment granulometry between pollut-
ed sites. Studies of the influence of sediment char-
acteristics, including “non- contaminant” factors, on
the response of test animals are badly needed (Burton
etal., 1992).

In addition, the potential seasonality of sediment
toxicity and the patchiness of toxicity distribution in
the area of concern dictate multiple sampling and cov-
erage of seasonal variation (Burton, 1989; Munawar
et al., 1989). Furthermore, the presence of indigenous
fauna in the sediment sample can affect the results
of the bioassay. This is particularly true for the high
densities of oligochaetes typical of some contaminated
sites and which can significantly affect the growth of
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test organisms such as chironomid midges, amphipods
and mayfly nymphs during chronic exposures to the
test sediment (Reynoldson et al., 1994). Removal of
indigenous organisms from the sample is recommend-
ed prior to testing. This applies particularly to chirono-
mid bioassays and to samples from sites with high den-
sities of benthic invertebrates. Other, unwanted sources
of variability between bioassay results are described
by Schaeffer et al. (1987). The roles of sediment test
phase, exposure time, assay endpoint and test species
chosen, as critical variables of bioassay choices are
discussed in separate sections below.

Exposure phases in sediment toxicity assessment

Exposure of benthic organisms to pollutants can take
place either in the dissolved phase in the interstitial and
overlying water or in the way of molecules adsorbed
to sediment particles (Power & Chapman, 1992; Ahlf,
1995). Direct ingestion of particles and absorption
through the body surface are the most important paths
of contamination (Ahlf et al., 1992). The most com-
monly used modes of exposure in studies of sediment
toxicity are aqueous or organic elutriates (extractable
phase), interstitial water isolated from the sediment,
whole sediment (solid phase) and in situ assays. Other
modes of exposure are sediment slurries and sediment
dilution series (e.g. Meador et al., 1990; Casillas et al.,
1992; Nelson et al., 1993). Exposure of test organ-
isms to sediment in suspension (e.g. Tsai et al., 1979;
Schmidt-Dallmier et al., 1992) is relevant for example
to the evaluation of dredged sediments for disposal at
a dispersive aquatic site. Spiked sediments are com-
monly used in toxicity tests (Tables 2 and 3) to expose
organisms to a range of toxicant concentrations. Since
the sediment” s organic carbon content affects toxicity
(e.g. Landrum & Faust, 1991; Lydy et al., 1992), there
is still little agreement as to which substance should be
used as reference sediment. Burgess et al. (1994) test-
ed sand spiked with copper on marine macrobenthos.
There is urgent need for the development of spiked
reference sediments for freshwater invertebrates.
Most pollution effects on meiofauna have been test-
ed in vitro with toxicants in the aqueous phase (Coull
& Chandler, 1992). In principle, tests of aquatic tox-
icity with water column species (e.g. the cladoceran
Daphnia magna: Buikema et al., 1980a; Baudo, 1987;
see also Munawar et al., 1985) can be applied to inter-
stitial water or elutriates isolated from whole sediment
samples (Giesy & Hoke, 1989). Liquid-phase sediment
assays were originally developed to test the toxicity of
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polluted sediments or resuspensions thereof on water-
column organisms (e.g. Schmidt-Dallmier et al., 1992).
Such liquid sediment phases are amenable to dilution
and are hence used to establish dose-response rela-
tionships of contaminated samples. Without an ade-
quate field validation, however, the toxicity of these
test phases to water-column dwellers does not allow
inferences about the toxic effects of contaminanted
sediments on benthic communities.

The results of toxicity tests on the same organism
can vary, depending on the exposure phase used (e.g.
Chapman & Fink, 1984; Fava et al., 1985; Lydy et al.,
1990; McCauley et al., 1992; Green et al., 1993; West
et al., 1993). Different strengths and weaknesses are
associated with these procedures and some exposure
modes may be appropriate in some cases but not in
others (Burton, 1991; Ahlf, 1995). Studies comparing
the toxicity of metals in different exposure phases show
that ions in overlying and pore-water are the main path
of contamination for most benthic organisms, while the
toxicity of sediment bound metal is negligible (Cairns
et al., 1984; Phelps et al., 1985; Nebeker et al., 1986;
Green et al., 1993). Pore-water is predicted by equilib-
rium partitioning theory to be the controlling exposure
medium in the toxicity of sediments to infaunal species
(Di Toro, 1989; but see Lee, 1991). Thus, sediment
quality tests exposing benthic organisms exclusively
to pore-water can sometimes yield a useful approxi-
mation to the results of whole-sediment exposures (see
also Ankley et al., 1991; Schubauer-Berigan & Ank-
ley, 1991). The validity of pore-water tests as a model
for whole-sediment analyses, however, depends on the
chemical, physical and kinetic properties of the sed-
iment (Landrum, 1989; Landrum & Robbins, 1990,
Boese et al., 1990), as well as on the type of toxicant,
the method used to obtain the pore-water sample and
the test species chosen (Giesy et al., 1990; for marine
sediments see Carr & Chapman, 1992). In reviewing
the role of pore-water and whole sediment as sources
of toxicity, Knezovich et al. (1987) concluded that their
relative importance varies greatly, depending, among
other things, on the type of contaminant and the species
in question (see Green et al., 1993). The toxicity of
water-borne copper to benthic Neanthes arenaceoden-
tata (Polychaeta), for example, was higher in exposure
chambers without sediment than in more biologically
adequate chambers containing sediment (Pesch & Mor-
gan, 1978). Interestingly, in tests with organisms like
e.g. the mayfly Hexagenia, which ingest sediment and
probably absorb toxicants through the intestine wall,
the toxicity of pore-water exposure was still higher

than that of whole sediment (Giesy et al., 1990). Elutri-
ates, which have been extensively used to simulate the
resuspension of sediments occurring during dredging
projects, are of limited ecological relevance to toxicity
assessments of undisturbed sediments.The associated
oxidation of resuspended particles can change the tox-
icity properties of elutriate samples in comparison to
those revealed by whole sediment analyses (see also
Burgess et al., 1993). Moreover, some sediment toxic-
ity effects are only associated with the whole sediment
phase (Sasson-Brickson & Burton, 1991),

Overall, a test with benthic species involving direct
exposure to a sediment sample is more adequate and
ecologically relevant for an assessment of sediment
toxicity than tests in isolated liquid phases (Lamberson
& Swartz, 1988; see Ankley et al., 1990). Static bioas-
says, in which benthic organisms are exposed to whole
sediment and overlying water in a beaker, have been
used to test experimentally spiked sediments (Cairns
et al., 1984) and field contaminated samples (Wentsel
et al. 1977a, 1978b). Bioassays that test whole sed-
iment with benthic organisms examine directly the
effect of both bound and dissolved toxicants on the
species which are most likely to be affected by sedi-
ment toxicity. Thus, the diagnosis of sediment quali-
ty should be centred around whole sediment analyses,
with pore-water and elutriate tests only as complemen-
tary sources of information (Chapman & Fink, 1984;
Lamberson & Swartz, 1988; Ahlf, 1994),

Burton (1991) and Burton et al. (1992) evaluat-
ed the strengths and weaknesses of the different sed-
iment toxicity exposure phases. Advantages of whole
sediment and in situ tests over tests in the aqueous or
extractable phase include its holistic toxicity approach,
high relative realism and ecological relevance, as well
as a virtually unlimited sample quantity. Meanwhile,
most sediment bioassays with benthic organisms are
run on whole sediments (solid exposure phase, Tables
2 and 3). In contrast to liquid phase tests, however,
whole sediment and in situ tests need to consider the
possibility that indigenous biota in the sample affect
the test results, for example through predation on the
test species. Whole sediment tests are routinely used
for rapid screening, initial surveys, studies of long tox-
icant exposure, assessment of sediment quality criteria
and analyses of dose-responses (Burton et al., 1992).
In situ tests are used principally to study resuspension
effects, to determine sediment quality and for inten-
sive system monitoring. They offer a highly realistic
measure of toxicity, integrating all key components
and eliminating extraneous influences associated with



handling and laboratory procedures. The latter, howev-
er, are inadequate to determine dose-responses and are
less easy to reproduce, given, for example, the great
variability of mesocosms and within-site- heterogene-
ity. Whole sediment bioassays are often more complex
than in situ and liquid phase bioassays, because han-
dling during sampling, storage and setup may change
the physical, chemical and/or microbiological proper-
ties of the intact sediment through oxidation, mixing
of layers, removal of interstitial water and disruption
of sediment structure (Lamberson & Swartz, 1988;
ASTM, 1991b, 1994a; Rubio & Ure, 1993).

Time of exposure to the test substance

The time of exposure to the test substance is a critical
consideration in sediment tests, for extended expo-
sure is associated with greater sensitivity (Birge et al.,
1984; Malueg et al., 1984a, b; LeBlanc & Surprenant,
1985; Ingersoll & Nelson, 1990; Parsons & Surgeon-
er, 1991). Thus, the effect of small toxicant doses
can sometimes be revealed in the form of sublethal
effects after prolonged exposure. Short exposure tests,
however, may be more appropriate, for example, in
cases requiring a less sensitive and resource intensive
approach which allows more testing. Although there
are rigorous methodologies to extrapolate the effect
of acute short-term exposures to effects of long-term
exposures on the survival, growth and reproduction of
aquatic organisms (Giesy & Graney, 1989), the great
value of long-term exposures in bioassays is undoubt-
ed, despite possible complications arising from food
provisioning to keep the test organisms alive (e.g.
Wiederholm et al.,, 1987; Moore & Dillon, 1992).
The development of chronic, sublethal sediment bioas-
says is important, firstly, because bioaccumulation is a
slow process which can affect reproduction and, sec-
ondly, because benthic organisms generally experience
such prolonged exposures to low contamination levels
(Dillon, 1993). Most bioassays with commonly used
test organisms include endpoints for chronic exposures
(Tables 2 and 3).

The duration of tests with benthic metazoans varies
greatly (Tables 2 and 3). Enzyme activity in Hexage-
nia and respiration rate of oligochaetes respond to very
short exposures of 1-2 h, mortality is manifested in
various organisms within 24 h and life cycle endpoints
with oligochaetes can require exposures of up to 500
days. In general, short term exposure bioassays (< 4
d) produce fast results and allow efficient processing
of large numbers of samples, but may be too brief to
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detect the more subtle, sublethal effects that would
hinder reproduction or even produce mortality after
a long exposure time (Lamberson & Swartz, 1988).
If possible, therefore, sublethal responses should be
concurrently recorded. Longer term (such as 10-day)
mortality or growth tests may be more sensitive and the
results may be less variable (Swartz et al., 1985). Con-
sequently, in choosing among the available bioassays,
one criterion should be that the test include endpoints
for both short- and longterm exposures.

Assay endpoints

The strengths and weaknesses of various endpoints
have been evaluated by Lamberson & Swartz (1988).
They conclude that mortality is the most easily mea-
sured and most readily understood response criteri-
on, allowing comparisons among species and among
chemicals or other variables within a species. Mor-
tality is the most common endpoint used in standard-
ized bioassays for the assessment of sediment toxicity
(Tables 2 and 3). Mortality is commonly expressed
as values of LC50 (lethal concentration for 50% of
test animals), EC50 (effect concentration, here: 50%
reduction in young) or percent survival. Anderson
& Shubat (1984) used another measure of mortality,
which makes reference to exposure time rather than
concentration (ExpT50). This measure complemented
LC50 values in order to express lethality as a func-
tion of both, contaminant concentration and time of
exposure. In that study, emphasis was made on the
monitoring of post-exposure mortality, particularly for
assays which resulted in zero mortality after conven-
tional, short exposures. Although mortality is a very
amenable toxicological response, Luoma & Ho (1993)
recommend the use of endpoints more sensitive than
mortality (behaviour, reproduction, larval settlement)
for whole sediments, single-species assays. For a crit-
ical position on the use of LC50 values as thresholds
in environmental toxicology see Cairns (1992).
Developmental criteria of benthic species such as
growth, adult emergence and maturation rates (e.g.
nematodes: Coomans & Vanderhaeghen, 1985) are
important toxicity variables in that they cover vari-
ous life stages of the test organims. The results can be
highly variable, however, and the bicassay may take
too long for large-scale screening or monitoring work.
Such sublethal endpoints can nevertheless be useful
for analyses of chronic exposure to toxicants. As with
other sublethal effects, these endpoints require verifi-
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cation of their negative impact on the reproduction of
the organism in question.

Behavioural responses have been criticized on the
grounds that they may be related to factors other than
sediment contamination (Lamberson & Swartz, 1988)
and that the variability of behaviour results in low
resolution. The usefulness of behavioural endpoints,
however, is specific to the test organism and bioas-
say used. Reburial and avoidance endpoints for the
amphipods Rhepoxynius abronius and Ampelisca abdi-
ta for example, can be highly variable and insensitive
when compared with other sediment bioassays (Long
et al., 1990). The reburial endpoint of Bathyporeia
sarsi, however, is sensitive and useful (van den Hurk
et al., 1992). Some behavioural endpoints are highly
sensitive, and given appropriate controls and calibra-
tions could contribute greatly to a sediment toxicity
assessment (see Mghlenberg & Kigrboe, 1983). Gam-
marus, for example, showed behavioural responses to
phenolic toxicants at 1/20th of the acute LC50 dose
(Borlakoglu & Kickuth, 1990). An automatic record-
ing device for Gammarus pulex activity detected toxi-
city responses to the pyrethroid fenvalerate at concen-
trations as low as 0.1 ng/l, substantially below the
minimum of 100 ng/l required for the detection of
pyrethroids in water with analytical methods (Lie8,
1993). Corophium volutator responded behaviourally
at two orders of magnitude less than the lethal dose for
sulphides (Meadows et al., 1991). Induced disruption
of precopulatory amplexus in Gammarus pulex after 24
h exposure to toxicants (Poulton & Pascoe, 1990) is a
quick bioassay with great potential for in situ diagnos-
tics of sediment quality. Choice experiments offering
sediment samples with different test substance con-
centrations to benthic organisms have also been used
in ecotoxicology (e.g. Mghlenberg & Kigrboe, 1983;
Oakden et al., 1984a, b; Meadows et al., 1991).

Physiological endpoints, such as the respiration rate
of oligochaetes (e.g. Chapman, 1987) or enzyme activ-
ity, can provide valuable means to assess sublethal
sediment toxicity after a few hours of exposure to toxi-
cants. Respiration rate tests respond to the presence of
metals, as well as to all organic compounds that affect
respiratory enzyme function (e.g. phenols, chlorophe-
nols, pesticides, PCBs). Susceptibility to disease under
toxic stress was proposed as a bioassay endpoint in
crustaceans (Couch & Courtney, 1978), but it did not
become established among standardized bioassays for
sediment quality. Measurements of physiological vari-
ables often require sophisticated equipment thus mak-
ing these response criteria less amenable for large scale

testing of multiple samples than survival endpoints
(also Reynoldson et al., 1991).

The etiological agents between toxicity and end-
point response are little understood. In a comparison
of five marine bioassays, Long et al. (1990) found that
whereas the endpoints within affinity groups have sim-
ilar response patterns, some endpoints show negative
correlations with endpoints in other affinity groups.
In that study, for example, the Mytilus edulis percent
normal development endpoint and the Ampelisca abdi-
ta avoidance endpoint were positively correlated and,
therefore, contradicted each other. Two endpoints of
the Strongylocentrotus pupuratus test, echinochrome
content and percent normal development, also contra-
dicted each other. Therefore, comprehensive assess-
ments of sediment toxicity are best made with mul-
tiple endpoints, until the relationships between these
endpoints and specific chemicals are quantified exper-
imentally (Long et al., 1990).

Growth has been used as an endpoint in several
bioassays for long-term exposure to sediment samples
(Tables 2 and 3). Generally, a reduction in growth
is considered as an adverse effect. The interpretation
of growth results, however, must be accompanied by
consideration of some potentially confounding fac-
tors, including intra-sediment nutritional differences,
the potential for recovery, the subsidy effect (Odum
etal., 1977) whereby low contamination levelsenhance
growth, and the fact that a reduction in growth need not
necessarilly affect subsequent reproduction (see Moore
& Dillon, 1993). Further research to elucidate the role
of these factors is needed for a better interpretation of
the growth endpoint in chronic bioassays.

Reproductive variables characterize the most eco-
logically relevant and sensitive life stage of the test
organism (e.g. Reynoldson et al., 1991). Reproduc-
tion has become an established endpoint in the widely
used Tubifex tubifex bioassay for a long term exposure
to toxicants (28 d). Out of several reproductive vari-
ables tested, the total and per adult cocoon production
emerged as the most robust endpoints in that bioassay
(Reynoldson et al., 1991).

Choice of test species

The choice of test species is central in the design of a
sediment toxicity test because organism morphology,
ecological niche, feeding mechanism and physiology
determine toxicant uptake, pathway and, thus, haz-
ard (Knezovich et al., 1987). The choice of organism
should include criteria such as (1) its importance in the



ecosystem dynamics, (2) its behaviour in the sediment
and feeding habits, (3) its sensitivity to the test sub-
stance, (4) ease of the test method and (5) availability
of alarge reference base to interpret the results (see also
Anderson et al., 1984; Giesy & Hoke, 1989; ASTM,
1993b). These criteria narrow down the options to
those species which have been previously used in tox-
icity assessment and which have been well studied
under field conditions. Generally, native species should
be preferred over foreign species to analyse the toxi-
city of a given sediment, in order to ensure the eco-
logical relevance of the results. In most in situ tests
the choice is restricted to the animals naturally occur-
ing at the study site, which are hence in the majority
of cases ecologically relevant. The feeding habits are
relevant for the choice in that, for example, species
which ingest sediment particles (e.g. amphipods and
oligochaetes) might be better suited to investigate tox-
icity of molecules adsorbed to the sediment, whereas
smaller species with a higher body surface to volume
ratio (e.g. nematodes) may be more sensitive to dis-
solved chemicals absorbed through the body walls (see
Knezovich et al., 1987). The life style of the organ-
ism will further determine whether the source of con-
tamination is primarily the overlying water, intersti-
tial water or whole sediment, all of which can differ
with respect to the dose of the test substance/s (Burton
et al., 1992). When test organisms are collected from
the field for laboratory bioassays, special care needs to
be taken to avoid testing with individuals which may
have developed a resistance to the toxicants in question
(e.g. Bryan, 1979; Luoma & Carter, 1991). The isopod
Asellus meridianus, the midge Chironomus tentans,
and the polychaete Nereis diversicolor, for example,
are more resistant to metals at contaminated sites than
at sites free of such toxicants (Brown, 1976; Wentsel
et al., 1978a; Bryan, 1979). Lastly, the cosmopoli-
tans among the test species should be favoured in the
tests, given the choice, because of their higher overall
ecological relevance and better comparability between
sites.

Advantages of using native species of benthic meta-
zoa are that they have a high ecological relevance and
that they can be easily collected from the field, thereby
avoiding laboratory artifacts that may affect cultured
organisms (e.g. Robinson et al., 1988). Test organ-
isms sampled from the field, however, are subject to
natural population variation, seasonality, weather and
pollution, which may introduce unwanted noise into
the analyses (Lamberson & Swartz, 1988). Also, these
organisms may not be available at certain times of the
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year, thus hindering the coverage of seasonal variation
in sediment toxicity. Cultured organisms are readily
available and generally less variable than natural pop-
ulations. Meanwhile, most established bioassays for
freshwater and marine sediment analysis include well
developed culture techniques for the test animals (ref-
erences in Tables 2 and 3).

Organisms in sediment bioassays
Freshwater organisms

Giesy & Hoke (1989) list criteria for the selection
of freshwater species for sediment toxicity tests. An
overview of commonly used freshwater organisms in
sediment toxicity bioassays is found in Burton et al.
(1992) and ASTM (1993b). ASTM (1994a) describes
the biology, handling and culturing methods, as well as
test protocols for the mayfly Hexagenia, the amphipods
Hyalella and Diporeia, the midges Chironomus tentans
and C. riparius, and the oligochaeteTubifex tubifex. At
least 30 species of benthic metazoans have thus far
been used in freshwater sediment bioassays (Table 2).

Freshwater insecta
Nymphs of the burrowing mayfly Hexagenia
(Ephemeroptera) are one of the few insects for which
standardized test protocols have been developed in sed-
iment toxicology (Table 2). The biology of this genus,
field collection, culture and exposure methods are
reviewed by Fremling & Mauck (1980). Henry et al.
(1986) make further recommendations for the devel-
opment of test protocols with this species. In a study of
Detroit river sediments, lethality of Hexagenia limbata
was the most sensitive bioassay, when compared with
Photobacterium phosphoreum bioluminenscence inhi-
bition, or lethality in Daphnia magna and Chironomus
tentans (Giesy et al., 1990). Molt production in the
mayfly Stenonema modestum and potentially in oth-
er ephemeropterans, is a sensitive, subacute endpoint
recommended for seven day exposures to elutriates of
contaminated sediments (Diamond et al., 1992).
Infaunal larvae of Chironomus midges (Diptera)
are sensitive insects with high ecological relevance and
amenability in toxicological studies. They are tolerant
of various sediment types and, therefore, the genus is
suitable for analyses with spiked reference sediments.
The biological and procedural background which led
to the development of modern bioassays with chirono-
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mids is reviewed by Anderson (1980). The strengths
of Chironomus in toxicity tests and the large data base
on its responses to various toxicants led to a standard-
ization of bioassay procedures with this genus (Table
2).

Chironomus tests should be started using first
or second instar larvae, because Chironomus larvae
become more tolerant to toxicants with increasing age
(Nebeker et al., 1984; Williams et al., 1986). Field
sediment samples should be treated with gamma irra-
diation to eliminate midge predators and other organ-
isms which may bias the mortality and growth data in
the Chironomus bioassay (Ingersoll & Nelson, 1990;
Reynoldson et al., 1994). The culture method of C.
riparius is described by McCahon & Pascoe (1988a;
see also Maas-Diepeveen & van de Guchte, 1990; van
de Guchte, 1992). Both, C. riparius and the amphi-
pod Hyalella azteca are very robust with respect to the
grain size of the sediment, but additional tests of the
effect of other geochemical properties are needed, in
order to assess the precision with which these organ-
isms respond to contaminant toxicity (Ingersoll & Nel-
son, 1990; see Lydy et al., 1990, 1992). As for other
single-species bioassays, the whole sediment Chirono-
mus test should be complemented with other toxicity
assays. A Chironomus pore-water test, for example,
would reveal information on water soluble toxicants
which may be missed by Chironomus in whole sed-
iments contaminated with large amounts of insoluble
petroleum hydrocarbons (Hoke et al., 1993).

Chironomus tentans in a growth assay is recom-
mended by Giesy & Hoke (1989) as the benthic
macroinvertebrate of choice in test-batteries for sed-
iment toxicity bioassessment. In a comparative test
with river sediments, the C. tentans 10 d growth inhibi-
tion bioassay showed the highest discriminatory power
compared with Microtox® and Daphnia assays, and
it was as highly sensitive as Microtox®(Giesy et al.,
1988). The culture method for C. tentans is described
by Batac-Catalan & White (1982). A 30-40% inhibi-
tion of growth in the test sediment corresponds to field
conditions of toxicity which do not support viable com-
munities of benthic invertebrates. In metal exposures,
larval growth seems to be the most sensitive endpoint
in C. riparius and C. decorus (Powlesland & George,
1986; Kosalwat & Knight, 1987a, b). The growth of
Tanytarsus dissimilis, however, is not affected at con-
centrations between LC50 during exposures to copper,
lead and cadmium (Anderson et al., 1980).

Sexual dimorphism can be a source of bias in
growth data for chironomids. C. riparius is sexually

dimorphic with respect to weight with males smail-
er than females, particularly when reared individually
(Day et al., 1994). Although the effect of dimorphism
on data interpretation is thought to be minimal when
animals are reared in groups, it is recommended that
both larval weight and head capsule width be measured
as endpoints in sediment toxicity tests to differentiate
reduced growth from retardation of instar development
(Day et al., 1994).

Head deformities of chironomid larvae can be used
as biological indicators of toxic stress (Wiederholm,
1976, 1984; Warwick, 1985, 1988). This laborious
method of toxicity assessment requires considerable
training as well as standardized preparation and mount-
ing techniques. Its advantages include (1) the immedia-
cy of response, such that deformities reflect accurately
the toxicity prevailing in the sediment at the time of
sampling and (2) the fact that head capsules preserve
well in the sediment, therefore permitting palacoanaly-
sis of contaminant pressure in a historical context (e.g.
Warwick, 1980; see also Swartz et al., 1991). A quan-
titative measure of deformity incidence is the Index of
Severity of Antennal Deformation.

Freshwater oligochaeta

The infaunal life style of aquatic oligochaetes, their
considerable contribution to the benthic biomass at
some sites, and the range of responses of different
species to individual and combined stress make these
organisms attractive for use in sediment toxicity bioas-
says and as field pollution indicators (review in Chap-
man & Brinkhurst, 1984). Infaunal oligochaetes are
overall in closer contact with the sediment than, for
example, epibenthic amphipods and, therefore, are
more likely to reflect sediment toxicity independently
of toxic effects of soluble pollutants in the overlying
water. Most oligochaetes are amenable to laborato-
ry culturing. Nevertheless, there are some drawbacks
associated with oligochaetes, including (1) difficulties
of species identification, (2) fragility during handling,
(3) quick decomposition of juveniles after death, which
can affect reproduction measures, and (4) adherence of
sediment particles to the mucus layer and alimentary
canal, which can reduce the precision of weight mea-
surements (Wiederholm et al., 1987; Giesy & Hoke,
1989).

Tubifex tubifex was chosen by Wiederholm et al.
(1987) and Reynoldson et al. (1991) as the preferable
species for the development of a meanwhile widely
used toxicity bioassay, because of its short genera-
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rix hammoniensis and Quistodrilus multisetosus. In
addition, the cosmopolitan 7. tubifex is found over the
widest range of habitats and, therefore, seems to be
largely insensitive to natural variation in sedimento-
logical variables. Its wide distribution makes it eco-
logically relevant to many freshwater areas of concern.
The T. tubifex bioassay is quick to set up, simple, inex-
pensive and uses readily available materials. As such,
it overcomes most of the difficulties pointed out by
Giesy & Hoke (1989) for the use of oligochaetes in
laboratory bioassays. The addition of food to the test
culture is not recommended (Wiederholm et al., 1987).
One weakness of this test, however, is the need for
pretreatment (e.g. sieving) of the sediment to remove
the resident fauna, a procedure which could alter the
toxicity properties of the sample (Reynoldson et al.,
1991). Gamma irradiation of the sediment sample, as
recommended by Ingersoll & Nelson (1990), could
be used to obviate this problem. The testing of sedi-
ments from oligotrophic water bodies, however, may
require the choice of another species, or even organ-
ism group, because the above mentioned oligochaetes
are nutrient dependent and will not typically occur in
this trophic state. The cosmopolitan naidid Pristina
leidyi has great potential for chronic toxicity analysis
using reproduction as an endpoint, because it has a
remarkably short generation time of 3 to 7 days, which
represents a methodological advantage over tubificids
(Smithetal., 1991). Respiration rates under toxic stress
are known for various freshwater oligochaetes includ-
ing Limnodrilus hoffmeisteri, Quistadrilus multiseto-
sus, Spirosperma nikolskyi, Stylodrilus heringianus
and Tubifex tubifex (Brinkhurst et al., 1983). Respira-
tory responses could be developed into sensitive end-
points for freshwater sediment bioassays (c.f. marine
oligochaetes).

Oligochaetes are often thought to be an insensitive
group because they become the predominant benthic
macroinvertebrate upon eutrophication. This, however,
is mainly due to their capability to tolerate prolonged
periods of anoxia (Reynoldson, 1987). Their relative,
long term sensitivity to toxic compounds is mostly
unkown, for lack of controlled comparisons of sub-
lethal effects with other benthic organisms (Reynold-
sonetal., 1991). A recent comparative chronic test with
contaminated natural sediments indicates that Lum-
briculus variegatus is as sensitive as the amphipod
Hyalella azteca , but less sensitive than Diporeia hoyi
(Dermott & Munawar, 1992). Reports regarding the
sensitivity of oligochaetes to sediments contaminat-
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ed with metals have been conflictive. Malueg et al.
(1984b), Milbrink (1987) and Wiederholm et al. (1987)
documented high sensitivity, whereas Chapman et al.
(1980, 1982a, b) and Wentsel et al. (1977b) found
oligochaetes to be highly tolerant of metals. Assess-
ment of the sensitivity of oligochaetes to toxicants is
further complicated by the fact that these organisms
can develop site specific resistances (Wentsel et al.,
1978a). A simple statement about the sensitivity of
oligochaetes (or any other organism group) to contam-
inants is unlikely to be valid, for differences between
species, as well as between their responses to differ-
ent toxicants can be significant (Chapman et al., 1980,
1982 a, b; Chapman & Brinkhurst, 1984; Wiederholm
et al., 1987).

Freshwater crustacea

The most frequently used benthic crustacean in fresh-
water sediment toxicology is the amphipod Hyalella
azteca. In contrast to other amphipods, this species
presents few culturing difficulties (e.g. de March, 1979,
1981). This species is highly sensitive, discriminato-
ry and tolerant of natural variation in sediment grain
size (e.g. Ingersoll & Nelson, 1990). The sensitivity of
the freshwater amphipods Hyalella and Gammarus to
toxicants is either similar to, or greater than, the sen-
sitivity of the cladoceran Daphnia (Borgmann et al.,
1989). Given its geographical distribution limited to
America, however, the genus Hyalella has no ecologi-
cal relevance for sediment evaluations in other regions
of the world.

A review of procedures for the use of freshwater
amphipods of the genus Gammarus in toxicity bioas-
says is found in Arthur (1980). Among North Amer-
ican freshwater gammarideans, G. lacustris was the
species recommended by Arthur (1980) for toxicity
bioassays, based on culturing success and availability
of information on the requirements of the species (see
McCahon & Pascoe, 1988a, b). This species belongs
to the most sensitive among several taxonomic groups
of invertebrates in the Great Lakes to a range of conta-
minants (Williams et al., 1984). The effect of various
metals and organic contaminants on G. lacustris has
been tested in several short-term exposure studies (e.g.
Abel & Garner, 1986; references in Giesy & Hoke,
1989). Juveniles are the most sensitive life stage in
this species (McCahon & Pascoe, 1988b). It should
be noted, however, that Gammarus is partly associated
with the water column, and therefore may not faithful-
ly reflect the toxicity conditions of the sediment. For
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this reason, McCahon & Pascoe (1988a) recommend
instead the use of Asellus aquaticus, a species which
is in continuous contact with the sediment (see Green
et al., 1986).

The burrying poxocephalid amphipod Diporeia
spp., inhabiting the Great Lakes, is one of the six benth-
ic invertebrates recommended by ASTM for standard-
ized sediment ecotoxicology (ASTM, 1994a). Dipor-
eia spp. was formerly named Pontoporeia hoyi and ear-
lier named Pontoporeia affinis, thus figuring with three
synonyms in the ecotoxicological literature (ASTM,
1994a). Surprisingly, no benthic ostracods have thus
far become widely established as test species in sed-
iment toxicology. Taub (1989) included the freshwa-
ter ostracods Cypridopsis sp. and Cyprinotus sp. in a
microcosm design.

Freshwater nematoda

The current and potential applications of nematodes in
ecotoxicological research are reviewed by Traunspur-
ger et al. (1995). Nematodes are becoming increas-
ingly important test organisms in sediment toxicolo-
gy (Samoiloff, 1987; Bongers & van de Haar, 1990;
Traunspurger et al., 1995). These infaunal animals
are the most abundant and species richest group of
metazoa in benthic ecosystems (e.g. Traunspurger,
1991). The Panagrellus redivivus bioassay developed
by Samoiloff et al. (1980, 1983a, b) follows a quick
and highly standardized procedure, which includes
lethal, sublethal and gene level endpoints during a 4
d exposure to sediment extracts with standard dilu-
tions. This test is often used in combination with
the Microtox® bioassay developed by Bulich (1983,
1984). Gregor & Munawar (1989) consider the sedi-
ment extraction/fractionation procedure of the Pana-
grellus bioassay an alteration of natural bioavailability
of the test substances and, therefore, recommend that
assay only as complementary to their advocated elutri-
ate test with the Algal Fractionation Bioassay. Popham
& Webster (1979), Coomans & Vanderhaegen (1985)
and Van Kessel et al (1989) developed bioassays with
Caenorhabditis elegans exposed to toxicants in agar.
Traunspurger et al. (submitted) elaborated on these
bioassays with C. elegans to test whole sediment sam-
ples. Some of the advantages of nematode bioassays
are that the test is easy and quick to perform, the culture
of some species is simple and nematodes are obtainable
from all aquatic systems.

Freshwater mollusca

In evaluating the strengths and weaknesses of molluscs
as bioassay organisms, Giesy & Hoke (1989) conclud-
ed that bivalves and gastropods are well suited for
laboratory and in situ studies of toxicant bioaccumu-
lation and for environmental monitoring (e.g. Green
et al., 1989), but less so for use in toxicity bioassays
for screening purposes. Some disadvantages of using
clams as bioassay organisms are that lethality is often
difficult to determine and that clams can close their
shells to avoid irritants, thus hindering the determi-
nation of actual exposure doses in short-term labora-
tory tests (Giesy et al., 1983). While this conclusion
might apply to the adult life stage, meanwhile bioas-
says with bivalve embryos play an important role in
toxicity assessments of marine sediments (Table 3).
The standardization of aequivalent assays with fresh-
water species is still pending. One consideration in
the application of such assays is that the sensitivity of
bivalves can vary considerably between toxicants (Lit-
tle, 1978). Giesy & Hoke (1989) noted that the majority
of ecotoxicological studies with marine and freshwa-
ter molluscs have focused on metals and hydrocarbons.
Thus, little information is available on the sensitivity
of any species to a broad range of other organic con-
taminants.

Marine organisms

Criteria for the selection of marine species for sedi-
ment toxicity tests are summarized in Lamberson et al.
(1992). Not surprinsingly, these criteria differ little
from those for the choice of freshwater organisms
(e.g. Giesy & Hoke, 1989). At least 71 species of
benthic metazoans have been thus far used in marine
and estuarine sediment bioassays (Table 3). Peddicord
(1980) describes bioassays with sediment elutriates
using shrimps, crabs, mussels, tunicates and lobster not
mentioned in Table 3. Pastorok & Becker (1990) com-
pared several marine bioassays in exposures to contam-
inated natural sediments from Puget Sound. The ranks
of statistical sensitivity in that study were in decreas-
ing order as follows: Photobacterium phosphoreum
(Microtox) = Dendraster excentricus embryo abnor-
mality > Rhepoxynius abronius mortality = Eohausto-
rius estuarius mortality > Neanthes arenaceodentata
biomass > Neanthes arenaceodentata mortality = Den-
draster excentricus chromosomal abnormality > Rhe-
poxynius abronius nonreburial > Eohaustorius estu-
arius nonreburial = Panope generosa mortality. Other



relative sensitivities of marine bioassays are mentioned
in sections below.

Marine crustacea
Amphipods in general are among the first species to
disappear from benthic marine communities in con-
taminated areas (Belian-Santini, 1980; Swartz et al.,
1982), and thus may be considered as sensitive indica-
tors of sediment pollution. When toxicity is found,
however, it is difficult to determine whether the
observed effects are due to toxicants associated with
sediment particles ingested or to chemicals dissolved
in interstitial water (Lamberson & Swartz, 1988). Fur-
ther tests are then necessary to pinpoint the source of
contamination, should this be a desired goal. This is
one reason why mono-species tests are presently just
one component of sediment quality assessments.
Amphipods are available in large numbers in
marine and estuarine waters worldwide. Ease of col-
lection, amenability in the laboratory, and the avail-
ability of culture procedures for some species make
this group suitable for the development of toxicity
bioassays in countries where species included in stan-
dardized test protocols are absent. Several species
of marine amphipods, noticeably Rhepoxynius abro-
nius, have become established as sensitive test organ-
isms in sediment bioassays (Table 3). ASTM (1993a)
describes the biology, handling and culturing meth-
ods, as well as bioassay protocols for Rhepoxynius
abronius, Eohaustorius estuarius, Ampelisca abdita,
Grandidierella japonica and Leptocheirus plumulosus
(see also Environment Canada, 1992).Grandidierel-
la japonica stands out as particularly tolerant of a
wide range of sediment grain sizes (0.004 mm - 1
mm; Nipper et al., 1989). It is noteworthy that the
prolonged holding of field collected amphipods can
alter their toxicological sensitivity (Robinson et al.,
1988). Lamberson et al. (1992) give an overview of
the use of amphipods in marine sediment toxicology.
The sensitivity and costs of these bioassays are dis-
cussed by Word et al. (1989). Marine research on toxi-
city and bioaccumulation of pollutants in gammaridean
amphipods is reviewed by Reish (1993). Although the
most common endpoint in single-compound toxicity
tests with gammarideans is mortality in 4 d exposures
(LC50), 10 d exposures became the standard in sedi-
ment toxicology (Table 3). Reburial capability is a sub-
lethal endpoint which can be applied to most amphipod
species. Acute 10-d exposures of Leptocheirus plumu-
losus to estuarine sediments exhibited sensitivity com-
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parable to, or higher than, tests with juvenile Hyalella
azteca, an amphipod used widely in freshwater sedi-
ment toxicology (McGee et al., 1993).

Hyalella azteca is suitable as a test organism
for estuarine sediments in which the salinity may
be too low for Rhepoxynius to survive (Nebeker &
Miller, 1988). Although bioassays with the estuar-
ine amphipods Eohaustorius estuarius, Corophium
volutator and Leptocheirus plumulosus, the copepod
Nitocra spinipes,as well as the bivalves Mya arenar-
ia and Crossastrea gigas, are meanwhile established
for analyses of estuarine sediments (Table 3; see also
Crane et al., 1993), H. azteca offers the additional
advantages of having a long tradition as a test organ-
ism, which generated a large data base of its respons-
es to various toxic compounds, as well as the possi-
bility of assessing the toxicity of river systems from
upstream sites down the river and through the estuary
with the same test species (Nebeker & Miller, 1988).
H. azteca is the amphipod most sensitive to cadmium
in 4 d water-only esposures, followed by Leptocheirus
plumulosus, Ampelisca abdita, Rhepoxynius hudsoni,
R. abronius, Lepidactylus dytiscus and Eohaustorius
estuarius in decreasing order of sensitivity (Schlekat
et al., 1992). In this comparison there is a 40-fold dif-
ference in the LC50 value between the most and the
least sensitive species.

Decapod crustaceans are represented in marine
bioassays principally by Palaemonetes pugio, the grass
shrimp. A review of toxicity testing with this species,
its biology and test methodology is found in Buike-
ma et al. (1980c). Among other species, the ridge-
back prawn Sicyonia ingentis, is recommended by the
US EPA/US ACE (1991) for whole sediment testing
because of its size, which makes it suitable for bioaccu-
mulation analyses. Shuba et al. (1978) included cope-
pods, shrimps, amphipods and isopods in a toxicolog-
ical analysis of dredged material. Larvae are generally
the life stage of preference for they have been found to
be up to 500 times more sensitive than adults (Franklin,
1983).

Long et al. (1990) evaluated in a comparative test
five marine bioassays (amphipods Rhepoxynius abro-
nius, Ampelisca abdita, bivalves Mytilus edulis, echin-
odermsStrongylocentrotus purpuratus and polychaetes
Dinophilus gyrociliatus) including whole sediment,
elutriate and pore-water exposures. The Rhepoxynius
survival bioassay was very sensitive and, overall, had
a high concordance with the Mytilus test. In the Rhep-
oxynius test, however, survival was largely dependent
on sedimentological variables. These variables had lit-
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tle influence on the survival endpoint of Ampelisca
abdita, which emerged as having less sensitivity but
higher analytical precision for toxicants than the Rhep-
oxynius test. In another comparative study, Corophium
volutator emerged as the most sensitive organism over
Bathyporeia sarsi and R. abronius (van den Hurk et al.,
1992). Other comparisons between various bioassays
can be made from data in Chapman et al. (1987, see
also Hong & Reish, 1987).

Marine oligochaeta

Enchytraeid oligochaetes have been recommended as
indicators of marine pollution (Coates & Ellis, 1980).
Most bioassays with marine oligochaetes use respira-
tion rate as the endpoint of the test (Table 3). These
assays require a sediment extract as test phase and
should be complemented with a mortality assay in
whole sediment (Chapman et al., 1982a, b, ¢). No
bioassay with marine oligochaetes to test chronic expo-
sures has become thus far established. In contrast,
toxicity bioassays with freshwater oligochaetes are by
and large based on mortality, growth, reproduction
and behavioural responses, which can be quantified in
whole sediment samples after both acute and chronic
exposures.

Marine polychaeta
Polychaetes constitute over 40% of both number of
species and specimens in the subtidal soft-bottom ben-
thos, regardless of depth or latitude. Their ease of han-
dling, short life history and amenable size makes them
suitable organisms for marine bioassays. The materials
and methods required for short- and long-term toxicity
tests with Nereis arenaceodentata, Capitella capita-
ta and Ctenodrilus serratus are described by Reish
(1980), along with a brief review of the role of poly-
chaetes in toxicity studies (see also Lamberson et al.,
1992). These annelids form part of the standardized
sediment bioassays used in the assessment of estuar-
ine toxicity (Table 3). A pore-water/elutriate bioassay
with Dinophilus gyrociliatus (e.g. Carr et al., 1989)
complements the range of whole-sediment tests with
polychaetes. The small size of D. gyrociliatus, how-
ever, makes it difficult to recover from the sediment
sample at the end of the experiments. The intermediate
performance of this survival and egg production bioas-
say among assays with other organisms is described by
Long et al. (1990).

Nereis (Neanthes) arenaceodentata is widely dis-
tributed in shallow marine and estuarine benthos of

Europe, North America and the Pacific (references in
Dillon et al., 1993). The bioassays with this species
include a sublethal, chronic exposure test of 28 d,
in which growth of juveniles is recorded (see also
US EPA, 1990; Pesch et al., 1991). The validity of
this chronic test was confirmed by a positive corre-
lation between juvenile (somatic) growth and subse-
quent reproduction (Moore & Dillon, 1993). In order
to eliminate the confounding effect of gametic growth
in this bioassay, Moore & Dillon (1993) recommend
to limit the measurements of growth to the first 6
weeks post-emergence of the juveniles. Nereis sp. and
Hediste (Nereis) sp. are the polychaetes recommended
for whole-sediment toxicity testing by the US EPA/US
ACE (1991). The relative sensitivity of polychaetes
to pollution is little known. Nereis virens is consider-
ably more resistant to organochlorine compounds than
the decapod Crangon septemspinosa (McLeese et al.,
1982). Bioassays with other polychaete species are
discussed by Reish & Lemay (1988).

Marine nematoda

Nematodes are the most abundant and species richest
organism group among the metazoans of marine sedi-
ments (Heip et al., 1985). Two marine nematode bioas-
says have been thus far developed (Table 3). These can
be used to analyse both marine and estuarine sediments
(Tietjen & Lee, 1984).

Marine mollusca
The role of molluscs as test organisms in marine toxi-
cology was reviewed by Calabrese (1984). The review
describes standard techniques employed in such work
and presents examples of the results of toxicity tests.
Although many species have been used for toxicity
analyses, the most intensive testing has focused on only
a few. These are the American oyster (Crassostrea vir-
ginica), the Pacific oyster (Crassostrea gigas), the blue
mussel (Mytilus edulis), and the hard clam (Mercenar-
ia mercenaria). Methodologies for embryo biocassays
with marine bivalves are described in ASTM (1989).
Bivalves have been used to investigate the toxicity of
sediment particles in suspension (e.g. Tsai et al., 1979).
Bivalves are in general highly sensitive organisms
to aquatic pollution. In a comparison of five marine
sediment bioassays the embryo development test with
Mpytilus edulis was the most sensitive and had the high-
est discriminatory power and precision of those com-
pared (Long et al., 1990). The Mytilus test may be a
sensitive indicator of the toxicity of chemicals not rou-



tinely quantified in chemical analyses, but it may also
respond sensitively to ‘nuisance variables’ (Longetal.,
1990; see also Williams L.G. et al., 1986, and Becker
et al., 1990). Although the whole-sediment acute test
with juveniles of Mulinia lateralis is similar in sensitiv-
ity to equivalent bioassays with amphipods (Ampelisca
abdita and Eohaustorius estuarius), utilization of the
M. lateralis sublethal growth endpoint greatly increas-
es test sensitivity (Burgess & Morrison, 1994).

Ventilation rate and faecal production of the deposit
feeding clam Macoma nasuta (Specht & Lee, 1989)
could be potentially developed into bioassay endpoints
to assess sediment toxicity (c.f. Abra alba, Strgmgren
etal., 1993). The feeding mode of this infaunal species
makes it more suitable for analyses of sediment toxicity
than bivalves which feed on phytoplankton from the
overlying water, and which are generally best suited
for water quality monitoring (e.g. Nelson, 1990).

Echinodermata

Echinoderms have been used to evaluate toxicity of
sediments in solid and aqueous phases (Table 3;
overview in Dinnel et al., 1988). The latter phase has
been tested with embryos and gametes, representing
planktonic life-stages. Meador et al. (1990) indicated
that the Dendraster embryo elutriate assay is appropri-
ate for assessment of organic chemicals but not of met-
al contaminants associated with sediment. The relative
sensitivity of echinoderm bioassays was evaluated by
Nacci et al. (1986), Dinnel et al. (1987) and Dinnel
& Stober (1987). The echinoderm tests show similar
sensitivity to a variety of toxicants when compared
to fish, crab zooea and Microtox® assays of contam-
inated water. The fertility bioassays with Strongylo-
centrotus droebachiensis and Dendraster excentricus
are similarly sensitive to two reference toxicants, sug-
gesting that between species variation in sperm sen-
sitivity is low within the echinoderms (Dinnel et al.,
1982). The sperm fertility bioassay is of roughly equal
sensitivity as the embryo development test with the
same species (Dinnel et al., 1982). The short duration
of the echinoderm fertility bioassay makes it partic-
ularly suitable for toxicity tests of chemicals which
change form or degrade rapidly after introduction into
the seawater or in the test containers. When evaluated
against sediment bioassays with other macroinverte-
brates, most endpoints of the Strongylocentrotus pur-
puratus echinoderm tests appear to be intermediate in
sensitivity, precision and discriminatory power (Long
et al., 1990). The results of this pore-water assay cor-
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relate highly with polynuclear aromatic hydrocarbon
(PAH) concentrations in whole sediment (Long et al.,
1990). The Dendraster excentricus embryo abnormal-
ity test emerged as the most sensitive bioassay, when
compared with crustacean and polychaete bioassays
exposed to contaminated natural sediments (Pastorok
& Becker, 1990). The chronic D. exenctricus growth
bioassay (Casillas et al., 1992) stands out among echin-
oderm tests for it has been applied to whole sedi-
ments. Meanwhile, echinoderm bioassays have been
even applied to freshwater sediments (Pagano et al.,
1993).

Benthic community analyses

Benthic community is a popular level of analysis of
environmental impact of pollution. It represents the
integrated toxicity conditions over a period of time, in
contrast to lower levels of analyses (e.g. single species
assays) which reflect the condition of organisms just
at the time of sampling. In addition, the community
level is more amenable to rapid scrutiny than the high-
er ecosystem level. Also, it is natural communities the
reason of concern in most contaminated areas. The
impact of sediment toxicity on these communities can-
not be extrapolated with certainty from toxicological
studies of single-species (e.g. Kimball & Levin, 1985),
and, therefore, direct analysis of function and structure
of benthic assemblages is argueably the more scien-
tifically and ecologically relevant approach (Warwick,
1993). Schindler (1987) reviews the role of benthic
community analyses in sediment toxicology. Specific
reference to benthic communities in freshwater is made
in reviews by Davis & Lathrop (1992) and La Point &
Fairchild (1992), and to marine benthic assemblages in
Diaz (1992). Information on types of (marine) meso-
cosms and their applications is found in Grice & Reeve
(1982). Cairns et al. (1992) review studies with ben-
thic microbial communities. Community analyses are
often used to monitor environmental health.
Macrobenthic invertebrates are, with few excep-
tions, probably the best community for field studies in
areas of concern, when compared with fish or periphy-
ton assemblages (La Point & Fairchild, 1992). Advan-
tages of macroinvertebrates include their ease of col-
lection, by-and-large sedentary habits and lifespans
(up to a year or more for many species) long enough
to determine time-weighted chronic effects, but short
enough to observe community structure changes within
a reasonable period of seasons or years (White, 1988).
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The method often uses intact sites as reference com-
munities, but absolute measures of community degra-
dation can be equally useful in the absence of such
references (e.g. Warwick, 1993). Multiple samples
must be collected throughout the seasons in order to
adequately characterize community structure (Winner
et al., 1980). ARGE (1991) uses the superficial benthic
community, i.e. the abundance and biomass of species
combined in a ‘zoobenthic index’, to monitor the water
quality of the river Elbe.

The development of estuarine benthic communities
has been used in the laboratory to assess the impact of
substances dissolved in a flow-through system with
seawater (Hansen & Tagatz, 1980). This system could
be adapted to test the impact of contaminated sedi-
ments on colonization patterns. Additional, promising
endpoints in this approach are species richness and
standing crop (Pratt & Bowers, 1992), as well as mea-
sures of community similarity (Smith et al., 1990).
Some community level endpoints have been used in
ecotoxicology within the species assemblage of nema-
todes in areas of concern: Bongers (1990) used the ratio
of r- to k-strategists in freshwater and marine benthos
to estimate the impact of pollution (see also Bongers &
van de Haar, 1990). Cantelmo & Rao (1979) focused on
the numerical relationship between nematode species
belonging to different feeding types in sediment sam-
ples spiked with pentachlorphenol. Other examples of
community level assays are the Gammarus to Asel-
lus ratio (Whitehurst, 1991) in whole sediments under
laboratory conditions and the ratio of nematodes to
copepods in situ (Rafaelli & Mason, 1981; Warwick,
1981; but see Coull et al., 1981).

Benthic community responses to industrial dis-
charges in rivers have been found to agree well with the
results of an aquatic toxicity bioassay with the nekton-
ic Ceriodaphnia dubia (Eagleson et al., 1990). Sim-
ilarly, a reduction in benthic macroinvertebrate abun-
dance, diversity, biomass and number of taxa at copper
contaminated sites demonstrated the ecological rele-
vance of toxicity bioassays with Daphnia and Hexa-
genia conducted at these sites (Malueg et al., 1984a,
b). The recent development of large artificial streams
offers opportunities to manipulate benthic communi-
ties, a useful step towards the validation of the results
of single-species, micro- and mesocosm toxicity tests
(Swift et al., 1993).

The evaluation of riffle/run macroinvertebrate com-
munities in lotic freshwater systems has been used to
assess the health of benthic ecosystems following a
standardized methodology (Ohio EPA, 1987, see also

Winner et al., 1980; Barbour et al., 1992; Lief3, 1993).
An advantage of lotic systems, is that reference com-
munities are usually available above the discharge site.
Conversely, in lentic systems a potential gradient may
not be as easily identified, thus making the compari-
son with control sites more problematic (La Point &
Fairchild, 1992). Other applications of the community
analysis approach are described by Johnson & Wieder-
holm (1989), Reynoldson & Zarull (1989) and Becker
et al. (1990).

Analyses of benthic community responses to con-
taminants have generated lists of indicator macroinver-
tebrates and pollution indeces based on species com-
position (reviews in Pearson & Rosenberg, 1978, and
in Hellawell, 1986 p. 423 ff. and appendices there-
in). These can be used for preliminary diagnoses or
to monitor sediment toxicity (see Gray & Pearson,
1982). In freshwater, for example, certain chironomid
species are commonly found to prevail in the vicinity
of toxic dischargers, whereas ephemeropterans, ple-
copterans and trichopterans are typically absent (Win-
ner etal., 1980; Sheehan, 1980; Maluegetal., 1984a, b;
Schioesser, 1988; Plafkin et al., 1989; Eagleson et al.,
1990; see also Hellawell, 1986). The assemblage char-
acteristic of contaminated regions of a marine inlet of
the North American Pacific coast is an overabundance
of the polychaete Tharyx multifilis and the mollusc
Axinopsida serricata along with a notorious scarcity
of amphipods (Becker et al., 1990; see also Swartz
et al.,, 1986). Luoma & Carter (1991) reviewed the
toxicity of trace metals to aquatic benthos. They con-
cluded that the effect of trace metals on higher levels
of organization, i.e. population and communities, is
little understood and is unlikely to be elucidated by
a simplistic approach which, as yet, ignores impor-
tant complexities of the system (also Luoma & Carter,
1993).

Experiments have shown that aquatic communi-
ty variables, such as e.g. abundance, can be more
sensitive to toxicity than mono-species tests (Lampert
etal., 1989). Standardized multi-species aquatic toxici-
ty tests have been meanwhile developed which exploit
this sensitivity (Taub, 1989; Taub et al., 1989). An
overview of multi-species tests for aquatic toxicity, but
which involve sediments, is found in Ahlf (1994, Table
3.12 therein). This approach has a great ecological rel-
evance in that it allows extrapolations about the effect
of pollution to the ecosystem. Despite of standard-
ization of microcosm protocols (Taub, 1989) and of
various applications of micro- and mesocosms to the
assessment of terrestrial (e.g. Mothes-Wagner et al.,



1992) and aquatic toxicity (e.g. Giesy, 1980; Cairns,
1985; Livingston, 1988; Maund et al., 1992; Merlin
et al., 1992), no multi-species communities have thus
far been used in a standardized bioassay for sediment
quality assessments (but see Alden & Butt, 1988).

The use of benthic communities in sediment tox-
icology has been criticized on several grounds. (1)
The results of toxicity analyses using community vari-
ables in situ are often insufficient, for they can fail to
discriminate between changes in community compo-
sition due to chemical toxicants, water quality fluctu-
ations (e.g. dissolved oxygen, temperature, pH, salini-
ty), changes in organic content, differences in physical
variables (e.g. sediment features, water depth) and in
biotic interactions, such as competition and predation
(e.g. Schlekat et al., 1992). (2) The results are usu-
ally site and season specific. (3) Determination of an
endpoint for community responses to toxicity is prob-
lematic (Luoma & Carter, 1993). (4) The complexity
of these systems and the costly data evaluation greatly
limits the number of replicates. Despite of these draw-
backs, recent developments in the field of microbial
microcosms suggest that this methodology can poten-
tially become an integral part of sediment test batteries
(e.g. Cairns & Pratt, 1987; Henebry & Ross, 1989;
Cairns & McCormick, 1991; Cairns et al., 1992).
Similarly, analyses of absolute measures of benthic
community stress in situ have been recently simplified
to a degree that makes them amenable for incorpora-
tion into tiered strategies for a rapid and cost-efficient
evaluation of sediment toxicity (Warwick, 1993). In
general, therefore, toxicological analyses of benthic
communities are presently useful only in combination
with other test methodologies, such as single-species
bioassays and chemical analyses of the sediment (La
Point & Fairchild, 1992).

Combined bioassays, test-batteries and the
step-wise approach

The various strengths and weaknesses of the presently
available bioassays, as well as their selective sensi-
tivity to certain toxicity variables, dictate a combi-
nation of several tests for an adequate assessment of
sediment quality (Cairns, 1983a). While some of the
proposed test-batteries are limited to microorganisms
(e.g. Ross & Henebry, 1989; Ahlf et al., 1991), in oth-
ers the meio- and macrobenthic species play a central
role (e.g. Reynoldson & Day, 1993) or complement
other mono- species bioassays with microbes, nekton-

245

ic invertebrates and vertebrates (e.g. LeBlanc & Sur-
prenant, 1985; Dutka & Kwan, 1988; Giesy & Hoke,
1989, 1990; Krantzberg & Pope, 1989; Munawar et
al., 1989; Baudo et al., 1990 p.330; Elder, 1990; Kwan
et al., 1990; Dutka et al., 1990, 1991; Hoke et al.,
1993; Ahlf 1994). Often, the rationale in the design
of test batteries or multispecies assemblages for sedi-
ment analysis is to use a hierarchical approach covering
the cellular, species, population and community level
with a wide discriminatory and sensitivity range. Ben-
thic metazoans in such tests are typically Chironomus
sp., Hexagenia limbata, Hyalella azteca and/or Tubifex
tubifex.

The cladoceran Daphnia is a highly sensitive organ-
ism used for sediment tests, especially to metals.
Hyalella and Chironomus, which are very amenable
in the laboratory, are highly sensitive to organic tox-
icants in whole sediment and would, therefore, com-
plement adequately the Daphnia results for soluble
compounds. Nebeker et al. (1984) describe combined
bioassays with Daphnia and benthic metazoans to test
short and long term exposure to toxicants. A Daphnia,
48 h whole sediment or elutriate test is recommended
as afast and inexpensive initial screening procedure for
acute toxicity of sediments, before resorting to further
testing with benthic species. Short term exposures can
also be tested in mixed species beakers with whole
sediment and overlying water using the amphipods
Hyalella, or Gammarus,the burrowing mayfly nymph
Hexagenia and the midge Chironomus , as well as in
a combined test with Daphnia and Hexagenia. Long
exposures use Hyalella life cycle data and Chironomus
larval growth, survival and adult emergence as end-
points. The toxic response shown by an organism in a
multi-species exposure is likely to differ from its equiv-
alent response in a mono-species bioassay because the
presence of other organisms can affect the bioavailabil-
ity of toxicants in complex ways (Malueg et al., 1983;
Keilty et al., 1988b). Giesy & Hoke (1989) recommend
a battery of screening tests, which includes Microtox?,
Chironomus tentans growth, Daphnia magna mortality
and an algal assay (e.g. Munawar & Munawar, 1987).

One of the most commonly used multispecies
bioassays was originally developed for freshwater sed-
iments by Prater & Anderson (1977a, b) and later
modified by other investigators (e.g. LeBlanc & Sur-
prenant, 1985). It consists of burrowing or epiben-
thic organisms placed in the test sediment, while
water column dwellers (Daphnia magna or the fish
Pimephales promelas) are simultaneously exposed to
the circulating overlying water. Daphnia are kept in
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suspended cages, avoiding direct contact with the sed-
iment. Benthic species typically used in this test are
the insect larvae of Hexagenia or Chironomus, the
amphipods Hyalella or Gammarus, or the isopod Asel-
lus. The effect of the burrowing activity of Hexagenia
on Daphnia survival in this apparatus was investigat-
ed by Malueg et al. (1983). The combination of both
species was found to be a more sensitive test than the
assay with Daphnia alone. Swartz et al. (1979) pro-
posed a multispecies bioassay for marine sediments
consisting of pelecypods, polychaetes, amphipods and
cumaceans. Some investigators use combinations of
benthic microbes for sediment analyses (e.g. Cairns
etal., 1985).

Simultaneous testing with mono-species bioassays
and tests at higher levels of organization, i.e. multi-
species, multi-trophic, community and ecosystem lev-
el, have been also advocated as a way to overcome the
interpretative limitations of single-species assessments
of toxicity (e.g. Maciorowski & Clarke, 1980; Cairns,
1983b, 1988b; Kimball & Levin, 1985). Test batter-
ies for aquatic systems should combine representative
species from various trophic levels, e.g. microbes,
algae and invertebrates, to ensure a broad coverage
of toxicity (Burton, 1989).

The contributory role of benthic metazoans in
assessments of sediment toxicity is best illustrated
by test procedures which integrate various techniques.
The sediment-quality-triad approach, which incorpo-
rates chemical and ecological measures into biological
test-battertes, can, for example, combine (1) chemi-
cal analyses, (2) toxicity tests, e.g. effect on Daph-
nia reproduction, and (3) an assessement of biological
effects in situ (benthic community health), e.g. inci-
dence of malformations in Chironomus and its pop-
ulation density (Chapman, 1990, 1992; Chapman et
al., 1992; van de Guchte, 1993). These three com-
ponents were originally combined by Malueg (1984a,
b) to investigate the toxicity of freshwater sediments
contaminated with copper. The sediment- quality-triad
was further developed and tested in marine ecosystems
(Long & Chapman, 1985; Chapman, 1986b; Chap-
man et al., 1987). This approach thus combines the
potential cause (chemistry) with the effect (biology)
of degradation resulting from sediment pollution. A
more comprehensive, integrated assessment of sedi-
ment toxicity has been recently done in the Great Lakes
(Ankley et al., 1992). It included (1) analysis of ben-
thic community structure, (2) determination of bulk
sediment and pore water toxicity to microbial, inverte-
brate and vertebrate species, (3) identification of spe-

cific sediment toxicants, (4) evaluation of the presence
of carcinogenic and/or mutagenic compounds in the
sediments via microbial and fish assays, (5) determi-
nation of possible toxic and/or teratogenic effects of
sediment contamination on avian populations, and (6)
risk assessement for several contaminants of specific
concern in the sediments and associated biota.

In a step-wise approach developed to assess sed-
iment quality various test procedures are applied in
sequence, depending on the results of the previous step
(Reynoldson & Zarull, 1989; Chapman et al., 1992; US
EPA, 1992; Ahlf, 1994). In contrast to test-batteries in
which all tests are run simultaneously, this approach
emphasises flexibility in test design and uses a sensible
ranking of diagnostic methods, thereby optimizing the
econormic aspect of sediment assessments. The effects
of toxicants on benthic metazoans, in addition to physi-
cal and chemical variables, are an essential component
of stepwise-assessments of sediment quality.

A useful strategy for the use and choice of bioassays
with benthic metazoa is well illustrated in the following
studies. Williams et al. (1986) compared three bioas-
says commonly used in marine sediment toxicology.
These are the bioluminiscence of the bacteria Photo-
bacterium fisherii (Microtox™ in sediment extracts,
oyster embryo abnormalities (Crassostrea gigas) in
sediment slurries and mortality of the amphipod Rhe-
poxynius abronius in whole sediments. These three
bioassays, along with a characterisation of in situ com-
munity structure, compose a test-battery used to exam-
ine sediment toxicity in Puget Sound, USA (Pacific).
There was a high overall level of agreement between
these tests, based on rank-order comparisons. At some
sites, however, there were clear discrepancies in the
responses of the three bioassays, probably due to dif-
ferences in sensitivity to the kinds of contaminants in
the various samples and/or to the duration and medi-
um of exposure. In that comparison, the oyster embryo
test was the least and Microtox*the most sensitive of
the three. The same three bioassays were compared
with respect to their ability to predict alterations in
benthic assemblages due to chemical toxicity (Becker
et al., 1990). This comparison was made to examine
the ecological relevance and hence validity of sediment
bioassays performed in the laboratory. Although all
three bioassays were reasonably successful in predict-
ing the presence or absence of moderately to severely
altered assemblages, the tests differed markedly in their
ability to identify only the altered assemblages. The
Microtoxbioassay was the most sensitive: it success-
fully identified the highest percentage of altered assem-



blages, but it also reacted positively to nearly half of the
sites considered as unaltered. The oyster embryo test
was intermediate in sensitivity, whereas the amphipod
bioassay, the least sensitive of the three, identified only
half as many altered assemblages as Microtox . Effec-
tiveness to detect only altered assemblages was highest
for the oyster embryo test and considerably lower for
both Microtox? and Rhepoxynius. Most false predic-
tions of the amphipod bioassay were seemingly due
to the occurrence of much fine-grained material in the
sediment at those sites, a condition which is known to
increase the mortality of Rhepoxynius in the absence of
toxicants (DeWitt et al., 1988). When this factor was
taken into account, the Rhepoxynius bioassay was as
effective as the oyster embryo test.

These results emphasize the importance of combin-
ing tests into a tiered battery and of integrating vari-
ous approaches, such as chemical analyses and eval-
uation of in situ community structure, to assess sedi-
ment toxicity. Such a strategy allows validation (Long
& Chapman, 1985; Cairns, 1988c) and calibration of
methodologies. It can also potentially simplify subse-
quent monitoring in the area of concern by reducing
the sediment assessment to a small battery of mono-
species bioassays. Becker et al. (1990) recommend the
most sensitive test (here Microtox®) to be used as a
screening tool. Subsequently, the most effective test
(here the oyster embryo bioassay) should be applied
to the subset of sites diagnosed initially as potentially
impacted. The second tier, therefore, would identify
those sampling stations with the highest priority for
remedial action. In the above case, consequently, the
Rhepoxynius bioassay could be eliminated from the
test battery. Microtox* has been also recommended
for freshwater sediment analyses as a screening tool to
be used in combination with macroinvertebrate bioas-
says (e.g. Giesy et al., 1988). Inclusion of macroinver-
tebrates is justified not only to increase the ecological
relevance of the test, but also because Microtox is less
sensitive to certain toxic compounds than macroinver-
tebrates (references in Giesy et al., 1988). The greater
sensitivity and discriminatory power of test-batteries
over single bioassays has been demonstrated quantita-
tively for marine and freshwater sediment tests (Becker
et al., 1990; Giesy et al., 1988).

Although rankings of sensitivity are sometimes
used to determine the composition of bioassay test bat-
teries, as well as the order of exposure of the different
test organisms, a cautionary note results from evidence
suggesting that sensitivity is a highly complex and situ-
ation specific variable (e.g. Williams L.G. et al., 1986;
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Giesy et al., 1988; Long et al., 1990; Schlekat et al.,
1990; West et al., 1993). West et al. (1993) compared
the sensitivity of some test organisms to sediments con-
taminated with copper in a 10 d survival (LC50) assay
with a flow-through, water renewal system. Culture
methods -described in detail by West et al. (1993) -
were based on Nelson et al. (1991) for H. azteca and
C. tentans, and on Phipps et al. (1993) for L. varie-
gatus. Hyalella azteca was more sensitive to copper
than Chironomus tentans and Lumbriculus variegatus.
However, C. tentans survival was affected at one site
at which the other two species were not affected. Thus,
protection strategies based on the use of only the most
sensitive species may be underprotective for (appar-
ently) less sensitive organisms (West et al., 1993). Sur-
vival of L. variegatus was not affected by exposure
to contaminated sediments but its reproduction was.
The results contrast greatly with the relative sensitivi-
ties shown by these species when tested in water-only
copper exposures or in exposures to natural sediment
(Dermott & Munawar, 1992).

Bioaccumulation of toxicants

Biotransformation, bioaccumulation and bioconcen-
tration of toxicants in benthic organisms, e.g. in bivalve
molluscs (Alden & Butt, 1988; Bauer et al., 1989;
Berthet et al., 1992; Strgmgren et al., 1993; ASTM
1994b), is one way of documenting bioavailable con-
tamination of aquatic systems. Studies with benth-
ic metazoa which have measured bioaccumulation in
contaminated sediments are indicated by a footnote
in Tables 2 and 3. The uptake and accumulation of
some sediment contaminants by oligochaetes has been
well documented (e.g. Mac et al., 1984; Oliver, 1984).
Data on bioaccumulation, however, do not allow a
direct inference about the quality of sediments as such
because (1) the relationship between bioaccumulation
and toxicity is not simple (Berthet et al., 1992) and
(2) because the source of contamination in the case of
bivalves is typically the overlying water or phytoplank-
tonic food.

Measures of bioaccumulation, however, could be
specifically adapted to assess sediment quality by cal-
ibrating bioaccumulation with toxic effects and by
choosing organisms from deep sediment layers, such
as e.g. certain nematodes or oligochaetes, which have a
reduced relative exposure to overlying water. Finding a
suitable benthic species for such a test may not be sim-
ple, however. In choosing an organism for a bioaccu-
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mulation bioassay for freshwater sediments, Mac et al.
(1984) rejected several benthic invertebrates because
of size limitations (e.g. Chironomus) or intolerance to
certain sediment types (e.g. Hexagenia). The species
finally recommended for that bioassay were the fat-
head minnow (Pimephales promelas) and the earth-
worm (Lumbriculus terrestris). In a combined bioas-
say using Daphnia and benthic organisms, Nebeker
et al. (1984) recommend Gammarus and Hexagenia
when toxicity and bioaccumulation are of interest, for
they yield greater biomass for tissue analyses than Chi-
ronomus or Hyalella. Nebeker et al. (1984) describe
bioaccumulation tests for these organisms. The amphi-
pod Diporeia has been used in bioaccumulation studies
of sediment associated organic toxicants in the Great
Lakes (e.g. Landrum, 1989; Landrum et al., 1992).

Nalepa & Landrum (1988) reviewed the bioaccu-
mulation of organic contaminants and heavy metals in
macrobenthic freshwater organisms (for gammaridean
amphipods see Reish, 1993). Adequate data of conta-
minant uptake rate, depuration rate, biotransformation
rate and their toxicity are a prerequisite to develop sedi-
ment diagnosis charts based on bioaccumulation. Such
data, unfortunately, are still missing for many benthic
species and toxic compounds. Nevertheless, a body of
knowledge about benthic bioaccumulation is growing
from studies on oligochaetes (see review in Nalepa &
Landrum, 1988; Keilty et al., 1988b, c¢). Oligochaetes
have already been recommended as monitoring tools
for metal pollution of aquatic systems (e.g. Chap-
man et al., 1979; Chapman et al., 1985). This group
is, therefore, a good candidate for the development
of guidelines for sediment toxicity assessment based
on bioaccumulation. Such a procedure could become
incorporated into test strategies as an additional source
of information on the quality of sediments. Advanta-
geous starting points in this endeavour are, firstly, that
bioassays and standardised procedures for measuring
bioaccumulation of toxic substances from sediments
have been already developed (Mac et al., 1984; US
EPA, 1994b) and, secondly, that considerable progress
has been recently made in the theory underlying pat-
terns of bicaccumulation of sediment-associated pol-
lutants (Lee, 1992).

Future perspectives
The usefulness of bioassays to assess and/or predict

toxicity in sediments is indisputable, but the basis for
an interpretation of bioassay resuits is still weak (Luo-

ma & Carter, 1993). One important future avenue in
sediment ecotoxicology is the study of mechanisms
that control toxicity under field conditions, because a
better understanding of these processes would reduce
many of the uncertainties currently associated with
results of bioassay and benthic community analyses.
In addition, sediment ecotoxicology could benefit from
progress in the use of biomarkers, mutagenic respons-
es, and energetic measures of organism health, as well
as from the development of bioassays with additional
test species.

Biomarkers are defined as biochemical, physio-
logical or pathological responses of single organisms
with information about exposure to toxicants and/or
sublethal consequences resulting from such exposure
(Benson & Di Giulio, 1992). Most biomarkers have
been so far identified in phytoplankton (e.g. Berglund
& Eversman, 1988), benthic fishes (e.g. McMahon
et al., 1988; Huggett et al., 1992) and in some inverte-
brates upon exposures to single-contaminants (review
in Giesy & Graney, 1989). This technique is promis-
ing for applications in meio- and macrobenthic organ-
isms exposed to contaminated sediments. Giesy &
Graney (1989) recommend the use of endpoints reflect-
ing effects on bioenergetics and of the RNA/DNA ratio
as a measure of growth. They conclude, however, that
biochemical effects following acute exposures are not
yet sufficiently calibrated with chronic effects on sur-
vival, growth and reproduction to allow replacement of
chronic studies. The biochemical measures may nev-
ertheless contribute to our understanding of modes of
action in the laboratory or may serve as early warning
measures to determine probable causes of field toxicity
(Giesy & Graney, 1989; Depledge, 1994).

No tests of marine sediment mutagenic or promuta-
genic toxicity is thus far widely established. At present,
the best candidates for such a standardized test are
the polychaete Neanthes arenaceodentata and echin-
oderm embryos, of which cytological and cytogenetic
abnormalities have been already used as bioassay end-
points (Pesch et al., 1981; Hose, 1985; Long et al.,
1990). The Strongylocentrotus purpuratus bioassay,
for example, indicated mutagenicity in several sedi-
ment samples with high hydrocarbon concentrations
(Long et al., 1990). Mutagenicity could become a use-
ful endpoint to document the toxicity of some com-
pounds which escape detection in tests of acute mor-
tality (Long et al.,, 1990). A further potential devel-
opment in the assessment of sediment toxicity can be
the standardized application of stress protein bioassays
with benthic organisms (see Bradley, 1990).



Scope for growth, an energetic measure of an organ-
isms health, has been measured in various marine
taxa (e.g. polychaeta: Johns et al., 1985) and in the
freshwater amphipod Gammarus pulex as an indicator
of environmental pollution (review in Maltby, 1992).
The advantage of measuring scope for growth instead
of growth and fecundity is that its components (i.e.
energy intake and expenditure) can be measured over
short time scales (hours/days). The G. pulex scope-
for- growth bioassay has been used to test toxicity of
effluents and of single contaminants in water (Naylor
et al.,, 1989; Maltby et al., 1990 a, b), but rarely to
analyse contaminated sediments (e.g. Roddie et al.,
1992). The use of sophisticated equipment to measure
scope for growth, has been meanwhile overcome by
simplifying measures of energy intake and respiration
to an estimate of feeding rate (Maltby, 1992; Roddie
et al.,, 1992). This bioassay, which can be used in the
laboratory and in situ, could be potentially developed
into a standard bioassay to test the chronic toxicity of
freshwater sediments.

Benfield & Buikema (1980) list miscellaneous
aquatic invertebrates, which have been used in toxicity
studies and for which standardized test protocols could
be potentially developed for sediment toxicity analysis.
The benthic metazoans mentioned therein are: (1) Gas-
tropoda, Goniobasis livescens, Lymnaea emargina-
ta, Nitrocris sp., Physa heterostropha, Physa integra;
(2) Bivalvia: Mytilus planatus, Neotrigonia margari-
tacea, Elliptio sp., Plectomerus sp., Musculium sp.,
(3) Crustacea: Asellus brevicaudus, Orconectes nais,
Palaemonetes kadiakensis; (4) Insecta: Callibaetis sp.,
Ephemerelia cornuta, Limnephilus sp., Enallagma sp.,
Lestes congener; Libellula sp., Pteronarcys californic-
ca; (5) Oligochaeta: Lumbricillus rivalis, Aelosoma
headleyi; and (6) Turbellaria: Dugesia tigrina. In addi-
tion to species mentioned in Table 3, the US EPA/US
ACE (1991) cites the following marine organisms as
potential test species in whole sediment bioassays of
dredged material: (1) Bivalvia: Tapes japonica, (2)
Polychaeta: Glycera sp., Abarenicola sp., Nephthys
sp., (3) Crustacea: Neomysis sp., Holmesimysis sp.,
Pandalus sp., Callinectes sapidus and Cancer sp.. Oth-
er potential test species for sediment ecotoxicology are
listed in Table 4.

Although meanwhile a range of organisms have
become established in routine sediment toxicity test-
ing, the search for additional bioassay organisms is still
a worthwhile endeavour. Despite the fact that aquatic
pollution is a world-wide problem, development of
sediment bioassays, with few exceptions, has been
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thus far centred around North American and European
faunas. A selective review of the distribution of 30
species contained in Tables 2 and 3, and for which
ranges were indicated in publications cited therein,
shows that there is an urgent need to develop more
sediment bioassays with tropical and austral organ-
isms. Meanwhile, sediment toxicity analyses in those
regions can include cosmopolitans for which bioassay
procedures are already well established (e.g. for fresh-
water sediments the oligochaetes Tubifex tubifex and
Limnodrilus hoffmeisteri, and for marine sediments
sea urchins (Dinnel et al., 1988) or the polychaetes
Nereis arenaceodentata and Capitella capitata). The
optimal organism for bioassays is the most sensitive,
locally important species, but, as noted by Benfield
& Buikema (1980) “...the most sensitive and locally
important species is not known for most areas of the
world, and thus the most convenient and well tested is
generally selected. While the most convenient and well
tested approach may optimize efficiency, it may retard
progress toward achieving the optimum choice.”
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