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Preface

In addition to the traditional CARS topics and presentations, this

year’s CARS Congress is revisiting and widening its scope towards

both, the Digital Operating Room of the Future (DORF) and Model

Guided Medicine (MGM).

Based on the results of a think tank on these themes with members

of the CARS Congress Organising Committee in October 2022 and

follow up discussions with members of the CARS community, pre-

sentations on the DOR have been assigned to two sessions in the

traditional DOR workshop at CARS organised in cooperation with

ISCAS and SPIE. This is complemented by a special workshop on the

OR 2040, with selected topics relating to a previous workshop on OR

2020, organised by Kevin Cleary and Song K Mun in Washington,

USA [1].

Specifically, the goal of this newly established workshop for

CARS 2023 "OR 2040" is to identify, not only the clinical and

technical requirements for the next generation operating room, but

also how it can be embedded into the hospital of the future. The

horizon of 2040 is selected as a target timeframe, but with a possible

glance also at what might be expected beyond this period. Below are

some of the themes the OR 2040 initiative focus on in the corre-

sponding two workshop sessions:

Session 1: Surgical Robotics and Telesurgery.

Session 2: Surgical Informatics and Interventional Suites.

Both workshops, the DOR and the OR 2040 are complemented

with panels to discuss not only how intelligent systems can improve

patient care in the OR but also how they will impact the work profile

of healthcare workers. Synergistic interaction and collaboration

between humans and intelligent machines are expected to be the long

term focus of both workshops in the CARS Congress.

Model Guided Medicine is being covered in the Opening Session

of CARS 2023 with brief presentations and position statements from

selected panellists and a follow up discussion including the audience.

Questions which surface from the theme of MGM relate to why, how,

where and when MGM methods and tools will impact an increasingly

AI based (biased!) decision making process in health care.

For example, how can MGM become an enabler for moving from

a data driven machine learning/AI to a model driven machine learn-

ing/AI in Medicine? In particular, how can certain AI concepts such

as transparency, predictability, cause-effect reasoning, cooperative-

ness, agent and safety driven, data and model interoperability be

promoted with MGM? Should model driven machine learning be the

basis for a transparent machine intelligence and replace a rather black

box based artificial intelligence? Finally, what role will a model based

domain evidence play when it comes to verifying, validating and to

evaluating AI algorithms?

In the model based approach, the focus is on selecting and com-

bining all significant knowledge notations from a given domain of

discourse into one or more structured models. A return to the

knowledge- or information-centric phases or even to the source data

may be necessary in order to enhance the fidelity of any of these

models [2]. Model driven AI aims at achieving a balanced decision

making process by selecting one, several or none of the available

models in the domain of discourse.

CARS 2023 and beyond are planned to promote and enable Q&A

discussions on MGM generally and model driven AI specifically. In

this process it can draw on modelling expertise in the CARS com-

munity which traditionally included many presentations with focus on

models coming from application areas such as:

Computational models of anatomy, physiology and pathology, e.g.

FEM, CFD,

Clinical decision making models, e.g. Bayesian, TNM,

Machine learning models, e.g. CNN, fuzzy sets,

Physical phenomena models, e.g. electromagnetic, implants,

Software engineering models, e.g. CASE, MDA, QFD,etc.

To integrate this rich pool of expertise in CARS on modelling into

intelligent clinical decision making is a challenge requiring mind sets

which have been cultivated at CARS for the last 40 years and are now

in need to be given attention to, more than ever before. This applies in

particular to addressing questions and problems relating to
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complexity and transparency (or lack thereof) of IT systems and their

application in health care systems such as for the OR or AI assisted

clinical decision making.

Assuming that many engineers and scientists consider certain state

of the art AI algorithms and systems to be incomprehensibly complex,

how can we expect patients, physicians and health care providers be

well advised to actually using them [3]? Some critical questions need

to be addressed such as:

1. What basic value system (e.g. of patients, physicians/medical

staff, health care providers, researchers, public solidarity base,

profit or control maximization), if any, should be reflected in AI

based IT systems that are designed to assist in clinical decision

making, specifically in the domain of CARS?

2. Why do we need to re-examine communication behavior of

humans with intelligent and networked machines?

3. How should IT systems be designed that record and (transpar-

ently) display a reproducible path on clinical decision making?

4. How can possible negative side effects in the use of AI based IT

systems be minimized?

5. Who assumes responsibility for damages incurred through the use

of AI systems in health care, specifically in the domain of CARS?

6. Where and when can different concepts and models relating to AI

based IT systems be realized in a controlled (certified?) and

verifiable manner?

From the CARS 2023 Opening Session to the Closing Session and

beyond, we want to make a start into this challenging adventure of

integrating AI related systems and Model Guided Medicine into

CARS, with a distinguished list of individuals in the panels and

subsequent think tanks, who have participated in shaping CARS what

it is - unique.

Heinz U. Lemke

Munich, June 2023.
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Automatic segmentation of the hypothalamus on high-

resolution T1-weighted MR images
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Purpose

The hypothalamus is a small structure of the brain with a crucial role

in the regulation of the human body. Some neurodegenerative dis-

eases, such as dementia syndromes and amyotrophic lateral sclerosis

(ALS) may be related to hypothalamic volume variation [1]. Because

of the small size of the hypothalamus and lack of image contrast in its

vicinity, hypothalamic morphological landmarks are not always clear

on magnetic resonance imaging (MRI). This leads to the scarcity of

neuroimaging studies of this structure due to work-intensive operator-

dependent manual delineations and lack of the automated segmenta-

tion tools.

In this work, we propose a fully automatic approach relying on

convolutional neural network (CNN) to segment the hypothalamus on

high-resolution MRI scans. We compare the segmentation perfor-

mance of 2D-CNNs of U-Net architecture with four state-of-the-art

encoders.

Methods

108 high-resolution 2D T1-weighted MRI datasets from 66 patients

with sporadic ALS and 42 healthy controls were acquired at an 1.5 T

MRI scanner (Symphony, Siemens Medical, Erlangen, Germany).

Morphological data were obtained using a MPRAGE sequence (144

sagittal slices, no gap, 1.0 9 1.2 9 1.0 mm3 voxels,

256 9 192 9 256 matrix, TE = 4.2 ms, TR = 1600 ms). The images

were pre-processed (rigid brain normalization to the anterior com-

missure—posterior commissure line) and stored as a series of 50

slices per subject at a resolution of 0.0625 9 0.0625 9 0.5 mm3 with

matrix size of 1024 9 1024 pixels. Manual delineation of the

hypothalamus was performed by two experienced operators using the

TIFT software [1] to generate a ground truth data.

All available data from both groups were split into training (47

ALS, 24 controls), validation (4 ALS, 3 controls), and test (15 ALS,

15 controls) data. ALS and controls in the test group were gender and

age matched (p-value(gender) = 0.481, p-value(age) = 0.921).

Four types of 2D-CNNs of U-Net architecture (VGG16, ResNet50,

Inceptionv3, and EfficeintNetB0), pre-trained by ImageNet database,

were trained on downscaled image pairs of 512 9 512-pixel size. All

models were trained on a GeForce GTX 1060 6 GB GPU for 25

epochs with early stopping with a batch size of 4 samples per pass.

The loss function was the sum of the categorical Cross Entropy and

Jaccard loss and Adaptive Moment Estimation (Adam) was used as

the optimizer. The intersection over union (IoU) metric was optimized

during training. Training was stopped when the cross-validation loss

was observed to have ceased improving for 10 consecutive epochs

and the model with the lowest validation loss was chosen for

prediction.

The performance of each CNN model was evaluated in terms of

IoU. Further, true-positive (TP), true-negative (TN), false-positive

(FP), and false-negative (FN) detections were calculated for each

volume to estimate average Precision (positive predictive value),

Recall (sensitivity of binary classification), and F1-score (harmonic

mean of both metrics) of each model. Average prediction time per

image was assessed. Comparison between ground truth hypothalamus

volume and hypothalamus volume segmented with various encoders

was done using paired t-test or Wilcoxon signed-rank test as appro-

priate depending on the results of Shapiro–Wilk test for normality.

Value of p\ 0.05 indicated significance. Average and standard

deviation, as well as Pearson correlation coefficients (r) are reported.

Results

Figure 1 shows the comparison of segmentations predicted by four

different U-Nets overlaid on the MR images in ten consecutive slices

of a single patient test dataset. Disagreements between the ground

truth and predicted segmentations were observed at the edge slices

(anterior, posterior), where false pixels were predicted to some extent

by all networks.

Table 1 summarizes the obtained results. All investigated network

architectures achieved similar performance in terms of IoU with the

highest value for EfficientNetB0 (0.88). High Recall values for all

models indicate that high fraction of pixels that should be predicted as

hypothalamus was also predicted as hypothalamus. The highest Pre-

cision, i.e. most of the pixels predicted as hypothalamus were true

predictions, was achieved with EfficientNetB0 model (0.87). F1-score

was also highest for EfficientNetB0 (0.87). The fastest prediction per

image was achieved with EfficientNetB0, permitting segmentation of

the whole hypothalamus in 1.43 s on a GPU.

No significant difference between the ground truth volume and the

volume segmented by EfficientNetB0 was observed, whether all other

networks significantly overestimated the segmented volume (Fig. 2).

Significant linear correlation with the ground truth was obtained for

all investigated models, with the lower r-value for VGG16.

Conclusion

In this study, we propose a fully automatic hypothalamus segmenta-

tion approach based on the use of a convolutional network and

applied it to ALS patients’ group and controls. Automatic approach

permitted extremely fast structure segmentation as compared to even

semi-automated approaches requiring 20–40 min processing time per

hypothalamus [2]. We demonstrate that our method outperforms the

human inter-rater reliability scores (ICC of 0.78 and 0.82) and

approaches intra-rater levels (ICC of 0.82–0.97) reported earlier for

3 T MRI [2]. Although our best performing model still misses few

hypothalamus pixels, the average model IoU (0.88) exceeded the dice

coefficient of 0.77 (obtained with a best performed consensus model

built from three model outputs trained on three different views of the

brain (sagittal, coronal, and axial) as previously proposed by Rodri-

gues et al. [3]).

Fig. 1 Comparison of predictions by four different U-Net architec-

tures with the ground truth in ten consecutive test image slices
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Purpose

Image fusion techniques integrating 3D anatomical models obtained

from pre-procedural imaging into the live XR fluoroscopy can be

applied to guide left atrial appendage (LAA) closure. Cardiac MRI

(CMR) gains in importance for non-invasive evaluation of LAA

morphology as alternative to gold-standard transoesophageal

echocardiography (TOE) or computed tomography angiography

(CTA). Segmenting the left atrium including LAA from non-contrast

enhanced CMR for multi-modal image fusion is, however, chal-

lenging due to the low contrast between the atrial tissue, blood pool,

and surrounding anatomical structures including other cardiac

chambers and aorta, as well as large anatomical variations of LAA.

Additionally, arrhythmia often impairs the image quality in ECG

synchronized acquisitions. Therefore, there is a strong need for an

advanced image segmentation method to be applied to CMR for

image fusion in patients with atrial fibrillation.

Deep learning methods have the potential to provide faster and

more accurate segmentation compared to conventional approaches

[1]. Fully-convolutional neural network (CNN), especially U-Net, has

become the method of choice for cardiac segmentation. Recently,

there is also a growing interest in applying neural networks in a multi-

stage pipeline which breaks the segmentation problem into subtasks

[2].

Here we propose a CMR segmentation method based on CNN

implemented in a two-stage pipeline. Specifically, we use state-of-

the-art object detection network YOLOv4 for a region-of-interest

(ROI) localization of the relevant cardiac structures followed by the

2D U-Net for subsequent voxel classification within the identified

ROI.

Methods

In the first stage of our proposed two-stage approach, we used

YOLOv4 object detection algorithm to detect bounding boxes of the

area including left atrium with LAA (LA), right atrium with vena

cava (RA), and aortic arch (AO) on each 2D image slice. Subse-

quently, the image slices and corresponding masks were

automatically cropped based on the detected regions and padded with

black pixels to ensure an equal image size of 160 9 160 pixels for the

second-stage CNN. Finally, the second-stage CNN was trained on

created cropped image samples with ResNet50 and VGG16 back-

bones to do the segmentation of LA, RA, and AO classes. The

predicted masks were then transformed in target region of the original

size volume using bounding box labels for 3D visualization.

The two-stage approach (YOLOv4 ? U-Net) with VGG16 or

ResNet50 encoder was compared with the single-stage approach

trained on the image samples of original size (U-Net) in 9 patient’s

test datasets (1065 images).

Table 1 Comparison of prediction results by four different U-Net architectures

Ground truth EfficientNetB0 Inceptionv3 ResNet50 VGG16

IoU – 0.88 ± 0.03 0.87 ± 0.02 0.87 ± 0.02 0.85 ± 0.04

Precision – 0.87 ± 0.05 0.79 ± 0.05 0.82 ± 0.05 0.82 ± 0.05

Recall – 0.86 ± 0.05 0.93 ± 0.04 0.87 ± 0.04 0.85 ± 0.11

F1-score – 0.87 ± 0.03 0.85 ± 0.03 0.85 ± 0.03 0.83 ± 0.07

Prediction time per image [ms] – 29 31 35 42

Hypothalamus volume cm3 0.82 ± 0.10 0.80 ± 0.10 0.96 ± 0.12 0.87 ± 0.11 0.85 ± 0.16

Pearson correlation – 0.799 0.799 0.806 0.706

Fig. 2 Comparison of hypothalamus volume segmented with differ-

ent U-Nets versus ground truth
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Non-contrast enhanced CMR image data were acquired with a

navigator-gated 3D Dixon sequence on a 3 T MRI scanner. The data

were reconstructed at a resolution of 1.33 mm3 with a 2D matrix size

of 384 9 384 pixels. In total, 29 patient datasets with 115 slices per

patient on average were used for training and test.

Volumetric segmentation models of RA, LA, and AO were gen-

erated from 3D CMR volumes using 3DSlicer software. Each single

structure was converted to a series of axial DICOM binary label maps,

which were merged into a single label map.

To create the training datasets for YOLOv4 algorithm, we used

MIT licensed open-source image annotation tool LabelImg (https://

github.com/tzutalin/labelImg) to generate a series of MR images and

corresponding text files containing the coordinates and sizes of built

bounding boxes around the defined cardiac structures.

The segmentation accuracy achieved with the different network

architectures and approaches was evaluated using three widely used

measures: the average IoU metric, the volumetric dice coefficient, and

the Hausdorff distance. Using these measures, the difference between

each class of predicted masks for all 2D slices of a single patient and

corresponding ground truth masks was calculated. Also processing

time and memory performance of each method were estimated.

Results

The bounding boxes containing the area of interest could be predicted

by YOLOv4 algorithm correctly in 2569 out of 2643 (or 97%) image

slices.

Training of single-stage U-Net and second-stage U-Net with either

encoder required approximately 3 min and 1 min per epoch or 90 ms

and 30 ms per image respectively. ResNet50 and VGG16 consumed

4 GB and 4.4 GB GPU memory respectively, YOLOv4 ? ResNet50

and YOLOv4 ? VGG16 - 3.9 GB and 2.6 GB respectively. At test

time, the two-stage approach could generate the entire segmentation

output within 1 s on average (or 9 ms per slice) using about 4 GB

GPU memory with ResNet50 encoder and within 1.9 s on average

(16 ms per slice) using 3.8 GB GPU memory with VGG16. Predic-

tion of the whole 3D volume with single-stage ResNet50 took 3.5 s

(30 ms per slice) using 4.3 GB RAM, whereas prediction with

VGG16 took 8 s (68 ms per slice) using 4.4 GB RAM.

ResNet50 and VGG16 backbones performed similarly in terms of

IoU, dice index, and Hausdorff distance for U-Net and YOLOv4 ?

U-Net approaches (Table 1). The highest performance was achieved

for the combination of YOLOv4 algorithm with ResNet50 for all

three classes.

Figure 1 demonstrates segmentation outputs for a single MR slice

with four investigated approaches.

Conclusion

This study demonstrates the potential of CNN in automatic 3D seg-

mentation of left atrium, right atrium, and aorta from non-contrast

enhanced axial CMR images in arrhythmic patients in general and the

application of a two-stage approach for improving the segmentation

in particular. The obtained results indicate that defining an ROI with

the first-stage CNN lead to improvement of segmentation, save

memory, and increase the speed of automatic segmentation.
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Table 1 Comparison between ResNet50, VGG16, YOLOv4 ? ResNet50, and YOLOv4 ? VGG16 in terms of IoU, dice index, and Hausdorff

distance with paired Student’s t-test

IoU DICE Hausdorff (mm)

RA AO LA RA AO LA RA AO LA

ResNet50 0.65 (0.12) 0.76 (0.07) 0.77 (0.06) 0.78 (0.09) 0.86 (0.05) 0.87 (0.04) 18.85 (9.97) 10.76 (4.17) 25.51 (30.53)

VGG16 0.67 (0.08) 0.74 (0.09) 0.76 (0.08) 0.80 (0.06) 0.85 (0.06) 0.86 (0.06) 22.92 (17.28) 26.18 (38.31) 17.02 (17.17)

p-value 0.26 0.14 0.66 0.22 0.16 0.59 0.45 0.26 0.15

YOLOv4 ? ResNet50 0.71 (0.07) 0.77 (0.05) 0.79 (0.06) 0.83 (0.05) 0.87 (0.04) 0.88 (0.04) 18.75 (12.49) 10.78 (8.28) 7.99 (2.87)

YOLOv4 ? VGG16 0.66 (0.12) 0.77 (0.06) 0.78 (0.06) 0.79 (0.09) 0.87 (0.04) 0.87 (0.04) 20.88 (19.36) 10.21 (6.47) 9.15 (4.11)

p-value 0.11 0.68 0.14 0.09 0.70 0.13 0.50 0.89 0.25

Fig. 1 Comparison of segmentation outputs for a single MR slice for

VGG16, ResNet50, YOLOv4 ? VGG16, YOLOv4 ? ResNet50 vs.

ground truth (GT)
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Purpose

Since multidetector-row CT (MDCT) became widely clinically

applied in the mid-2000s, academic and social interests in radiation

dose reduction for MDCT examinations without any decline in

diagnostic capability have been continuing and led to recommenda-

tions for its use to all imaging vendors, although its use in routine

clinical practice of dose reduction for various MDCT techniques has

varied among institutions and scanners. Moreover, hybrid-type and

model-based iterative reconstruction (IR) methods have been intro-

duced and used for CT examinations and continuously improved since

the 2010s [1]. In addition, deep learning reconstruction (DLR) has

been introduced by almost all major imaging vendors, and tested for

CT examinations of a variety of organs. During the same periods, the

number of detector rows for MDCT has been increased for wider

coverage within one rotation as well as reduction of detector colli-

mations [2]. High definition CTs (HDCTs) with and without a photon

counting system have been clinically applied and tested since 2015.

One of these HDCTs, an ultra-high-resolution or super-high-resolu-

tion CT (UHR-CT or SHR-CT) produced by Canon Medical Systems

is widely available in routine clinical practice. This CT system has

three different scan modes: normal resolution (NR: 0.5 mm 9 80

rows/896 channels), high-resolution (HR: 0.5 mm 9 80 rows/1792

channels) and super-high-resolution (SHR: 0.25 mm 9 160 rows/

1792 channels), and improvements in spatial resolutions for UHR-CT

have been reported by several investigators. Moreover, UHR-CT

makes it possible to use larger matrix sizes such as 1024 or 2048 for

certain CT examinations and it has been suggested this may be useful

for some clinical purposes. However, one of the drawbacks of UHR-

CT might be the relative reduction in signal-to-noise ratio (SNR) and

contrast-noise ratio (CNR) due to a decrease in the detector colli-

mation size, even when the same radiation dose protocol with

standard reconstruction algorithms is used. To the best of our

knowledge, however, no one has tried reducing the radiation dose for

HDCT or evaluated the capability of DLR for image quality

improvement on reduced- and ultra-low-dose chest CTs in compar-

ison with clinically applicable IRs for patients with a variety of chest

diseases. We hypothesized that, in comparison with hybrid-type IR,

the DLR algorithm makes it possible to improve image noise and

reduce radiation dose while maintaining the capability for evaluation

of radiological findings for chest reduced- and ultra-low-dose CT

examinations of a variety of chest disease patients, so that DLR can

be put to clinical use with the appropriate reconstruction time and few

plastic artifacts as compared with model-based IR as it is used at

many institutions. The purpose of this study was to compare the

capabilities of DLR for image quality improvement and lung texture

evaluation with those of hybrid-type iterative reconstruction (IR) for

standard-, reduced- and ultra-low dose CTs (SDCT, RDCT and

ULDCT) obtained with high-definition CT (HDCT) and reconstructed

at 0.25 mm, 0.5 mm and 1 mm section thicknesses with 512�512 or

1024�1024 matrixes for patients with various pulmonary diseases.

Methods

Forty patients with various pulmonary diseases underwent SDCT

(CTDIvol: mean ± standard deviation, 9.0 ± 1.8 mGy), RDCT

(CTDIvol: 1.7 ± 0.2 mGy) and ULDCT (CTDIvol: 0.8 ± 0.1 mGy)

at a HDCT. All CT data set were then reconstructed with 512 9 512

or 1024 9 1024 matrixes by means of hybrid-type IR and DLR.

Sigal-to-noise ratio (SNR) of lung parenchyma, overall image quality

and probabilities of all lung textures were assessed for each CT data

set. SNR, overall image quality and detection performance of each

lung texture reconstructed with DLR and hybrid-type IR were then

compared by means of paired t-tests, Wilcoxon’s signed rank tests

and ROC analyses for all CT data at each section thickness.

Results

Data for each radiation dose showed DLR attained significantly

higher SNR than hybrid-type IR for each of the CT data (p\ 0.0001).

Data for CTs with a 512 9 512 matrix and 1 mm, 0.5 mm and

0.25 mm section thicknesses demonstrated overall image quality of

DLR was significantly better than that of hybrid-type IR for each

radiation dose (p\ 0.0001). Assessments of all findings except

consolidation and nodules or masses, areas under the curve (AUCs)

for ULDCT with hybrid-type IR for each section thickness

(0.91 B AUC B 0.97) were significantly smaller than those with

DLR (0.97 B AUC B 1, p\ 0.05) and the standard protocol

(0.98 B AUC B 1, p\ 0.05).

Conclusion

DLR is potentially more effective for image quality improvement and

lung texture evaluation than hybrid-type IR on all radiation dose CTs

obtained at HDCT and reconstructed at 0.25 mm, 0.5 mm and 1 mm

section thicknesses with 512 9 512 or 1024 9 1024 matrixes for

patients with a variety of pulmonary diseases, Figs. 1 and 2.
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Fig. 1 70-year-old female with invasive adenocarcinoma in the right

middle lobe

Fig. 2 65-year-old female with interstitial lung disease due to mixed

connective tissue
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Purpose

Lung cancer affects an estimated 2 million new patients each year and

is associated with 1.76 million deaths per year making it the leading

cause of cancer-related death in the world. Some investigators have

suggested that multimodality treatment, including preoperative sys-

temic therapy for preoperatively diagnosed locally advanced non-

small cell lung cancer (NSCLC), may be useful because of the

unfavorable prognosis for surgery alone. This means that preoperative

assessment of locoregional staging has become very important for

management of NSCLC. Although it had suggested since 1991 that

unenhanced or contrast-enhanced (CE-) magnetic resonance (MR)

imaging and angiography could be useful for mediastinal, chest wall

or pulmonary vasculature invasions, unenhanced or CE—thin-section

multidetector-row CT (MDCT) with multiplanar reconstruction

(MPR) images have been used since 2005 for differentiating T3 or T4

tumors from T1 or T2 tumors in routine clinical practice because its

potential which is superior to that of routine MDCT. In view of these

findings, there has been a continual need during the last decade for

spatial, temporal or contrast resolutions of MR imaging, while 3D fast

spoiled gradient echo (GRE) sequences with or without fat suppres-

sion techniques have been suggested by all MR vendors as useful for

various clinical purposes. Moreover, compressed sensing (CS) or

deep learning reconstruction (DLR) have been proposed as useful for

improving temporal resolution and image quality on MR sequences in

different body fields [1,2]. However, there have been no reports

regarding the utility of DLR for image quality and T-factor assess-

ment improvements on T2-weighted imaging (T2WI), short inversion

time (TI) inversion recovery (STIR) imaging and unenhanced- and

CE-3D fast spoiled GRE imaging with and without CS in comparison

with thin-section MDCT for NSCLC patients. Moreover, there have

been no reports either addressing question of the appropriate sequence

for T factor evaluation of NSCLC patients using currently applied

MR sequences. The purpose of this study was thus to determine the

utility of DLR compared with that of thin-section MDCT for

improving image quality on MR imaging and the appropriate

sequence for T-factor assessment of NSCLC patients.

Methods

As subjects for this study 213 pathologically diagnosed NSCLC

patients who underwent thin-section MDCT and MR imaging as well

as T-factor diagnosis were retrospectively enrolled. For quantitative

image quality assessment, regions of interests (ROIs) with the same

diameter were placed over each tumor, the intercostal or trapezius

muscles on both sides of the same slice plane and the trachea, and

signal-to-noise ratios (SNRs) of tumor and muscle and contrast-to-

noise ratio (CNR) between the tumor and muscle on each MR pro-

tocol were calculated. For qualitative assessment of image quality,

board-certified chest radiologists independently and visually

evaluated overall image quality, artifact incidence and diagnostic

confidence level of each MR protocol by using a 5-point scoring

system. All final visual scores for every patient were determined by

consensus of the two readers. The same board-certified chest radiol-

ogists who evaluated overall image quality also evaluated the

probability of the occurrence of T3 or T4 cases by using the following

5-point visual scoring system. To determine the capability of DLR for

each sequence, SNR and CNR obtained with each sequence with and

without DLR were compared by using the paired t-test. For a com-

parison of qualitative image quality, interobserver agreements for

overall image quality, artifacts and diagnostic confidence level for

each method were assessed by means of weighted kappa statistics.

Then, Wilcoxon’s signed rank test was then used for a comparison of

overall image quality and artifact level attained by each sequence

with and without DLR. To compare qualitative diagnostic perfor-

mance among all sequences with and without DLR, ROC analyses

were performed to compare the diagnostic capability of all methods

for differentiation of T3 or T4 from T1 or T2. Next, sensitivity,

specificity and accuracy for mediastinal or chest wall invasion

attained by all methods were compared by means of McNemar’s test.

In addition, kappa statistics were used to determine interobserver

agreement for T-factor evaluation for each method. Diagnostic

accuracy for T-factor was then compared among all sequences and

thin-section CT with the aid of McNemar’s test.

Results

SNRs and CNRs of T2WI, STIR imaging, unenhanced thin-section

Quick 3D imaging and CE-thin-section Quick 3D imaging with DLR

were significantly higher than those of sequences without DLR

(p\ 0.05). All interobserver agreements for overall image quality

Fig. 1 71-year-old male patient with adenocarcinoma in the left

upper lobe and mediastinal lymph node metastasis (N2 disease)

Fig. 2 75-year-old female patient with adenocarcinoma in the left

upper lobe featuring aortic invasion and classified as a T4 case
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(0.64 B j B 0.82, p\ 0.0001) and artifacts (0.62 B j B 0.72,

p\ 0.0001) were determined as significantly substantial or almost

perfect. The application of DLR median resulted in significantly

improved overall image quality and artifacts of T2WI, STIR imaging,

unenhanced thin-section Quick 3D imaging, CE-thick-section Quick

3D imaging and CE-thin-section Quick 3D imaging (p\ 0.05).

Interobserver agreement for the probability of occurrence of T3 or T4

cases determined with each method were rated substantial or almost

perfect (0.72 B j B 0.86, p\ 0.0001). Areas under the curves

(AUCs) were significantly larger, while sensitivities and accuracies of

STIR imaging with and without DLR and CE-thin-section Quick 3D

imaging with and without DLR were significantly higher than those of

thin-section CT, T2WI with and without DLR, unenhanced thick-

section and thin-section Quick 3D imaging with and without DLR

(p\ 0.05). Interobserver agreements for and diagnostic accuracy of

T-factor evaluation for all methods were almost perfect (0.81 B j
B 0.92). Diagnostic accuracy of STIR imaging with and without

DLR, CE-thick-section Quick 3D imaging with and without DLR and

CE-thin-section Quick 3D imaging with and without DLR was sig-

nificantly higher than that of thin-section CT, T2WI with and without

DLR, unenhanced thick-section Quick 3D imaging with and without

DLR and unenhanced thin-section Quick 3D imaging with and

without DLR (p\ 0.05). In addition, CE-thin-section Quick 3D

imaging with DLR was significantly more accurate than STIR

imaging with and without DLR (p\ 0.05), see also Figs. 1 and 2.

Conclusion

DLR is thus considered useful for image quality improvement on MR

imaging. STIR imaging and CE-Quick 3D imaging with or without

CS were validated as appropriate MR sequences for T-factor evalu-

ation in NSCLC patients.
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Purpose

Manual labeling of datasets is time-consuming and scales with the set

of objects and the image data. Especially for datasets from domains

where no publicly available large datasets exist, like the medical

intervention room domain, networks for target applications must

either be trained using synthetic data or datasets must be laboriously

labeled by hand. While in other areas the data can be outsourced

through Amazon Mechanical Turk or other labeling providers, this is

not possible due to privacy requirements in the medical space.

With the emergence of new deep learning architectures such as

CLIP [1] or GLIP [2], which have a strong zero- and few-shot

capability, the manual labeling of datasets from the medical domain

can potentially be reduced.

Together with the Department of Radiology and Nuclear Medicine

at the University Hospital Mannheim, a clinical study is conducted to

explore possible assistance systems during TACE interventions. RGB

cameras are used to record these interventions and in addition to

identifying possible assistance systems, also serve as a dataset for

researching them.

The amount of data that is recorded thereby is large. Labeling of

the entire image data by hand is unrealistic. Therefore, this work

investigates whether the zero- and few-shot capability of the vision

language network GLIP is sufficient for the labeling of a medical

intervention dataset or whether a sufficiently good labeling is possible

by fine-tuning the network with study data. The overall goal is to

create a dataset from the medical intervention space that includes not

only people and objects but also the activities of the health

professionals.

Methods

To investigate the accuracy of GLIP for a dataset from the inter-

vention space, images from 8 interventions of the study are used as

the training/validation data and images from 3 other interventions are

used as test data. Here, the distribution of the split is 192/21/50

(train/val/test) images. In total an amount of 24 different objects

present during angiographic intervention are labeled. Among others

this includes persons, masks, gloves, syringes, monitors, sterile

blankets, x-ray protection vests or radiation shielding glass. The

object instances labeled by hand are 9643 in this case.

As described in the GLIP paper, the zero-shot accuracy, then the

1/3/5/10 shot and finally the full shot accuracy is investigated by

using the 192 hand labeled train images. The GLIP-T(4) model with

the pre-trained weights provided by the authors is used as baseline.

In further experiments the full shot finetune serves as a baseline

for the next experiments. With the trained weights 2000 additional

training images are labeled by the network itself without verification

by hand. Here the total amount of object instances could be increased

to 68,894. In further experiments this new trainset is used to train the

few/full shots again using the baseline GLIP-T(4) model weights. It is

investigated whether a consistent accuracy is achieved on the test

dataset compared to the hand labeled images.

The last experiment combines the hand labeled and self-labeled

trainsets to investigate whether the accuracy can be increased further,

while starting again from the provided baseline weights.

Results

The results of the experiments performed are shown in Table 1. The

results of 0/1/3/5/10/full—shot trainings at different intersection over

unions (IoU) for different training datasets are visualized per row.

All experiments were started with the same initial weights and

trained to convergence as described in [2]. In all cases the full shot

trainings yielded the best accuracy.

Conclusion

The accuracy of the results on N = 192 training data is insufficient in

zero- and few-shot cases. This is certainly due to the underrepre-

sentation of medical image data as well as medical text in the original

training of the network.

Although the accuracy could not be sufficiently improved by few-

shot training, the full-shot experiment yields promising results espe-

cially at IoU = 0.5. Likewise, the accuracy of the network could even

be slightly improved by self-labeling without correction using the

trained network with N = 192. By combining the image data labeled
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by hand and the image data labeled by the network, the accuracy

could be improved as well. In summary, such a self-labeling training

loop can further improve the accuracy of object recognition in med-

ical intervention rooms compared to the training data labeled by hand

while increasing the used training dataset.

In future work, the GLIP network will be adapted to the medical

domain to enable further research in assistance systems in the inter-

vention space.
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Purpose

Ultrasound (US) diagnosis is widely used because it is safe, real-time,

non-exposure, non-invasive, and inexpensive compared to CT and

MRI. However, scanning with the US probe is dependent on the

physician. Because of the high dependency on surgeon-physicians,

sufficient ultrasound examinations cannot be provided in areas where

there is a shortage of surgeon-physicians due to the declining birthrate

and aging population, or in remote areas or developing countries

where surgeon-physicians are not available. In addition, due to the

spread of COVID-19, contact infection between surgeon-physician

and patient in US diagnosis has become a problem. For these reasons,

there is a demand for robotic development of US robots systems that

assist the surgeon-physician or do not require the surgeon-physician’s

intervention is underway.

Scanning path planning is an essential elemental technology for

fully automated US robotics. In order to obtain cross-sectional image

of the target organ, this it is necessary for the robot to recognize

where on the body surface to contact place the US probe. In order to

place the US probe on appropriate position and find the target image,

the robot needs to recognize the human body by detecting landmarks

on the body surface. Prior studies required surgeon-physician inter-

vention at this stage or failed to adequately account for individual

body size differences.[1][2] In this study, we focus on the abdominal

region such as liver US imaging, which is one of the most important

areas in US diagnosis. During the abdominal US scanning. The ribs

are critical the most important body surface landmarks in abdominal

ultrasound screening. Most abdominal cross section images are

standardized to be scanned with reference to the ribs. In other words,

rib position detection is crucial for scanning path planning. Then, this

study aims to develop an estimation method of ribs area for the

scanning path planning with robotic US systems.

Methods

We propose a method for detecting ribs based on RGB-D images and

respiratory variation. It is difficult to estimate the location of ribs on

RGB images because the ribs are not visible depending on individual

body differences. Therefore, we hypothesized that it would be pos-

sible to detect rib regions based on changes in body surface position

due to breathing. It is anatomically known that deep breathing lifts the

chest against the abdomen, bordering the ribs. Then, we considered

that the ribs region could be detected by comparing the height of the

chest during respiratory cycle. We generate a depth difference image

by taking the difference between the depth image taken at the resting

inspiratory position and the depth image taken at the maximum

inspiratory position, which clearly shows the rib position. That can be

realized without the intervention of a surgeon-physician by applying

the instruction to the patient to ‘‘take a big breath,’’ which is often

used in X-ray examinations in current clinical practice. In addition, by

Table 1 Results of zero/few shot and full shot training on the test dataset based on different training data

Number of training data IoU Zero-shot Fine-tuning

1 3 5 10 All

N = 192 IoU = 0.50:0.95 14.6 38.3 41.0 42.6 43.6 51.8

IoU = 0.75 14.7 40.7 42.6 45.4 47.0 56.1

IoU = 0.50 23.5 59.3 62.5 63.4 64.2 74.4

N = 2000 IoU = 0.50:0.95 – 37.8 39.4 39.9 40.8 52.7

IoU = 0.75 – 40.3 42.7 43.0 43.7 57.6

IoU = 0.50 – 58.0 60.5 59.9 60.6 76.6

N = 2192 IoU = 0.50:0.95 – 52.8

IoU = 0.75 – 56.3

IoU = 0.50 – 76.1
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applying training using the YOLOv5 object detection model to this

depth difference image, the rib position can be detected (Fig. 1).

Results

In an experiment conducted with nine subjects, the proposed method

of rib detection on depth difference images marked an IoU of 0.951

and an average confidence of 0.77. The average error between the

ground-truth and predicted positions was 15 pixel^13 mm. The

results were superior to the rib detection from the RGB image, which

was performed as a comparison.

Conclusion

The proposed Depth Difference Image method, which measures res-

piratory variation, was able to accurately estimate the ribs, an

important landmark for abdominal ultrasound US screening, without

contact and examiner physicians’ intervention. The coordinates of the

ribs can be easily obtained by using an object detection model, which

is suitable as input for the initial positioning of the ultrasound robotic

US system.
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Purpose

Bone scintigraphy is widely used in clinical radiological examinations

and is effective in diagnosing bone metastases from neoplastic

diseases. Bone scintigrams of the human body are two-dimensional

images obtained from the bone scintigraphy process from the anterior

and posterior sides of the patient. In bone scintigraphy diagnostic

imaging, the Bone Scan Index (BSI) is useful for quantitatively

evaluating the spread of bone metastases. As the calculation of BSI

requires the bone metastasis area and the bone area on whole-body

anterior–posterior images, an accurate skeleton segmentation of the

whole-body anteroposterior images is essential. However, there are

cases where the recognition fails owing to high concentrations of

positive accumulation and the irregular shape of organs when using

the conventional method. In this study, we introduce a novel deep

learning-based model with a transformer that combines the compo-

nent tree loss function for whole-body bone scintigram skeleton

segmentation. The proposed method aims to improve the dice simi-

larity coefficient (DSC) of bones for both anterior and posterior

images. Additionally, the component tree loss function is expected to

reduce the difference in the number of connected components and

holes between the predicted results and ground truths.

Methods

TransBtrflyNet network. The TransBtrflyNet model is a combina-

tion of BtrflyNet and TransUNet [1]. The skeleton segmentation input

is a pair of anterior and posterior images. The network consists of an

encoder, concatenation part, and a decoder. Following the TransUNet

framework, a CNN-Transformer hybrid model was used for the

encoder. The size of the input image was 576 9 256 pixels. First, the

anterior and posterior images were fed simultaneously into the CNN

blocks to generate feature maps. The transformer was applied to

1 9 1 patches extracted from the CNN feature maps of anterior and

posterior images. The outputs from the transformer block were then

reshaped for the next steps. The concatenation part has multiple

convolutions, max-pooling layers, deconvolutions, and a skip con-

nection, to enhance features. By concatenating the outputs from the

transformer blocks of anterior and posterior features, the model can

learn the characteristics of both the anterior and posterior images. The

output from the concatenation part is deconvoluted into anterior and

posterior features for the decoder process. Skip connections were used

to concatenate the features from the encoder and decoder. Finally, the

segmentation heads output the segmentation labels for anterior and

posterior images.

Loss function. The loss function consists of cross-entropy loss (LCE),

deep supervision (DSV) loss (LDSV) which is calculated based on the

dice loss, and component tree (CTr) loss (LCTr) which is designed to

reconnect discontinuous components by selecting or discarding image

maxima [2]. The loss function is expressed as follows:

LCTr ¼
Xi� l

i¼1

maxðm � smr i; 0Þp þ
Xi� k

i¼lþ1

smp
r i with

r ¼ argsortðimÞ;
ð1Þ

where the constant margin m ( R is set to 1, which is the maximum

value of the softmax function. The symbol l ( N? is the target

number of maxima. We selected the value of l based on the number of

connected components of the ground truth. The values of l differed for

each bone. Here, sm ( R? and im ( R? represent a saliency and an

important measure of the maxima respectively. We used a

combination of dynamic and volume for (sm, im).

LTransBtrflyNet ¼ 0:5LCE A þ 0:5LDSV A þ 0:0001LCTr Að
þ0:5LCE P þ 0:5LDSV P þ 0:0001LCTr PÞ=2;

ð2Þ

where A and P are abbreviations of anterior and posterior.

Results

The segmentation targets included 12 anterior bones (skull, cervical

vertebrae, thoracic vertebrae, lumbar vertebrae, sacrum, pelvis, ribs,

Fig. 1 Rib born detection method and result image
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scapula, humerus, femur, sternum, and clavicle) and 10 posterior

bones (skull, cervical vertebrae, thoracic vertebrae, lumbar vertebrae,

sacrum, pelvis, ribs, scapula, humerus, and femur). Experiments were

conducted on 2470 bone scintigrams obtained from 1235 cases, and

the respective results were compared and discussed. The threefold

cross-validation method was used for performance evaluation.

We defined the difference between the predictions and ground

truths for the number of connected components (delta-CCs) and holes

(delta-holes). We compared the results between the TransBtrflyNet

and TransBtrflyNet ? CTr models in terms of DSC, delta-CCs, and

delta-holes. Wilcoxon signed-rank test was used for statistical

analysis.

Dice similarity coefficient. We successfully improved the DSC of

three anterior bones: skull (p\ 0.01), pelvis (p\ 0.01), and sternum

(p\ 0.05). However, the DSC of lumbar (p\ 0.01), and clavicle

(p\ 0.01) of TransBtrflyNet ? CTr was inferior to that of

TransBtrflyNet.

For posterior results, the DSC of three bones of TransBtr-

flyNet ? CTr: sacrum (p\ 0.05), whole scapula (p\ 0.05), and

scapula overlapping ribs (p\ 0.01), significantly outperformed that

of TransBtrflyNet. Skull (p\ 0.01), cervical (p\ 0.01), and humerus

(p\ 0.01) showed statistically lower results. Besides the DSC, we

evaluated the performance of the two models based on the delta-CCs

and delta-holes.

Delta-CCs and delta-holes. For the results of TransBtrflyNet ? CTr,

the delta-CCs were reduced in three anterior bones: skull (p\ 0.05),

humerus (p\ 0.05), and clavicle (p\ 0.05); the delta-holes were

reduced in one anterior bone, lumbar (p\ 0.05), and one posterior

bone, scapula (p\ 0.01). The TransBtrflyNet ? CTr model did not

produce any inferior results for both delta-CCs and delta-holes.

Figure 1 and Table 1 show an example in which the delta-holes of

lumbar of TransBtrflyNet ? CTr statistically exceeded that of

TransBtrflyNet. The number of connected components of femur also

decreased. The average DSC of the model with the CTr loss was

better than that of the model without the CTr loss.

Conclusion

We present a deep learning-based method that integrates a trans-

former for the skeleton segmentation of bone scintigrams. We also

introduced the CTr loss function to reduce the number of connected

components and holes. The TransBtrflyNet ? CTr model showed

promising results compared to the TransBtrflyNet model.

In the future, we will try various combinations of (sm, im) of CTr

loss corresponding to the characteristics of each bone to anatomically

improve the segmentation results.
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Purpose

Carotid atherosclerosis is one of the main causes of cardiovascular

diseases. Ultrasound images of carotid artery morphology are the

main reference for doctors when evaluating the degree of carotid

atherosclerosis. Compared with two-dimensional (2D) and three-di-

mensional (3D) ultrasound, four-dimensional (4D) ultrasound can

help doctors identify the structural space of the carotid artery more

intuitively. Considering the periodicity of the carotid artery pulsation,

4D ultrasound can be acquired by reconstructing 2D ultrasound

images with a certain pose and phase. In this study, a novel highly

efficient and accurate 4D carotid ultrasound imaging method com-

bining a vascular pulsation force and image segmentation is proposed.

Methods

Considering that 4D ultrasound reconstruction requires pose and

phase information of ultrasound images, a portable and compact

mechanical device was designed to collect ultrasound images in

parallel, with the phase information estimated according to the vas-

cular pulsation force and image information. A 3D ultrasound

segmentation method was developed to segment the vessel lumen and

wall such that the carotid artery could be presented in a dynamic

Fig. 1 Example of skeleton segmentation by TransBtrflyNet and

TransBtrflyNet ? CTr. a Ground truth, b TransBtrflyNet, and

c TransBtrflyNet ? CTr. Red circle: delta-CCs, blue circle: delta

holes

Table 1 DSC, delta-CCs, and delta-holes results of Fig. 1

DSC/delta-CCs/delta-

holes

TransBtrflyNet TransBtrflyNet ? CTr

All bones 0.8977/0.3333/

0.0833

0.9089/0.0833/0

Lumbar 0.9165/0/1 0.8916/0/0

Femur 0.7867/3/0 0.8125/1/0

Scapula 0.8956/1/0 0.8994/0/0
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manner according to the phase order. The entire reconstruction pro-

cess is illustrated in Fig. 1.

Ultrasound image acquisition strategy: To collect ultrasound ima-

ges with sufficient information, a 2D ultrasound probe with a force

sensor was installed on a linear sliding table. The table was secured to

a six-degree-of-freedom passive arm that could adjust the initial

position and contact force between the probe and neck. The initial

position enabled a section of the carotid artery to be completely

scanned along a fixed direction; the initial force was approximately 1

N. The target carotid artery region was divided into multiple locations

at an interval of 1 mm; then the probe scanned for 2 s at a speed of 10

frames per second at each location, and moved to the next location for

0.5 s. Force sensor and ultrasound data were simultaneously

collected.

Ultrasound image phase estimation: Several methods have been

used to obtain phase information, such as using an extra electrocar-

diogram [1] or comparing the vessel lumen area through image

segmentation [2]. However, these methods require either additional

equipment or the processing of all 2D images, resulting in high

computational costs. Because the contact force between the ultra-

sound probe and neck can reflect the changes in the vessel lumen, the

adjacent time section of the lowest and highest points in the force

waveform should include ultrasound images with the minimum and

maximum vessel lumens. Three images around the extreme points of

the force waveform were selected for further segmentation to obtain

the exact phase. One thousand and eight images with labels were

trained using nnu-Net to segment the selected pictures such that the

minimum and maximum vessel lumens could be found at each

location. The intermediate phase of images at each position was

obtained by regularly choosing images between those with minimum

and maximum vessel lumens.

Four-dimensional reconstruction and segmentation: Images with

the same phase were stitched into a 3D model according to their

location. An effective U-shaped cross-shaped window (CSWin)

Transformer (U-CSWT) network was used to segment the vessel

lumen and wall at each phase. The U-CSWT is a symmetric network

that consists of an encoder, a decoder and a skip connection. The

basic unit of a U-CSWT is the CSWin transformer block. Consisting

of a multihead self-attention module, the block has a strong capability

of long-distance context modeling. The encoder branch gradually

shrinks the image while extracting high dimensional feature infor-

mation and the decoder branch fuses low-level and high-level features

and restores the image to the original size. Datasets containing 212

3D ultrasound images were trained using the network. The 3D

reconstructed images of all phases were segmented and saved

according to their phases such that the doctor could observe the

carotid artery in a dynamic manner.

Results

The proposed ultrasound phase acquisition method was verified

through comparison with the doctor’s assessment from their manual

segmentation result. As shown in Fig. 1, the proposed method can

recognize the maximum vessel lumen ultrasound image accurately.

The dice similarity coefficients between the predicted results and

reference masks were 94.4 ± 3.0% for the media-adventitia boundary

(MAB) and 90.8 ± 5.1% for the lumen-intima boundary (LIB), and

the volumetric error of the vessel wall volume (VWV) was approx-

imately 0.81%. Figure 1 shows the 3D results segmented by the

U-CSWT. Compared with other segmentation methods, U-CSWT

produces more accurate segmentation results.

Conclusion

A novel 4D ultrasound image reconstruction method based on an

effective combination of force signals and image information was

proposed. Compared with spatiotemporal reconstruction from free-

hand sonography, the proposed system can perform both 3D and 4D

ultrasound reconstruction using a compact and portable device

without additional optical navigation equipment, which is cost

effective and convenient. Through the image segmentation of the

ultrasound frames around the extreme point of the force waveform,

the phase of the ultrasound images can be accurately estimated.

Images with the same phase were reconstructed according to their

location, and the 3D vessel lumen and wall were segmented using

U-CSWT. Finally, a 4D dynamic ultrasound of the carotid artery was

presented, providing more intuitive and multidimensional information

for doctors to determine the state of the carotid artery.
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Fig. 1 Workflow of the proposed 4D ultrasound reconstruction

method
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Purpose

Digital subtraction angiography (DSA) is an interventional radio-

logical method for visualizing blood vessels which uses a pre-contrast

image subtracted from subsequent images including contrast medium

inflow. Thus, all structures except vessels are masked. The quality of

the resulting vessel map is heavily dependent on the quality of reg-

istration between the mask and contrast flow images. Patient

movement, breathing and hydrostatic effects of blood and contrast

flow are known to introduce artefacts in subtraction. Aiming for

compensation of these deforming artefacts we propose a deep learn-

ing network based on a Swin-Unet [1] transformer to calculate the

non-linear displacement vector fields between image pairs. While

being robust against the change of image characteristics between

picture with and without vessels, the proposed method is fast to

compute compared to classical methods.

Methods

For the task of calculating the 2D displacement vector field between

mask and subsequent images a deep learning model can benefit from

global and local semantic feature learning. The proposed method

consequently uses an adapted Swin-Unet, a network originally

developed for medical image segmentation. This network utilizes

hierarchical transformer blocks with shifting windows to compose an

encoder/bottleneck/decoder structure with skip connections [1]. The

Model is adjusted to be able to perform pixelwise regression of a 2D

displacement vector field resulting in an output of shape image height

* image width * 2.

The Unet-like structure of the network allows for spatial infor-

mation to be distributed via skip connections. The attention

mechanism of the Swin-transformer blocks harnesses the contextual

information in and between each image patch.

A broad spectrum of train data is required to generalize the wealth

of deformations and DSA datasets are not publicly available in

abundance. Therefore, a semi-synthetic dataset with high variance is

created. 3968 frontal thorax CT scans from the BIMCV COVID-

19 ? dataset [2] are chosen and randomized B-spline transformations

are applied, resulting in a displacement vector field with a mean

vector length of 14 mm and a standard deviation of 8 mm. In the

following step a snippet taken of segmented retina blood vessels from

the IOSTAR Dataset is randomly cropped, scaled, and adjusted in its

pixel intensity. Then, it is added to the augmented thorax image. A

separate set of vessel maps and 905 thorax scans is used exclusively

for validation purposes.

This dataset generation prioritizes producing high variance within

the domain of the training data rather than accurate and realistic

simulation and is therefore similar to the structured domain ran-

domization approach for training object detection networks.

Consequently, a pair of training input is comprised of an image

with a vessel mimicking contrast flow and a mask version of the

image without the vessel. Since the displacement vector field needed

to achieve perfect mask registration is known from the dataset gen-

eration step, it can be used as target for supervised training.

In training the deep learning model is presented with the image

pair and tasked to calculate the corresponding displacement vector

field despite information in one image being partly occluded by the

inserted vessel. MSE-loss between target and calculated displacement

vector field is minimized using a stochastic gradient descent optimizer

with a cosine learning rate schedule. The calculated displacement

vector field can be applied to the mask image to acquire a vessel map

by performing the subtraction of the images in logarithmic intensity

space (Fig. 1).

Additionally, a similar training without the addition of vessels is

performed to observe the influence the occlusions have on the quality

of the calculated displacement vector fields.

Results

After training for 640 epochs with a batch size of 6, the validations

MSE between calculated and target displacement vector fields con-

verges at 1.67 [pixel-size]2 for the training with vessels and 1.64

[pixel-size]2 for training without vessels on 384 by 384 images. This

results in a mean absolute pixel intensity error of * 0.01 when

performing the subtraction of two registered images with total

intensities scaled from 0 to 1 for comparability (omitting the occlu-

sions by vessels). At the method’s core, the Swin-Unet transformer

model achieves a pure inference throughput of 16 fps on a NVIDIA

GeForce RTXTM 3090 with a batch size of one on those image

dimensions.

Minor artefacts in square patterns can sometimes be observed

during optical examination of images to which the calculated dis-

placement field vector was applied to. Vessel maps resulting from this

subtraction process show a lower degree of DSA typical artefacts.

However, the edges of the vessels tend to have a small degree of

grainy noise. This is most likely due to the square image patch par-

tition intrinsic to the Swin-Transformer approach and additional

training diminishes this effect.

Conclusion

This work offers promising results towards a fast and accurate deep-

learning-based method for calculating non-linear 2D displacement

vector fields for a registration setup trained only on a semi-synthetic

dataset. However, further steps for improving image quality and

reducing artefacts are needed. In future work, the proposed method

needs to be evaluated against real data from angiographic interven-

tions to prove the validity of the synthetic dataset generation

approach. To further improve its results, additional training or fine-

tuning of the proposed machine learning model with real data can be

employed. The proposed method can also be adapted to 3D regis-

tration problems.
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Purpose

Extensive clinical research has been conducted to characterize brain

changes through lifetime. These studies are based on the recruitment

and analysis of brain images at different time points. The number of

subjects undergoing all the acquisitions is usually deficient, requiring

a great deal of effort and a considerable amount of time to obtain

complete enough databases. Consequently, most of these studies have

opted to infer population-level trends using regression models or

atlases that best fit cross-sectional data at different points. Thanks to

them we know how the average brain will progress over the years.

Yet, changes might be heterogeneous in the population, both spatially

and temporally, traits that the previous methods might not be able to

capture. There is therefore a need to find more precise predictive

methods, with a range of clinical implications, from the imputation of

longitudinal data in incomplete datasets to the detection of small

variations w.r.t. the expected trajectories.

The use of generative models may be suitable for the described

problem, as they are able to generate high-quality synthetic data.

Although providing very accurate results, the commonly proposed

approaches do not offer explicit control over the trajectory of latent

variables. The manifold on which predicted system dynamics are

embedded remains unknown and conditioning on additional clinical

information, by design, can only be introduced as a constant factor.

Recently, [1] proposed to consider the challenge of estimating these

paths in the absence of longitudinal data as one of dynamic optimal

transport (OT), taking advantage of Normalizing Flows (NF) and its

generalization to approximate any pair of unknown distributions

through the minimization of sliced-Wasserstein distance. In this work,

we exploit this idea to explicitly model individual brain trajectories,

using cross-sectional data in a reduced space, while allowing us to get

back individual predicted synthetic images at different ages.

Methods

T1-weighted MR images from the IXI-Database were used. The

dataset contains healthy volunteers in an age range between 20 and

70 years old, recruited at two different scanners: 322 volunteers at a

1.5 T Philips scanner, and 185 volunteers at a 3 T Philips system. All

images were normalized, bias-field corrected, and transformed to the

MNI space using rigid and affine registration. Forty consecutive

central axial slices were selected per patient, and they were divided

into different decades according to the patient’s age.

The dimensionality of input images was first reduced using prin-

cipal component analysis (PCA). The first 50 components were used,

keeping 70% of the total variance. The discrete OT-NF was imple-

mented in such a learned low-dimensional space. For the NF we

implemented a RealNVP architecture, composed of 5 coupling layers

(CL), each of them encoding for a specific decade of transformation.

Thus, each of these CL constituted not only the transformation core of

the network but also the estimator for each of the age ranges. Each CL

was composed of 3 alternating checkerboard masking

scheme transforms.

To train the discrete OT-NF, here we adopted the strategy pro-

posed by [2]. Monge’s formulation of OT states that given a pair of

probability measures l and m, from X and Y metric spaces, there

exists a diffeomorphism T: X ? Y such that it allows reaching an

infimum for a given cost function c:

infT

Z
c x,T xð Þð ÞjT� lð Þ ¼ v

� �

Being T*(�) the forward operator T(�). The latter diffeomorphism is

called the optimal transportation map. However, the existence and

uniqueness of such a function cannot be guaranteed. Therefore, the

authors propose a relaxation of Monge’s OT problem by replacing the

equality T*(l) = m with the minimization of the distance between

T*(l) and m. In this manner, given a cost function c, now the OT

problem in the discrete form can be relaxed to the following training

loss:

minT d T� lð Þ; vð Þ þ k
X

x;T xð Þð Þ
n o

In this case, for d(�,�) we used sliced-Wasserstein distance (SWD)

between the output of the last CL and the target distribution. The

Euclidean distance between adjacent transformed points was chosen

as the regularizer c, and k was set to 1. Since the shortest Euclidean

distance between two points is a straight line, in a first attempt to

preserve the manifold of the transformation, we added an extra loss

consisting of the SWD between the output of some of the CL and the

corresponding experimental age distribution.

Results

Once trained, the discrete OT-NF was used to transform the input

distribution, in black (i.e. brain images at age twenty); to the target

distribution, in red (i.e. brain images at age seventy), as shown in

Fig. 1.

Conclusion

In this work, we propose an approach for structural brain image

prediction with explicit control of sample trajectories in the absence

of longitudinal data for training, taking advantage of discrete OT-NF.

We present here some results, in which OT paths were estimated in a

low-dimensional space obtained by PCA. The quality of the retrieved

predicted images was not yet comparable to those proposed in the

current literature, and only general aging trends could be discerned in

the resulting images, the most notable of which were the decrease in

the brain tissue with the associated increase in the volume of the

ventricle. Future work includes the use of more powerful dimen-

sionality reduction techniques, more efficient Wasserstein distance

variants, and/or the definition of physiologically meaningful trajec-

tories. Validation of results with real longitudinal data is also

Fig. 1 Detail on the discrete OT-NF architecture, with changing

distribution, represented using first two PCs; and the corresponding

predicted brain images per decade/CL
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required. Despite all the aforementioned, the proposed framework

allows synthesizing brain images while simultaneously monitoring

brain progression, opening the possibility of conditioning by insults/

stimuli affecting only specific time points.
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Purpose

Clinical metrics pertaining to scapular morphology have been

observed to differ between osteoarthritis (OA) and rotator cuff tear

(RCT) patient groups. Such metrics include the critical shoulder angle

(CSA), defined as the angle between a line connecting the superior

and inferior margins of the glenoid, and a line connecting the inferior

glenoid margin and the most lateral boarder of the acromion on a true

anterior–posterior radiograph. It has been shown that RCT patients

are associated with a CSA[ 35�, compared to OA patients who are

more likely to have a CSA\ 30�. Using computational shoulder

models, it has been shown that higher CSAs induce higher shear and

smaller compression forces in the glenohumeral joint during active

abduction. In comparison, reduced CSAs increase the compressive

forces acting on the glenohumeral joint in abduction and potentially

are a factor contributing to mechanical overload. It is thus hypothe-

sized that the ratio of shear to compressive force (instability ratio) is

increased in RCT patients compared to OA patients in the gleno-

humeral joint, however patient-specific analysis has never been

performed. The purpose of this study is to develop an automated

pipeline for creating a patient-specific computational biomechanical

model of the shoulder, and to use these models to compare the

glenohumeral joint reaction forces between RCT and OA patients.

Methods

In this study, 10 patients with a RCT (mean CSA of 39.6�), and 10

patients with OA (mean CSA of 17.3�) were included. Analysis was

performed on CT images (in plane resolution of 0.555 mm in the

sagittal and coronal planes, and a slice thickness of 0.312 mm) with

approval of the local ethical commission (no. 2016–01,858). From

each CT, the scapula and proximal humerus were manually seg-

mented by a clinical expert. The CSA was calculated using a true

anterior–posterior projected plane from the CT scans. The computa-

tional modelling was done using the AnyBody Modeling System (ver

7.3.4, AnyBody Technology A/S, Aalborg, Denmark) [1]. This sim-

ulation tool uses inverse dynamics analysis to estimate muscle and

joint forces based on a prescribed movement. The modelling

parameters for inertia, geometry and muscle contraction in the orig-

inal model are based on data from the Delft shoulder group. For

personalization of the AnyBody model, the patient scapulae were

registered to the original AnyBody scapula (OABS) using the deter-

ministic atlas algorithm from Deformetrica [2]. In this software, large

deformation diffeometric mappings (LDDMM) are used to morph the

OABS to each patient scapula. Only smooth and invertible defor-

mations (diffeomorphisms) are permitted, so that there are no

overlaps or inversions within the original geometry. For increased

morphing accuracy at the patient-specific glenoid, points picked by a

clinical expert, on the inferior-, superior-, anterior- and posterior-most

aspects of the glenoid rim were included as fixed points in the opti-

mization. The Hausdorff distance with 260000 points per scapula was

used to measure the global accuracy of the morphing.

The patient specific humerus radius was calculated using a simple

sphere fit to the medial aspect of the segmented humeral head. This

distance was used to define the glenohumeral joint center for a

patient-adapted joint configuration in the musculoskeletal model.

The glenohumeral compressive (medial–lateral), vertical shear

(inferior-superior), and horizontal shear (anterior–posterior) joint

forces were calculated for each patient over a 0�-90� abduction in the

scapular plane. The forces were then normalized to % body weight

(%BW) for each patient.

Results

The mean Hausdorff distance for the registration of all ten OA

patients to the AnyBody scapula was 2.37 mm, with a median over all

the points of 0.24 mm. The mean Hausdorff distance for the ten RCT

patients was 2.40 mm, with a median over all points of 0.26 mm.

The joint reaction forces showed an increase in vertical and hor-

izontal shear forces in the RCT patient group compared with the OA

patients. The horizontal shear forces showed a difference of 6.5%BW,

with a maximal force in the RCT group of 12.7%BW and a maximal

force in the OA group of 6.2%BW. In the vertical plane, the differ-

ence was 3.8%BW with a maximal force of 23.9%BW in the RCT

Fig. 1 Comparison of glenohumeral joint forces between OA and

RCT patient groups in a 0�–90�-bodyweight abduction motion in the

scapular plane. The forces are given in %BW
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group, and a 20.1%BW maximal force in the OA group. The com-

pressive forces were similar between the groups, with a maximal

compressive force of 42.5%BW in the RCT group, and a maximum

force of 39.8%BW in the OA group, giving a 2.7%BW difference,

mostly at higher humerus angles (Fig. 1).

This is consistent with previous research showing an increase in

shear forces for patients with higher CSAs. These results also cor-

roborate well with previous research showing an increasing instability

ratio for patients with increasing CSAs.

Conclusion

This work presents an automated pipeline to import patient-specific

scapula and glenohumeral morphology extracted from CT imaging

into the AnyBody modelling system. The framework is robust to large

morphological variation in the patient scapulae and requires little

manual input to process large amounts of data. Preliminary results

show good conformance in glenohumeral joint forces compared to

previous studies.
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Computación, Guanajuato, Mexico

Keywords Genetic programming, Machine learning, Major temporal

arcade, Retinal fundus images.

Purpose

The monitoring of the morphology of the major temporal arcade

(MTA) could facilitate the diagnosis of different types of pathology,

such as diabetes and hypertension. Consequently, the quantitative

analysis of the MTA which is composed of the superior and inferior

temporal arcades plays an important role for systems that perform

computer-aided diagnosis in Ophthalmology. In this paper, a novel

method based on genetic programming to parameterize the architec-

ture of the MTA in retinal fundus images is proposed.

Methods

In literature, the problem of parameterization of the major temporal

arcade has been mainly addressed in two different steps: vessel seg-

mentation and numerical modeling. Oloumi et al. [1] introduced the

first approach for solving the present problem, where Gabor filters

were employed for vessel segmentation, and the Generalized Hough

transform was used for the MTA parabolic parameterization. The

main drawback using the Hough transform is the fact that the major

temporal arcade is not strictly symmetric, which is critical to obtain

suitable results. To improve the performance of the state-of-the-art

methods based on parabolic modeling, in this paper a novel method

based on multiscale Gaussian matched filters (MGMF) for vessel

segmentation and genetic programming for the parameterization of

the MTA is proposed. The MGMF is a specialized method for

automatic vessel segmentation consisting of a multilayer perceptron

and a directional Gaussian filter bank with a multiscale width. The

multiscale width parameter is used to detect the MTA since it is the

thickest vascular structure in the retina. On the other hand, genetic

programming (GP) is an evolutionary strategy used for searching a

solution in the mathematical expression space [2]. In the second step

of the proposed method, GP is used for determining the mathematical

expression that best fits the MTA. In this step, the end points of the

segmented MTA, and the location of the optic disk are used to guide

the GP search. A training set of retinal fundus images is used for

tuning the MGFM and the GP parameters in order to be directly

applied on the test set of images. It is important to point out that the

proposed method is the first approach using genetic programming to

parameterize the MTA in retinal fundus images.

Results

The computational experiments were performed in a computer with

AMD Ryzen 5 5500U (Radeon Graphics) 2.10 GHz processor and

8 GB of RAM, using Python 3.11.1 with the package gplearn. The

DRIVE database (https://drive.grand-challenge.org/) of 40 retinal

fundus images was used to perform the numerical modeling of the

MTA with 20 images for training and the remaining 20 images for

testing. In general, DRIVE database is used for vessel segmentation,

in the present work, the delineation of the MTA was performed by a

specialist in Ophthalmology of the High Specialty Medical Unit

(UMAE-T1, IMSS, Leon, Gto., México). For the experiments, the

parameter values for genetic programming were defined using the

training set of images as population size of 1000, number of genera

tions of 30, crossover rate of 0.7, and mutation rate of 0.05. In order to

compare the proposed method with the state-of-the-art using the

manual delineation of the MTA, in Table 1, the numerical results are

presented in terms of Hausdorff distance and execution time. The

proposed method presents superior performance with respect to the

state-of-the-art parabolic methods in terms of distance (in pixels) and

it also presents competitive performance in terms of execution time.

The comparative methods are from the state-of-the-art, where the

hybrid method is based on the Univariate Marginal Distribution

Table 1 Performance comparison of MTA detection (average of 30 runs) in terms of the Hausdorff distance and execution time using the test set

of images

Method Hausdorff Distance Execution time (secs)

Hybrid (UMDA ? SA) 105.8 ± 27.54 1.68

Generalized Hough 64.49 ± 0.00 3.92 (per pixel)

MIPAV Software 59.91 ± 0.00 212

Gabor ? Hough [1] 34.90 ± 16.60 200

Proposed method 32.46 ± 13.21 34.78
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Algorithm with a search guided with the metaheuristic of Simulated

Annealing. The Generalized Hough is a matlab script freely available

for detecting parabolas in Matlab central, and the MIPAV software

(Medical Image Processing, Analysis, and Visualization) is an appli

cation for quantitative analysis containing a script for parabola

detection.

In Fig. 1, the parameterization of the MTA obtained with the

proposed method is presented. The model is based on the location of

three points (superior, middle, and inferior) along the MTA, where the

vertical yellow line represents the search limit of the points based on

the location of the fovea.

Conclusion

In this paper, a new method for the numerical modeling of the MTA

using genetic programming has been proposed. The method consists

of the steps of automatic MTA segmentation and vessel modeling. In

the segmentation step, the multiscale Gaussian matched filter has been

used to enhance and segment the MTA since the vessel width is used

as a discriminant feature. In the step of numerical modeling, the

evolutionary algorithm of genetic programming has been used to

parameterize the MTA, and it was compared with four state-of-the-art

specialized methods based on parabolic modeling obtaining superior

performance in terms of the Hausdorff distance (32.46 ? - 13.21

pixels). Moreover, in terms of computational time, the proposed

method is competitive with 34.78 s per image.
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Purpose

Conventional peripheral endovascular revascularization procedures

suffer from high technical failure rates (15–20%) and complication

rates. This is primarily attributed to challenges in the support, steer-

ing, and visualization of current guidewires leading to the inability to

cross the arterial occlusions [1]. In an effort to address these chal-

lenges, a novel steerable catheter called the CathPilot has been

developed [2], Fig. 1. This study aims to evaluate the safety and

feasibility of the CathPilot and compare its performance to that of

conventional catheters in peripheral vascular interventions.

Methods

The CathPilot performance was validated ex vivo with chronic total

occlusion samples (CTO), and its safety and feasibility were

demonstrated in vivo in porcine models. The CTO samples were

harvested from the popliteal and tibial arteries of two patients with

chronic limb ischemia (CLI) or late-stage PAD who had failed

revascularization attempts. We experimented with both fresh and

fixed samples. For the fixed tissue crossing experiments, the CTOs

were stored in a 10% buffered formalin and cut into segments

21.9 ± 7.0 mm in length (6 segments in total with an average ID of

3.1 ± 0.8 mm). The fresh CTOs were stored in 0.9% saline at 4 �C
and cut into 47.6 ± 3.6 mm segments (11 segments in total with an

average ID of 3.3 ± 1.1 mm). These experiments were conducted

within 48 h of amputation. For both experiments, four users attempted

crossing the occlusion with a non-steerable catheter and the other with

the CathPilot. Each user had 10 min to achieve the task. Success

rates, procedure times, and radiation doses were recorded. The

CathPilot was tested in vivo on a male swine (56 kg) to assess safety

and feasibility. Heparin anticoagulant (100 IU/Kg direct injection and

2000 IU in IV) was administered. Procedures were performed by an

experienced vascular interventionalist with more than 15 years of

experience. A balloon catheter (7 mm OD, Abbott Armada 35 PTA)

was advanced from the carotid artery and deployed midway through

the aorta to create blood flow dynamics similar to arterial occlusion.

The CathPilot was advanced, from femoral access, through a 12 Fr

delivery sheath (Cook Medical G56279) and deployed at the target

site inferior to the renal arteries. With the frame of the CathPilot

anchored onto the anatomy, it was steered and moved for 15 min,

with its motion confirmed via fluoroscopy. It was flushed with saline

(* 10 ml each time) every 5 min. After the procedure, the pig was

euthanized. The artery was excised and examined for any signs of

Fig. 1 The CathPilot steering system labelled

Fig. 1 From left to right, test retinal fundus image, manual

delineation of the MTA performed by the specialist, and result of

the MTA parameterization using the proposed method
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damage or trauma to the endothelial layer at the site of CathPilot

deployment.

Results

The results of the ex vivo experiments showed that the CathPilot

significantly outperformed conventional non-steerable catheters in

crossing occlusions for both fixed and fresh tissue samples. For the

fresh and fixed lesions, the CathPilot had 100% and 83% success

rates, respectively, while the non-steerable catheter only had a success

rate of 0% and 9.5%, respectively. The CathPilot also demonstrated

significantly shorter procedure times and lower radiation doses in the

ex vivo experiments. In the in vivo study, the CathPilot was fully

functional with no signs of coagulation on the device, and there was

no visible damage or trauma to the endothelial layer at the deploy-

ment site.

Conclusion

These findings demonstrate the potential value of the CathPilot

technology in improving the success rate of crossing peripheral

arterial occlusions. The study also shows that the CathPilot concept is

safe and feasible. The CathPilot promises to significantly reduce

failure and complication rates of peripheral revascularization proce-

dures and the technical challenges and complications associated with

conventional catheters.
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Purpose

Diffusion-weighted imaging (DWI) was well-known as a tool for

simultaneously estimating the microcirculation of blood in the cap-

illary network and molecular water diffusion in brain tissues. The

signal intensity seen on DWI relating to the cerebrospinal fluid (CSF)

was also mentioned in the early days, [1], however, little was dis-

cussed about the accuracies in qualification and quantification of CSF

dynamics in those days because it was before the concept the

‘‘glymphatic pathway, [2] The present study aimed to investigate

whether 3D cerebral fluidography based on diffusion-weighted

imaging (DWI) can visualize cerebrospinal fluid (CSF) dynamics in

the brains of healthy subjects using a 7 Tesla magnetic resonance

imaging (7 T-MRI) scanner.

Methods

This prospective, observational study was conducted in accordance

with the Declaration of Helsinki. Thirteen healthy subjects partici-

pated in this study from April 2015 to July 2017. The inclusion

criteria for this study were as follows: provision of written informed

consent to participate from the participant; age\ 50 years and[
20 years; no neurological deficits; no abnormal lesions on anatomical

MRI; no history of brain disorders, including those following surgical

operation or irradiation, stroke, infection, remarkable atrophy, or

demyelinating disease.

All MRI procedures were performed using a 7 T-MRI scanner

(Discovery MR950; GE Healthcare, Milwaukee, WI, USA) with a

32-channel head coil. For each subject, a single-shot spin-echo echo-

planar imaging (SE-EPI) sequence with 2-mm isotropic voxels was

performed as DWI in the axial direction from the section showing the

fastigium of the fourth ventricle to that showing both the primary

motor area and the central sulcus.

DWI with multiple ten b values (0–2000s/mm2) was performed for

ten subjects using a 7 T-MRI scanner. 3D cerebral fluidography based

on the DWI signal variations in different three-orthogonal motion

probing gradient directions was developed for visualizing the move-

ment of CSF voxel-by-voxel. Then, apparent diffusion coefficient

(ADC) was estimated using the functional fitting procedure for

quantifying the CSF movement at the following twelve anatomical

space: the subarachnoid space at a section showing the centrum

semiovale over the roof of the lateral ventricle (SAS); anterior horns

and trigones of the lateral ventricle (aLV and tLV, respectively) on

the left and right sides; left and right foramina of Monro (FM); cistern

of the velum interpositum (CVI); left and right Sylvian cisterns (SC);

the quadrigeminal cistern (QC); and the fourth ventricle at the section

showing the interpeduncular sulcus (FV).

Results

Among the 13 healthy subjects who underwent imaging using 7 T-

MRI scans, 3 subjects were excluded because of severe image dete-

rioration due to susceptibility artifacts at the frontal lobe region near

the frontal sinus and temporal base near the pyramidal bone (n = 2)

Fig. 1 3D cerebral fluidography (front view)
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and signal loss on some images caused by the strong magnetic field

inhomogeneity (n = 1). Finally, a dataset of 10 subjects (10 men;

mean age, 31.8 ± 3.2 years; range, 28–39 years) was analyzed.

ADC was significantly lower at SAS and aLV than that at all

anatomical spaces. On the other hand, ADC at FM, SC or FV was

significantly higher than that at the other spaces, which was identical

to the findings of 3D cerebral fluidography (Fig. 1).

Conclusion

3D cerebral fluidography could show differences of CSF dynamics

among anatomical spaces, and ADC have the potential to quantita-

tively assess the differences of CSF dynamics. DWI at 7 T-MRI may

play an important role to clear a mechanism of the glymphatic system.
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Purpose

Semantic segmentation, the task of labeling each pixel in an image

with its correct class, is a key problem in scene understanding. In

order to create more reliable surgical robots, it is essential to develop

computer vision models understanding the semantics of surgical

images. Deep learning based semantic segmentation for laparoscopic

images has been studied. While effective, it requires large amounts of

annotated data. Creating ground truth labels is time-consuming;

images consist of multiple classes with complex shapes. In laparo-

scopic datasets this is further complicated by a need for expert

annotators identifying organs, tissue types, and tools correctly.

Solutions to the dataset authoring problem have been researched.

Simple labels, like lines [1], have been proposed. While addressing

the workload problem, such approaches do not address the domain

knowledge issue, requiring an expert annotator for every frame. We

address the domain knowledge issue by presenting a novel approach

to dataset creation, along with a training scheme for arbitrary seg-

mentation models. In the proposed approach, only a part of the dataset

is labeled with strong labels, with the rest being labeled with simpler

labels.

Methods

We propose a dataset authoring scheme, where parts of the data are

labeled with strong labels, and parts with proposed weak labels. A

non-expert, unable to create strong labels, could still create simplified,

weak labels. Training on the weakly labeled data would be done by

transforming the segmentation output to a simplified form to match

the weak label.

Our proposed weak labels are created by merging similar classes,

simplifying the labeling process. Consider a segmentation problem

with n classes. The ground truth labels are vectors y of length n.

Choosing m B n groups and assigning each class into exactly one

group, there exists matrix C transforming y from classes to groups.

The matrix C is defined elementwise, with the element i, j being 1 if

class j is a member of group i, and 0 otherwise. When each class

belongs to exactly one class, if y is a vector with non-negative ele-

ments summing to 1, then so is Cy. Thus, given a segmentation output

z for a pixel and its ground truth y, loss functions can be used on the

transformed pair (Cz, Cy).

In addition to annotating a necessary portion of data with strong

labels, human annotators can use weak labels on other parts of the

data. A comparison of the strong and the proposed weak labels is

shown in Fig. 1. Denote the annotated labels by y’, and ground truth

by y. Instead of labeling y, an annotator can label parts of the data

using weak labels y’ = Cy. This would mean, that an annotator could

label all tools as ‘‘tool’’ instead of identifying the tool types, sim-

plifying the process. A training sample now consists of a triplet

(x,y’,C), where x is an input, y’ a label, and C a transformation

matrix. Given a loss function L, training on a dataset of the proposed

form is done with L(Cz, y’).
We propose a 3-stage training scheme for datasets of this form.

First, the model is trained on the strongly labeled data. Then, the

learning rate is lowered, and the model trained on the weakly labeled

data, including the strongly labeled data transformed to weakly

labeled data. Finally, the learning rate is lowered again, and the model

trained once more on only the strongly labeled data.

Results

To test the feasibility of the proposed framework, we performed

experiments on the CholecSeg8k [2] dataset, using the DeepLabV3

model. CholeSeg8k consists of clips of 16 cholecystectomy videos,

and their segmentation ground truths, covering 8080 frames. The

dataset contains 13 classes, many present in only a few videos.

Images containing these rare classes were removed, and the remaining

6209 images consisting only of the main 8 classes used. The videos

were sampled to 5 folds, guaranteeing the presence of each class in all

folds. The classes were simplified to 4 groups based on perceived

similarities: ‘‘tissue’’ (abdominal wall, fat, and GI-tract), ‘‘organ’’

(liver and gallbladder), ‘‘tool’’ (grasper and L-hook), and ‘‘back-

ground’’ (background). While closer to organs, GI-tract was assigned

Fig. 1 Top: A laparoscopic image (left), with its strong (center), and

proposed weak (right) labels. A grasper (dark blue) and an L-hook

(light blue) are operating on a gallbladder (green). The liver (pink),

abdominal tissue (magenta), fat (yellow), and GI-tract (brown) can be

seen in the background. The weak labels reduce these to ‘‘organ’’

(red), ‘‘tool’’ (blue), and ‘‘tissue’’ (green). Discriminating between fat

and the GI-tract is difficult, but in our framework the task is

simplified. Bottom: Segmentation results using 50% of the strongly

labeled data and 0% (left), 25%(center), and 50% (right) weakly

labeled data
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to the ‘‘tissue’’ group, due to being difficult to distinguish from fat

tissue.

Weak labels were created by transforming the ground truth

y’ = Cy, with C defined by our groups. Performance was measured

with mean Dice score over a fivefold cross-validation run. One fold

was used for testing, and four for training. Parts of the training data

were simplified to weak labels. The amounts of strongly and weakly

labeled training data used for training were varied.

We chose Combo Loss, combining cross entropy and Dice, as the

loss function, and Adam as the optimizer. The proposed training

scheme, with an initial learning rate of 0.0005, was used. The learning

rate was reduced by 25% and 50% in the second and third phases

respectively, and models trained for 10 epochs in the first and the

second phase, and 5 epochs in the final phase.

Table 1 shows quantitative results of our experiments. Having

access to new, weakly labeled data improved performance. At 50%

strongly and 50% weakly labeled data, the performance starts coming

close to that of a full strongly labeled dataset. We conclude that the

presented approach is feasible and can be used to simplify authoring

semantic segmentation datasets.

Conclusion

In this paper, we presented a novel approach to semantic segmenta-

tion dataset creation. Our approach addresses the domain knowledge

problem, allowing for less trained annotators to participate in the

creation of large datasets. We showed that with our simplified labels,

authoring a large laparoscopic dataset is possible without the need for

an expert annotator for each frame.
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Purpose

This work proposes a novel method to analyse the three-dimensional

pattern in the substantia nigra towards automated prediction of

Parkinson disease (PD). Parkinson disease is the second most com-

mon progressive neurodegenerative disorder. The characteristic of

Parkinson disease is a progressive loss of dopaminergic neurons in the

substanita nigra pars compacta. Several advanced imaging markers

have emerged as tools for visualising neuro-anatomic and functional

processes in PD. Neuromelanin-sensitive MRI provides a neurome-

lanin image (NMI) with neuromelanin-sensitive contrast, and the T1

high-signal-intensity area in the midbrain represents neuromelanin-

rich parts. Since neuromelanin exists only in dopaminergic neurons of

the substantia nigra pars compacta in the midbrain, we can capture

early PD-related changes in the substantia nigra such that left–right

imbalance from neuromelanin images. However, even for a neurol-

ogist, the classification between PD and non-PD substantia nigra from

just reading NMI is difficult [1]. Therefore, we tackle the statistical

analysis of NMIs between PD and non-PD to extract discriminant

patterns in the substantia nigra.

Methods

Figure 1 shows our pipeline for feature extraction, classification and

analysis of patterns in the substantia nigra for classifying PD and non-

PD cases. In this work, a volume of interest (VOI) is a region of the

substantia nigra in a NMI. Expressing collected VOIs as a fourth-

order tensor, we compute its nonnegative tensor decomposition [2].

This decomposes a VOI into a linear combination of third-order rank-

1 tensors, i.e., of three-dimensional patterns. Therefore, a set of

coefficients of rank-1 tensors expresses a pattern of VOI as a feature

vector. While previous work uses CANDECOMP/PARAFAC

decomposition [1], negative values in both coefficients and rank-1

tensors hinder the interpretability of its decomposition results. By

Table 1 Quantitative results

Weak Strong

25% 50% 75% 100%

Traditional (0%) 0.622 0.748 0.789 0.828

0% 0.629 0.735 0.803 0.83

25% 0.655 0.751 0.809

50% 0.707 0.805

75% 0.727

The amount of strongly and weakly labeled data used in training are indicated by columns and rows respectively. Impossible combinations are

left empty
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introducing nonnegativity to a decomposition, we can increase the

decomposition’s interpretability. A nonnegative value expresses the

existence of a pattern in the decomposition.

Using extracted feature vectors, we compute a weight vector and

thresholding value of a decision function in Fisher’s linear discrimi-

nant analysis (LDA). For nonnegative feature values, a positive-value

weight in the decision function indicates a PD-related feature.

Therefore, we can select PD-related features and reconstruct PD-re-

lated parts by using only the selected features for visual interpretation

in our analysis.

Results

For the analysis, we collected 155 NMIs of 73 non-PD and 82 PD

patients, where a board-certified radiologist with ten years of expe-

rience specialising in Neuroradiology annotated regions of substantia

nigra. Based on these voxel-wise annotations, we extracted the VOIs

of the substantia nigra from 155 NMIs by setting the centre of a VOI

to be the centre of gravity in a region of the substantia nigra. Each

VOI is expressed as a volumetric image of 64 9 64 9 64 voxels.

After we normalised the value range of VOI to [0, 1], we computed

the fourth-order nonnegative tensor decomposition of 1000 rank-1

tensors for the set of 155 VOIs and then obtained 155 1000-dimen-

sional feature vectors. For these feature vectors, we searched a weight

vector in the LDA. For the set of feature vectors, the LDA achieved

the correct classification of 80% and 78% for PD and non-PD sam-

ples, respectively.

We searched PD-related and non-PD-related features from the

LDA’s weight vector. Using these two sets of features, we recon-

structed VOIs and compared them with reconstructed VOIs without

feature selection. Figure 1 shows an example of the comparison. In

Fig. 1, the marked parts suggest the reconstructed ventrolateral tier,

where the severe loss of neurons is happening in Parkinson disease.

The LDS further weights the importance of patterns in these regions

by its weights for classification. From these results, we concluded that

the proposed method finds neuropathologically correct and discrimi-

native patterns in the substantia nigra.

Conclusion

This work proposed the method to analyse the three-dimensional

pattern of the substantia nigra in the PD and explored its validity

towards automated prediction of the PD. The experimental results

showed that our proposed method achieved interpretable feature

extraction and decision function via the feature-selected reconstruc-

tion of VOIs. Even though this work still needs the evaluation of

classification accuracy for an external testing dataset, we will tackle

this point in our future work. Parts of this research were supported by

the Japan Agency for Medical Research and Development (AMED,

No.22dm0307101h0004) and the MEXT/JSPS KAKENHI (No.

21K19898).
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Purpose

With a growing concordance between medicine and engineering,

physicians with backgrounds in engineering, artificial intelligence,

and informatics likely will have an increasing impact in the

advancement of medicine. We have implemented several projects to

understand the career paths and interests of engineers as they tran-

sition to medicine. The purpose of this study is to gain insight into the

profiles of engineers who have matriculated into our medical school,

and to compare their profiles to non-engineering major students.

Methods

This is an anonymous retrospective study that utilized data provided

by a single medical school admissions department from 2013 to 2021.

There was a total of 49,454 applicants spanning the 9 years of data.

1711 applicants met the study requirements to be classified as engi-

neers. Applicants were separated, based on undergraduate degree, and

any student with an engineering degree was classified as an engineer.

Those students with more than one degree must have at least one

pertaining to engineering to be included in the engineering cohort; all

others were classified as non-engineers as a separate cohort. Accep-

tances were offered to 1434 total applicants, 79 of whom had

engineering degrees. The applicants with engineering majors were

compared to non-engineering students, assessing several factors

including: acceptance rate, undergraduate GPA, science GPA, MCAT

scores, MCAT Chemistry/Physics section score, combined clinical

Fig. 1 Overview of the proposed pipeline and example of analytical

results. We reconstructed PD-related pattern with rank-1 tensors of

the nonnegative tensor decomposition by finding PD-related features

from the weights of the decision function in the LDA
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hours, and shadowing hours. The data analysis was done with Rstudio

under the ‘‘Spotted Wakerobin’’ release, with tidyverse packages, and

the graphs were created with a ggplot2 package.

Results

From 2013 to 2021, our school saw a trend of an overall increase in

applications per year across both engineering and non-engineering

students. With the exception of 2016, which showed an acceptance

rate of 2.5% for engineer applicants and 3% for non-engineering

applicants to medical school, an overall nonsignificant higher

acceptance rate of 5% for engineers occurred, compared to the 3% for

non-engineering applicants (X2, p = 0.218). The engineering majors

with the most offers of admission were biomedical and biosystems

engineers 53/79 (67%), followed by chemical engineers 10/79 (13%),

and mechanical engineers 5/79 (6%). The results of the t-test showed

that there was no significant difference between the two cohorts in

undergraduate GPA, science GPA, MCAT scores, MCAT chem-

istry/physics scores, combined clinical hours, and shadowing hours,

which all yielded p-values[ 0.05 per comparative metric.

Conclusion

In this pilot study, we hypothesized and expected that there would be

a significant difference in acceptance rates, undergraduate GPA,

science GPA, and MCAT scores between applicants to medical

school with an engineering background vs those without an engi-

neering background. Although engineers did show a generally higher

acceptance rate, our results did not support our hypotheses, as we

found no statistically significant differences between the two cohorts

in any of the comparison metrics. It is possible that the small sample

size of the study may have limited the power and accuracy of our

results. To further investigate this issue, a multi-center study would be

in order, and we are presently in the planning stages of that study.

This larger study will likely provide more robust and reliable results,

and should help to elucidate the potential impact of an engineering

background on successful admission to medical school.
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Purpose

The intersection of engineering and medicine is a dynamic and

rapidly emerging concordance that involves the translation of inno-

vative ideas from engineers to the implementation of clinical

solutions by physicians. As the role of engineering in medicine

continues to evolve and expand, it is important to understand the

career paths and areas of focus for engineers who have made the

transition into the medical field. We are currently engaged in several

projects analyzing the interconnections and potential for engineers to

pursue a career in medicine. This project focuses on the subcategories

of engineering degrees the medical students majored in, and medical

specialties those with undergraduate degrees in engineering pursued.

Methods

29 medical students who graduated from our medical school in the

last eight years with undergraduate degrees in engineering were

investigated. Their specific engineering major was noted, and their

residencies were used to determine what field of medicine they pur-

sued. The most popular fields were determined, along with the divide

between primary care, surgical specialties, and the remainder of the

specialties: Psychiatry, PM&R, Pathology, Emergency Medicine,

Diagnostic Radiology, Radiation Oncology, Anesthesiology, Neu-

rology, Dermatology (P3ERRAND). A Fisher’s Exact Test was used

for statistical analysis to determine if a specific type of engineering

was related to specialization in one of the three subcategories.

Results

Overall, engineering majors represented 2–11% of each class, totaling

29/539 (5%) of graduates in the period of 2014–2021. The most

common engineering major was biomedical engineering 18/29 (62%),

followed by electrical engineering and chemical engineering 3/29

(10%) each. Bioengineering was the third most common 2/29 (7%),

and two students had unspecified engineering majors 2/29 (7%).

There was one mechanical engineering major 1/29 (3%). All 29

graduates successfully matched into their chosen residency programs

through the NRMP.

The most frequently entered specialty was Surgery 7/29 (24%),

followed by Radiology 6/29 (21%), and then Emergency Medicine

5/29 (17%). Divided into subcategories, 10/29 (34%) entered a sur-

gical field, 7/29 (24%) pursued primary care specialties, and 12/29

(41%) were classified as (P3ERRAND).

A Fisher’s Exact Test showed statistically significant results for

the biomedical engineering majors; these graduates were less likely to

specialize in either primary care or Surgery (p\ 0.001). The corre-

lation between biomedical engineering and P3ERRAND was non-

significant, yielding a p-value of 0.36. The results of the other specific

engineering majors were not statistically significant, all yielding

p-values[ 0.01.

Conclusion

These preliminary data suggest that the most frequent undergraduate

degree in engineering of students who attend our medical school is

biomedical engineering. The most common subcategory of residency

pursued was Surgery. However, biomedical engineering majors who

made up the majority of engineers graduating from our medical

school were less likely to pursue primary care and Surgery with

statistical significance. The results of this pilot study could be further

validated with an increased sample size, although each graduating

class had an engineering student present. The generalizability and the

accuracy of these results can be furthered with implementation of a

multi-center study. We are currently in the planning stages of that

study.
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Purpose

Scant research has focused on the effects of various college majors

and their influence on the success and challenges of medical school.

This study seeks to gain insights on those students who majored in

engineering, their perspectives, and how they perform, compared to

their non-engineering classmates in medical school.

Methods

17 students in our current medical school who majored in engineering

during college were surveyed. The survey was created on Qualtrics,

an online survey software platform. The survey consisted of 21

multiple choice questions. Most questions were Likert scale ques-

tions, asking participants to indicate the degree to which they agree or

disagree with a statement, ranging from strongly agree, agree, neither

agree nor disagree, disagree, and strongly disagree.

Questions were largely divided into two subsets. The first subset

asked participants to compare their medical school academic perfor-

mance and stress levels to their peers in medical school. The second

subset of questions asked participants to contrast their medical school

achievements and stress levels to their experiences when studying

engineering during their undergraduate studies. Questions also were

organized to analyze if respondents in different years of medical

school had differences in responses to one-another. Chi square test

was used to determine if there were differences in the categorical

distribution, and whether the distributions differed from what would

be expected to happen by chance.

Results

The engineering students compared to their non-engineering medical

school classmates believe, with statistical significance, that they are

less stressed (11/17 (64.7%), P = 0.0005), and are academically

advantaged (14/17 (82.4%), P = 0.0001). The engineering students,

when asked to compare their experience in medical versus engi-

neering schools, state with statistical significance that they spend

more time on their medical studies than on their college engineering

studies (12/17 (70.6%), P = 0.0001). When comparing differences by

year in medical school, second year students stated, with statistical

significance, that medical school is harder than engineering, com-

pared to first and fourth year students (second years: 5/6 (83.4%), all

other years: 0/11 (0%), P = 0.03). Currently, not statistically signifi-

cant, but trending, is that the engineering students as a whole (not

divided by year) say the first two years of medical school were easier

compared to engineering (P = 0.16). When students were asked to

compare medical school to their engineering studies, they claim there

is no difference in their academic performances (P = 0.71) or stress

levels (P = 0.41, not statistically significant).

Conclusion

Our survey results indicate that students in medical school who

majored in engineering view themselves differently, and in some

respects, more favorably, compared to their non-engineering class-

mates. This suggests there may be significance to students with

engineering backgrounds vis-à-vis how these students learn and react

to the stresses of medical school. They believe they are both aca-

demically advantaged and less stressed compared to their classmates,

although they say medical school is more time consuming compared

to their engineering studies. There is no statistically significant

agreement among students surveyed on if medical school is aca-

demically easier or less stressful compared to their engineering

studies. A limitation of the study is that it includes only one institution

as a pilot. We are planning a multi-institutional study as an outgrowth

of this pilot study to provide further power and validity.
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Purpose

A locally operated surgical support robot holding an endoscope is

introduced in a sterile area for otologic surgery, and a surgeon can

perform robot-assisted transcanal endoscopic ear surgery (TEES) with

low physical load and view stabilization. Although serial linkages

manipulator RobOtol with a mechanical pivot point standing on the

floor provides two hands surgery solely [1], the cantilevered mecha-

nism overhangs on the body because of the mechanical structure.

Therefore, we have developed small locally operated detachable end-

effector manipulator as the endoscope robot connected to a bed rail

(E-LODEM) for TEES leading to precise and safe motion in the ear

canal [2]. A new small endoscope manipulator which has motor

driven three degree-of-freedoms was developed that can act as a third

arm for the surgeon. The mechanism of the manipulator is with

gimbals rotational linkages for pivoting motion of the endoscope, and

with a linear guide rail for its inserting and removal motion.

The present study describes the newly proposed two types of

manipulators in detail. In addition, we report the mechanical perfor-

mance of proposed manipulators evaluated while performing in

simulated TEES.

Methods

The first developed manipulator consists of bevel geared direct cur-

rent (DC) servo motors for the yaw and pitch axes and a belt pulley

mechanism with a DC servo motor for the insertion axis attached to

an endoscope (Manipulator 1). The distance between the pivot of the

mechanism and the ear canal entrance is 200 mm. The operation

range is ± 1� adjusted by mechanical pins for the rotational axes, and

0 to 100 mm for the linear axis. The positional accuracy is 0.1 mm,

0.2 mm, and 0.6 mm respectively. The dimensions are 200 mm 9

120 mm 9 200 mm. The mass is 1.5 kg. The manipulator is leader–

follower controlled by the assistant. Two leader devices embedded

encoders are a joystick controlled for the yaw and pitch axes, and a

rack-and-pinion geared linear slider controlled for the insertion axis.

A motion scale of the leader–follower control was set at 2:1 in the

simulated surgery. The leader–follower control is performed when a

footswitch is pressed.

The second developed manipulator consists of geared DC servo

motors for the yaw and pitch axes and a rack-and-pinion mechanism

with an ultrasonic motor for the insertion axis attached to an endo-

scope (Manipulator 2). The operation range is ± 1� adjusted by

ratchet gears for the rotational axes, and 0 to 30 mm driven by the

ultrasonic motor in the inside of ear and 30 to 100 mm driven by

manually in the outside of ear for the linear axis. The endoscope can

be manually removed from the external auditory canal in the full

range of linear motion releasing clam pin. The positional accuracy is

0.1 mm, 0.2 mm, and 0.1 mm respectively. The dimensions are

274 mm 9 195 mm 9 201 mm. The mass is 2.0 kg. The manipula-

tor is on–off controlled by the foot of the surgeon. The foot-operated
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device constructed of a joystick switch in four directions for the yaw

and pitch axes, and two switches in the forward and backward for the

insertion axis.

We performed a simulated approach in a trans-auricular endo-

scopic otoscopic surgery on a cadaver using two types of

manipulators. The experimental situation is shown in Fig. 1. The

manipulator with the endoscope is placed in front of the left ear of the

cadaver using a fixed arm connected to a bed rail. The surgeon

operated with a scalpel in his right hand and a suction tube in his left

hand. This simulated surgery was performed at the Clinical Anatomy

Training Center, Kobe University School of Medicine, based on the

‘‘Guidelines for Cadaver Dissection in Education and Research of

Clinical Medicine’’ published by the Japan Surgical Association and

the Japanese Association of Anatomists.

Results

The endoscope held by Manipulator 1 and the surgical instruments

held by the surgeon in both hands were inserted simultaneously into

the ear canal. The assistant was also able to operate the manipulator

intuitively by leader–follower control. However, Manipulator 1 was

difficult to position due to bevel gear backlashes and mechanical

deflection of the fixed arm.

The simulated surgery using the Manipulator 2 was able to open

the tympanic membrane and observe the middle ear. The surgeon

could perform solo surgery by operating the manipulator with the foot

switch device. However, due to the small gap between the shoulder of

the cadaver and the manipulator, it was difficult for the surgeon to

insert the instrument in his left hand from the desired position.

Conclusion

We performed a simulated surgery on a cadaver using two types of

small endoscope manipulators with gimbals rotational linkages and a

linear motion rail developed for robot assisted TEES performed by a

surgeon in a sterile environment. The designed operating range and

the positional accuracy of these prototypes were satisfied with

observing the middle ear using the endoscope and two surgical tools.

The results of this study show that the proposed manipulator can be

used for such applications. Future studies will construct downsized

manipulator and stable fixed arm for initial positioning. This study

was partially supported by Kakenhi (JP22H00589).
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Purpose

Conventional bone surgery is associated with direct contact of

instruments with the bone causing friction, heat, pressure and hence,

damaging the bone and surrounding soft tissues. We introduced the

technology of navigated cold ablation robot-guided laser osteotomy in

a previous publication showing no carbonization, evaluating new

feasible cutting patterns, while achieving sufficient primary stability

and compression with lag screws only [1]. The purpose of this

ongoing study is to standardize the workflows and to show accuracy

in pre-clinical cadaver tests performing one and two plane osteo-

tomies in the field of wrist- and forearm surgery comparing pre- and

postoperative CT scans.

Methods

Technique
Osteotomies were performed with CARLO� which is a miniaturized

ablation laser with an optical system controlled by a navigation sys-

tem. The system uses Yttrium Aluminum Garnet doped with Erbium

(Er:YAG), with a wavelength of 2943 nm, that corresponds to peak

absorption coefficient for water and hydroxyapatite. The energy of a

laser pulse hitting the bone tissue heats up the water content of the

bone and vaporizes it. The increase in local pressure causes ‘‘micro-

explosions’’, breaking up the bone structure. The debris is being

expelled immediately and at high velocity, providing a clean-cut line

with preservation of the bone microstructure [2]. CARLO� also has

an Optical Coherence Tomography (OCT)-based depth control sys-

tem to visualize the current cutting level and avoid soft-tissue

Fig. 1 Simulated surgery performed by an otologic surgeon using an

endoscope manipulator for TEES with gimbals rotation and linear rail

mechanism driven by DC servo and ultrasonic motors
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damage. CARLO� enables new cutting patterns that are impossible

to achieve with conventional methods.

Cadaver tests
A total of 20 corrective laser-osteotomies were performed on the

distal metaphyseal radius and ulna. The Osteotomies were planned

patient specific and ad hoc on a 3D CT-model using CARLO�’s

planning software. On the radius ten two plane adjustments were

conducted lengthening the radius by 4 mm and correcting palmar

angulation, respectively radial inclination by 10� using a curved sine

cut (Fig. 1). On the ulna one plane corrective osteotomies were per-

formed by shortening the ulna by 2.5 mm using a sawtooth or sine

cut. Standard surgical approaches were carried out to expose the

bones. The navigation device was mounted at the proximal end of the

surgical field using two self-drilling screws. The osteotomies were

stabilized using lag screws only. Pre- and postoperative CT-scans

were taken to compare the virtual surgical planning with the post-

operative results and assess reliability.

Results

Efficient workflows have been established thanks to the modification

of the planning software making patient specific preoperative plan-

ning of the osteotomy more user friendly. Definite accuracy

measurements concerning the one and two plane adjustments have not

been finally evaluated yet, since the trials are still ongoing. Prelimi-

nary trials however showed minor deviations to presurgical planning,

achieving similar results as today’s usual methods using 3D printed

patient specific cutting guides. Additionally, the osteotomy sites in

dia- and metaphyseal regions did not show any carbonisation and the

lag screws provided good compression and stability, potentially

making a plate for fixation obsolete.

Conclusion

First cadaveric results show promising results concerning the accu-

racy of one and two plane osteotomies in wrist and forearm surgery

using a Cold Ablation Robot-Guided Laser Osteotome. The fast and

patient specific preoperative planning could make the expensive and

time-consuming process of designing patient specific guides redun-

dant. Future steps are stability testing of the osteosynthesis followed

by certification and first use in patients.
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Purpose

The missions imposed on the surgical operating team each have an

‘‘ideal surgical procedure’’ to a greater or lesser degree. Various

factors that create a gap with the ideal form, and in many cases, the

accumulation of those gaps. In other words, it leads to a decrease in

surgical quality, efficiency, and productivity as a demerit method.

Conventionally, many surgical support systems, both hardware and

software, have been developed with the aim of reducing the burden on

surgical staff and realizing efficient surgical support. However, efforts

to improve the quality and performance of surgery by unraveling the

gap between the ideal and the ideal state throughout surgery have not

been realized.

The purpose of this research is to establish a method to immedi-

ately score the performance of the clinical team after the operation

and to show that the technique and work efficiency are improved.

The final goal of this research is to present a performance score at

the end of surgery. This system is like the automatic scoring function

of karaoke, ‘‘Today’s case is 96/100 points!’’. Thus, we aim to

improve the performance of the clinical team as a whole.

Methods

In order to achieve the above-mentioned purpose, we decided to build

a system in two stages that is able to sense automatically and identify

the procedure and task content of each medical staff during a case.

The first step is to build a system to identify ‘‘who, what, and when’’.

The second step is to construct an evaluation function that scores the

clinical team’s performance based on the measurement data. In this

paper, the first stage was carried out. We targeted neurosurgical

endovascular treatment cases, a large number of cases of surgery to be

measured, and the procedure is standardized, and the difference in

technique and team performance could be evaluated remarkably when

comparing skilled and inexperienced surgeons. We investigated two

products of infrared depth sensors for staff movement line tracking

sensors. 3D LiDAR sensor was chosen that has a rich track record of

synchronizing with other modalities and system cooperation, and

installed 20 such sensors on the ceiling surface in the corridor in

hallway, the command room, and the operating room to eliminate

blind spots. This system enables to know where the person is on the

operating room floor. Since the analysis system can define areas, it is

possible to analyze what is being done by linking areas and tasks. By

linking the face recognition system to individual identification, the

system could collect data on when and who is doing what by inte-

grating the above.

Results

Figure 1 shows the flow line of surgeons and nurses working in the

operating room.

The figure shows the change in the coordinates of the location in

the operating room over time with a flow line, and to express it with a

Fig. 1 Corrective osteotomy of the distal radius lengthening it by

4 mm and correcting radial inclination by 10�
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heat map according to the length of stay. In addition, the data could be

obtained to determine how much time was spent on which task from

the correlation between location and task.

The constructed system was able to measure when and who was

doing what. On the other hand, in order to grasp more detailed and

real-time surgical conditions and task details, small tasks and highly

accurate analysis can be realized by utilizing equipment status and

advanced sensing devices. Highly accurate analysis of surgical con-

ditions could be used to automate various devices operating in the

operating room using the analysis results themselves as input, which

is considered to be of great help in further improving surgical

efficiency.

Conclusion

The performance of the clinical team is immediately scored on the

spot after the surgery, and the operating room is equipped with 20

infrared depth sensors installed on the ceiling for the purpose of

establishing a method to show improvements in technology and work

efficiency. We built a system that can collect data on when, who is

doing what on the floor. In the future, we would carefully consider the

analysis method and proceed with the development of applications

that lead to the improvement of surgical efficiency.

CARS in 2023: Redefining Radiology and Surgery
R. Andrews1
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Keywords artificial intelligence, personalized healthcare, smart

devices, wearables.

Purpose

Radiology traditionally has been defined as ‘‘the science dealing with

x-rays or nuclear radiation, especially for medical uses’’. Surgery has

been defined as ‘‘the art, practice, or work of treating disease, injuries,

or deformities by manual or operative procedures’’. [Dictionary.com]

In 2023, radiology is more appropriately defined as ‘‘imaging’’;

surgery might be more appropriately defined as ‘‘interventional

diagnosis or treatment’’ (as opposed to pharmacological diagnosis or

treatment).

We argue that the traditional boundaries defining ‘‘radiology’’ and

‘‘surgery’’ no longer are appropriate in 2023—in part thanks to

computer-based advances over the past several decades, e.g. deep

learning (DL) and artificial intelligence (AI)—and that even ‘‘imag-

ing’’ and ‘‘intervention’’ suggest boundaries that are being dismantled

as diagnosis and treatment techniques advance and integrate.

Methods

Medical imaging has progressed from radiological films (‘‘x-rays’’) to

non-radiological imaging (e.g. ultrasound) to ‘‘unseen by human

eyes’’ digital computerized image analysis such as DL/AI interpre-

tation of chest CTs and mammograms. No longer is an image created;

rather, the data collected (e.g. pixels) are directly analyzed to provide

information (‘‘normal’’ vs ‘‘abnormal’’, ‘‘normal’’ vs ‘‘fibrocystic

disease’’ vs ‘‘carcinoma’’). Thanks to DI/AI—where thousands (po-

tentially millions) of patients’’ imaging data are accumulated and

assessed (greatly exceeding the ‘‘data bank’’ an individual radiologist

can accumulate in a lifetime)—accuracy can be markedly enhanced.

Surgery now includes techniques quite remote from traditional

manipulation, excision, or implantation. Examples include not only

radiosurgery and interventional ‘‘radiology’’, but more unusual tech-

niques such as transient blood–brain barrier opening with MRI-guided

focused ultrasound.

Where is ‘‘Computer-Assisted Radiology and Surgery’’ headed in

2023 and beyond?

We argue that CARS, cutting-edge technology for diagnosis and

treatment, will bypass the traditional healthcare institutions (office-,

clinic-, or hospital-based imaging and interventions) in favor of

gathering data directly from the patient for diagnosis and using

similar patient-based techniques for treatment.

Results

Wearable devices (‘‘wearables’’) meet the criteria for truly patient-

based, ‘‘point-of-care’’ (POC), diagnosis and treatment. Continuous

individual data, pooled from thousands of patients, are used in digital

clinical trials—yielding (thanks to DL/AI computer analysis) precise,

personalized diagnoses and treatments. Wearable devices, those in

close contact/proximity to the individual, include smart rings/wrist-

bands/wristwatches, skin patches, smart clothing/glasses/masks,

ingestibles, and implantables.

A graphene patch for bioimpedance monitoring can penetrate

tissue 20 mm or more; such patches have been shown to be an

accurate blood pressure monitor. Microneedle patches—some

biodegradable—can deliver drugs, cells, and subcellular moieties over

hours to days to weeks. Liquid metal (flexible) fibers have been

embroidered onto fabric for ‘‘smart garments’’.

An obvious application is diabetes: glucose can be monitored

continuously by a skin patch, with feedback-guided delivery of

insulin and/or glucagon by an implantable device. Multi-sensor rings

and bracelets are employed for personalized protocols addressing

conditions from weight management/obesity to sleep disorders.

Optimizing sleep with such wearables to enhance athletic perfor-

mance has been pursued by professional sports organizations like the

National Basketball Association in the USA.

Additional applications of wearables include monitoring infants

for developmental motor milestones, monitoring the response to

medications of patients with Parkinson’s disease or epilepsy, and

monitoring/treating gastrointestinal tract disorders with smart

ingestibles.

Smartphones are key to many wearable applications. They can be

combined with various biosensing wearables for analysis of bodily

fluids, e.g. mouthguard (saliva), contact lens (tears), skin patch

(sweat). The technology is advancing from monitoring a single ana-

lyte (e.g. pH) to multiplex monitoring. Data from individual patients

Fig. 1 Real-time capture screen of the flow of surgeons and

circulating nurses in the surgical theater
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can be transmitted by smartphone (in some applications, smartphones

equipped with optical or electrochemical sensors) to a central data

repository for DL/AI assessment. Thus both diagnosis and treatment

can be continuously upgraded thanks to the combination of individual

and ‘‘crowd-sourced’’ data.

Wearables offer continuous personalized diagnosis and treatment

that is not constrained by traditional institution- and physician-based

‘‘intermediate’’ institutions. The efficiency of wearable ‘‘closed-loop’’

diagnosis and treatment at the level of the individual patient will—

thanks to DL/AI—transform traditional Radiology and Surgery in

ways we cannot even imagine at present.

Conclusion

As more conditions previously considered for traditional surgery

become treatable with pharmacologic and cell-based technologies,

‘‘smart’’ wearables communicating amongst themselves (at the indi-

vidual level) and with central data repositories (via smartphone)

promise to be the next generation of CARS.

Multipurpose Prediction Model for Type-A Patients

in Heart Surgery using Bayesian Networks
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1Deutsches Herzzentrum der Charité—Berlin, Department

of Cardiothoracic and Vascular Surgery | CVK, Berlin, Germany
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heart surgery.

Purpose

In cardiac surgery, there is a need for decision support at various

stages of the clinical patient journey in acute Type-A patients. Some

prognostic approaches exist with promising results but use intrans-

parent multiple linear regression models. Especially in the context of

critical treatment decision making, decision recommendations should

be transparent. Knowledge-based machine intelligence approaches,

particularly Bayesian networks, are recognized for transparent and

reproducible decision support [1]. Knowledge-based machine intel-

ligence approaches, in particular Bayesian networks, are recognized

for transparent and reproducible decision support. Therefore, we

performed a proof-of-concept here from a methodological and

application-oriented perspective.

Methods

First, we use Bayesian networks to develop a clinical risk model for

Type-A patients in heart surgery focusing primary on five sets of

clinical outcome variables: In-house mortality, 30-day mortality, One-
year mortality, Surgery, and MACCE. Second, we highlight another

strength of the flexibility of Bayesian networks by applying our Type-

A model in a clinical workflow with four phases: Aortic Emergency
Telephone, Hospitalization, Directly After Surgery and Post-Surgical

Care, see Table 1. Each clinical phase is distinguished by a different

set of available patient data and a different clinical interest in the

model predictions. To keep the balance between modeling effort and

model quality, we developed a semi-automatic modeling and vali-

dation pipeline, see Fig. 1.

Results

The final decision model consists of 64 decision-relevant variables

including basic patient characteristics, symptoms, examination

results, clinical interventions, and clinical outcome. The model

development required over 30 h of expert graph modeling and

included a dataset of 1389 patients for learning the probabilistic

model (splitted into 70% training data and 30% validation data). The

general model validation (representing the last clinical phase)

achieved a prediction of 30-days mortality and One-year mortality
with an AUC of 0.92 and 0.87 respectively. Qualitative validation

with a clinician indicates the value of model predictions in different

clinical phases, as well as demonstrates problems and uncertainties in

using the decision model.

Conclusion

While current state-of-the-art predictor approaches are based on

multivariate logistic regression models with AUCs below 0.80, our

model significantly exceeds those results (cf. [2]). However, a

detailed examination of our model shows that some large subnetworks

have equal probability distributions (i.e., parts remained unlearned).

This indicated too little diversity in the data, which could be also

confirmed by low precision in our practical tests of decision support.

Our network provides an important basis for the development and

discussion of clinical guidelines (e.g. applicability of emergency

calls) and (in-)transparent decision support. In the next steps, missing

probability distributions could be completed by experts and later

replaced by new data. Further, a model refinement and validation with

more experts is planned to investigate the general applicability of the

model.
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Purpose

There have been tremendous advancements in the field of Interven-

tional Radiology (IR) in the last 40–50 years. A project is underway

to design a comprehensive and technologically advanced Digital IR

suite to meet the needs of IR in the mid-twenty-first century.

This report, regarding the first stage of this project (Stage 1) has

been undertaken to determine the requirements, priorities, and inno-

vative design considerations. This will be followed by a second report

regarding Stage 2—ensuring project success in the implementation

phase. Ultimately, the construction of the IR facility (Stage 3) will be

presented.

This report is largely concerned with accepted engineering and

project management practices that will be utilized to specify the needs

and resources required for this project. This includes Quality Function

Deployment (QFD) and Success Resource Deployment (SRD) (vari-

ations of which have been incorporated into a variety of project

management systems, including Six Sigma quality programs). QFD is

a structured and quantitative method to identify customer and/or

stakeholder needs accurately and fairly. Desired features proposed by

the QFD process are analyzed in terms of importance and feasibility,

so that the priorities and resources of each stakeholder is considered

and agreed upon in the overall process. All team members present

their needs on equal footing in a structure called a House of Quality

(HOQ), or QFD Matrix (Fig. 1) which avoids ‘‘ad hoc’’ decision

making. (SRD will be presented in the Stage 2 report.)

A comprehensive HOQ, and supporting narrative, summarizing

the team’s conclusions with respect to requirements and priorities of

the IR suite will be presented.

Methods

QFD provides methods for the development of a ‘‘wish list’’ of

required and desired features, and a ranking of their importance, as

compiled by all stakeholders (interventionalists, nurses, architects,

engineers, and administrators) involved in the project.

In Stage 1, a Primary Team creates a list of features of the IR suite

that will be important, if not critical, including advances in imaging,

navigation, treatment, and communications technology. Architectural

design considerations in the early planning stage, by an architect

familiar with hospital design and construction, ensures that new

concepts in room design will be incorporated and that technical fea-

sibility will be properly analyzed. This also ensures that technical and

regulatory requirements are fulfilled.

Areas under investigation by team members include:

1. What are the requirements of IR now and in the foreseeable

future?

2. Which procedures and technologies are currently available or on

the horizon for IR?

3. Which computer applications and Information Technology (IT)

will assist in pre-procedure planning, patient assessment and

patient modeling, intra-operative navigation, and patient

monitoring?

4. What kind of advanced and upgradeable IT infrastructure will be

required?

5. How will machine intelligence or Artificial Intelligence (AI) be

used in IR?

6. What architectural innovations could facilitate optimal

implementation?

7. What are the patient experience, care, safety, monitoring, and

throughput issues that need to be considered?

Fig. 1 QFD ‘‘House of Quality’’ (HOQ) that is used for the planning

of a project. The HOQ template displays how project requirements

and priorities are presented graphically. Source: https://cdn.free-

power-point-templates.com/articles/wp-content/uploads/2013/05/qual

ity-function-deployment.jpg

Fig. 2 A ‘‘waterfall’’ of QFD Houses of Quality allows a large multi-

dimensional project to be broken down into more manageable

components. Presented here is an example of a manufacturing

process. An additional preliminary ‘‘Visioning’’ Phase, before

‘‘Design Requirements’’ would be beneficial. The outcome of the

visioning sessions would define the ideal prototype (or project DNA)

that defines the Basis of Design Requirements. Source: https://core.ac.

uk/download/pdf/214330943.pdf
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The submitted lists of requirements are then divided into related

categories and each category is then consolidated into a list of related

topics. Team members will then rate each item in terms of its

importance. This information will be entered into a series (or ‘‘wa-

terfall’’) of graphic spread sheet-type structures (‘‘House of Quality’’

or QFD Matrix). The use of QFD waterfall (Fig. 2) allows a large

multi-dimensional project to be broken down into more manageable

components.

Results

The resulting waterfall of QFD Matrices will be presented and will

include: current and potential future IR procedures; the imaging and

therapeutic equipment that will be necessary; IT communications and

image distribution requirements; a centralized computer lab for pro-

cedural planning including image and patient-model guidance or

navigation; connections to the electronic health record; connections to

other hospital departments, such as pathology; patient considerations

such as waiting time for a procedure and pre- and post-procedure

care; and, administrative concerns such as funding, staffing, and

regulatory issues.

Some areas of interest include robotics, navigational systems

including angiographic navigational systems, interventional oncol-

ogy, advanced IT infrastructure, new visualization systems, machine

intelligence in the OR (i.e., ‘‘intelligent’’ surgical instruments and

devices), and the development of model-guided medicine and surgery

(beyond image-guided medicine and surgery). Another innovation is

to incorporate breast interventions into the more comprehensive realm

of IR to allow optimum use of resources in Women’s Health. Another

consideration is whether the IR suite should be OR capable, as IR

procedures are becoming more surgical in nature.

Some preliminary architectural considerations for the Digital IR

Suite include (1) flexibility of the procedure room walls and structures

to allow adaptable configuration of the work-space; (2) optimal

physical arrangement of CT, angiographic, ultrasound, MR, ablation,

and other equipment; (3) optimal design of patient prep and recovery

areas; (4) innovations in design to allow efficient and maximized use

of the facilities for In-patient and Out-patient procedures; (5) the

impact of architectural design on IR performance and the patient and

staff experience; and (6) additional requirements for a free-standing

IR facility.

Conclusion

Methodology, related to Stage 1 of project development, which is

based on sound engineering and business principles will be presented:

(1) how to go about designing a Digital IR Suite of the future; (2)

what a future IR suite should look and feel like; (3) which technical

components will be required; (4) which procedures could be done

now and in the future; (5) how to future proof the new design to

enable continuous technology and operational changes. A summary of

the Team’s conclusions regarding this wide range of technical and

architectural requirements and priorities of the IR suite of the future

will be presented.

Stage 2, the early implementation phase, which is designed to plan

for a successful project will be presented separately.

Stage 3, concerning the actual construction and utilization of the

facility, will be the subject of future reports.

Digital IR Suite of the Future – Stage 2—ensuring

success during implementation using success resource

deployment (SRD)
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B. DeForest1, P. Ciaravino1, M. Raden1

1Staten Island University Hospital—Northwell Health, Radiology,

Staten Island, United States 2Cannon Design, Architecture, Los
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Purpose

Tremendous advances have been made in the field of Interventional

Radiology (IR) in the last half century. A project is underway to

design a comprehensive and technologically advanced Digital IR

suite incorporating these advances, to meet the needs of IR in the mid-

twenty-first century.

The first stage in this project (Stage 1) concerning the design,

requirements, and priorities for a Digital IR Suite is addressed in a

separate report. This report presents methodology for the strategic

guidance of Stage 2 of the project—the implementation phase.

Techniques, based on sound manufacturing and engineering princi-

ples, need to be applied to ensure project success during this phase of

the project.

One methodology that works well with the output of Quality

Function Deployment (QFD), as described in a separate report on

Stage 1, is Success Resource Deployment (SRD). SRD was designed

to help develop a strategy, with associated tasks and assignments, to

organize and monitor resources thereby ensuring success of a project.

In addition to traditional SRD methods,

Hoshin Kanri (HK) or Strategy Deployment (as translated from the

original Japanese), provides a set of project management tools that

may be utilized as an SRD tool to facilitate efficient, effective, and

successful project management.

This report will present the use of SRD in ensuring successful

project management in designing and preparing for construction of a

Digital IR suite. Some of the project features that will be implemented

will be enumerated.

Methods

In Stage 1, a cohesive Primary Team was organized. As it becomes

established that the project will be feasible and will be entering Stage

2, a broader and more compressive, system-wide Secondary Team is

organized from a wider range of departments throughout the

institution.

The Primary and Secondary Teams will need to become familiar

with the working strategy and the necessary engineering tools of

project development, including QFD and SRD. QFD provides a

system in which the key stakeholders can specify the requirements

that they desire and/or require and apply a rating to each requirement

in terms of its importance. The resulting ‘‘House of Quality’’, or

waterfall of grouped Houses of Quality, allows all stakeholders to

have documented input into the project and to express their priorities.

An SRD methodology, such as Hoshin Kanri (SD), by utilizing the

findings of QFD, provides the organizational tools to ensure success

of the project.

The primary structure of Hoshin Kanri is the X-Matrix or Strategic

Deployment Matrix (Fig. 1), which is populated by information and

priorities established by the QFD House of Quality in Stage 1. This

X-Matrix is used to organize long-term and short-term goals (Steps 1

and 2); establish the resources and tasks that will be required (Step 3);

provide a timeline and means of measuring progress and success

(Step 4) and assign the individuals responsible for specific tasks (Step

5).

Following completion of the X-Matrix, an Action Plan (Fig. 2),

based on the entries in the X-Matrix, is generated. The Action Plan

allows accurate monitoring of the project and allows assessment of

where additional resources may be needed.
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Results

Stage 2 will be undertaken after the completion of Stage 1, and results

will be presented upon completion:

1. Review of the QFD House of Quality waterfall and having all

stakeholders agree on the desired long-term and short-term goals

(Steps 1 and 2).

2. Present the tasks and resources that will be required for the

success of the project. These will include Clinical, Adminis-

trative, and Board of Trustees approval of equipment, design, and

construction; a comprehensive Business Plan including profit/loss

analysis and financial planning; Certificate of Need preparation

and application (Step 3)

3. Presentation of a realistic timeline and means of assessing project

progress (Step 4).

4. Presenting who will be responsible for each component of the

project (Step 5).

5. Presentation of the completed Action Plan.

The tasks enumerated in the Action Plan will cover a vast variety

of subjects: final selection of current and future IR procedures to be

performed; configuring a centralized computer lab for procedural

planning and navigation; selection of the specific imaging and ther-

apeutic equipment that will be necessary; finalizing optimal

architectural design; configuring the IT communications and image

distribution requirements; establishing connections to the electronic

health record, as well as other hospital departments, such as pathol-

ogy; ensuring that pre- and post-procedure patient care issues are

fulfilled; and, addressing administrative concerns such as funding,

staffing, and regulatory issues.

Some areas of interest include robotics, navigational systems

including angiographic navigational systems, breast interventions,

interventional oncology, advanced IT infrastructure, new visualiza-

tion systems, machine intelligence in the OR (i.e., ‘‘intelligent’’

surgical instruments and devices), and the development of model-

guided medicine and surgery.

Conclusion

We have presented a methodology for the development of a Digital IR

Suite of the future. Stage 1 (concerning the establishment of project

vision, requirements, and priorities) is presented separately.

In this report, we describe the necessary engineering and business

management tools that will help ensure the success of Stage 2, or the

early implementation phase. The foreseeable requirements, in terms

of procedures and technological support requirements have been

indicated, and specific devices and equipment will be selected. The

methodology for generating an Action Plan to ensure success has

been presented. The results will be presented separately when

completed.

Stage 3 (concerning the actual construction and utilization of the

facility) will be the subject of future reports.

Multi-task mission planning for autonomous service

robots within the OR wing

L. Bernhard1, A. Knoll2, D. Wilhelm3

1Klinikum rechts der Isar, Research Group MITI, München, Germany
2Technical University of Munich, Chair of Robotics, Artificial

Intelligence and Real-Time Systems, München, Germany 3Klinikum
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Purpose

Mobile service robots have emerged as a promising means for com-

batting the severe nursing shortage that paralyzes today’s healthcare

systems. While various use cases for other parts of the hospital have

been studied in related work, the operating room wing (OR wing) is

highly promising for mobile robotic support, also due to being par-

ticularly affected by the severe lack of personnel. In our contribution

to CARS 2022, we have presented methods and studies regarding the

Fig. 1 The Hoshin Kanri X-Matrix establishes long term goals (Step

1), short term goals (Step 2), the tasks required to meet the goals (Step

3), when the goal is to be achieved and how it will be evaluated (Step

4), and who will be responsible for each goal (Step 5). Source: https://

www.mcts.com/hoshin-kanri.htm

Fig. 2 The Hoshin Kanri Action Plan is based on the output of the

X-Matrix. Source: https://flevy.com/browse/strategy-marketing-and-

sales/templates-for-hoshin-kanri-strategy-deployment-1227&lan

guage=cn&language=en&language=cn&language=sp&language=cn
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dimensioning and composition of mobile robotic fleets within the OR

wing [1]. Now, we focus on the problem of dynamically assigning

tasks to robots, which is a common problem in mobile robotic fleet

management. The goal is to process incoming task requests from the

users and integrate them into multi-task mission plans of the currently

available members of the robotic fleet, while optimizing for driving

durations and adhering to special constraints introduced by the OR

wing use case.

Methods

The described problem is related to the well-known Vehicle Routing

Problem (VRP), which is a combinatorial optimization problem.

However, for the OR wing use case, several additions must be made

to meet the requirements. On the one hand, several known variants of

the VRP, such as the Capacitated VRP, the Multi-Depot VRP, the

Open VRP and the VRP with Pickups and Deliveries must be com-

bined. Secondly, further constraints must be added to address task

prioritizations and alternative Pickup locations. The overall goal of

the problem is to allocate incoming tasks to the mission plans of

multiple service robots, while optimizing the robot driving durations

and adhering to above constraints. In the following, the described

problem is referred to as the Vehicle Routing Problem for the OR

wing (VRP-OR). To the best knowledge of the author, the VRP-OR

has not yet been described and studied in scientific literature,

including other domains.

To solve the VRP-OR, a greedy algorithm is proposed. Greedy

algorithms are based on the idea of repeatedly making the locally

optimal decision, which leads to a locally optimal solution that may or

may not coincide with the global optimum. In general, greedy algo-

rithms are associated with a low computational complexity, which is

well-suited for addressing the challenging time requirements of fleet

management within the OR wing.

A simulation environment, which was described in previous work

[1], was used to evaluate the developed mission planning algorithm.

A fleet of 6 all-rounder robots moving at 1.2 m/s and serving 6

operating rooms was simulated for the purposes of this study. The

intervention plan of each operating room was compiled from three

consecutive surgical interventions. 8 different simulation scenarios

were defined by varying the mission size, i.e. the number of task

requests constituting a mission, from 1 to 8. Therein, a mission size of

1 corresponds to a trivial single-task scheduling approach with

instantaneous assignment, which was included as a baseline reference

for comparison. The following types of tasks were considered:

transportation of sterilely packaged materials, transportation of heavy

loads (e.g. containers, devices), intra- or postoperative disposal of

waste, delivery of lab samples to tube mail stations, adjustment of

medical devices, assistance during the sterile clothing procedure.

Results

The obtained task driving durations for the studied mission lengths

are shown in Fig. 1. For the reference scenario with mission length 1,

a mean of 29.29 s and a median of 25.82 s were obtained. From there,

values decrease in an inverse exponential-like fashion. For a mission

length of 4, a mean task driving time of 15.02 s and a median of

8.08 s were achieved. This corresponds to a decrease by 48.7% and

68.71%, respectively, relative to the reference scenario. Accordingly,

for a mission length of 8, a mean value of 11.41 s and a median value

of 3.48 s were achieved, which corresponds to a decrease by 61.04%

and 86.54%, respectively. A maximum computation time of only

38.9 ms was observed for performing a full scheduling cycle.

Conclusion

A greedy-based solution algorithm for the hitherto unstudied VRP-

OR was proposed. Compared to a simple single-task approach, task

driving durations can be considerably shortened by means of multi-

task mission planning. This is due to the elimination of redundant

robot journeys and the merging of task requests involving locations

situated in close proximity to each other. This effectively reduces the

waiting times of the users (i.e., members of the surgical teams),

improves the total duration of surgical interventions and benefits the

overall acceptance of mobile service robotics for this application

scenario.

At the same time, very short computation times are achieved, that

are not possible with optimal solution strategies, due to the NP-

hardness of the underlying optimization problem. This allows for very

short reaction times and fast rescheduling, which is required to deal

with the highly dynamic workflows associated with OR wings.
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Fig. 1 The obtained robot driving durations for the simulated

scenarios with different mission lengths are shown
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Purpose

Thorough and comprehensive documentation is essential for any

surgical procedure. Narrative full-text description of the chronologi-

cal sequence of surgical steps, difficulties encountered, and adverse

events is the current gold standard. Even though this form of docu-

mentation has proven its worth, there are numerous shortcomings.

From a surgeon’s perspective, report writing is time-consuming and

must be done immediately after the procedure in order to remember

all details, which can interfere with the surgical schedule of a given

facility. On the reader’s part, the entire text must be worked through

to obtain information of particular interest, which in turn can be

tedious. Likewise, it is difficult to extract structured information such

as data for reimbursement, quality management, and science from the

full-text. Therefore, a lot of additional work such as assigning diag-

nosis and procedure codes must be performed by the surgeon himself

or by documentation assistants, requiring additional effort. Thus, most

current projects dealing with ‘‘intelligent surgical assistance’’ aim to

sample structured data from sensors, video recordings, and vital

parameters in combination with machine learning to ultimately use

phase and event recognition for controlling and training assistive

systems. [1] Derived from resulting information, automated surgical

reports could be generated as well. [2] Since structured data is not

sufficiently human-readable in most cases, viable output is crucial to

fulfill the primary function of surgical reporting, which is, after all, to

transmit information between medical professionals.

In the following, we propose a strategy to create individual tem-

plates that could be modified by assistant documentation programs

depending on the individual course of a surgery in the future, using

Natural Language Processing (NLP). - To improve the time aspect,

report templates in the form of text modules are in daily clinical use

for the most common surgeries since reporting is conducted digitally.

Advantageously, the surgeon only has to change parts of these text

snippets if the respective course deviates from the standard procedure.

In addition, proven templates can be shared with other surgeons in the

same department, respecting local and individual techniques and

pReferences. Text templates from various medical institutions and

different surgeons reporting the same type of procedure may differ

significantly in the sequence of steps, specific technique, or equip-

ment used. These inter-individual and inter-facility differences are

major challenges in developing applications for assistive and auto-

mated surgical documentation. Our method aims to create basic

templates, which however are highly individualized, and can be

automatically adapted via future OR workflow analysis systems based

on structured sensor, video, and audio information recorded during

surgery.

Methods

To investigate the current situation of surgical reporting, we chose

laparoscopic cholecystectomy (LCHE) as a model surgery and ana-

lyzed reports written on this procedure using natural language

processing and calculation of Levenshtein distances using the Natural

Language Tool Kit (NTLK) for the programming language ‘‘Python’’

and the Stringdist package for the statistical language ‘‘R’’. A total of

70 full-text reports were evaluated in this way. Similarities and dif-

ferences among surgeons in terms of report writing were analyzed by

automated cluster analysis. Using NLP, a frequency ranking of word

stems was created and divided into the categories ‘‘actions’’,

‘‘anatomical structures’’, ‘‘instruments’’ and ‘‘description/properties’’

(Fig. 1a). Based on the 60 most frequent words, we manually created

a customizable basic template (c), which is currently being tested for

acceptance in an online study for the surgeons in our department at

Klinikum rechts der Isar (d).

Results

Analysis of Levenshtein distances between the surgical reports

combined with cluster analysis revealed a degree of individuality

regarding wording, style and level of detail that allowed an individual

author to be identified quite reliably, indicating a strong influence of

personalized templates to be in use already (b). In addition, the

amount of structured and repetitive text varied substantially between

the various authors. Manual creation of a basic template aggregating

all 70 reports and containing the 60 most frequent words (frequency

42.86%-100% of all reports) was feasible by this method. It is note-

worthy that already the 8 most frequently used word stems were

sufficient to identify the type of underlying surgery. (‘‘Gallbladder’’:

100.00%, ‘‘Cystic duct’’: 98.57%, ‘‘Clip’’: 98.57%, ‘‘Drainage’’:

97.14%, ‘‘Wound dressing’’: 94.29%, ‘‘Cystic artery’’: 92.86%,

‘‘Irrigation’’: 92.86%, ‘‘Trocar’’: 92.86%) Local specialties were

satisfactorily represented by the word ranking list, so that a template

could be created that corresponds to the standard procedures and

equipment of our surgical department.

Conclusion

The proposed strategy of creating customizable templates for future

automated surgical documentation, considers local specialties satis-

factorily. The standard template created is currently being tested for

its acceptance by surgeons in our department in an online study,

where those find a medical case for which they are required to write a

report based on the proposed text module. The resulting reports will

reveal where a future application would need to insert or delete text to

properly customize the template. This study is still a proof of concept.

However, other surgeries, even less standardized ones, could be

involved the same way and text templates could be proposed to

surgeons in clinical practice to create input and targets for future

machine learning applications. Thereby, the proposed study design

allows data collection during daily clinical routine. Surgeons simply

Fig. 1 Proposed workflow to create a basic report template for future

automated surgical reporting; each step could easily be integrated in

daily clinical routine. Gray-colored elements of the study are still

ongoing. NLG Natural Language Generation
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need to use the proposed templates and can modify them as requir-

ed.The next step is then to use structured data derived from sensors in

the operation room to generate input for the surgical report and to

automatically customize the text module in this sense. Instead of

extracting structured data from written text, as we do today, con-

versely in the future, structured data will be used to generate surgical

documentation, which in turn must be readable by humans. This

reversal of information flow solves most of the problems of current

documentation by combining comprehensive surgical reporting with

the provision of structured data.
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Purpose

We assume that the acceptance and use of robotic systems, AI and

automation in healthcare will depend on their performance, but also

on the availability of trained personnel. While the quality of

mechatronic systems is continuously improving and approaches for

autonomous concepts are being developed and presented, the avail-

ability and training of skilled personnel is at a critical juncture

considering today’s significant nursing shortage. According to the

World Health Organization, the world will be short of 12.9 million

healthcare workers by 2035. Today, there is a shortage of 7.2 million

physicians, nurses, and allied health workers worldwide. Due to the

above we must therefore assume that robotic systems will have to

replace missing personnel in the near future, in order to sustain care

providing and ensure treatment quality. The use of (partly) autono-

mous robots in healthcare environments potentially enables staff to do

more work, easier, faster and more accurately than before within

similar sized workspaces. In the context of remote-controlled teler-

obotics, studies have already shown the benefits of this technology

[1]. Thus, similar benefits are also expected for (semi-)autonomous

assistive robots in a broader context.

However, it is still unclear, where and how autonomous robotic

systems should reasonably be used, and when human competence

should be preferred. With this extended abstract, we present a new

concept for rating the potential of robotic concepts for the operating

room (OR) wing. Based on that, the most relevant and promising

concepts are identified and the spatial/procedural requirements for

integrating such systems into the OR wing environment are shortly

discussed.

Methods

The robotic concepts presented and rated in the following result from

internal, multidisciplinary discussions and experiences from our own

projects on robotic systems and on concepts for the healthcare of

tomorrow (digitalization, hospital of the future (CARS 2021), oper-

ating theatre of the future (CARS 2022)). Furthermore, a literature

research related to the research question was carried out.

Our study explicitly focuses on (partially) autonomous assistance

robots, as only these are expected to achieve a significant personnel

relief, which we assume to add the most significant value. Beside this,

however, we will consider other criteria, as elaborated in the fol-

lowing. As they have already become a standard component of

today’s operating theatres, teleoperated systems are explicitly not the

main focus of our work.

Results

One might suggest that due to the increasing shortage of healthcare

workers autonomous robotic systems will have a high potential

anyway. From a scientific perspective this might indeed be true, as the

race has been started for the development of human-equivalent sys-

tems. In the healthcare environment, however, we have to consider

different aspects, from which we assume the following criteria to

become the most critical concerning how and where to involve

robotic systems in the future:

Staff Demand: We derive the need for a robotic solution from the

availability of trained personnel, but also from how we expect the

healthcare system to evolve over the next decade. Due to the ability of

performing manual tasks, robots will preferentially be used in areas

where these represent a core competence, however, only with a

moderate level of complexity and risk.

Aptitude and Qualification: To apply robots in areas where

humans show a clear superiority to what tasks demand, might not be

reasonable. We rate human beings in general as having a high ability

for improvisation and learning, good communications skills and high

flexibility. On the other hand humans often tend to be fatigued by

repetitive tasks and to show a low resilience to stress.

Ethical Framework: The healthcare system might be seen as one of

the most critical fields of our society regarding ethical aspects. We

believe personal care delivery and welfare to remain a core aspect of

healthcare, especially in the context of surgeries and interventional

therapies, whereas other fields, such as training support and transport

might be less critical. We are committed to keeping healthcare run-

ning so that in areas with staff shortages or where personnel costs

become unacceptable, robots could become a mandatory tool [2].

Spatial Considerations: Most of robotic systems differ signifi-

cantly from humans, be it for their weight, for their dimensions or for

requiring a safety environment. Accommodating robotic systems in

healthcare environments require comprehensive planning to ensure its

various applications (surgical robots, care robots, exoskeletons,

AGV’s, etc.) are integrated in an efficient, non-obstructive and

coordinated way. This includes maintenance (charging stations,

repair, etc.) a central operations/intelligence center, and other con-

siderations. While some devices will be easy to implement, others

require various degrees of architectural, infrastructure and IT con-

siderations. For example, an Intuitive DaVinci surgical robot can be

rolled into most operating rooms and will only require power and data

to function. On the other hand, an automatic guided vehicle system

(AGV) will require dedicated vertical elevators, dedicated collision-

free corridors, strengthening structural floor slabs to carry the supply

system heavy-loads, floor tracks and so on.
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Taking into account the criteria just mentioned, the potential of

selected robotic use cases can be ranked according to Table 1. For

each concept, the above criteria are rated from 1 to 10. The sum of

these ratings yields a final score, as a measure for the relative

potential. Additionally, ratings regarding autonomy (A0-A5, with A0

being no automation and A5 being full automation) and risk (R1-R3,

with R1 indicating low risk and R3 indicating high risk) are given.

The autonomy rating was based on similar classifications in the

context of self-driving cars. The risk rating was inspired by the risk

classes defined by the MDR.

Conclusion

Based on the ranking presented in the previous, it can be concluded

that many robotic concepts for the OR wing show great potential. This

is especially true for mobile robots that execute logistical and

preparation tasks, such as robotic circulating nurses, self-driving

patient beds, off-stage AGVs and cleaning robots, which are also

mostly associated with a low risk rating. However, the integration of

these systems will certainly require modifications of the target envi-

ronment, since the mobile robots must be able to execute their tasks

safely, robustly and efficiently. At the same time, it must be ensured

that the environment is still suitable for human workers: Even if some

visions propagate robotic systems as a substitute for all human

activity, we see the collaboration between humans and robots as more

likely for healthcare. Figure 1 shows a first conceptual visualization

of a future OR as a workspace for human–robot collaboration. In our

presentation, we will elaborate on such spatial considerations and

discuss the potential of different robotic concepts of the OR wing in

more detail.
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and the City, vol 27. Wiley, pp 535–545

Table 1 Ranking of robotic concepts for the OR wing

Degree of

autonomy

Degree of

risk

Staff

demand

Aptitude and

qualification

Ethical

framework

Spatial

considerations

Sum of

ranks

Mobile systems

Robotic circulating

nurse

A4 R1 7 6 8 6 27

Self-driving patient

bed

A4 R2 6 8 6 7 27

Off-stage AGV A4–A5 R1 4 7 10 9 30

Cleaning robot A5 R1 5 8 10 10 33

Care robot A3 R2 6 2 2 3 13

Static systems

Robotic scrub nurse A4 R1–R2 6 7 8 6 27

Robotic surgeon A3 R3 1 2 2 6 11

Camera guidance

robot

A4 R3 3 4 6 8 21

Robotic assistance A3–A4 R1–R2 5 6 7 5 23

Fig. 1 Future OR design envisioned by the authors
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Purpose

Virtual reality based surgical training has been widely used to

improve novice surgeons’ skill due to its low-cost and reproducible

features, but social distancing restrictions due to COVID-19 chal-

lenged our ability to educate incoming surgery interns who depend on

early simulation training for basic skill acquisition [1]. The appear-

ance of remote training can well tackle this issue, but it still suffers

from lack of the fidelity of human–computer interface and interactive

framework for remote collaboration. Therefore, we propose a col-

laborative framework for remote surgical training and its tailored

high-fidelity interface, which supports virtual surgical scenes con-

struction and real-time remote collaboration for immersive

demonstration and collaborative training.

Methods

This paper presents a collaborative framework with high-fidelity

interface for remote surgical training, Fig. 1. Compared with the tele-

mentoring framework in [2], we consider about the trade-off between

the real-time performance and the fidelity of human–computer interface

and take the following approaches as improvement: (1) To solve the

problem of relatively low fidelity in [2], we use real surgical instruments

with high degree of freedom of movement, and then perform real-time

motion capture through a series of highly sensitive sensors to achieve

unrestricted and accurate surgical operation. (2) To avoid problems may

be caused by redundant computational cost of server, we propose a

framework of distributed interaction, display devices and remote sim-

ulation servers to distribute the operations to each client. (3) To further

enhance immersion in remote interaction, we display our scenes

through virtual reality with full information of each participant,

enabling immersive demonstration and collaborative training.

We perform real-time motion capture through a series of sensors

to obtain the kinematic data of the surgical instruments in each scene

and then mapped the surgical instrument motion information to the

virtual space. To reduce the computational burden on the server, we

apply the simulation on local computer. Afterwards, we propose a

new synchronization method and co-localization method to achieve

multi-person scene synchronization for surgical training. To keep all

participants’ scenes synchronized, real-time operation and location

information are shared through remote data transfer. We use Trans-

mission Control Protocol (TCP) to share the coordinates and motion

information of objects in all virtual scenes to solve the synchroniza-

tion problem of remote interaction. We then maintain real-time data

transmission during the training to synchronize the movement of

surgical instruments in all scenes, ensuring the consistency among

scenes for all clients. Besides, we used immersive head-mounted

display ’HTC-Vive’ for virtual reality display. We set up a virtual-

real alignment step in advance and change the camera position in the

virtual scene changes as the trainee moves the device during training

to accurately overlay the virtual scene and information into the real

scene. Moreover, the surgical instruments in the virtual space can be

manipulated and interacted with virtual objects, allowing participants

to receive the accurate visual feedback while operating. Instructors

can consequently show their operations in the trainees’ scenes,

enabling trainees to learn the procedures and details of the surgery in

short time through immersive demonstration.

Results

To verify the effectiveness and applicability of our system, we carried

out the following experiments: (1) We measured the measurement

accuracy of the surgical instruments, reaching an average error of

surgical instruments for both hands of 1.99 mm. (2) We tested the

real-time synchronization of scenes under remote connection to

ensure real-time performance when remotely connected with the

average delay of 86 ms. (3) We conducted remote collaboration tests

of peg-transfer, a basic laparoscopic task, to evaluate the practical

applicability of the system. The results show that our framework has

good performance of accuracy and data transmission. Moreover, the

remote collaboration tests prove that our system is practical in general

situations.

Conclusion

Our system has been proved its advantages of low cost, no social

distancing restrictions, and acceptable real-time performance, mean-

while it can provide the high-level features, remote demonstration as

well as collaborative training for multi-person surgical scene, com-

pared with traditional virtual surgical training systems. It is fully

functional at its base and has good scalability to integrate more fea-

tures in the future.
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Fig. 1 The framework of our system. The kinematic information in

each scene is mapped to the virtual one and uploaded to server. Server

receives the data from all clients, integrates data and then sends it to

all clients synchronously. Afterwards, the simulation of the whole

scene is done locally and displayed in the virtual reality
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Purpose

With the great popularity of XR-based medical scenarios, it becomes

more and more important for surgeons to interact naturally and

intuitively with patients’ diagnostic data. The rendering quality of 3D

virtual models and the smoothness of human–computer interaction

have become particularly important. However, existing methods

require manual manipulation to align surgical instruments and holo-

grams, which is cumbersome and increases system latency. Therefore,

we propose a 3D holographic volume rendering system along with the

head monitors (i.e., HoloLens2) that assists intuitive diagnosis with

gesture-based interaction, enabling the surgeons to intuitively operate

the 3D volume data in the mid-air. Users are able to use gestural

interaction to operate virtual surgical instruments, observe patients’

lesions from any perspective and any cross-section perform simulated

surgical operations naturally in real time.

Methods

In this work, we visualize the patients’ 3D raw medical data (such as

CT & Ultrasound) with Microsoft HoloLens2, while we provide the

surgeons the mid-air interface for free-hand gestural interaction [1,2].

In more detail, the density of each voxel was obtained using the ray

matching. For each point in the data, we divide the ray from the

vertex position into steps in the direction toward the eyes. The density

of the point is obtained from the texture coordinates of each step to

determine the color of the 3D voxel. Once the shader has the density

of the voxel, it uses the density to calculate the RGBA value in the

transfer function. By adjusting the value of the transfer function, the

material and transparency of each tissue are realistically restored. The

user is able to visualize the internal structure of the target region,

enabling an intuitive multi-sensory interactive surgical scenario.

Microsoft Hololens2 acts as a camera to capture real-world pose

changes. Holographic viewing of 3D medical volume data can be

positioned and tracked precisely, thus enabling interaction between

the entities and the 3D medical volume data. They are scalable and

manually rotatable in the XR environment, using the feasibility of

augmented reality to make gestural interaction reliable and flexible.

Results

In the system we have implemented, mid-air 3D volume data can be

displayed holographically in real space, unlike screens. the surgeon

can view the model from any angle and without the constraints of

environment or geographic location. Gesture interaction allows the

user to pick up and rotate the 3D model at will, zooming in on key

areas so that they can be displayed more clearly. Clipping enables the

surgeon to view various cross-sections of the target region and ana-

lyze the patients’ lesion without visual dead space (see Fig. 1). The

system allows the transmission and manipulation of multiple medical

data, such as ultrasound and CT raw data, to meet the needs of dif-

ferent clinical diagnoses. Surgeons can use bare hands to interact with

3D medical data in real space.

Conclusion

In conclusion, we present the XR-based medical interaction system

with a head-mounted display. The experiments demonstrate its

potential, the high-quality 3D patients’ data can be presented realis-

tically and frees the surgeon’s hands to manipulate the 3D objects in

the XR environment. Although the 3D volume data is clear enough to

show the details of the target region, the large patients’ data really

spares a lot of computing resources, which is limited for Microsoft

HoloLens2. For future work, we will explore further algorithms and

hardware to make 3D volume data with varying degrees of clarity for

medical scenarios with different needs, with the aim of reducing the

computational complexity load and improving the smoothness of

gestural interaction in HoloLens2 to bring a more natural user

experience for doctors and help them with more intuitive diagnosis.

Acknowledgement

This work was supported in part by a grant from the Research Grants

Council of the Hong Kong Special Administrative Region, China

(Project Reference Number: T45-401/22-N), in part by Shenzhen

Fundmental Research Program under Grant

(JCYJ20200109110208764, JCYJ20200109110420626), in part by

National Natural Science Foundation of China (U22A2034) and in

part by Guangdong Basic and Applied Basic Research. Foundation

(2023A1515030268, 2021A1515012604).

References
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Purpose

Augmented reality (AR) based surgical navigation has gained

increasing attention in recent years due to their potential to reduce

risks and improve outcomes. However, the current method of manual

alignment of pre-operative models with intra-operative video in

laparoscopic liver surgery is not robust, as it heavily relies on the

operator’s experience. The complexity of intra-operative dynamics

also greatly influences navigation accuracy and can lead to errors in

fast-paced and high-stakes surgical situations. Besides, current AR-

based navigation framework for laparoscopic liver surgery often

suffers from lack of efficiency due to their reliance on slow and large

networks for tasks such as video segmentation and surface recon-

struction, which can compromise the effectiveness of the surgery. In

order to overcome these limitations and improve the robustness and

efficiency of AR-based navigation for laparoscopic liver surgery, we

introduce robust and lightweight deep learning models in our AR-

based navigation approach, which can replace manual alignment and

improve computational speed.

Methods

In our work, we use lightweight and advanced networks to improve

the robustness and real-time performance of our AR-based navigation

for laparoscopic liver surgery. The overall AR process consists of

three steps: video segmentation, surface reconstruction, and regis-

tration. First, the laparoscopic video is segmented to separate the liver

from other structures in the field of view. Next, the surface of the liver

is reconstructed using the segmented video and the disparity esti-

mation model. In these steps, we incorporate a lightweight semantic

segmentation model, DeepLabV3 with MobileNetv2, to improve the

efficiency of video segmentation and a lightweight disparity estima-

tion model, STereo TRansformer (STTR)[1], to improve the quality

of surface reconstruction. These models are chosen for their high

robustness and computational efficiency, as well as their outstanding

performance in other surgical vision tasks. Finally, the pre-operative

model is registered with the reconstructed surface using the deep

learning model. For the registration, we propose a novel registration

network, Shuffle-Transformer-Net (STNet), to improve robustness

and efficiency in registering the pre-operative model with the intra-

operative liver surface. STNet takes the intra-operative surface and

the pre-operative model as inputs, analyze the features of these inputs,

and outputs a displacement field that registers the pre-operative model

to the intra-operative surface. The STNet has an encoder-decoder

structure, with the ShuffleNetv2 as the encoder and a Vision Trans-

former (ViT) in the bottleneck layer to extract both local and global

features. The use of the ViT makes the STNet more robust and able to

handle the complexity of surgical scenes, leading to less manual

intervention and better automatic AR-baesd navigation.

Results

To evaluate the performance of our proposed STNet, we conduct

experiments using a dataset comprising a simulated pre-operative

liver model and 135 deformed partial intra-operative liver surfaces.

Here 70% of the data is used for training, 20% of the data was used

for validation, and 10% of the data was used for testing. The STNet

achieves an average registration error of 13 mm the experiments. In

comparison, the state-of-the-art method for registration in laparo-

scopic liver resection, V2S-Net[1], has an average error of 16 mm.

These results demonstrate the improved accuracy of our proposed

STNet for registering the pre-operative model with the intra-operative

liver surface. Additionally, we find that the use of a lightweight

semantic segmentation model, DeepLabV3 with MobileNetv2, and a

lightweight disparity estimation model, STTR, improves the overall

performance of the AR-based navigation. In terms of computational

efficiency, the parameters of the whole AR-based navigation using the

V2S-Net method [2] are 35.2 M, while our proposed method using

STNet has a much smaller parameter size of 6.5 M. The frame rate of

the V2S-Net method is 10 Hz, while our method achieves a faster

frame rate of 13 Hz.

Conclusion

In conclusion, we present an AR-based navigation for laparoscopic

liver resection that uses a novel registration network, STNet, which

achieves high robustness and efficiency. Our experiments show the

proposed method can well integrate pre-operative information in

intra-operative scene, which can provide surgeon with comprehensive

and intuitive guidance. In the future, we plan to address the issue of

tool occlusion in order to improve the quality of surface reconstruc-

tion in our AR-based navigation. We also aim to develop a tool

position monitoring method that provides alerts when the instrument

is close to a critical structure in order to prevent accidental injury to

the patient. Additionally, we will explore the use of deep learning

methods to address the issue of initial model and intra-operative

reconstructed surface alignment in order to further improve the

accuracy of our navigation (Fig. 1).
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Fig. 1 Framework of our AR-based navigation. The stereo surgical

video undergoes video segmentation to obtain liver mask and depth

estimation to obtain a disparity map. The 3D reconstruction is

obtained from the disparity map. Using the liver mask, we can crop

the liver intra-operative surface from the 3D reconstruction. Finally,

the intra-operative surface is registered with the pre-operative model

and the model is fused into the image
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Purpose

Locating small and vanishing lesions during surgery using ultrasound

(US) remains a challenge in liver surgery, particularly in patients with

widespread bilobar metastases. When these lesions are smaller than

the resolution of intraoperative ultrasound or appear isoechoic, the

surgeon estimates their location based on diagnostic imaging and

experience. The use of three-dimensional (3D) models segmented

from preoperative imaging could provide a more intuitive under-

standing of the patient anatomy for the surgical team. In addition,

surgical navigation—a technique that gives the surgeon a virtual

representation of their instruments with relation to the patient-specific

liver model, may help to guide the surgeon towards small targets

more easily. The aim of this prospective study is to determine whether

integration of anatomical models and surgical navigation to the

clinical workflow decreases the complexity of the surgical procedure.

Methods

This study included candidates 18 years or older who were scheduled

for open surgical treatment of colorectal liver metastases. A preop-

erative contrast-enhanced CT or MR scan was used to create a 3D

model of the liver, which included the parenchyma, hepatic vascu-

lature, biliary tree, lesions, and cysts. Surgical procedures were

conducted according to standard protocol. Initially, surgeons were not

provided with the 3D model unless requested. Similarly, surgical

navigation using an in-house developed system was only initiated

upon request from the surgeon. When navigation was requested, a

landmark-based registration using an electromagnetically-tracked US

transducer was performed as described in [1]. Landmarks were

identified as vessel bifurcations or other clear anatomical structures

(e.g., cysts or other tumors) in the US image. Navigation information

was visualized as a virtual scene depicting the liver model and tracked

surgical instruments, as well as the US video stream augmented with a

projection of the registered 3D model. Postoperatively, the projection

error was calculated for each navigated procedure as the Euclidean

distance between clearly identifiable landmarks on US and the aug-

mented delineations of the registered 3D model. The influence of the

3D model and navigation on the complexity of the procedure was

evaluated using a questionnaire. Surgeons were asked to grade the

complexity of the procedure (on a 10-point scale) with and without

the aid of 3D models and with or without surgical navigation, and to

specify how these techniques influenced the complexity of the sur-

gery. Additionally, local recurrence rates were reported at a follow-up

of 3 months.

Results

Fifteen patients were included in this study. Patient characteristics,

information on the surgical procedure and 3-month follow-up are

provided in Table 1. The surgeons requested the aid of the liver model

Table 1 Patient characteristics, information on the surgical procedure and 3-month follow-up

Patient Age Type of surgery N treated

lesions

Mean tumor

size (mm)

Model

requested

Navigation

requested

TRE (mm) 3 m follow-up

1 61 Chip ? burn* 4 9.5 ± 3.9 Yes Yes 9.2 No recurrence

2 76 Chip ? burn 4 12.5 ± 3.7 Yes Yes 6.3 No recurrence

3 74 Hemi-hepatectomy 8 8.6 ± 5.1 Yes No NA NA

4 62 First stage chip ? burn** 7 7.9 ± 3.7 Yes Yes 6.8 No recurrence liver,

positive lymph node

5 54 Chip ? burn 6 12.7 ± 4.1 Yes Yes 7.2 5 new liver lesions

6 66 Chip ? burn 9 10.1 ± 6.6 Yes No NA No recurrence

7 64 Chip ? burn 6 11.7 ± 4.2 Yes No NA No recurrence

8 65 Resection 3 9.7 ± 2.1 Yes No NA No recurrence

9 55 Chip ? burn 3 8.0 ± 1.0 Yes Yes 3.2 No recurrence

10 61 First stage chip ? burn 5 8.6 ± 1.7 Yes Yes 3.3 No recurrence

11 36 Chip ? burn 12 9.2 ± 5.6 Yes No NA No recurrence

12 55 First stage chip ? burn 17 7.4 ± 3.3 Yes No NA No recurrence

13 65 Chip ? burn 18 7.3 ± 3.3 Yes Yes 9.3 No recurrence

14 55 Chip ? burn 15 5.4 ± 1.6 Yes Yes 7.8 5 new liver lesions

15 53 Chip ? burn 14 9.9 ± 11.0 Yes Yes 1.9 No recurrence

Mean 60.3 ± 9.7 9.1 ± 5.3 9.2 ± 2.0 6.1 ± 2.7

*Local resection of larger and superficial lesions combined with ablation of smaller deeper lesions

**Clearance of one hemiliver in a first non-curative intervention, where the remaining tumors are resected by a hemihepatectomy after a period

of liver regeneration
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in all procedures. Navigation was used in nine of these cases to locate

lesions that were not found using US alone. The mean projection error

for navigated lesions was 6.1 ± 2.7 mm. One patient died due to a

complication related to insufficient liver remnant. No local recur-

rences were found during postoperative follow-up, but two patients

developed new metastases in other liver segments. The results of the

survey indicated that solely using 3D models reduced the complexity,

with an average decrease of 2.3 (n = 15) on a 10-point scale com-

pared to conventional surgery. Additionally, surgical navigation was

found to be particularly useful in localizing small lesions, further

simplifying the procedure with an average decrease in complexity of

2.4 (n = 9) compared to surgery with solely a 3D model (Fig. 1).

Conclusion

This study shows that the integration of patient-specific 3D models

and surgical navigation decreases complexity of the surgical proce-

dure in patients with bilobar spread liver metastases. The use of 3D

models provides surgeons with a better understanding of patient

anatomy by clarifying the spatial relationship between critical struc-

tures and small lesions. In addition, keeping track of treated lesions

provides an overview of the procedure in patients with a high number

of lesions. Surgical navigation aids localizing of difficult-to-detect

lesions and confirming their locations. Surgeons reported that deci-

siveness had improved and that some lesions could not be located

without navigation. Initial results are promising, a longer follow-up

and larger patient group are required to endorse these results.
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Purpose

Surgical resection is the treatment option with longest-term prognosis

when it comes to treating liver cancer (either in the form of primary

liver cancer or colorectal metastases). During surgery, ultrasound is

the standard modality for identifying and characterizing these lesions.

Although ultrasound provides a real-time high quality image of the

scanned area, its assessment is challenging and highly dependent on

the operator. Accurate segmentation of hepatic tumors during liver

surgery can improve the safety and outcomes of the procedure, by

reducing the number of positive resection margins and undetected

lesions. Deep-learning based automatic segmentation methods can

generate accurate labels in real-time, but are affected by a high false

positives rate. In this study we propose a two networks approach that

can generate accurate intraoperative tumor borders with low false

positive rate, which in combination with surgical navigation will ease

the detection and tumor margin delineation procedure during liver

surgery.

Methods

We propose an approach which concatenates two deep learning net-

works: a binary classifier and a segmentation network since

performing classification prior to segmentation was shown to improve

precision [1]. Thus, binary tumor classification is performed on single

2D ultrasound images, followed by segmentation by the second net-

work of the positively classified ones. ResNET-50 was trained for

classification task, while for the second step a U-Net was trained with

the nnU-Net framework [2], to accurately identify the boundaries of

the hepatic tumors. The segmentation network inputs a single hepatic

ultrasound image and outputs a binary map indicating the tumor

location, Fig. 1.

Two datasets were used to train and test the networks. For the

binary classifier, 1600 ultrasound images from 45 patients and 88

sweeps were acquired and classified. Of these, 50% of the images

depicted tumors. Images were classified by a medical technician with

more than 5 years of experience in the assessment of intraoperative

hepatic ultrasound images. Tumors of varying echogenicity (exclud-

ing isoechoic lesions) and sizes (ranging from 5 to 58 mm) were

included. The segmentation network was trained and tested on 1000

ultrasound images all containing tumors. Tumor regions were man-

ually labelled and used as ground truth. Labels were delineated by a

radiologist with more than 20 years of experience. The performances

Fig. 1 Influence of the use 3D model and surgical navigation on the

complexity of the procedure
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of the networks were computed on a test set consisting of 1148

images from 5 US sweeps from 5 patients.

For the classifier network, the dataset was divided into training and

validation sets, with the proportion of 90%, 10%, respectively. The

classifier was trained starting from a pre-trained ImageNET. The

training was then finalized on our training set using a cross-entropy

loss function and Adam optimization, with a learning rate of 0.001

and a batch size of 32. The model was trained for 100 epochs. For the

segmentation network 950 images for training and 50 for validation

were used. As loss function in the training, a combination of cross-

entropy and Dice loss was used with a learning rate of 0.0001 and a

batch size of 32. The model was trained for 1000 epochs. Best models

were determined based on validation performances.

Evaluation of both networks was performed on the test dataset.

Precision, recall, and F1 score computed per image and per acquisi-

tion were used to evaluate the classifier. In order to make the

performance of the segmentation network comparable to that of the

classifier, any non-empty segmentation in an US image was consid-

ered as positive classification result (e.g., if at least a pixel is predicted

as tumor than the image is classified as ‘‘tumor’’), Table 1. Based on

that, precision of the tumor indication was compared with and without

using a classifier.

Results

The results showed that the addition of the binary classifier was able

to reduce the number of false indications of tumor presence compared

to the segmentation network alone. The average precision on the test

set from of the classification network resulted to be 0.85 which is a

great improvement from the 0.21 achieved with the simplified output

of the segmentation network. These results suggests that the predic-

tions of the classifier are more robust to false positives, and that this

method can be effectively used to improve automatic segmentation

quality during intraoperative hepatic US sweeps. On the other hand,

the classification network also introduced false negatives that were

not present when using only the segmentation network: from an

average recall of 0.90 it dropped to 0.71. The F1 score of the com-

bined networks is 0.67 while when using only the segmentation

network, the F1 score is 0.32.

Conclusion

The combination of the segmentation and classification network

increased in precision and F1 scores of the presented automatic

hepatic tumor segmentation method. Validation of the method is

required on a larger test set, including up to 50 US acquisitions. Its

potential clinical application will be assessed in the surgical proce-

dure along with the generalization to other US transducers and

manufacturers. Ultimately we aim to provide the surgeons with an

automated tool that can be used real-time on any ultrasound trans-

ducer for the automatic detection and segmentation of hepatic tumors

during navigated surgeries.
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Purpose

The aim of this study was to compare the surgical, oncological, and

survival outcomes of pancreaticoduodenectomy (PD) with the portal

vein (PV)/superior mesenteric vein (SMV) resection using either

robotic or open surgery [1].

Methods

Data on patients with periampullary lesions who underwent PD was

collected and analyzed. The surgical risks, oncological outcomes, and

survival outcomes of patients who underwent PV/SMV resection

were compared to those of patients who did not undergo PV/SMV

resection.

Results

A total of 301 patients were enrolled in the study from July 2016 to

September 2022. Out of these, 35 (12.0%) underwent vein resection

and the remaining 266 (88.0%) did not have vein resection. After a

vein was resected, it was either repaired directly or repaired using a

GORE-TEX� vascular graft as a replacement. Of the patients in the

group that underwent vein resection, 8 (22.8%) had the procedure

done using a robotic approach while 27 (77.2%) had it done using the

open method. The operation time was significantly longer in the

robotic group compared to the open group, with a median of 760 min

Fig. 1 Workflow schematic. The proposed method uses two CNNs.

First, images are classified with a ResNET50 network to identify

those containing tumors. Afterwards, the images labelled as tumors

are input to the segmentation U-Net network which will output a

binary mask with the tumor delineation

Table 1 Result of segmentation and classification

Precision Recall F1

Simplified segmentation 0.21 0.9 0.67

Classification 0.85 0.71 0.32
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versus 444 min (p\ 0.001). The median blood loss was higher in the

robotic group (1600 c.c. vs. 1150 c.c.), but this difference was not

statistically significant (p = 0.708). The study found that there were

no significant differences in postoperative complications, such as

pancreatic fistula (POPF), post pancreatectomy hemorrhage (PPH),

delayed gastric emptying (DGE), chyle leakage, wound infection, re-

operation, and length of stay (LOS), between the two groups in terms

of surgical outcomes. Additionally, there was no significant difference

in oncologic outcome with regard to tumor size, the rate of curative

resection (R0), or the number of lymph nodes that were harvested.

However, the operative mortality was higher in the robotic group,

with 2 out of 8 patients, which led to a worse survival outcome in that

group. The study found that when the robotic group was separated

into two subgroups, the early and late periods, the operation time and

blood loss were lower in the late period, although there was no sta-

tistically significant difference. Furthermore, there was a better

survival outcome in the late period of the robotic group. There was no

significant difference in survival between the open group and the late

robotics Group (p = 0.446), Fig. 1.

Conclusion

Pancreaticoduodenectomy with vein resection is technically feasible

using both open and robotic surgery in selected patients. However,

additional PV/SMV resection increases the surgical risks of the pro-

cedure in the early period of robotic surgery. The study suggests that

it may be possible to achieve better survival outcomes after the

learning curve is passed.
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Purpose

Surgical procedures like mastoidectomy and cochlear implantation

are on the verge of higher-level assistive technology in the operating

room. Like bone removal during hip or knee arthroplasty, robot

technology exists that performs the mastoidectomy in an image-guide

manner. Previously, instrument tracking and control has been done by

methods like electromagnetic or optical tracking as well as robot

encoders. The main purpose of this contribution is to provide a

machine learning based segmentations of instruments for future

vision-based tracking during temporal bone surgery. Previous

research used convolutional neural networks (CNNs) on microscopic

images during mastoidectomies. Tool detection was performed using

the You Only Look Once version 4 (YOLOv4) and You Only Look at

CoefficienTs (YOLACT) CNNs [1]. Nevertheless, no instrument

segmentation results were provided. Our research question is con-

cerned with the finding of suitable methods and evaluation of their

accuracy.

Methods

Video footage was captured during 15 cochlear implantations with a

resolution of 1920 9 1088 pixels. On 744 images 4645 labels of

seven classes of surgical instruments (burr drill, suction, Rosen nee-

dle, forceps, retractor, irrigation, and snap) were created by two

annotators. An exemplary image with ground truth labels of three

classes is shown in Fig. 1 (top). For binary segmentation, all tool

masks were concatenated into one singular foreground and the

resulting background. Another 114 images lacked surgical instru-

ments and received no labels. Empty masks were generated for the

images lacking labels to utilize negative examples for model training.

Data was split into 80/10/10 for training, validation and testing sets.

Augmentations (random square-shaped cropping, random rotation,

horizontal flip, vertical flip, transpose, grid distortion, motion blur)

were performed on the training set and results in 4298 samples.

Binary and multiclass segmentation methods were implemented as

TernausNet with VGG16 encoder [2]. The cost functions utilized for

binary and multiclass segmentation were binary cross-entropy and

categorical cross-entropy, respectively. The input size of the images

was 512 9 512 pixels. To optimize the training procedure, the Adam

optimizer was utilized, which minimizes the cost function by using

squared gradients to scale the learning rate while updating the

parameters based on the moving average of the gradient rather than

just the gradient itself. The learning rate was initially set as 1e - 4

but was dynamically lowered using a learning rate scheduler with a

patience of 5 epochs, a reduction by a factor of 10, and a minimum

learning rate of 1e - 5. Training was limited to a total of 100 epochs,

with only the best epoch being saved to the final model based on the

validation loss. A batch size of 16 was utilized, with a total of 74

iterations per epoch, calculated by dividing the length of the original

Fig. 1 There was no statistically significant difference in survival rate

between the open group and the late robotic group (p = 0.446)
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training set by the batch size then multiplying by two. Total training

time was approximately 3 h per model utilizing TensorFlow as a deep

learning framework. All networks were trained and tested using a

setup comprised of an AMD Ryzen 9 5900X CPU and a NVIDIA

GeForce RTX 3090 GPU.

Results

During training the F1 (Dice) Score of TernausNet got 95% for binary

and 62% for multiclass segmentation. Analysis of validation F1

Scores result in 87% for the binary and 61% for multiclass segmen-

tation. Similar segmentation results are achieved for the Intersection

over Union (IoU, Jaccard Index) metric during training (91% binary,

56% multiclass) and validation (77% binary, 55% multiclass). An

example of the binary and the multiclass segmentation is shown in

Fig. 1 (middle and bottom).

Conclusion

Machine learning based segmentation of surgical instruments were

demonstrated in microscope footage of cochlear implantation surgery.

Previously, only instrument detection (YOLOv5) with bounding

boxes and not pixel-level segmentation was published [1]. Our work

allows the extension of conventional tracking sensors with a robust,

vision-based instrument tracking for surgical robots and other

microscopic guidance systems. Availability of large open-access

datasets will be crucial for future implementations.
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Purpose

Total hip arthroplasty (THA) is a surgical procedure used to replace a

hip joint damaged by symptoms such as osteoarthritis, osteonecrosis

of the femoral head, rheumatoid arthritis, with an artificial hip joint.

Several methods of THA are available, including the direct anterior

approach (DAA), which prevents cutting of muscles or ligaments as

much as possible. Although this method is minimally invasive[1],

with quick postoperative recovery and low patient burden, the pro-

cedure is complicated and has not gained wide usage. A lower-limb

traction device was developed to pull and maintain the limb position

and install implants accurately[2]. However, the current device does

not have a traction limit and entails a risk of complications due to

excessive traction. Therefore, the purpose of the study is to develop a

system to detect excessive traction and improve the safety of surgery

by measuring the load applied to the patient’s body. To determine the

limitation of load, dummy and virtual lower-limb models that can

estimate forces around the hip muscles were also developed.

Methods

Figure 1 shows the configuration of the system. The traction device

developed by Surgical Alliance Inc. has four degrees of freedom:

traction-relaxation, flexion–extension, abduction–adduction, and

rotation of the lower-limb. A six-axis force sensor made by Leptrino

Inc. was mounted between the traction plate and the boot, where the

patient’s foot was inserted to measure the force and moment applied

to the boot. Traction devices with a force sensor have already been

approved as medical devices and can be used in actual surgery. A

dummy lower-limb model was developed to test the traction and force

sensors and to estimate the muscle force around the hip. Clay was

added around the bone model, and the length and weight of the model

were 0.84[m] and 8.05[kg] which are similar to those of adult males.

Fig. 1 Exemplary ground truth (top), binary segmentation (middle)

and multiclass segmentation results (bottom) of the otologic burr

(purple), irrigation (light blue), and suction (green)
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In addition, three silicone tubes with outer and inner diameters of 15.0

and 6.0 [mm] were attached between the pelvis bone and the model

that imitated the rectus femoris, sartorius, and semitendinosus mus-

cles. The positions of the muscles were determined based on their

anatomical origin and insertion. In addition, a small tension sensor

made by Toyo Sokki Co. Ltd. was inserted into the middle of the tube

to measure the tension force. The virtual lower-limb model was

designed using the PTC Creo CAD system. The bone shape was 3D

scanned from a human skeletal model, and the muscles and ligaments

were modeled using a spring model. Knee joint and ankle joint were

modeled by revolute and sphere joints respectively. Three muscles

around the hip were defined as dummy models. The spring coefficient

was defined using the Young’s modulus of the silicon tube acquired

by the tensile test. In addition, the operation table and traction device

were modeled to move the lower-limb model. As the Creo CAD

system includes the function of inverse dynamic analysis, the forces

of the springs can be calculated during the movement of the foot

connected to the traction table.

Traction experiments were performed using a traction device with

a force sensor and lower-limb dummy model. The boot was pulled 50

[mm] in Z direction, as shown in Fig. 1, and the traction force was

measured. In addition, the tension force of the silicon tube, which

imitates the rectus femoris muscle, was measured. The experiment

was repeated ten times. Using the virtual lower-limb CAD model, the

foot part was also pulled 50 [mm] and the necessary force to pull and

spring forces of muscles were calculated.

Results

The measured average maximum force in the Z direction was 42.7

[N] and the tension force of the silicon tube was 4.04 [N]. Conversely

traction force calculated by the virtual model was 197 [N] and the

spring forces for the rectus femoris, sartorius, and semitendinosus

muscles were 48.2, 52.6 and 62.4 [N] respectively.

The pelvis was not tightly fixed and slipped during the experiment,

but was completely fixed by the CAD model. Moreover, looseness

was observed when the silicon rubber tube was connected, and the

foot was inserted into the boot. This may cause a relatively small

measured force compared with the calculated force. Additionally, the

spring coefficients should be reviewed. However, during surgery, the

traction force is approximately 200 [N], which is larger than that of

the dummy lower-limb model.

Conclusion

A traction device with a force sensor approved as a medical device

was developed. A lower dummy model that includes silicon rubber

tubes as muscles around the hip joint was developed. In addition, a

virtual lower-limb model that included a spring model as a muscle

model, an operation table, and a traction device was modelled using

the CAD system. These models were developed to estimate the force

applied to the lower-limb tissues, particularly the muscles around the

hip joint.

From the results of the experiment, the traction and tension forces

of the muscle can be measured and calculated. However, because

there were differences between the measured and calculated forces,

both models require improvements. In addition, other movements of

the traction table, such as rotation, extension, and adduction used

during the surgery should be evaluated.

For future studies, by referring to the measured force and moments

during surgery, the limit values of movement should be determined.

An alarm and safety system should be built into the support system

for safe surgery.
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Purpose

The golden standard to reconstruct the original contour of the

mandible after oncologic resection is with a fibula free flap (FFF).

Virtual surgical planning (VSP) is performed prior to surgery to

determine the locations and orientations of the osteotomy planes on

the mandible and fibula. Currently, patient-specific cutting guides are

designed and 3D printed to translate the VSP to the patient in the

operating room. However, these cutting guides have shortcomings;

they lack adaptability when the intraoperative situation is different

than expected, e.g. due to tumor progression. Also, designing and

obtaining the guides is a time-consuming and costly procedure. In the

meantime, the tumor can grow outdating the virtually planned mar-

gins and increasing the patient’s risk of death by 2.2% per week.

Universal cutting guides that can be positioned on the bone using

surgical navigation could overcome these problems. Previous

research has already shown the feasibility of navigated mandibular

osteotomies [1]. The aim of this study is to assess the feasibility of

Fig. 1 Configuration of the total hip arthroplasty support system that

includes dummy and virtual lower-limb models
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performing fibular osteotomies using a novel electromagnetic (EM)

navigated surgical cutting guide.

Methods

Fibular 3D models were constructed from computed tomography

angiography (CTA) scans from five patients who received mandible

reconstruction surgery in our institute. To simulate surgery, the fibular

head and lateral malleolus were cut off and only the fibular shafts

were 3D printed. All models were 3D printed twice. For every

phantom, a CT scan was obtained with 0.5 mm slice thickness, the

phantom was segmented, and a 3D model was constructed in 3D

Slicer software. The 3D models were registered on the actual patient

CTA scans so that the original VSP, including four osteotomy planes,

could be used. Five phantoms were sawn with the navigated cutting

guide (see Fig. 1): an EM sensor was attached to the proximal end of

the fibula phantom to track its movements during the navigation

procedure. An NDI Aurora field generator was positioned at 12 cm

from the phantom, similar to intraoperative use. The cutting guide

was registered to the phantom by pinpointing eight widely spaced

pivots on the cutting slot with a tracked probe. Next, the tracked probe

was used to register the VSP to the phantom by performing a hybrid

registration, consisting of a point registration for initialization and a

surface registration for optimization [2]. Then, the phantom was

fixated into the cutting guide with screws and the cutting slot was

(manually) moved over the phantom to navigate to the planned

osteotomy planes using 3D Slicer software. For every osteotomy

plane, the following procedure was performed: when the actual

osteotomy plane was superimposed on the planned (virtual) osteot-

omy plane, the cutting slot was fixated and the osteotomy was

performed with a handheld saw. To compare the outcomes of the

navigated procedure with the current state-of-the-art, five phantoms

were also sawn with patient-specific cutting guides printed in Poly-

amid12 (see Fig. 1). For all sawn fibula segments, a CT scan was

obtained (0.5 mm slice thickness) and a 3D model was constructed.

For every segment, length errors and angular deviations (yaw and

roll) were calculated using MATLAB R2022a.

Results

In total, five fibula phantoms were sawn with a first prototype of a

novel EM navigated cutting guide (resulting in 10 segments) and five

fibula phantoms were sawn with the originally designed patient-

specific cutting guides (resulting in 10 segments). For the navigated

procedure, the average fiducial registration errors (FRE) after cutting

guide registration and hybrid registration were 1.28 ± 0.05 mm and

0.32 ± 0.03 mm respectively. The mean length, yaw, and roll errors

of the obtained fibula segments using the navigated cutting guide and

patient-specific cutting guides can be found in Table 1.

Conclusion

The preliminary results of this study show that a novel EM navigated

surgical cutting guide could be a feasible method to perform fibular

osteotomies during mandible reconstruction surgery. However, there

is still a large variation in segment length. Therefore, the design of the

EM navigated cutting guide and navigation procedure requires further

optimization. Currently, the experiments are repeated with an

improved version of the navigated cutting guide in order to reduce the

length errors.
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Purpose

We have clinically operated an intraoperative MRI-guided navigation

system since 2000 in more than 2200 cases, and since 2004, we have

performed intraoperative examination monitoring in awake mapping,

that provided navigation images, electrical stimulation, and patient

response on simultaneous video in more than 500 cases. To avoid

post-operative complications concerning motor function in glioma

patients, we provided pre-operative evaluation of Diffusion Tensor

Imaging (DTI) tractography datasets for brain mapping of white

Fig. 1 Illustration of the surgical cutting guides used in this study:

A EM navigated cutting guide, B 3D printed patient-specific cutting

guide

Table 1 The length, yaw, and roll errors of the fibula segments

obtained with the navigated cutting guide and the patient-specific

cutting guides (mean ± SD)

Navigated

cutting guide

Patient-specific

cutting guide

n = 10 n = 10

Length error (mm) 2.19 ± 2.19 0.66 ± 0.41

Yaw (�) 2.18 ± 1.64 1.96 ± 2.35

Roll (�) 1.64 ± 1.40 5.19 ± 3.37
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matter pathways during glioma resection. In pre-operative DTI

tracking, only CST near lower limb was described and not visualized

for upper limb fibers, which means false negative. We perform the

pre-operative navigated transcranial magnetic stimulation (nTMS) to

evaluate upper and lower limb motor function comparing with the

DTI tractography, and finally confirmed with MEP monitoring and

direct muscle test in OR. As we reported the usefulness of nTMS [1]

in glioma resection near the motor area, including the supplementary

motor area (SMA), we used the results of pre- and post-operative

nTMS to predict postoperative motor function complications. In this

study, we compared mapping findings with pre-operative nTMS

during awake craniotomy and verified its usefulness.

Methods

A prospective observational study of 17 consecutive cases of glioma

in the vicinity of the pre-central gyrus with preoperative nTMS

consent was obtained. Sixteen cases in awake craniotomy was

included (40 ± 12 years old, 10 males, 10 inital cases, 8 on the left

side, 5 Grade II, 10 Grade III and one Grade IV in WHO classifica-

tion). Preoperative nTMS mapping performedmotor evoked potential

(MEP) measurements with resting stimulation threshold (RMT) as the

contralateral abductor pollicis brevis (APB) target to identify the site

of maximum amplitude recording (hot spot), and we added to targets

as the orbicularis oris and anterior tibialis muscles based on tumor

localization. In cases where resting MEP induction was difficult, hot

spots were identified with activation. Awake electrical stimulation

mapping (DES) was performed on the intraoperative brain surface,

and the results were combined with the subcortical results during

resection and compared with preoperative nTMS.

Results

In 16 cases where brain surface mapping corresponding to target

muscles including APB was performed by nTMS before surgery, hot

spots were identified in all cases including 5 cases with activation,

Fig. 1. Motor areas were identified in 11 cases by awake DES on the

brain surface, of which 8 (72.7%) were consistent with preoperative

nTMS mapping sites. In addition, 8 of the 11 cases of nTMS per-

formed with RMT without activation matched the actual brain surface

DES location, while all 5 cases with activation did not identify the

motor cortex wiht the area of interest around the tumor at the awake

brain surface DES (P = 0.026, Fisher’s exact test). It is possible that

mapping around the tumor was difficult due to the elevated threshold,

but DES was performed even during resection, and the site of interest

was identified in 14 out of 16 awake resections. Intraoperative motor

paralysis was observed in 13 cases, all of which were accompanied by

findings of decreased MEP.

Conclusion

In resection of glioma near awake motor cortex combined with

intraoperative MEP, preoperative nTMS provides accurate sugges-

tions for intraoperative DES findings and resection planning and is

useful.
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Purpose

Surgical treatment of pediatric chest wall tumors is complex. Due to

the highly malignant nature of these tumors, complete tumor resection

with a wide tumor margin is the main goal of surgery. However, the

inevitable removal of multiple ribs can lead to significant chest wall

deformities that negatively affect respiration, mobilization and aes-

thetics. Consequently, to achieve radical resection while still sparing

as much healthy tissue as possible, pediatric chest wall resections

require meticulous surgical planning and accurate tumor localization.

However, tumor localization can be difficult as these tumors have

often become invisible and non-palpable due to neoadjuvant

chemotherapy. Surgical decision making is currently based on mul-

tiple two-dimensional (2D) imaging modalities, palpation and

thoracoscopy prior to resection. Subsequently, by using solely 2D

imaging, the three-dimensional (3D) perception and anatomical

relation of the tumor greatly depend on the surgeon’s spatial

interpretation.

The use of intraoperative 3D guidance, e.g. Augmented Reality

(AR), could overcome these challenges and significantly improve

surgical planning and anatomical understanding, thereby facilitating

surgical decision making. After a first introduction of an AR system

by Spijkerboer et al. [1], we have used the HoloLens 2 (Microsoft

Corporation, Redmond, WA, USA) to intraoperatively localize chest

wall tumors of five patients treated in our center. We present our early

experience with this system and discuss the feasibility of AR guid-

ance for the surgical localization of pediatric chest wall tumors.

Methods

From the first of January 2021 to the end of 2022, a total of five

pediatric patients underwent surgical resection of a chest wall tumor

Fig. 1 Preoperative navigated TMS revealed monitoring APB muscle

contraction as a pre-operative motor function area as upper limb

motor area. We could confirm real motor function with direct

response by electrical stimulation on cortex and direct muscle

contraction
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in the Princess Máxima Center (Utrecht, The Netherlands) (Table 1).

For all patients, a patient-specific 3D model was created by seg-

menting the tumor and relevant anatomy from preoperative computed

tomography (CT) images. Segmentation was done by technical

physicians specifically trained in Ewing sarcoma delineation together

with the performing surgeon (CvdV). Finally, the model was pro-

jected onto the patient in the operating room (OR) by a five-point

registration method based on anatomical landmarks.

The preoperative CT scan was performed with the patients lying in

the surgical lateral decubitus position. During this scan, five 1.5 mm

radiopaque skin markers (Suremark�, Mesa, AZ, USA) were

attached to recognizable landmarks such as scars, birthmarks, or the

nipple. The tumor, adjacent ribs, five landmarks and involved

anatomical structures were segmented from the CT images and the 3D

model was integrated into the HoloLens 2 application in Unity (Unity

Technologies, San Francisco, CA, USA).

Registration was performed pre-incisional by using a 3D printed

pointer with a quick response (QR) code recognized by the HoloLens

2. A reference QR code was attached onto the patient to enable a

stable visualization and adjust for respiratory movement. During

registration, the surgeon pinpointed the anatomical landmarks and

voice commands were used to save the real 3D position of each point.

Subsequently, a Procrustes algorithm computed the most accurate

transformation of the virtual 3D model onto the patient and the

holographic overlay was realized. A more extensive explanation of

the used method is described by Spijkerboer et al. [1].

Results

Registration and holographic overlay was achieved in all five patients.

Figure 1 shows the results of the AR-guided tumor localization in one

case. The pre-incisional holographic overlay appeared to be accurate

for most patients, though it is difficult to quantify misalignments of

the holographic overlay since it is unclear which localization is to be

kept as ground truth. In some cases, minor disagreements between the

overlay and expected tumor location based on the conventional

localization methods were found. Moreover, the system was unable to

maintain a correct projection of the 3D model once the skin had been

opened. Lastly, as the chest wall generally lacks the presence of

distinguishable and rigid landmarks, the five-point registration

method proved to be prone to inaccuracies and user-dependent errors.

The holographic overlay seemed most accurate when the five-land-

marks were positioned in a non-symmetric configuration in proximity

to the tumor.

Conclusion

Our results prove the further applicability of AR guidance for the pre-

incisional localization of pediatric chest wall tumors during surgery.

The system has the potential to enable intraoperative 3D visualiza-

tion, hereby facilitating surgical planning and management of chest

wall resections. Misalignments of the holographic overlay may be due

to insufficient tracking of the reference QR code or inaccurate land-

mark selection during registration. Therefore, we are currently

exploring the feasibility of different registration methods, such as

surface matching. Moreover, as it remains difficult to quantify

misalignments of the hologram within our current workflow, we are

working on methods to measure our system’s accuracy and to validate

its performance.
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Table 1 Patient characteristics

Patient Sex Age (y)

Median = 7

Tumor Resected

ribs

Neoadjuvant

chemotherapy

Diagnostic tumor

measurements

(AP 9 RL 9 CC) (cm)

Preoperative

tumor measurements

(AP 9 RL 9 CC) (cm)

1 F 6 Ewing sarcoma 1 (7th) Yes 11.2 9 14.9 9 19.9 4.6 9 2.5 9 5.9

2 M 12 Ewing sarcoma 3 (8th–10th) Yes 5.9 9 5.4 9 7.4 5.8 9 1.3 9 4.5

3 M 7 Ewing sarcoma 3 (8th–10th) Yes 4.6 9 6.4 9 5.6 4.4 9 3.3 9 1.6

4 M 2 Ewing sarcoma 1 (7th) Yes 5.0 9 3.0 9 5.0 2.6 9 1.8 9 1.1

5 M 13 Mesenchymal chondrosarcoma 3 (5th–7th) No 9.1 9 7.1 9 7.6 9.1 9 7.1 9 7.4

Fig. 1 Holographic overlay of the 3D model including the tumor,

ribs, lung and anatomical landmarks (purple spheres). The reference

QR code is fixated on the patient’s hip. Note that there can be an

apparent misalignment between patient and hologram due to the

displacement between the camera and surgeon’s line of sight
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Purpose

The precise segmentation of surgical instruments in endoscopic video

images based on purely visual information is a central component for

the development of robot-assisted procedures in minimally invasive

surgical interventions. Recently, considerable progress has been made

in this area of research, particularly through the use of deep neural

networks. The main difficulty in the development of new approaches

is to overcome issues encountered in real-world minimally invasive

surgery, such as heavy smoke, unexpected bleeding, or instrument

motion blur due to fast movements. In this work, we present a method

that focuses on improving the segmentation quality of surgical tools

in scenarios where visibility is limited by heavy smoke. To this end,

we generate artificially smoked images from unsmoked video frames

using an unpaired image-to-image [2] translation approach. Then, the

resulting synthetic images augment the training process of a deep

neural network for semantic image segmentation. We validated our

method using a six-fold cross-validation approach, for which six

recordings of real operations are provided, and compare our results to

a baseline setup that involves no synthetic smoke images at all.

Methods

Overview

For the development of our approach, six videos were collected

showing endoscopic images of laparoscopic surgeries performed in a

minimally invasive manner. The videos were captured at a frame rate

of 25 frames per second, and the duration of the recordings ranges

from 29 to 52 min. In each video, one frame per second was anno-

tated manually. Twelve different surgical tools are used in the

surgical procedures, six of which can be divided into shaft and tip,

providing a total of 18 classes as well as the background for anno-

tation. Our approach is composed of two steps, as described in the

following.

Stage 1: Synthetic video frame generation

In order to perform unpaired I2I translation, the images of the

laparoscopic recordings were first manually divided into three

modalities, namely non smoky, slightly smoky, and strongly smoky.

Subsequently, using the images of the non smoky and strongly smoky

categories, synthetic images are generated by a CycleGAN [2]

architecture, using only every fifth frame for efficiency and resizing

all input images to 912 9 513. As a result, for each unsmoked image

there then exists a generated synthetically smoked version and vice

versa.

Stage 2: Synthetic smoke image augmentation

A semantic segmentation model on basis of a DeepLabV3 ? [1]

architecture and a Lovász-Softmax loss is trained. In each training

epoch a random number of non smoky images is selected and the

respective strongly smoky counterpart is added to the training set.

While the number of slightly smoky images remain untouched, as

many artificially generated strongly smoky images are added that the

sets of non smoky and strongly smoky images are the same size.

Experimental evaluation

To quantitatively compare the proposed approach using generated

synthetic (GS) images, we first train baseline (BL) models using only

the existing video images and the corresponding annotations. We

evaluate both the baseline method as well as our proposed approach

using six-fold cross-validation, where in each run the video frames of

one of the six videos are considered as the validation dataset, and the

images of the remaining five videos are used for training. The resizing

of the input images is identical to that applied during I2I translation.

To determine the impact of the approach on segmentation quality with

respect to images with different smoke levels, the trained models are

validated on the individual smoke modalities separately.

Results

Table 1 shows the quantitative validation results of our experiments

for the BL and for GS. For each modality, the mean intersection over

union (mIoU) and mean dice value (mDice) averaged over all folds

and all instrument classes, except background, are reported as per-

centages. As can be seen, our method outperforms the baseline

method with respect to both metrics, regardless of the considered

smoke modality. Regarding the non smoky images, an improvement

of 1.5% mIoU and 1.1% mDice was achieved, for the slightly smoky

images the quality of the segmentations increased by 4.3% mIoU and

3.2% mDice, and for the strongly smoky images an increase of 1.2%

mIoU and 1.1% mDice was observed.

A qualitative result is shown in Fig. 1. The left image shows a

heavily smoked input of the network, in the center the segmentation

prediction by applying BL is presented, and the right figure shows the

segmentation output with GS. For a better visualization, the cate-

gories are encoded with different colors. It can be seen that the

method still recognizes the shaft and parts of the tip of the center

instrument quite well despite heavy smoke and poor visibility.

Conclusion

The presented approach offers promising results in terms of

improving segmentation quality under challenging conditions, espe-

cially in the presence of heavy smoke during a minimally invasive

surgical procedure. The results show that the use of generated syn-

thetic training images using an unpaired I2I approach can improve

segmentation results regardless of the severity of the smoke present.

One component of future work is to further investigate the impact of

the synthetic images on the segmentation results and the extent to

which these segmentation results can be improved by more realistic

smoke simulations.

Table 1 Results for BL and GS

Non smoky Slightly smoky Strongly smoky

mIoU mDice mIoU mDice mIoU mDice

BL 61.7 73.6 53.2 65.4 51.8 64.8

GS 62.6 74.4 55.5 67.5 52.4 65.5

? 1.5 ? 1.1 ? 4.3 ? 3.2 ? 1.2 ? 1.1

All results are averaged over all classes and folds and expressed in percent. The last row shows the improvement of GS with respect to BL
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Purpose

Craniomaxillofacial (CMF) surgery corrects deformities of the skull,

the jaws, and the face. In these operations, surgeons cut the bones into

multiple segments and rigidly move them into normal positions. The

facial soft tissues change accordingly.

Current CMF surgical planning focuses on correcting the bony

deformities, expecting a normal facial appearance to follow. How-

ever, bone-driven surgical planning is limited because correcting the

bony deformity may not completely fix the distortion of the overlying

soft tissues. The abovementioned problem occurs because the rela-

tionship between bones and the covering soft tissue is complex and

nonlinear [1, 2].

Moreover, planning surgery with a bone-driven approach is time-

consuming, even when one can predict the soft tissue changes that

result from the bony movements. The bony movements need to be

iteratively revised until an ideal facial appearance is achieved [1, 2].

Iterative plan revision is, thus, clinically impractical.

In this study, we propose a novel soft-tissue-driven surgical

planning method that overcomes the limitations of conventional bone-

driven surgical planning. Our deep learning-based planning method

directly estimates the ideal bony movements (surgical plan) to

achieve a desired facial appearance without iterative plan revisions.

Methods

We develop a deep learning-based framework that estimates the rigid

movement of bony segments (LeFort 1, distal, right, and left proximal

segments) to achieve desired facial soft tissue appearance. The pro-

posed framework takes three inputs: pre-operative bony points, pre-

operative facial points, and desired post-operative facial points. Each

set of points is the point cloud sampled from the corresponding sur-

face model. An overview of the proposed method is shown in Fig. 1.

First, using the three inputs, we predict the point-wise displace-

ment of the bony points necessary to achieve the desired facial

appearance. For the prediction, we used the Attentive Correspondence

assisted Movement Transformation network (ACMT-Net) [2]. Sec-

ond, the point-wise displacement is added to their corresponding bony

points to estimate a non-rigidly transformed bony surface. Third, the

transformed bony points are divided into four sets representing each

bony segment. Fourth, four rigid transformation matrices are

sequentially computed from the paired preoperative and transformed

bony points using the Kabsch algorithm. Finally, the rigid transfor-

mation matrices are applied to their corresponding bone segment.

The performance of the proposed network is evaluated using 13

(11 for training and 2 for testing) sets of data randomly selected from

our digital archive. The dataset composes of retrospectively analyzed

data (surgical plan) of patients who underwent double-jaw orthog-

nathic surgery. For evaluation, we assume the postoperative face is

the desired facial appearance.

Our network was trained by minimizing the mean square error

(MSE) loss between the predicted and postoperative bony points

(ground-truth). Two different losses were considered during the

training. 1. Non-rigid loss: MSE between the ground truth and non-

rigidly transformed bony surface and 2. Rigid loss: MSE between the

ground truth and bony surface rigidly transformed by the acquired

transformation.

Fig. 1 Example of a smoky input image, the segmentation output

using BL, and the prediction obtained by GS. The different classes are

color coded for better illustration

Fig. 1 Overview of the proposed soft-tissue-driven framework for

bony movement prediction
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For efficient training, 4096 facial points were downsampled from

each preoperative and postoperative facial model, respectively. 2048

bony points were downsampled from the preoperative bony model

(512 points for each bony segment).

Results

The prediction accuracy of the proposed framework was evaluated

using mean absolute error (MAE) between the predicted and ground-

truth post-operative bones. Besides ‘‘Rigid loss’’ which is directly

utilized to supervise the rigid estimation, we also report the perfor-

mance of ‘‘Non-rigid loss’’, which is used to supervise the

intermediate non-rigid estimation. ‘‘Non-rigid loss’’ has been com-

monly used in movement prediction tasks, e.g. facial change

prediction. For detailed evaluation, MAE was also separately calcu-

lated for each bony segment, including LeFort 1, Distal, Left

Proximal, and Right Proximal. The results of the network supervised

by non-rigid and rigid loss are reported below. As shown in Table 1,

compared to ‘‘Non-rigid loss’’, directly minimizing ‘‘Rigid loss’’

improves performance on three bony segments and the entire bone.

Conclusion

We developed a soft-tissue-driven method that directly predicts the

rigid movement of four bony segments for CMF surgical planning.

Instead of simulating facial tissue from bony movement, this is the

first method that estimates bony movement to achieve a desired facial

appearance. By removing the guess work of adjusting bony

movement out of the process, the proposed method carries great

promise for simplifying the surgical planning procedure.
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Table 1 Results of the network supervised by non-rigid and rigid loss

Methods Mean absolute error (mm)

LeFort 1 Distal Left proximal Right proximal Entire bone

Non-rigid loss 2.12 2.16 1.47 1.4 1.82

Rigid loss 1.37 2.4 1.14 1.26 1.62
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Purpose

Brain metastases (BM) are the most common brain tumours in

adults—typically 10–26% of patients with primary cancers will

develop secondary BM. These lesions are small, have poor contrast

and erroneously mistaken as blood vessels. Our work aims to apply

deep learning methods to assist the neuroradiologist in identifying

BM. For training and validation, we have obtained a dataset con-

sisting of 121 patients with BM from a private medical facility in

Malaysia (known as the SUNMED dataset from hereon). Due to the

limited amount of datapoints in the SUNMED dataset, our proposed

scheme jointly trains on two publicly available datasets, BrainMet-

Share [1] and BrATS [2]. However, it is widely established that

training all 3 datasets together will not improve model performance.

Here, we introduce the concept of pseudo datasets, made up of

intermediary datasets for each learning iteration, based on a selection

criterion. We will show that training the model with a diverse set of

data improves the performance of the BM detection.

Methods

We propose a method to jointly train the SUNMED metastatic lesion

dataset consisting of 121 head MRIs with two publicly available

datasets, BrainMetShare [1] and BrATS [2]. While these three data-

sets consist of head MRIs, they represent 3 levels of domain shifts

from one another—as they consist of different MRI sequences.

Despite BrainMetShare being a brain metastases dataset, the origin of

the primary cancer influences the appearance of the metastatic

lesions. As there is no way to ensure that the distribution of patients

with primary cancers are the same in both the SUNMED and

BrainMetShare dataset, we assume a small domain shift between

them. A larger domain shift occurs between the primary glioma

dataset BrATS with metastases dataset BrainMetShare and

SUNMED. The model is trained for 3 iterations with pseudo datasets

consisting of pseudo labels from the validation dataset from Brain-

MetShare and the ground truth from BrATS. At every iteration, a new

pseudo dataset is curated based on increasing the objectness scores of

the pseudo labels and increasing the number of data points within a

chosen volume (see Fig. 1). To evaluate the improvements to the

SUNMED dataset, we calculate the sensitivity and false positive rate

(FPR) in comparison with other methods.

Results

We compare a few methods of creating these pseudo datasets in

Table 1: Observe that the sensitivity increases by 13 percentage

points, while false positive rate drops drastically from 3.952 to 3.130

when iterative training is applied. Three versions of the pseudo

dataset selections are investigated:

1. Limited to 375 of data points of comparable lesion volume

2. Using the next 300 datapoints with increasing lesion volume

•Using the 300 largest lesion volume datapoints

Our experimental results show that the largest 300 lesion volume

datapoints to construct the pseudo dataset performs better than using

only small and medium sized lesions. This could be attributed to the

fact that the model trained on small and medium sized lesions have a

smaller data distribution compared to having a dataset of large

lesions. The model trained on the dataset with large lesions could

have some important learned representations, which are missed in the

pseudo datasets with less variance in lesion size.

Conclusion

Our study shows that for tasks with scarce datasets, performance

improvements can be achieved by incorporating dissimilar datasets in

a pseudo dataset approach. The pseudo datasets driven by the lesion

volume selection helps bridge the large domain gap.
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Fig. 1 Flowchart for the pseudo dataset selection criteria for iterative

training

Table 1 Sensitivity and false positive (FP) metastases detection on SUNMED dataset

Description True Positive

(TP)

False

positive (FP)

False positive

rate (FPR)

Sensitivity

Non local block without iterative training 47 83 3.952 0.610

Non local block 3 iterations with pseudo datasets (small volume) 57 72 3.130 0.740

Non local block 3 iterations with pseudo datasets (300 next data) 58 69 3 0.753

Non local block 3 iterations with pseudo datasets (300 largest volume) 58 52 2.261 0.753
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Purpose

The new coronavirus disease 2019 (COVID-19) has been spreading

worldwide since late 2019 and become a global pandemic involving

over 200 countries or regions. Although reverse transcription poly-

merase chain reaction (RT-PCR) is the gold standard for diagnosing

COVID-19, some studies also suggest that chest CT in particular may

be positive in the setting of a negative RT-PCR test. Therefore,

several reporting systems such as Reporting systems include the

RSNA Expert Consensus Statement system, etc. were proposed for

providing standardized language and diagnostic categories aiming to

convey the likelihood that lung abnormalities on CT images represent

COVID-19 [1,2]. Under the above-mentioned circumstances, we

developed a machine learning (ML)-based CT texture analysis soft-

ware for simple triage of COVID-19 based on the RSNA Expert

Consensus Statement system. The purpose of this study was to

determine the capability of ML-based computer-aided simple triage

software (CAST) based on RSNA expert consensus statement for

diagnosis of COVID-19 pneumonia in multicenter and multi-reader

study.

Methods

174 cases underwent CT and polymerase chain reaction (PCR) test for

COVID-19 (87 PCR positive and 87 PCR negative cases) were ret-

rospectively included in this multicenter study. Then, CT data were

assessed by CAST and consensus from three independent board-

certified chest radiologists with equal to or more than 20-year expe-

riences. Then, all cases were divided into two groups as follows:

positive (i.e. typical and indeterminant appearances) and negative (i.e.

atypical appearance and negative for pneumonia). To determine

radiological finding evaluation capability on CAST, three other

board-certified chest radiologists with equal to or more than 8-year

experiences also assessed CAST results of radiological finding

including pulmonary emphysema, nodular lesion, consolidation,

ground-glass opacity (GGO), reticulation and honeycombing within

156 slices selected by central reading team and classified into five

criteria as follows: agree, acceptable, disagree, true negative and false

positive. To determine the agreements between CAST software and

each investigator or among all investigators, inter-observer agree-

ments between CAST software and each investigator was determined

by Cohen’s kappa statistics with v2 test, and inter-rater agreement

among all investigators were evaluated by Fleiss’’ kappa statistics.

For comparison of diagnosis for COVID-19 pneumonia based on RT-

PCR between ML-based CAST software and consensus evaluation in

all cases as well as cases with COVID-19 pneumonia finding on CT,

sensitivity, specificity and accuracy were compared by McNemar’s

test. To determine agreement for each radiological finding evaluation

between ML-based CT texture analysis on CAST software and each

investigator on all evaluated slices, inter-rater agreement among all

investigators were evaluated by Fleiss’’ kappa statistics. Then, accu-

racies for all radiological evaluations between the ML-based CAST

software and each investigator were compared each other by

McNemar’s test.

Results

Agreements between CAST software and consensus evaluation and

each investigator were determined as ‘‘moderate’’ (0.41\ j\ 0.56,

p\ 0.0001). Inter-rater agreements of diagnosis for COVID-19

pneumonia among three investigators was determined as ‘‘moderate’’

(Fleiss’s kappa value = 0.57, p\ 0.0001). Although there was no

significant difference of diagnostic performance between ML-based

CAST and consensus evaluation in cases with COVID-19 pneumonia

finding on CT (p[ 0.05), specificity (SP) and accuracy (AC) in all

cases on ML-based CAST software were significantly lower than

those on consensus evaluation (SP: p\ 0.0001, AC: p\ 0.0001).

Inter-rater agreement for each radiological finding among all inves-

tigators were determined as ‘‘moderate’’ to ‘‘substantial’’

(0.54\Fleiss’s j\ 0.81, p = \ 0.0001). On comparison of agree-

ment accuracies for all radiological finding evaluations emphysema

evaluation accuracy on investigator A (AC = 91.7%) was signifi-

cantly lower than that of investigator B (100%, p = 0.0009) and C

(100%, p = 0.0009).

On thin-section CT, ground-glass opacities and reticulation with

crazy-paving were observed at peripheral lung in the both lungs. The

CAST demonstrate ground-glass opacities as green and reticulation

with crazy-paving as yellow in the both lungs. PCR test also showed

this case as ‘‘positive’’. All chest radiologists and the CAST software

were accurately evaluated this case as ‘‘positive case’’, and this case

was determined as true-positive case in this study (Fig. 1).

Fig. 1 COVID-19 pneumonia patient with typical appearance
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On thin-section CT, consolidation with ground-glass opacities was

shown in the right middle lobe, and emphysema was also observed in

the lingula segment. The CAST demonstrate consolidation and

ground-glass opacities as pale beige and green in the right middle

lobe, and emphysema as purple. PCR test also showed this case as

‘‘negative’’. All chest radiologists and the CAST software were

evaluated this case as ‘‘atypical appearance’’ and ‘‘negative case’’.

Therefore, this case was determined as true-negative case in this study

(Fig. 2).

Conclusion

This multicenter study shows CAST is considered at least as valuable

as chest expert radiologists for COVID-19 pneumonia triage with

accurate radiological finding evaluations. This software has a poten-

tial to play as complementary role for management of suspected

COVID-19 pneumonia patients as well as RT-PCR test in routine

clinical practice.
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Purpose

Lung cancer is the most deadly cancer in the world. Early detection

and treatment is the best way to reduce the mortality. Low-dose

computed tomography (LDCT) screening is a widely used examina-

tion for lung cancer detection. Lung nodule is a symptom and may

evolve into lung cancer. Therefore, it is important to discover sus-

picious nodules from LDCT screening. But, reviewing LDCT

screening is a time-consuming process for the radiologist because of

hundreds of slices and the small size of the nodule in each scan.

Hence, the computer-aided detection (CADe) system has become a

second reviewer to assist the radiologist. In recent, the convolution

neural network-based (CNN-based) CADe system is proven an out-

standing architecture in the medical imaing tasks due to its powerful

performance. Many literatures present that CADe system with CNN

actually could discover more ambiguous nodules. Therefore, in this

research, a 3-D SEH-YOLO is proposed for the lung nodule detection.

Methods

In this research, our 3-D SEH-YOLO for lung nodule detection

consists of the volumes of the data preprocessing and a 3-D SEH-

YOLO detection model. In the data preprocessing, the voxel intensity

normalization is performed to conver the intensity of each VOI into

the range from 0 to 255. Then, the volumes of interest (VOIs)

extraction is performed to separate the whole screening into VOIs

with 80 9 80 9 80 pixels. After the data preprocessing, the nor-

malized VOIs are deliverd to the 3-D SHE-YOLOv4 model to detect

suspicious nodules. The proposed detection model is constructed

based on the YOLOv4 architecture and the feature extraction block,

cross stage partial block, is modified by embedding the squeeze-and-

excitation (SE) and the hyper receptive field block (RFB) modules for

performance improvement.

Results

In experiments, the used dataset was the Lung Nodule Analysis 2016

(LUNA16) collected from the Netherlands and Italy in 2016. In this

dataset, the slice thickness of scan greater than 2.5 mm and nodule

size smaller than 3 mm are exculuded. Hence, there are 888 LDCT

scans including 1186 nodules in total and all nodules are annotated by

at least three experienced thoracic radiologists. Moreover, the LDCT

scan is composed of a variable number of slices and the resolution of

each slice is 512 9 512 pixels. In the system validation, the com-

petition performance metric (CPM), the average sensitivity at seven

pre-defined false positives (FPs) per scan, is employed as the evalu-

ation metric. A higher CPM score means better performance. In the

results, the CPM of proposed detection system is 0.898 and the sen-

sitivity at eight FP is 0.96. The results are higher than some state-of-

the-art detection models. In conclusion, the proposed 3-D SEH-

YOLO modified by embedding SE and RFB modules into YOLOv4

architecture could improve the nodule detection capability.

Conclusion

In this study, a YOLO-based CADe system including the data pre-

processing and the 3-D SEH-YOLO detection model is proposed for

lung nodule detection from LDCT scans. As the results presentation,

the proposed detection system in this study could achieve a good

detection performance. In future, the system would be further

improved by using other architectures or learning strategies, such as

the knowledge distillation or self-supervised learning.
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Fig. 2 Suspected COVID-19 pneumonia patient with atypical

appearance
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Purpose

Several clinical studies have demonstrated that Lung Cancer

Screening (LCS) with low dose chest-CT (Computed Tomography)

reduces the mortality rate by more than 20%, but there are challenges

in its implementation, such as reducing the false positive rate. Besides

the classification of the histological types is crucial to make targeted

personalized treatments decisions timely, which have a positive

impact on patients’’ comfort and survival rate. Currently, a definitive

diagnosis of pulmonary nodules, including their histological type, can

only be achieved by histopathological analysis of a tissue sample

obtained by a biopsy surgical procedure.

Artificial intelligence methods applied to radiomics could repre-

sent a critical shift in the reduction of the false positive rate and an

improvement of early diagnosis of lung cancer histological type

providing clinicians with a detailed image-based diagnosis. Existing

methods [2] either address the diagnosis of nodules (i.e. detection of

whether a lesion is benign or malignant) or the determination of the

histological type of nodules previously diagnosed as malignant.

Although, many methods for malignancy detection can achieve an

accuracy over 90%, the detection of the histological type still has

room for improvement.

The goal of this work is to develop a 1-shot algorithm based on

analysis of CT scans for the join detection of malignancy and the

histological diagnosis of nodules for the two most frequent malign

types, adenocarcinoma (ADC) and squamous cell carcinoma (SCC).

In particular, we use radiomic features as input to a fully connected

network and present a strategy for the optimization of its hyperpa-

rameters based on a multi-objective genetic algorithm combined with

a nested cross-validation to optimize statistical metrics of the per-

formance of networks.

Methods

This is a prospective cohort study initiated in December 2019 that

includes patients who underwent surgery for PN in routine practice

and from LCS, demographic and pathological data, and low-dose

unenhanced chest CT scan.

An overview of our workflow is shown in the Fig. 1. In each CT a

ROI volume enclosing the nodule is marked and segmented using

Otsu thresholding and morphological operations to extract the nodule

and mask. Then both are used to extract 24 Gray Level Co-occurrence

Matrix GLCM features in axial 2D slices (PyRadiomics v3.01). A

t-test is then used to select 19 GLCM features with maximum cor-

relation with benign (B), ADC and SCC. These features are the input

to training an optimized neural network and make the nodule‘s pre-

diction based on max-voting (the most frequent classification) of the

nodule’s 2D slices. To compensate the imblalance between the classes

a weighted cross-entropy is used.

For the network optimization, we formulate hyperparameters as a

multi-objective optimization problem on the space of network

architecture. The search strategy for solving the multi-objective

problem is the Non-Dominated Sorting Genetic Algorithm (Optuna

v2.10). The search space are the different models parameterized by

the hyperparameters that define the network architecture: number of

layers, number of neurons, activation function, weight initialization,

optimizer and its weight decay. Besides architecture, the learning rate

is included since it has an impact on performance. The performance

of the different hyperparameters configuration is assessed by a nested

cross-validation splitting of the train set. The l (mean) and r

(standard deviation) of the loss function evaluated on the test folds

define our multi-objective problem.

Results

84 patients have been recruited, dividing 59 pulmonary nodules (PN)

(ADC: 42, SCC: 9, B: 8) into the training group and 25 PN (ADC: 15,

SCC: 6, B: 4) into the test group. The dataset is publicly available at

http://iam.cvc.uab.es/portfolio/radiolung-database.

The training group was used to optimize the internal parameters of

the neural network. The optimal network consists of an input layer (19

neurons), a hidden layer (9 neurons), and an output layer (3 neurons),

a hyperbolic tangent of activation function before and after the hidden

layer and an orthogonal weight initialization of the layers, a

Stochastic Gradient Descent of optimizer with 0.036 of weight decay

and 0.015 of learning rate.

The optimal network has been evaluated on the independent test

set to verify the reproducibility of the system. For the sake of com-

parison to existing methods, we assessed our method in terms of

detection of malignancy (classification between malign and benign

nodules) and the 2 malignant histological types (ADC, SCC) among

the nodules detected as malignant. For each binary problem, the

metrics used were the accuracy, specificity, sensitivity, F1-score and

AUC, considering as positive class, malignant nodules and adeno-

carcinoma, respectively.

Table 1 reports the comparison to SoA methods with best per-

formers in bold. For malignancy detection we achieve 100% of

sensitivity like model3 proposed in [1], highest F1-score (0.98) and

has top accuracy (96%). The sensitivity and AUC are significantly

decreased because it misclassifies a benign nodule and the small

number of such samples. Regarding the ADC/SCC classification, we

have the highest F1-score (0.86) and are very close to the best per-

formers in the other metrics (except AUC, which is close to the

second best).

Conclusion

We have presented a hybrid method based on classic radiomic fea-

tures combined with a network with an architecture optimized for the

histological diagnosis of a PN using a novel strategy based on multi-

objective optimization. Our optimized approach achieves competitive

(being best for some metrics) results for identification of, both,

Fig. 1 An overview of our workflow
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malignancy and histological type using a highly unbalanced small

size number of cases. These intermediate results show that radiomics

are able to approximate the histological diagnosis of a pulmonary

nodule and encourage further research including a higher number of

cases and the optimization of convolutional architectures (like

CapsNet [2]).
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Purpose

In the development of computer-aided detection (CAD) software, it is

desirable to use data collected from multiple sites to ensure

stable performance across various data. However, collecting data

from multiple sites requires resolving ethical and data management

issues. Recently, distributed learning, which allows training a model

on distributed datasets while keeping data locally, has been attracting

attention. In particular, federated learning (FL)[1] has the advantage

that the model can be updated using information from all sites par-

ticipating in the training. While several research groups have reported

the application of FL to medical image processing tasks, to the best of

our knowledge, there has been no report on the application of FL to

the automated detection of cerebral aneurysms in head magnetic

resonance angiography (MRA) images. In this study, we investigated

the application of FL to develop automated detection of cerebral

aneurysm detection in head MRA images using data collected from

multiple sites, scanner vendors, and magnetic field strengths.

Methods

(1) Dataset

This study was approved by the ethical review boards of our

institutions. We collected a total of 315 MRA images from three in-

hospital datasets. The details of the datasets are shown in Table 1.

Each case included at least one aneurysm of 2 mm or more in

diameter, which at least two experienced radiologists determined.

Among the 105 cases for each dataset, 75 cases were used for

training, while the remaining cases were equally assigned to valida-

tion and test sets.

(2) Detection of cerebral aneurysms in MRA images

The input MRA images are first resampled to a 0.3 mm isotropic

voxel size using tricubic interpolation, and the signal intensity dis-

tributions of images were standardized by the global piecewise linear

mapping. After that, we extracted arterial voxels from the MRA

images by the region-growing-based method. We trained the 3D

U-Net model, using each pair of the original MRA image and the area

of aneurysms. For each aneurysm, a 48 9 48 9 48 cubic volume of

interest (VOI) around the center of gravity of the aneurysm region is

extracted. In addition, four augmented VOIs are generated by random

shifts within ± 24 voxels on the x-, y-, and z-axes and random

rotation (0�/90�/180�/270�) in each of the axial, coronal, and sagittal

planes. The augmented VOIs are changed for each epoch. In the

detection phase, 48 9 48 9 48 cubic VOIs are extracted at lattice

points (whose intervals are 24 voxels in each direction) in the

bounding box of the extracted arterial volume, and all VOIs are fed

into the trained 3D U-Net model. The outputs of the U-Net model are

combined by taking the average of overlapped voxels. After that, the

Table 1 Comparison to SoA methods with best performers

Study Approach Classes Accuracy (%) Specificity (%) Sensitivity (%) F1-Score AUC

Peikert et al. [1] Radiomics Malignant/bening – 85.5 90.4 – 0.939

Zhang et al. [1] Machine learning 96.09 95.34 96.84 – 0.979

Multicrop [1] Deep CNN 87.14 93 77 – 0.93

Nodule-level 2D [1] Deep CNN 87.30 86 88.5 0.872 0.937

Vanilla 3D [1] Deep CNN (3D) 87.40 85.2 89.4 0.873 0.947

DeepLung [1] Deep CNN 90.44 – 81.42 – –

AE-DPN [1] Deep CNN 90.24 88.94 92.04 0.905 0.933

NASLung [1] Deep CNN 90.77 95.04 85.37 0.89 –

model3 [1] Hybrid 96.30 83.33 100 0.977 0.94

Our Hybrid 96 75 100 0.98 0.8

Chaunzwa et al. [2] VGG16 ? CNN ADC/SCC 68.6 82.9 37.5 – 0.709

Liu et al. [2] CapsNet (3D) 81.3 80.7 82.2 0.796 0.852

Marentakis et al. [2] LSTM ? Inceptionv3 74 67 81 0.76 0.78

Our Hybrid 80 80 80 0.86 0.77

Int J CARS (2023) 18:S1–S123 S63

123

https://doi.org/10.3390/app12031568


lesion candidates are extracted by binarization of the combined output

and the following connected component analysis.

(3) Federated Learning (FL)

The framework of FL is a server-client architecture, which con-

sists of one server and k clients. In this study, k = 3 was set to match

the number of datasets in Table 1. In FL, a global model is sent to

each client to train using its local data. The model, rather than the

data, is moved around the network. The server combines model

updates to generate a new global model that is sent back to the local

client for further training. This flow is defined as one round. We used

the Federated Averaging (FedAvg) [1] generalized approach to update

the global model.

We used a conventional strategy that trains the model using data

collected from each site (hereafter, Centerlized) as a baseline. We

employed 20 trials of hyper-parameter tuning with random search and

utilized the area under the curve (AUC) value of the free-response

receiver operating characteristic (FROC) curve, with the upper limit

of 2 false positives (FPs) per case, as an evaluation criterion. The

tuned hyper-parameters were: the depth of 3D U-Net (3/4/5), the

number of filters of the first convolution layer (4–32, step: 2), the

batch size (2–32, step: 2), the learning rate of the SGD (10-4–10-2).

The number of maximum epochs and the patience of early stopping

were set to 500 and 50, respectively. We compared cyclical weight

transfer (CWT) [2] as another distributed learning method. The

number of epochs per round for FL was set to 1, 2, and 4, and the

number of epochs per site for CWT was set to 1. The other parameters

for FL and CWT were set the same as those of Centerlized.

Results

Figure 1 shows the FROC curves for each method. The sensitivity at

2.0 FPs per case was 81.3% for Centerlized, 79.2% for FL with one

epoch per round, and 75.0% for CWT. Among FL, the number of

epochs per round of four was inferior in performance compared to

that of one and two.

Conclusion

We investigated the application of FL to develop automated detection

of cerebral aneurysms in MRA images. The results showed that

federated learning is feasible for training the model using data col-

lected from multiple sites, scanner vendors, and magnetic field

strengths. Our future works include validating federated learning

using other types of automated lesion detection and introducing dif-

ferential privacy to enhance data security.
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Purpose

Patients with pancreatic cancer have the lowest 5-year survival rate,

which is often diagnosed late. In 80–85% of new diagnoses, metas-

tases are already present, indicating an advanced disease stage [1].

Pancreatic cancer may originate from pancreatic cysts that become

malignant. The most common cysts that have malignant potential are

Intraductal Papillary Mucinous Neoplasms (IPMN) [2]. They are best

detected and followed over time on MRI studies including TSE

(Turbo Spin Echo) and MRCP (Magnetic Resonance Cholangiopan-

creatography) sequences. The detection and volumetric measurement

Fig. 1 FROC curves

Table 1 Specification of the MRA datasets

Dataset ID No. of cases MR scanners Magnetic field strength (Tesla)

A 105 Two Signa HDxt and one Discovery MR750 (GE Healthcare, Waukesha, WI, USA) 3

B 105 Skyra (Siemens Healthcare, Erlangen, Germany) 3

C 105 MRT200PP2 and Titan (Canon Medical Systems Co., Otawara, Japan) 1.5
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of IPMN in MRCP scans remains challenging, time-consuming and

requires expertise.

Methods

We developed a novel method for pancreatic cyst detection and

segmentation in multisequence MRI scans. The method, called mul-

tisequence cascaded 3D U-Net, is a pipeline that consists of three

steps: (1) coarse pancreas segmentation with a 3D U-Net in the axial

TSE scan; (2) transfer of the coarse pancreas segmentation to the

coronal MRCP MRI scan; (3) detection and segmentation of pan-

creatic cysts with a 3D U-Net in the MRCP scan, see Fig. 1. The

method, which follows the current clinical guidelines [2], is the first to

automatically detect and compute volumetric measurements for

pancreatic cysts of all sizes in MRI. The multisequence cascaded 3D

U-Net pipeline leverages the information of the MRI sequences with

large resolution differences and different acquisition axes.

The method utilizes a new patch selection technique for deep

learning network training with few annotated datasets based on hard

negative mining. It starts by performing inference on a pre-trained 3D

U-Net in the MRCP scans on the negative patches group that were not

part of the training. It then constructs a False Positive (FP) Negative

patches dataset consisting of only patches from the Negative patches

group with misclassified voxels. The 3D U-Net model is then fine-

tuned on a dataset consisting of a balanced patches dataset of Positive

patches and FP Negative dataset patches.

To test our method, we retrospectively collected 158 MRI studies

with TSE and MRCP sequences of patients with IPMN undergoing

follow-up. The dataset was split into training/validation/test sets of

118/17/23 scans. The dataset contains a total of 840 cysts, of which

619 are[ 5 mm and 221 are[ 10 mm. The mean number of cysts

per scan is 5.3 (2.6) with a mean cyst diameter (volume) of 7.4 mm

(0.91 cc). The computed test set results were then compared to their

respective manual ground truth delineations.

Results

For cysts of diameter[ 5 mm, the method achieves a mean recall of

0.80 ± 0.19, a mean precision of 0.75 ± 0.26, a mean Dice score of

0.80 ± 0.19 and a mean Average Symmetric Surface Distance

(ASSD) of 0.60 ± 0.53 mm. The patch selection method with hard

negative mining outperforms the precision and recall of existing patch

selection methods by 5.5% and 16.9% (F1 scores of 0.77 vs. 0.73 and

0.97 vs. 0.84) for cysts[ 5 mm and[ 10 mm, respectively. The cyst

inclusion recall in the coarse pancreas segmentation is 0.94 (0.22).

These results outperform the detection and Dice scores for pancreatic

cysts in CT scans reported by others, Table 1.

Conclusion

Automatic IPMN cyst detection and segmentation in MRI may pro-

vide an accurate and reliable method for precise disease evaluation

that that allows radiologists to reliably assess cyst size and longitu-

dinal change.

Fig. 1 Flow diagram of the multisequence cascaded 3D U-Net

pipeline. The inputs are the TSE scans and MRCP scans of a patient.

The outputs are the cysts segmentations in the MRCP scan. The

method steps are: (1) coarse pancreas segmentation in TSE; (2)

transfer of the coarse segmentation mask (red, lower left) in TSE to

the MRCP sequence (red, lower middle); (3) detection and segmen-

tation of pancreatic cysts (green, lower right; coarse pancreas

boundaries shown in red)

Table 1 Results on three sets of pancreatic cysts (cysts with diameter[ 10 mm, cysts with diameter[ 5 mm, all cysts) of two patch selection

methods: balanced positive and hard negative (Bal-Pos-H-Neg) and all patches (All)

Cysts diameter Patch selection type cyst detection Cyst segmentation

Precision Recall Dice ASSD

[ 10 mm Bal-Pos-H-Neg 0.95 (0.16) 0.99 (0.05) 0.81 (0.11) 0.64 (0.50)

All 0.98 (0.11) 0.73 (0.30) 0.80 (0.17) 1.08 (0.98)

[ 5 mm Bal-Pos-H-Neg 0.75 (0.26) 0.80 (0.19) 0.80 (0.08) 0.60 (0.53)

All 0.81 (0.27) 0.67 (0.27) 0.74 (0.20) 1.13 (0.98)

All cysts Bal-Pos-H-Neg 0.61 (0.27) 0.80 (0.22) 0.80 (0.09) 0.73 (0.63)

All 0.78 (0.27) 0.62 (0.27) 0.72 (0.20) L17 (1.15)

Columns 3–4 list the mean (std) cysts detection precision and recall. Columns 5–8 list the mean (std) lesion segmentation Dice and Average

Symmetric Surface Distance (ASSD). Boldface numbers indicate the best overall per-class results. The test set consists of 23 scans with a total of

110 IPNM cysts
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Purpose

The automated breast ultrasound (ABUS) was one of the most widely-

used examinations for breast cancer. However, physicians were sus-

ceptible to the shape and texture of tumors and led to large variations

in image interpretation. The computer-aided diagnosis (CADx) sys-

tem was developed to offer a second opinion to deal with this

problem. In recent years, applying convolution neural network (CNN)

on CADx system became a tendency and achieved great success on

medical images. Hence, a CNN-based CADx system was proposed

for breast tumor diagnosis in this study.

Methods

Our CADx system was a 3-D model and consisted of data prepro-

cessing, 3-D tumor segmentation, and 3-D tumor classification. In the

data preprocessing, the volume of interest (VOI) was firstly extracted

by the experienced physicians, and the tumor VOI would be resized

and conducted histogram equalization. After that, the resized VOI

would be sent into the segmentation model using U-Net ? ? to

obtain the corresponding tumor mask. Lastly, the resized VOI, the

equalized VOI, and the tumor mask were fed into our classification

model, 3-D MASP-ResNeSt which was built based on the ResNeSt,

the SPP block, and the MA block, to determine the tumor was benign

or malignant.

Results

This study collected the used dataset from collected by InveniaTM

automated breast ultrasound system (Invenia ABUS, GE Healthcare).

An automatic linear broadband transducer obtains all ABUS volumes

with a covering area of 15.4�17�5 cm. Each ABUS volume is made of

330 serial 2-D images, and each 2-D image consists of 831�422

pixels, and the distance between each slice is 0.5 mm. In total, there

were 396 patients with 444 pathology-proven lesions in our dataset. In

444 pathology-proven lesions, there are 226 malignant tumors and

218 benign lesions, respectively. In our experiment, the proposed

CADx system achieved 89.6% accuracy, 88.9% sensitivity, and

90.4% specificity. The results indicated the proposed CADx system

had a good performance and might be a second opinion for physicians

to make the decision.

Conclusion

In this study, the CADx system, which was based on the tumor

segmentation model and the tumor classification model, was proposed

for tumor diagnosis. In the tumor segmentation, the tumor masks were

generated by 3-D U-Net ? ? , and then the tumor mask would be

sent into the classification model as a part of the input. In the tumor

classification, the 3-D MASP-ResNeSt was constructed by the mod-

ified 3-D ResNeSt with the 3-D MA block and the 3-D SPP block for

tumor diagnosis. The 3-D ResNeSt, which utilized the channel

attention and group convolution in the architecture, was adopted as

our backbone model. In addition, the 3-D MA block modified the

same radix to different radix for learning the variety of features. The

3-D SPP block pooling the feature maps with different kernels was

also embedded in our model to obtain a more robust combination of

features.
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Purpose

Colorectal cancer (CRC) is the third most common cancer and the

second most common cause of cancer deaths worldwide. Colorectal

screening for large polyps and early-stage cancers would largely

avoid the morbidity, mortality, and high treatment costs of advanced

CRC. Computed tomographic (CT) colonography provides a nearly

ideal primary screening strategy for addressing the issues and prob-

lems inherent with other CRC screening tests. However, the ionizing

radiation of CT technology has been cited as a concern for using CT

colonography in population screening. Photon-counting CT (PCCT)

can be used to address that concern. A PCCT imaging system is

designed to count the number of individual x-ray photons that exceed

a specified energy level. By setting the photon-counting energy

threshold slightly above the level of electronic noise from the elec-

tronic circuits of the underlying x-ray detection system, the electronic

noise of conventional CT can be excluded from the measured photon

count data [1]. This rejection of electronic noise enables PCCT to be

used at a much lower dose than conventional CT while yielding the

same if not better overall CT image quality. Preliminary studies have

shown that PCCT can yield up to a 30% reduction in the radiation

dose of CT examinations without compromising image quality. This

pilot study aimed to investigate the feasibility of performing com-

puter-aided diagnosis of clinically significant polyps in PCCT

colonography.

Methods

An anthropomorphic phantom (Phantom Laboratory, Salem, NY,

USA) that had been designed to resemble human anatomy on clinical

120 kVp CT colonography scan images was filled partially with a

300 mL mixture of saline, a non-ionic iodinated contrast agent

(300 mg/ml Omnipaque, GE Healthcare, Chicago, IL) in 40 mg/ml

concentration, aqueous fiber (30 g of psyllium), and ground foodstuff

(10 g of cereal) to simulate a laxative-free CT colonography exami-

nation. The phantom contained 23 simulated pedunculated, sessile,

and flat polyps 6–15 mm in their largest diameter in combination with
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simulated haustral folds. The phantom was scanned by use of a

16-slice PCCT scanner (OmniTom, NeuroLogica, MA, USA) at 120

kVp voltage, 40 mAs current, 0.71-mm slice thickness, and a 50 keV

x-ray photon-counting threshold. The PCCT images were recon-

structed at a 0.6-mm spatial resolution and 0.6-mm reconstruction

interval by use of a filtered back-projection algorithm. After the CT

image acquisition, polyps were detected automatically from the vol-

umetric PCCT datasets by use of a fully automated computer-aided

detection (CADe) system [2]. The CADe system performs a fully

automated 3D segmentation of the colon region from the input

dataset, followed by volumetric shape-based detection of polyp can-

didates along the extracted region of the colon wall. False-positive

(FP) detections were reduced based on a radiomic analysis of the

detected polyp candidates by use of a support vector machine (SVM).

The polyp detection performance was evaluated by use of a tenfold

cross-validation method.

Results

The CADe system detected all of the 23 clinically significant simu-

lated polyps from the PCCT datasets (100% detection sensitivity).

After the FP reduction step, no FP detections remained (0 FP detec-

tions per patient). Figure 1 illustrates the detection of a simulated

polyp from the phantom PCCT dataset.

Conclusion

A PCCT colonography examination can be performed at a much

lower radiation dose than what is required by conventional CT

colonography. In this pilot study, we showed that PCCT colonogra-

phy has the potential to yield a high accuracy in the automated

detection of colorectal polyps. The significance of the result is that an

effective ultra-low-dose PCCT colonography examination would

largely eliminate the remaining concerns about the theoretical radi-

ation risk of CT technology which has been cited as a major concern

regarding the use of CT colonography in population screening.
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Purpose

Progressive fibrosing interstitial lung disease (PF-ILD) is a group of

diseases characterized by increasing self-sustaining fibrosis, pro-

gressive worsening of dyspnea, progressive decline in lung function,

limited response to immunomodulatory therapies, and high mortality

[1]. Due to the highly variable rates of decline and poor prognosis of

PF-ILD, accurate individualized prediction of mortality is crucial for

therapeutic decision-making and management of the patients. How-

ever, no formal staging system based on prognosis has been

established for PF-ILD, and none of the developed existing prognostic

biomarkers, including quantitative CT imaging biomarkers and

radiomics, have been considered accurate enough for establishing

such a system.

Recently, we developed and showed that a survival analysis

method based on a conditional generative adversarial network

(cGAN), called pix2surv, can provide an effective image-based

prognostic predictor for COVID-19 [2]. The purpose of this study was

to evaluate the performance of the pix2surv model on the prediction

of the survival of patients with PF-ILD compared with existing

clinical biomarkers of the gender, age, and physiology (GAP) index

and the composite physiologic index (CPI).

Methods

Idiopathic pulmonary fibrosis (IPF) is the most common form of PF-

ILD. Thus, we retrospectively identified 75 patients with a diagnosis

of IPF who had high-resolution chest CT scans and pulmonary

function tests performed at the time of the diagnosis. The CT scans of

the patients were performed with full inspiration from the lung apices

to their bases. CT images were obtained from the CT scans performed

at inspiration, and the supine position was included. The slice

thickness was 0.6–1.5 mm, and the detector configuration was

16–64 9 0.625. The tube voltage was 120 kVp or 140 kVp with

automatic tube current modulation.

Figure 1 shows the schematic architecture of our pix2surv model,

where the time generator G is used to generate a ‘‘survival-time

image’’ from the input CT image to predict the survival of the patient.

In this study, we defined the survival time of a patient as the number

of days from the patient’s chest CT scan to death. The survival-time

image has a single survival-time value at each voxel, and the dis-

criminator D attempts to differentiate the ‘‘predicted pairs’’ of input

CT images and their predicted survival-time images, from the

Fig. 1 In this example, the true-positive polyp candidate detected by

the CADe system is indicated by red color, whereas the false-positive

polyp candidates that were excluded correctly by the SVM as false

positives are indicated by green color
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‘‘observed pairs’’ of the input CT images and their observed (actual)

survival-time images of the patients. The training of vox2surv

involves the optimization of G and D through a modified min–max

objective function so that G can learn to generate a survival time that

is close to the observed survival time. The predicted survival time of a

patient is calculated as the median of the predicted survival times of

the patient’s CT images.

We used the concordance index (C-index) as the metric to evaluate

the performance of the prognostic prediction. A bootstrap method

with 50 replications was used to estimate the C-index. The prognostic

prediction performance of pix2surv was compared with those of the

GAP index and the CPI using a two-sided unpaired t-test. We also

compared the equivalence of Kaplan–Meier (KM) survival curves

generated by pix2surv, GAP, and CPI to the actual survival curve of

the patient cohort by using a non-parametric equivalence test.

Results

Table 1 shows the median C-index values calculated from the boot-

strap evaluation, which shows that the performance of the mortality

prediction by the pix2surv model (C-index: 82.6% [95% CI: 80.8,

83.8]) was statistically significantly higher (bootstrap t-test,

p\ 0.0001) than those of the CPI (63.0% [61.7, 64.3]) and the GAP

index (65.9% [64.7, 67.1]).

Figure 2 shows the KM survival curves predicted by the CPI, GAP

index, and pix2surv for the mortality of the IPF patients in magenta,

red, and green colors, respectively, where, in comparison, the actual

survival curve of the patient cohort is shown in blue. Non-parametric

equivalence test showed that the survival curves predicted by pix2-

surv were statistically equivalent to the actual survival curves over the

period of 0 to 5000 days, whereas those predicted by the CPI and

GAP were not. Also, visual assessment indicates that pix2surv

approximates the actual survival curve substantially better than do

CPI and GAP.

Conclusion

We evaluated the performance of our image-based weakly supervised

survival prediction model, pix2surv, which can directly predict the

survival of patients from their chest CT images, on the survival

prediction of patients with PF-ILD. We showed that pix2surv out-

performs the current standards of GAP and CPI in predicting the

survival of patients with PF-ILD, indicating that pix2surv can be an

effective prognostic biomarker for PF-ILD.
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Fig. 1 The schematic architecture of our weakly unsupervised

cGAN-based survival prediction model, pix2surv

Table 1 The C-index values estimated by the bootstrap evaluation of

the CPI, GAP, and vox2pred. 95% CI = 95% bootstrap confidence

interval. *Two-tailed t-test

Fig. 2 Predicted KM survival curves by the CPI, GAP index, and

pix2surv in comparison with the actual survival curves for the patient

cohort
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Purpose

Tuberculosis is the disease responsible for most deaths provoked by

an infectious agent, and it caused around 2.5% of deaths worldwide in

2004 [1]. Tuberculosis can also increase the risk of lung malignancy,

chronic pulmonary aspergillosis, and septic shock, even in patients

that survived the primary infection caused by the ‘‘Mycobacterium

tuberculosis,’’ responsible for this illness [1]. The treatment is suc-

cessful at about 85%, and the mortality rate is about 15% [1].

In diagnosing pulmonary diseases, including tuberculosis, the

initially requested imaging exam is the chest X-ray. Although it is

considered a simple exam, its evaluation can sometimes be complex.

To support radiologists’’ decision-making, computer-aided diagnosis

(CAD) systems have been developed to act as a second opinion

through a computer-supplied suggestion.

The use of artificial intelligence (AI) to support diagnostic deci-

sion-making in radiology has grown exponentially in recent years.

Machine learning (ML) has been the basis for CAD systems. ML is a

way of ‘‘training’’ an algorithm so that it can learn. ‘‘Training’’

involves providing large amounts of data to the algorithm, allowing it

to adjust and improve its performance. ML algorithms look for pat-

terns within a dataset.

From 2010 to 2012, an approach called Deep Learning (DL) was

increasingly adopted for solving ML problems. One approach based

on DL is the Convolutional Neural Network (CNN), focusing on

classifying images. Modeling the best CNN architecture for any sit-

uation by hand can be exhausting, time-consuming, and expensive.

Another difficulty is getting a database with a large number of ima-

ges. However, an alternative option is the Transfer Learning

technique, which uses a network pre-trained on a large dataset, for

example, the ImageNet [2].

This work aimed to develop a CNN model using transfer learning

to support the diagnosis of tuberculosis in chest radiographic images

in frontal projection.

Methods

Our institutional review board approved this retrospective study with

a waiver of the patient’s informed consent (CAAE:

25,762,319.7.0000.5440). For the application of CNN models, a

database of chest X-ray images was used with a total of 547 images,

with 382 images presenting normal cases and 165 images from

patients diagnosed with tuberculosis at the Ribeirao Preto Clinics

Hospital. The database was structured with radiographic exams saved

in.png format and with three channels (RGB).

The processing environment consists of a server that was accessed

remotely; this server has an NVIDIA� TeslaTM T4 16 GB GPU and

operates with the Linux 18.04 LTS system. For the execution of the

codes, the Jupyter Notebook software was used, which is an interface

to browse the server files and execute the codes in the Python lan-

guage (version 3.9) using the TensorFlow framework (version 2.8).

Five types of transfer models based on CNN were tested. The

selected architectures were: VGG19, InceptionV3, DesNet201,

ResNet125v2, and XceptionV3. For the use of the models, a global

average pooling layer was added to the output of the last layer in each

architecture. The original fully connected layers were removed and

replaced by only one fully connected layer with two output neurons

using the activation function Softmax. All the weights of the models

were retrained. These architectures were trained individually, and a

standard preprocessing approach with the function ‘‘preprocess_in-

put’’ was performed on the original images to evaluate each model.

The number of epochs used was 100. The callback function Redu-

ceLROnPlateau was applied to find the best learning rate value on the

validation dataset during the training with values of 0.5, 5, ’max,’ and

0.00001 for factor, patience, mode, and min_lr, respectively. The

batch size used was 30, and the optimizer function used was Adam to

minimize the categorical cross-entropy.

To evaluate the models’ performance, the samples were shuffled.

The Holdout method was applied to train the networks and classify

the images, where 481 images were used for training, 10 percent were

separated for validation, and 66 were used for testing the architec-

tures. The models’ performance was evaluated based on specificity,

sensitivity, and accuracy.

Results

At the end of each architecture’s training and testing, results pre-

sented in Table 1 were generated. During the training and testing

phases, the VGG19 model gave the best and most stable results, with

specificity, sensitivity, and accuracy of 90%.

Figure 1 presents the accuracy values during the training and

testing phases of the VGG19 model.

Conclusion

Based on the results obtained, it can be stated that the networks

performed very well when classifying positive images for tubercu-

losis. It can be seen that the Resnet125v2 and Xception networks had

an excellent performance when evaluating the normal cases; however,

when considering the images with a positive result for tuberculosis,

the VGG19, InceptionV3, and Desnet201 networks presented better

results.

In general, the networks presented a satisfactory performance for

classifying tasks, and other tests will be carried out using public

databases to simulate situations of exams from different sources to

verify their generalization power.
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Table 1 Results obtained for each tested model

Model Specificity (%) Sensitivity (%) Accuracy (%)

VGG19 90 90 90

Inception V3 100 81 90

Desnet201 96 81 89

Xception 57 96 77

Resnetl25v2 33 96 65

Fig. 1 Accuracy values obtained during the training and testing

phases of the VGG19 architecture
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Purpose

Distal radius fractures (DRFs) are one of the most common fractures

treated surgically. To examine the injured wrists, standard radio-

graphs, including posteroanterior (PA) and lateral views, are often

taken in the emergency department. DRFs can be classified into intra-

and extra-articular fractures. In extra-articular fractures, the fracture

line does not extend to the joint, while the intra-articular fractures

involve the articular surface, which may require further evaluation

and more complex treatments. Identifying DRFs as intra- or extra-

articular can be useful for guiding further treatment. However,

radiographic classification of DRFs is challenging due to the extreme

variability of fracture patterns, complex anatomy of the wrist and

variability in imaging quality of radiography. The aim of this study is

to propose a deep learning (DL) framework incorporating both PA

and lateral view X-rays for automatic DRF classification and evaluate

the framework on clinically acquired wrist X-ray dataset.

Methods

The proposed framework consists of a distal radius region of interest

(ROI) detection stage and a DRF classification stage as shown in

Fig. 1. The distal radius ROI detection stage used an ensemble model

of 10 YOLOv5 [1] base networks which is a recent release of the

YOLO object detection network. This step allows the framework to

zoom in on the relevant regions on PA and lateral view X-rays for

fracture pattern analysis. Following the ROI extraction, an ensemble

model of 10 dual-branch EfficientNet (DB-EffiNet) was applied to

classify the DRFs into intra- or extra-articular fracture. The DB-

EffiNet is a novel adaptation of the EfficientNet [2] constructed in this

study, which consists of two EfficientNet-b0 branches taking PA and

lateral view X-rays as input respectively. The two branches were

fused at the last linear layer via summation, followed by an additional

linear layer to generate the final classification output.

The dataset used for evaluating the DL framework contains 302

cases of clinically retrieved wrist X-rays. The dataset was randomly

split into a training set of 251 cases with 257 fractures and a testing

set of 51 cases with 52 fractures. There are 193 and 38 intra-articular

DRFs in training and testing set respectively. The training set was

randomly partitioned into 10 folds for cross-validation.

For distal radius ROI detection, the YOLOv5s variant was trained

on the PA and lateral view X-rays separately for 100 epochs within

tenfold cross-validation, generating 10 YOLO base models for each

view. The batch size was set as 8 and image size as 1280 9 1280,

with stochastic gradient descent (SGD) used as the optimizer.

Translation, scaling, horizontal flip and mosaic augmentations were

adopted during training. For DRF classification, the DB-EffiNet was

trained on the PA-lateral ROI pairs for 50 epochs within tenfold

cross-validation. Each EfficientNet-b0 branch was pre-loaded with

ImageNet pretrained weights. The ROI images were resized to

256 9 256 and normalized to the mean and standard deviation of

ImageNet. The Adam optimizer was used with a learning rate of

0.0001 and the batch size was set as 16. Horizontal flip, rotation and

brightness adjustment based on Power–Law transformations were

used for augmentation during training. The model with the best area

under the receiver operating characteristic curve (AUROC) on the

validation set was saved as the base model in each cross-validation

iteration.

Given an unseen testing instance, the distal radius ROI was

detected on each view through merging the 10 YOLO base models by

enabling the model ensemble feature of YOLOv5. The ROIs on the

PA and lateral views were then passed into the 10 DB-EffiNet base

models. The ensemble probability was computed by averaging the

probabilities across all base models.

Results

When evaluated on the testing data, the YOLO ensemble model

successfully detected all distal radius ROIs on PA and lateral view

X-rays with no false positives. As for differentiating intra- from extra-

articular DRFs, the DB-EffiNet ensemble model achieved an AUROC

of 0.90, an accuracy of 0.87, a sensitivity of 0.87 and a specificity of

0.86.

Fig. 1 Diagram of the DL-based DRF classification framework using

both PA and lateral view X-rays. DB-EffiNet stands for dual-branch

EfficientNet
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Conclusion

This study proposed a dual-view DL framework for automatic DRF

classification on wrist radiography. Evaluated on a clinically acquired

wrist X-ray dataset, this framework attained promising performance

in identifying intra- and extra-articular DRFs using both PA and

lateral view X-rays, which demonstrated its potential to assist clini-

cians in fracture pattern analysis and further treatment planning.
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Purpose

Gliomas are malignant brain tumors known for their infiltrative nat-

ure. Identification and subsequent targeting of all active tumor regions

plays an important role in improving patient survival rate. However,

the active infiltrative tumor region is invisible to the eyes of radiol-

ogists in the conventional magnetic resonance images (cMRI) [1].

This work aims at investigating the possibility of using deep learning

model explainability methods to identify infiltrative tumor regions

from models trained on quantitative MRI (qMRI) data.

Methods

Dataset

qMRI data [2], measuring R1 and R2 relaxation and proton density

(PD) of brain tissue, from 23 subjects diagnosed with glioma was

included in this ethically approved study. Pre- and post-contrast

gadolinium data was available for each subject along with the manual

annotation of the tumor structure obtained from cMRI images. Pre-

processing of the qMRI data included skull stripping, per-subject

registration to the conventional T1w-post-gadolinium volume, and

per-modality normalization using min–max normalization. Registra-

tion to the T1w post-gadolinium volume was done to match the qMRI

data to the tumor annotation. The final volume resolution was

512 9 512 9 [24, 26] voxels in the x, y and z directions, respec-

tively. Transversal slices (n = 528 of which 136 showing tumor) were

used for model training instead of volumetric data given the small

number of subjects and the higher spatial resolution in the x and y

directions.

Deep learning model

Transversal slices from the pre- and post-contrast qMRI volumes

were used to train a shallow multi-channel 2D convolutional neural

network (CNN) model for the task of tumor detection (presence or not

of tumor in the slice). The input to the model were six-channel

512 9 512 images (R1, R2 and PD, pre- and post-contrast). The

model was composed of a CNN image encoder with 4 convolutional

blocks and a fully connected network, with two dense layers, as

classifier. Each convolutional block was composed of two consecu-

tive 2D convolutions (kernel_size = 3 9 3) each followed by batch

normalization and ReLU activation. The number of filters for the 2D

convolutions was constant and set for each block. Here, 64, 128, 256

and 512 were used. Between each convolutional block, a 2D maxPool

operation was used (pool_size = 2, stride = 2). The output of the last

convolutional block was flattened using a GlobalAveragePooling and

fed to the classifier part of the model. The first fully connected layer

contained 128 nodes and used the ReLU activation function. The

output layer had two nodes and used the softmax activation function,

returning the probability of the input belonging to each of the clas-

ses.The model was trained using binary cross entropy loss using the

LookAhead optimizer with Adam inner optimizer. Learning rate was

set to 1e - 6 and kept constant during training which was carried out

for 300 epochs without early stopping. Models were trained using a

ten-times repeated five-fold cross validation scheme and evaluated

using Matthew correlation coefficient (MCC), which has been shown

to be a better metric for unbalanced datasets. The benefit of using a

repeated cross validation scheme is twofold: (1) it reduces the effect

of sampling bias of the test set given the small dataset, and (2) it

allows a relatively large number of models which can be used to

obtain reliable model explainability results.

Model explainability

Occlusion mapping was used as post-hoc model explainability

method, where patches of the image size 5 9 5 were iteratively set to

background (value = - 1) and the difference in model predicted

probability between the un-occluded image and the occluded image

was computed and used to obtain a relevance map. Considering the

tumor presence class, high values in the relevance map indicate

regions in the image important for the detection of the tumor. The

relevance maps obtained from each of the models trained through the

repeated cross validation scheme were averaged and thresholded

(th = 0.03) to obtain a model explainability-derived mask of the brain

tissue relevant for tumor detection. Using the manual annotation of

the tumor, the relevant regions within and outside the annotation

could be identified and the change in relaxation values after contrast

injection could be investigated. In particular, the contrast agent

deposits in those brain regions where active tumor is present,

increasing the tissue relaxation values.

Results

Tumor detection could be achieved with an MCC of 0.72 ? - 0.13

(accuracy 0.92 ? - 0.06). From the model explainability analysis,

the occlusion relevance maps highlight regions important for the

tumor detection that match well with the annotation of the tumor

structure. A representative example is shown in Fig. 1. Analysis of

the relaxation values pre- and post-contrast for the relevant regions

inside and outside the manual annotation show that the positive shift

in relaxation values seen for regions outside the annotation is com-

parable to that of the regions inside the annotation and which are

visible as tumors in the conventional images. The distribution of R1

and R2 relaxation inside and outside the annotation, and the pixel-

wise difference pre and post contrast are shown as violin plots in

Fig. 1.

Conclusion

Model explainability analysis of models trained on qMRI data high-

light brain regions relevant for the detection of the tumor which are

adjacent to the manual annotation of the tumor visible in the con-

ventional images. The shift in relaxation values after contrast

injection of these regions, similar to that of regions inside the manual

Int J CARS (2023) 18:S1–S123 S71

123

https://github.com/ultralytics/yolov5


annotation, suggest the presence of infiltrative tumor tissue in the

immediate region outside the visible tumor. Further analysis is nee-

ded, however, to include a larger number of subjects and validate the

identified regions with image guided biopsies.
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Purpose

Colorectal cancer is one of the leading causes of cancer deaths

worldwide, although it would be preventable by early detection and

removal of the benign precursor polyps of the cancer. CT colonog-

raphy (CTC) provides a safe and accurate method for examining the

complete region of the colon, and it has been recommended by the

U.S. Preventive Services Task Force and the American Cancer

Society as an option for colon cancer screening. Because some of the

polyps could be missed due to being covered by residual materials in

the colon, electronic cleansing (EC) is used to perform virtual sub-

traction of the residual materials from the CTC images to enable

radiologists and computer-aided detection (CADe) systems to detect

all polyps. Previously, we developed an EC scheme based on self-

supervised artificial intelligence (AI), where some of the training

samples were self-generated by use of a self-supervised 3D generative

adversarial network (GAN) [1]. The 3D-GAN EC was trained to

directly transform an uncleansed CTC volume into the corresponding

virtually cleansed image volume.

However, CTC screening has been criticized because the exami-

nation involves a small radiation dose. Photon-counting CT is an

emerging technology that has the potential to minimize the radiation

exposure of CT while also being able to reconstruct images at a higher

spatial resolution than current CT technology. In this study, we

evaluated the effect of the use of photon-counting CTC on the per-

formance of our self-supervised 3D-GAN EC scheme based on a

phantom study and a simulated clinical CTC study.

Methods

For the phantom study, an anthropomorphic phantom (Phantom

Laboratory, Salem, NY) designed to imitate the appearance of the

human colon in CT scans was filled with 300 ml of simulated fecal

material, which was tagged by use of a non-ionic iodinated contrast

agent (Omnipaque iohexol, GE Healthcare) at three different contrast

agent concentrations (20, 40, and 60 mg/ml). The native (empty) and

the three different partially filled versions of the phantom were

scanned by use of a photon-counting CT scanner (OmniTom PCD,

NeuroLogica, Boston, MA, USA) in a single-energy mode with 120

kVp, 40 mAs, and 0.707-mm slice thickness, as well as by use of a

conventional dual-energy CT scanner (SOMATOM Definition Flash,

Siemens Healthcare, Erlangen, Germany) in a single-energy mode

with 120 kVp, 41mAs, 0.6-mm collimation, and 0.6-mm

Fig. 1 Post-contrast T1w and quantitative R1 of representative

transversal with corresponding raw and thresholded occlusion rele-

vance map. Tumor annotation is shown as a yellow contour. The

distribution of R1 and R2 quantitative values inside and outside the

tumor annotation, and pre- and post-contrast are shown as violin

plots. The shift in quantitative values after contrast injection for the

relevant regions inside and outside the annotation is also presented
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reconstruction interval. After the CT scans, the CTC image volumes

were registered to match spatially at each voxel by use of a rigid 3D

registration method (VersorRigid3DTransform) in the Insight Toolkit.

For the simulated clinical CTC study, we first acquired a clinical

CTC patient case with reduced cathartic preparation, where the CT

image volumes were scanned by use of the conventional CT scanner

and reconstructed at 120 kVp, 1.0-mm slice thickness, 0.627 mm

pixel spacing, and 0.7-mm reconstruction interval. The corresponding

photon-counting CTC was then simulated based on the acquired CT

image volumes by use of the photon counting toolkit [2].

The 3D GAN of the EC scheme has a 3D generator (3D U-Net)

and a 3D discriminator network. The 3D generator has six down-/up-

convolution layers. Given an uncleansed CTC image volume, the

generator network is trained to generate the corresponding EC image

volume. The 3D GAN was pre-trained with a supervised-training

dataset, where we used 200 paired volumes of interest (VOIs)

extracted from precisely matching lumen locations of the CTC

datasets of the colon phantom acquired without and with 20 mg/ml

and 60 mg/ml contrast concentrations. The 3D GAN was subse-

quently trained iteratively with a self-training dataset, where 100

paired VOIs extracted from each input volume were paired with VOIs

cleansed by the 3D GAN itself.

For an objective assessment of the image quality of EC, we cal-

culated the peak signal-to-noise ratio (PSNR) between the EC VOIs

of the CT datasets of the fecal-tagged phantom acquired with 40 mg/

ml contrast agent concentration, where the CT dataset of the corre-

sponding native phantom acted as the ground truth. The statistical

significances of the differences of the PSNRs between the supervised

and self-supervised versions of the 3D-GAN EC images on single-

energy CTC and photon-counting CTC were assessed by use of the

t-test with Bonferroni correction. The image quality of EC on the

simulated clinical photon-counting CTC study was evaluated by

visual comparison to the corresponding conventional CTC case.

Results

Figure 1 shows the boxplots of the PSNRs of the phantom study over

the 100 test VOIs from the single-energy and photon-counting CTC

cases. The differences between the supervised and self-supervised

versions of 3D-GAN EC between the photon-counting CTC and

single-energy CTC were all statistically significant (p\ 1e - 6).

Figure 2 shows a visual comparison of the EC results on a 2D

image and the corresponding virtual endoscopic image of the clinical

CTC study. As shown in these images, the use of simulated photon-

counting CTC with the 3D-GAN EC scheme generated higher-quality

EC images than those obtained by use of conventional CTC.

Conclusion

We evaluated the effect of the use of photon-counting CTC on the

performance of our self-supervised 3D-GAN EC scheme. Our pre-

liminary results indicate that photon-counting CTC can be employed

to generate higher-quality EC images than those obtained by use of

conventional CTC at a comparable radiation dose. Thus, photon-

counting CTC in combination with our self-supervised 3D-GAN EC

scheme is expected to provide EC images of the highest quality in

low-dose fecal-tagging CTC.
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Fig. 1 Comparison of the PSNRs of the 100 electronically cleansed

VOIs by the supervised and self-supervised 3D-GAN EC schemes in

conventional single-energy and photon-counting CTC

Fig. 2 An example of the performance of EC in conventional CTC

(top row) and the simulated photon-counting CTC (bottom row) in a

clinical case. a Comparison of the original uncleansed axial 2D CT

and the corresponding virtual endoscopic images. b Comparison of

the corresponding 2D and virtual endoscopic images cleansed by use

of the self-supervised 3D-GAN EC. The yellow arrow indicates the

location of an EC artifact in conventional CTC

Int J CARS (2023) 18:S1–S123 S73

123



28th Computed Maxillofacial Imaging Congress

Chairman: Christos Angelopoulos, DDS (US),
Co-Chair: Yoshihiko Hayakawa, PhD (JP)

S74 Int J CARS (2023) 18:S1–S123

123



Orbital reconstruction with Gaussian processes
P. Vanslambrouck1,2, R. Willaert1,3, M. Bila1,3, C. Politis1,3, P.

Claes4,5, J. Van Dessel1,3, Y. Sun1,3

1University Hospitals Leuven, Campus St Rafael, oral

and maxillofacial surgery, Leuven, Belgium 2KU Leuven,

Department of Computer Science, Leuven, Belgium 3KU Leuven,

Department of Imaging & Pathology, Leuven, Belgium 4KU Leuven,

Department of Electrical Engineering (ESAT), Leuven, Belgium 5KU

Leuven, Department of Human Genetics, Leuven, Belgium

Keywords statistic shape modelling, Gaussian processes, orbital

reconstruction, outlier detection.

Purpose

Orbital defects make up a substantial part of maxillofacial trauma

cases. To achieve an optimal functional and esthetic outcome, accu-

rate reconstruction of the original bone level is required. The standard

method for reconstruction is mirroring the healthy orbital to the

defective side. However, this method disregards the natural asym-

metry of the human skull and cannot be applied to bilateral defects. It

is impossible to build a robust workflow for orbital reconstruction via

mirroring. The purpose of this study is to apply statistical shape

modeling to reconstruct defects in the orbital region.

Methods

In our study, 50 healthy (bilateral) orbital regions were first seg-

mented using the BrianLab iPlan software. The results are visually

inspected by an experienced engineer and the results are saved in STL

format as training shapes.

In the first step, a reference shape is selected randomly from the 50

healthy shapes. By applying kernel functions that enforce smooth and

predominantly symmetric deformations on the reference shape, a

prior model that favors realistic deformations is obtained. An Iterative

Closest Points (ICP) algorithm based on Gaussian Process Morphable

Models (GPMMs) [1] is applied to register the reference shape to the

other 49 healthy orbital shapes. In this step, non-rigid registration is

performed to find the correspondence between each point on the

reference shape and the other 49 training shapes. Validation of the

parameters of this prior model is done by estimating the generaliza-

tion and specificity metrics using the training dataset, which is

traditionally used for the validation of SSMs. The trade-off between

these metrics means a compromise between flexibility of the model

and plausibility of the deformations is necessary. Each iteration step

of the ICP algorithm consists of a first step of finding corresponding

points for each point of the model and a second step of computing a

regularized transformation corresponding to the observed correspon-

dences. To find the regularized transformation, the prior model is

fitted to the identified point correspondences by computing the mean

of the regularized Maximum A Posteriori estimate [2].

In the second step, after building up the point correspondence

within the 50 training models, Principal Component Analysis (PCA)

is applied to create a statistical model of the deformations. However,

because of the small number of degrees of freedom of this PCA-

model, the model is augmented with a custom kernel of Gaussian

process. This augmentation provides more flexibility to the SSM and

improves generalization to new shapes. However, it also introduces

deformations that are not present in the training set, i.e. the specificity

is higher. Hence, augmentation of the PCA-model is subject to the

same trade-off as the prior model used in step 1 for non-rigid regis-

tration and the validation of the parameters of the augmentation is

performed similarly.

In the third step, the resulting SSM model created in step 2 is used

to reconstruct the defective orbital shape by applying an ICP algo-

rithm that iteratively fits the model to a defective shape. However, in

this case some of the points from SSM can not have a valid projection

on the defective orbital model. Therefore, an outlier detection algo-

rithm is developed to automatically identify those points on the SSM

model during the ICP registration procedure.

The outlier detection is performed based on the distance between

the two points, the surface orientation of both points and the orien-

tation of the deformation vector with respect to the surface normal of

the mesh of the model. The outlier score is computed by applying

robust statistics on these metrics to identify anomalous point pairs.

Concretely, an inlier score is attached to each pair of corresponding

points and points with a low score are downweighted in the fitting

step by increasing the regularization noise parameter [2].

Results

The registration algorithm based on Gaussian Process Morphable

Models achieves a Root Mean Square Error (RMSE) of 0.2 mm on

average within the 50 training models, but it should be noted that a

lower number is not always desired in this case. The RMSE can be

made arbitrarily small by choosing different parameters for the prior

model, but this disregards the specificity and would consequently ruin

the resulting SSM. Additionally, an accuracy of 0.2 mm is sufficiently

low compared to the resolution of the training data.

An SSM is computed based on the meshes in point correspon-

dence. By augmenting the PCA-model, generalization RMSE is

reduced from 0.8 mm to 0.3 mm without significant degradation of

the specificity of the model.

Finally, reconstruction is performed by using the created SSM

with outlier detection. An example result is shown in Fig. 1.

Depending on the size of the defect, the maximal reconstruction error

(the surface distance) ranges from 1.0 to 0.3 mm.

Conclusion

In summary, a registration algorithm based on Gaussian Process

Morphable Models (GPMMs) was developed. Instead of using a

traditional PCA model, the model is augmented with additional

GPMM modes to obtain better generalization. The resulting SSM is

used for reconstruction by applying an ICP algorithm with integrated

outlier detection to identify the defective regions. Quantitative results

prove that this pipeline is a promising alternative to current recon-

struction approaches. Further study is required to analyze the factors

that influence the accuracy of reconstruction results.

Fig. 1 Reconstruction of a defect in the orbital floor using a PCA-

based SSM augmented with additional modes from a Gaussian

process with a Gaussian kernel. The reconstruction is computed

iteratively by means of an Iterative Closest Points algorithm with

outlier detection
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Purpose

Panoramic x-rays are used as a basic diagnostic tool for initial

assessment of patients in dental and maxillofacial medicine as they

depict the full set of teeth and its adjacent bones in one image.

Especially for prosthodontic planning purposes the detection and

location of abutment teeth, implants and pre-existing restorations is

vital. The goal of this work is to provide methods that characterize the

prosthodontic value of the jaws. At its core, it requires detection and

segmentation of regions with teeth or implants. Challenges in the

automatization are missing teeth or pontics. We propose an approach

based on Mask R-CNN (regions with convolutional neural networks)

that detects regions with healthy teeth, teeth with fixed dental pros-

theses and implants. The approach is designed to predict further

parameters following the classification of Kennedy in the future.

Methods

For the study, 209 panoramic x-ray images from 206 patients from the

Clinic for Oral and Maxillofacial Surgery of the University of Frei-

burg, Germany have been employed. Using the MeVisLab-based

software platform SATORI [1], the images were manually annotated,

contouring the available tooth regions and labeling them with the

respective type (tooth vs. implant). The dataset has been randomly

split into five equally sized folds for cross validation. We trained five

Mask R-CNN models on three folds, leaving out one fold each as

validation set (for convergence detection) and one as test set.

Learning rate was initially 10–3 and was halved after 25 epochs

without improvement on the validation set. Training was stopped after

five such reductions (on average, about two hours). In order to prevent

overfitting, we applied L2 regularization (with a weight of 5�10–5)

and selected the model with the best validation score for application.

For validation and testing, we assessed detection quality via the

standard AP50 score, which gives the average precision of detection (0

to 1, corresponding to the area under the precision-recall curve),

where an object has to have at least 50% geometric overlap (IoU) with

the reference.

Results

The above training setup led to good convergence, and we found the

Mask R-CNN architecture to be able to robustly detect teeth and

implants, with 78% of the test cases getting an AP50 score of 90% or

higher (median 93.8%, cf. Figure 1). Contrary to shape model-based

approaches [2], our deep learning approach is able to cope well with

missing teeth, pontics, or implants. Accordingly, even the segmen-

tation quality is relatively high (median Dice similarity coefficient

(DSC) of 93.5%,, 91% of cases with a Dice above 90%), although our

dataset showed severe pathologies. There are a few cases with

overlapping duplicate detections, in which case the correct detection

usually has the highest score. Other, more seldom failures include

incorrect teeth detected far from the jawline (note, however, that the

model had to and did correctly learn to detect unerupted wisdom teeth

within the jaw).

Conclusion

We presented a method for assessment and prosthodontic character-

ization of the jaws. The method shows good performance on the data

from one site. We plan to incorporate further parameters like fillings/

inlays/onlays, root canal treatment, root resection, caries or bone loss

into the approach, thereby enabling an automatic classification of

Kennedy. A dedicated preprocessing step should be able to address

many of the observed errors. Additionally, data from multiple sites

has to be included to increase the model robustness.
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Fig. 1 Distribution of AP50 detection performance on all 219 cases

(computed with five distinct models in a cross-validation manner, not

used during the respective training), with an example case highlighted

(red: detected teeth, green: detected implants)

S76 Int J CARS (2023) 18:S1–S123

123



Purpose

Biomechanical modeling of facial tissue deformation is the most

popular and accurate facial change prediction method that is essential

in surgical planning for orthognathic surgical procedures [1]. Cur-

rently, most biomechanical simulations are performed using the Finite

Element Method (FEM) [1], which uses numerical methods to

approximate a solution to a physical problem described by a boundary

condition using discretization. To further improve the accuracy of

FEM, previous studies divided FEM simulations into smaller incre-

mental steps [1]. While breaking the simulation into incremental steps

increased accuracy, it also greatly increased computation time, with

some simulations taking up to 30 min [1]. Recently, deep learning

(DL) methods have been proposed as an alternative to FEM for

simulating many physical phenomena, including tissue deformation.

While DL methods require large amounts of time and data to train,

once a network is trained, simulations can be performed extremely

quickly, often within seconds. However, previous DL-based methods

have been trained only using a non-incremental approach, i.e., all

input movement is applied in a single step rather than incrementally,

thus limiting accuracy. We argue that such non-incremental training

limits the deep neural network by (1) forcing the network to be

adaptable to inconsistent magnitudes of deformation and (2) pre-

venting the network from learning from temporal trends in the

incremental simulations. To address these problems, we propose a

method for incremental biomechanical modeling, where multiple

deep neural networks are trained to perform incremental simulations

for different magnitudes of maximum deformation to create the

optimal balance between the speed of DL and the accuracy of using

an incremental approach. Each deep neural network is trained using

incremental FEM data to be optimized for a specific magnitude of

maximum deformation.

Methods

A dataset of FEM simulations was generated by collecting 19 subjects

who underwent double-jaw orthognathic surgery from our digital

archive. The FEM simulations were performed using the standard

clinical approach, where the movement of bony segments is retro-

spectively planned and then used as input deformation in the FEM

simulation of the soft tissues of the face [1]. The FEM method dis-

cretizes the total input deformation into many increments adaptively,

choosing the step size of each increment adaptively to arrive at a

stable solution. Because the increments are chosen adaptively, the

maximum deformation of each increment may be unique. From the

FEM simulation for a given subject, a dataset of many ‘‘sub-simu-

lations’’ was created. Each sub-simulation can be seen as a subset of

the original simulation increments with a maximum deformation

threshold T between the neighboring increments.

All FEM simulations were performed on a mesh with 3960 nodes.

A PhysGNN [2] network was utilized to predict the mesh deformation

based on the input node features, which consisted of the planned bony

displacement (surgical plan) at the interface between the moving bony

surface and the soft tissue. Nodes at the interface of a fixed bony

segment were fed a feature vector of zeros, as were all other nodes

where the input displacement was unknown. Adjacency matrices were

generated for each subject and the edge weights were computed to be

the distance between neighboring nodes. The planned bony dis-

placement was broken into incremental bony displacements based on

the maximum deformation threshold for the given network. The

output of the network was the updated facial deformation, which was

then fed back to the network in an incremental feedback loop, where

another incremental bony displacement step was applied. In this way,

the final predicted facial deformation was simulated by applying

many incremental steps, Fig. 1.

We separately trained three networks using sub-simulations with

maximum deformation threshold T{0.1, 0.5, 1.0}mm, respectively.

Each network was trained in a leave-one-out cross-validation on a

total of 19 subjects (Table 1). The networks were trained for 100

epochs, then tested on the left-out subject. Each network trained on a

different deformation threshold was evaluated on the test

independently.

Results

The incremental simulation approach was extremely accurate, with all

three incremental models achieving a mean error of less than 1 mm

on most subjects. The prediction accuracy was mostly consistent

between the different maximum deformation thresholds. However,

the best performing model changed from subject to subject.Fig. 1 Incremental biomechanical modeling of facial deformation

using several deep neural networks trained for specific magnitudes of

maximum deformation

Table 1 The mean Euclidean distance error [mm] on incremental models across subjects

Subject 1 2 3 4 5 6 7 8 9 10

Model

1 mm 0.486 0.514 0.604 0.632 0.574 0.272 0.490 0.925 0.610 0.521

0.5 mm 0.537 0.488 0.346 0.508 0.731 0.308 0.410 0.970 0.476 0.423

0.1 mm 0.364 0.558 0.316 0.514 0.653 0.376 0.434 1.105 0.488 0.602

Subject 11 12 13 14 15 16 17 18 19

Model

1 mm 0.303 0.602 0.471 0.413 0.594 0.633 0.629 0.506 0.817

0.5 mm 0.308 0.578 0.461 0.369 1.100 0.438 0.490 0.414 0.905

0.1 mm 0.329 0.642 0.650 0.419 1.078 0.491 0.433 0.595 1.103
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Conclusion

The proposed incremental simulation approach can be used to sim-

ulate facial tissue deformation accurately and efficiently.

Interestingly, the 0.1 mm deformation model was not always the most

accurate, suggesting that there may be a trade-off between increment

size and the size of the training dataset. Our proposed method of

having multiple incremental models trained for several deformation

magnitudes allows for flexibility when optimizing a simulation for

facial deformation prediction.
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Purpose

Mandible landmark detection (digitization) is a critical prerequisite

for craniomaxillofacial (CMF) surgical planning. By locating a set of

landmarks on the (pre-segmented) 3D mandible models, the bone can

be cut into several individual pieces for planning and adjustment. In

clinical practice, mandible landmark detection is manually accom-

plished by physicians, which is time-consuming and labor-intensive.

Therefore, automatic landmark detection methods are highly desired.

Benefitting from the development of deep learning (DL) in recent

years, convolutional neural networks (CNNs) are widely used for

various object detection tasks. However, when it comes to the

mandible landmark detection, this methodology exhibits two limita-

tions. First, since conventional CNN can only process grid-structured

data (e.g., matrix and image), they can only take input from the CBCT

images. This makes it hard to utilize the geometric information from

the 3D mandible mesh, which critically affected the position of the

landmarks. Second, CNN has no explicit constraint on the output to

ensure the detected landmarks are attached on the surface of the 3D

mandible mesh. This often leads to suboptimal results requiring fur-

ther refinement. To address the above two issues and achieve better

performance in mandible landmark detection, in this study, we

propose a deep learning-based method using graph convolutional

network (GCN) [1] combined with CNN.

Methods

Our method has two stages in a coarse-to-fine fashion shown in

Fig. 1. The core idea is to utilize a GCN to extract the geometric

information from the 3D mandible mesh to complement the CBCT

image information for landmark detection.

1) U-Net for coarse-stage landmark heatmap generation: We first

employ a U-Net [2] to roughly locate the landmarks. The input and

output channels of the U-Net are 1 and M, respectively, indicating the

single-channel CBCT image and the M-channel heatmap for M

mandible landmarks. Each channel of the heatmap has the same size

as the CBCT image, and a gaussian-shaped kernel is located at the

pixel nearest to the landmark. The U-Net is trained to predict such an

M-channel heatmap for the landmarks given an CBCT image.

2) GCN for fine-stage landmark refinement: Although the land-

marks can be roughly located by finding the maximums in above

predicted heatmaps, they are not necessarily to be attached to the

surface of the 3D mandible model, which is undesired for CMF

surgical planning. Therefore, we incorporate a GCN in our method to

refine the landmark position. Specifically, we first convert the pixel-

wise mandible segmentation mask to a 3D triangle mesh via the

marching cube algorithm. Since the 3D mesh can be seen as a graph

with the mesh points treated as graph vertices, the problem of locating

a landmark on a mesh surface is equivalent to finding out the most

likely vertex from a given graph to be a landmark. This process can be

naturally implemented by GCN, which is specialized in processing

graph data. In this study, we build a 6-layer GCN to achieve the

purpose. The input of this GCN is a graph containing N vertices as

well as an N 9 N adjacent matrix to describe the edges. Each vertex

has an (M ? 4)-dimensional feature vector to represent the infor-

mation associated with that mesh point (M is the number of

landmarks). The first M-channel of this feature vector comes from the

M-channel heatmap yielded from the first stage, in which we took

samples at the mesh point. The last 4-channel is the geometric fea-

tures of that mesh point, including a 1D curvature and 3D normal

vector. The output graph of the GCN has the same number of vertices

but each vertex is associated with an M-dimensional vector, which

indicates the probabilities of each mesh point being one of the M

mandible landmarks.

Results

We conducted experiments using a clinical dataset containing 56

subjects. Each subject included a whole head CBCT image, a

mandible segmentation mask, and M = 24 mandible landmarks

(represented as 3D coordinates in the same space as the CBCT

image). We evenly divided the dataset into four parts and performed

fourfold cross-validation (three/one folds for training/testing respec-

tively) for evaluation. Distance error from the predicted landmark to

the ground-truth landmark was used as the metric to quantitatively

assess the model performance.

Fig. 1 Overview of the proposed mandible landmark detection

method for craniomaxillofacial surgical planning
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We compared landmark detection results of four methods in

Table 1. The first method showed the baseline result of a U-Net

trained to predict the landmark heatmap merely using CBCT image as

input. The average error over 24 landmarks is 2.50 ± 1.71 mm.

However, this model was applied on CBCT and thus did not have

constraints on detected landmarks to ensure they are attached to the

bone surface. Therefore, in the second method, we refined the result

of U-Net by directly attaching the predicted landmarks to the 3D bone

mesh surface. This refinement yielded a slightly lower distance error

of 2.32 ± 1.84 mm, indicating a positive effect of incorporating the

3D bone mesh into the detection framework. The third method

showed the result of GCN, which can explicitly leverage the geo-

metric information from bone mesh to detect landmark. Although the

global average error of 2.33 ± 1.77 mm is close to that of the refined

U-Net, we argue that the GCN did a better detection on the 18

bilateral landmarks with more discriminative geometric features (e.g.,

distributed on the ridge of the mesh. Therefore, in the fourth method,

we merged the GCN’s prediction on the bilateral landmarks with the

U-Net’s prediction on the rest landmarks, which yielded the lowest

error shown in the last row of Table 1.

Conclusion

In this study, we proposed a mandible landmark detection method for

CMF surgical planning using GCN combined with CNN. By incor-

porating a GCN into the landmark detection pipeline, our method can

explicitly utilize the geometric information of the 3D bone mesh to

enforce the detected landmarks to be attached to the bone surface,

resulting in lower detection error compared with the conventional

CNN-based methods. Moreover, by merging the prediction of GCN

with that of the refined CNN, the landmark detection accuracy can be

further improved, demonstrating the effectiveness of the proposed

design.
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Purpose

Several kinds of man–machine interface are used at various situations,

such as keyboard, mouse, game-controller, gesture capture device,

speech and natural language recognition, hand-written character

recognition, etc. We explored the another possibility, namely, auto-

matic mouth and rip reading. As the application of the general object

detection and motion capture and tracking, the mouth and rip motion

were captured during speech and the development of rip-reading AI

was tried in the study. In particular, morphological features and

changes in oral region (rip and mouth) during vowel sounds and

consonants were extracted. Such various images of oral cropped face

(oral and surrounding tissue) region were collected as the learning

data and a rip-reading AI system was tried to develop.

Methods

Our hardware and software environments for the object detection and

tracking tasks are as follows; PC: MacBook Air (2018, Intel Core i5-

8120Y, 8 GB RAM, mac OS Venture, in-camera 1280 9 720), Code

Editor: Visual Studio Code, Language: Python 3.8.13, and Code

Libraries: Media Pipe 0.8.10, Open CV 4.5.5 and NumPy 1.20.3. Also

the environment for the AI development are as follows; Google

Colaboratory, Language: Python 3.8.16, and Code Libraries: Tensor

Flow 2.9.2 and Keras 2.2.5. Media Pipe is image processing and

recognition (computer vision) library and Tensor Flow is also

machine learning library, provided by Google, Inc. The face recog-

nition worked to extract 478 feature point on face, and the oral region

were cropped under a constant rule (for example, zygomatic bones on

both sides are included in cropped images.) and mesh images were

created for the learning data and test data as shown in Fig. 1. At first,

long tone voices of three vowel sounds ‘‘a,’’ ‘‘i’’ and ‘‘u’’ were

recorded as shown in Fig. 2. Furthermore, the data of other vowel

sounds ‘‘e’’ and ‘‘o’’ (There are only and simply five vowel sounds in

Japanese language.) and consonants such as ‘‘ka’’ and ‘‘sa,’’ etc., were

added. In order to distinguish among these sounds, the learning

Table 1 Distance error of detected landmarks generated by different methods

Models Average distance error [mean ± SD mm]

18 bilateral landmarks 6 non-bilateral landmarks All 24 landmarks

U-Net 2.62 ± 1.73 2.16 ± 1.59 2.50 ± 1.71

U-Net refined by bone mesh attaching 2.47 ± 1.84 1.88 – 1.77 2.32 ± 1.84

GCN 2.36 – 1.81 2.25 ± 1.62 2.33 ± 1.77

GCN ? U-Net (proposed) 2.36 – 1.81 1.88 – 1.77 2.24 – 1.81

Fig. 1 Face recognition worked to extract 478 feature point, and the

oral region were cropped and mesh images were created
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system was worked. The number of epochs was primarily set at 40.

The classification performance for five vowel sounds and limited

consonants (‘‘ka’’ and ‘‘sa’’) was evaluated using the test data.

Results

We tried to develop three kinds of automatic rip-reading AI systems.

The classifications of three classes of three vowel sounds ‘‘a,’’ ‘‘i’’ and

‘‘u,’’ showed the good performance. The accuracy is over 0.9. The

classifications of five classes of five vowel sounds ‘‘a,’’ ‘‘i,’’ ‘‘u,’’ ‘‘e,’’

and ‘‘o’’ and the classifications of seven classes of five vowel sounds

‘‘a,’’ ‘‘i,’’ ‘‘u,’’ ‘‘e,’’ and ‘‘o,’’ in addition, consonants such as ‘‘ka’’

and ‘‘sa’’ showed relatively lower accuracy.

Conclusion

The three-classes classification showed the satisfied performance but

both five classes and seven classes classifications did not show such

results. We try to optimize the number of epochs, to improve the

volume and quality of the learning data. We also explore the other

possibility, such as the application of the 3D projection for mesh-

image creation and cropping procedures. This is thought to be so

beneficial for the distinguish between ‘‘a’’ and ‘‘u’’ as observed in

Fig. 2.
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Purpose

Orthognathic surgery is a surgical procedure to correct jaw defor-

mities by repositioning bony segments to normal positions, improving

facial aesthetics. In current clinical practice, surgical planning is a

bone-driven method. Surgeons plan the movement of each bony

segment to achieve a normal skeleton, assuming the postoperative

facial appearance is normalized following the underlying bony

skeleton. However, facial deformity may remain after the surgery due

to the complex and nonlinear relationship between the bone and soft

tissue. In addition, bone-driven planning is clinically impractical

because it requires time-consuming plan revisions [1]. The surgical

plan (i.e., bony movement) needs to be iteratively revised until an

ideal facial appearance is achieved by facial change simulation [2].

A soft-tissue-driven planning method can overcome this problem

by directly estimating the surgical plan (bony movement) from the

given ideal facial appearance. However, accurate estimation of the

ideal appearance based on a deformed preoperative face is chal-

lenging. This is because the ideal postoperative appearance is patient-

specific and must satisfy both quantitative and qualitative clinical

criteria.

We assume deep learning techniques are ideal methods to tackle

this problem because information about facial deformities can be

effectively extracted through deep learning based on datasets.

Therefore, in this study, we investigate the feasibility of deep learning

methods to predict a desired postoperative facial appearance based on

a patient’s preoperative facial appearance. Three different deep

learning methods are chosen for performance comparison.

Methods

We evaluated the performance of three deep learning models

(PointNet ?? , GraphUNet, and DeepGCN) to predict an ideal

postoperative facial appearance (Fig. 1A). The prediction accuracy of

the three models is quantitatively and qualitatively compared.

We first select PointNet ?? because it is reported to successfully

predict facial change following orthognathic surgery [2]. However,

PointNet ?? is limited because it is designed for unstructured point

cloud data, while facial surface data is often represented with a

structural three-dimensional (3D) mesh surface. Therefore, graph

convolutional network (GCN), which is specialized in 3D mesh data,

is also investigated. GCN leverages the structural information using

an adjacency matrix that converts 3D mesh data into graph data. Two

major variants of GCN, GraphUNet and DeepGCN, are selected for

investigation.

We hypothesize that not only local but also global structural

information is important for the accurate estimation of the ideal facial

appearance. PointNet ? ? architecture inherently can handle both

local and global information successfully. However, this is not the

case for GCN-based methods. To achieve a balance between local and

global information, various receptive fields are implemented for both

GraphUNet and DeepGCN. Specifically, in GraphUNet, Top-K-

Pooling is replaced with distance-based pooling. This can prevent

trained model to be biased toward the lower part of the facial mesh

where most deformities exist. In distance-based pooling, entire facial

mesh is divided into K-clusters using K-means clustering. Then, the

most significant points are selected from each cluster, resulting in

evenly distributed downsampled points over the entire facial mesh.

DeepGCN leverages jumping knowledge (or residual learning) to

prevent over-smoothing problems caused by the deep structure.

However, this may take too many irrelevant points into account while

most deformities exist in the lower face. Therefore, we replace its

Fig. 2 Three samples images. Long tone voices of three vowel

sounds ‘‘a,’’ ‘‘i’’ and ‘‘u’’ were recorded

Fig. 1 A Overall diagram of deep learning architecture, B surface

deviation errors between the predicted results and ground-truth
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GCN layer with Graph Attention Layer (GAT), which can adaptively

adjust the importance of each point by assigning different weights.

The evaluation is conducted on a dataset consisting of 65 paired

preoperative and postoperative facial surface meshes of patients who

underwent orthognathic surgery. We assume that the patient’s post-

operative facial mesh is an ideal facial appearance to achieve and thus

used as the ground truth. We split the dataset into two subsets, 52 for

training and 13 for testing. To avoid overfitting, we applied fivefold

cross-validation on the training set to train five models.

For training efficiency, each facial mesh was simplified into a

mesh with 3072 points. The prediction accuracy was quantitatively

evaluated using the average distance error of clinically important six

landmarks: Subnasale (Sn), Labiale Superius (Ls), Labiale Inferius

(Li), Left Cheilion (Ch-L), Right Cheilion (Ch-R), and Soft Tissue

Pogonion (Pog) (Fig. 1B) and qualitatively evaluated by surface

deviation errors.

Results

Table 1 shows the quantitative prediction accuracy of three deep

learning methods. DeepGCN showed the smallest error, especially at

the Pog landmark where largest facial deformity exists. Figure 1B

shows a randomly selected example of the estimated facial mesh with

color-coded surface deviation error. PointNet ?? was the worst,

showing clinically unacceptable large error. GraphUNet showed an

improved prediction accuracy especially in the region of large

deformity. However, results of GraphUNet suffered from unnatural

artifacts especially in the chin. DeepGCN showed the best overall

performance in terms of surface deviation error, surface quality, and

landmark-based error.

Conclusion

This study investigated the feasibility of deep learning methods to

estimate desired postoperative facial appearance for patients with

deformities, which is a critical step towards the soft-tissue-driven

surgical planning. Three deep learning methods, PointNet ? ? ,

GraphUNet, and DeepGCN, with different mechanisms were evalu-

ated on a clinical dataset.

The experimental results showed that the two GCN-based methods

generally exhibited better performance than the point cloud-based

method (i.e., PointNet ? ?) because they considered structural

information including mesh connectivity. Among GCN-based meth-

ods, DeepGCN performed better than GraphUNet because pooling

process of GraphUNet may lose topological information during the

training. On the other hand, DeepGCN can effectively extract the

information of deformity by concentrating only on important regions

based on attention and preserving the existing graph without pooling.

In the future, we will develop methods that can incorporate the

characteristics of the normal subjects in the predictions to improve the

estimation.
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Table 1 Quantitative prediction accuracy [The average landmark-based error (mean ± standard deviation) between the predicted and ground-
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Models Sn Ls Li Ch-L Ch-R Pog Average

PointNet ? ? 1.21 ± 0.97 1.09 ± 1.00 1.63 ± 1.23 1.75 ± 1.27 2.14 ± 1.49 2.53 ± 1.68 1.72 ± 0.28

GraphUNet 1.11 ± 1.00 0.97 ± 0.81 1.73 ± 1.08 1.54 ± 1.07 1.96 ± 1.46 2.16 ± 1.61 1.58 ± 0.30

DeepGCN 1.03 – 0.96 0.79 – 0.80 1.50 – 0.98 1.25 – 0.99 1.93 – 1.41 1.79 – 1.71 1.38 – 0.34
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Purpose

Left atrial appendage (LAA) closure with catheter-based devices is a

minimally invasive cardiac intervention for preventing embolization

of thrombus from LAA. LAA is a highly variable structure consisting

of lobes and trabeculations. Thus, imaging is essential to pre-plan

equipment selection and implantation strategy, to guide procedural

device implantation, and also for device surveillance post implanta-

tion [1]. Whereas X-ray fluoroscopy (XR) and TEE are the preferred

modalities for intra-procedural imaging for LAA closure, a careful

pre-procedural planning based on CTA is crucial to minimize pro-

cedural or device related complications and to improve patient’s

outcome. Several small studies have compared LAA measurements

from CTA to TEE and fluoroscopy. Overall, CTA produces the largest

LAA measurements and more accurately predicted device sizes [2],

due to superior multiplanar 3D imaging. In contrast to CTA, cardiac

MRI (CMR) provides excellent assessment of the intracardiac and

vascular anatomy without any radiation exposure. Thus, the objective

of this study was to implement an open-source tool to integrate CMR-

based pre-procedural planning of LAA landing zone into image fusion

independently of underlying software solutions and to evaluate its

application for device selection.

Methods

Ten LAA occlusion cases with WATCHMAN FLX (Boston Scien-

tific, Marlborough, MA, USA) device, for which a 3D CMR with

Dixon sequence at the cardiac phase with the largest LAA dimension

(atrial diastole) corresponding to 30–40% of the RR interval has been

acquired, were chosen retrospectively. Segmentation of the left atrium

with LAA was performed from 3D volume using 3DSlicer software.

To integrate pre-procedural information obtained from CMR images

into image fusion, we implemented a new module for oblique mul-

tiplanar reconstruction (MPR) within open-source XR guidance

framework 3D-XGuide [3], which allows reconstruction of oblique

views of the LAA from 3D volume-rendered images (Fig. 1). Mea-

surement of the LAA was performed according to expert

recommendations for the WATCHMAN device [4] with device

landing zone (LZ) defined as a line connecting the circumflex coro-

nary artery and a point 1–2 cm inside the LAA, measured from the

left upper pulmonary ridge tip. Automatically calculated area-derived

diameter of the LZ on ‘‘en face’’ double-oblique view was then

compared with the measurements performed intra-procedurally on 2D

XR fluoroscopy for device size selection (Fig. 2a). The LZ as defined

in the MPR was extracted as triangle mesh and together with the

segmented model of the left atrium and LAA (Fig. 2b) registered to

XR fluoroscopy, and finally overlaid on the XR frame in which the

XR measurement took place for verification (Fig. 2c). If the measured

Fig. 1 Double-oblique multiplanar views of the LAA with blue line

indicating ‘‘en face’’ plane where the measurement of LAA landing

zone is performed. 3D scene allows visualization of three oblique

planes within 3D volume with overlaid segmentation model of the left

atrium and LAA

Fig. 2 a Measurement of the LAA landing zone (LZ) on XR

fluoroscopy. b Segmented model of the left atrium incl. LAA with the

LZ contour defined in MPR. c Overlay of the registered model of the

left atrium onto XR fluoroscopy for a frame in which XR measure-

ment was taken. d and e Overlay of the defined LZ contour onto XR

fluoroscopy in two different angulations after device deployment
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LZ did not coincide with the in XR defined LZ, the planes in MPR

were adjusted and LZ was measured again. Doing so, we could make

sure that the in CMR measured LZ is defined at the same location at

which XR measurement were taken in 2D.

Results

Figure 2d, e visualize position of the released device in two different

XR projections with respect to pre-defined LZ contour.

Table 1 summarizes the results of the LAA LZ measurements

performed in MPR viewer vs. XR fluoroscopy for the chosen 10

cases. Average LZ diameter measured on XR fluoroscopy was

20.72 ± 3.35 mm, whereas derived from the area of the defined in

MPR contour 21.19 ± 3.00 mm (p = 0.288). Very good correlation

with the Pearson coefficient of r = 0.93 (p = 0.0001) was achieved

among two groups of measurements. Bland–Altman plot demon-

strates good agreement between CMR-derived and XR-derived

measurements with a mean difference of 0.47 mm (95% limits of

agreement - 1.97, 2.91). Device size could be predicted correctly

based on the manufacturer sizing chart for the WATCHMAN FLX

device in 100% of cases.

Conclusion

CMR is a good alternative to the traditional gold-standard imaging

methods for LAA occlusion having several advantages such as

detailed 3D characterization of the LAA anatomy, accurate sizing,

radiation-free and non-invasive acquisition. MPR viewer imple-

mented in 3D-XGuide as add-on module allows accurate pre-planning

of the suitable device size and direct incorporation of the planning

information (e.g. LAA ostium, landing zone) into the image fusion for

control of the device position during implantation without the use of

external planning software.
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Purpose

X-ray examination is widely used to diagnose the condition of

rheumatoid arthritis and to monitor its activity. However, its diagnosis

depends on the subjective evaluation of the physician. In addition, the

need to evaluate many joints can be time consuming and increase the

workload to the physician on their visual screening. Therefore, the

development of a CAD (Computer Aided Diagnosis) system for

rheumatoid arthritis is needed.

The temporal subtraction technique enhances the temporal chan-

ges by subtracting two successive images. Visualization of temporal

changes is expected to improve diagnostic accuracy and shorten

reading time. Therefore, we propose a temporal subtraction technique

for phalanges CR images, which consists of three steps: automatic

extraction of phalangeal regions, image registration, and generation of

the subtraction image.

Table 1 Comparison of measurements of the LAA landing zone performed on CMR with MPR viewer versus XR fluoroscopy with the

corresponding selected device size based on manufacturer recommendations

XR measurement MPR measurement

Selected device size Landing zone (mm) Landing zone (mm) Selected device size

FLX24 21.66 19.83 FLX24

FLX24 16.39 17.21 FLX24

FLX31 24.45 24.02 FLX31

FLX27 20.17 21.02 FLX27

FLX24 17.66 19.45 FLX24

FLX27 22.2 23.04 FLX27

FLX31 26.79 26.09 FLX31

FLX20 15.89 15.86 FLX20

FLX27 19.2 22.0524 FLX27

FLX31 22.77 23.3041 FLX31
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Methods

From CR images taken of both hands, corresponding phalangeal

regions between past and current images should be extracted. We use

U-Net, which is a CNN (Convolutional Neural Network) model for

semantic segmentation, to extract phalangeal regions. Extraction

classes are proximal and media phalanges. The distal phalanges are

not included in this study because bone deformities due to rheumatoid

arthritis are rarely seen. The images used for the training were

manually annotated under the guidance of a radiologist. The hand CR

images are input into U-Net for segmentation of the proximal and

middle phalanges regions. Then, phalangeal region images are gen-

erated by extracting only the region of each phalanges using the mask

image obtained by U-Net.

Pairs of corresponding phalangeal region images between the past

and the current are aligned. We use Geometric-matching CNN [1]

algorithm to estimate geometric transformation parameters. The

images used in this study were taken with the hand and imaging

device in the same position. Therefore, the scale of the phalangeal

region on the image is considered unchanged and alignment is per-

formed by rigid transformation. The output layer of the Geometric-

matching CNN is three-dimensional because the rigid transformation

model needs to estimate three parameters: the rotation angle, and the

translation components and.

The geometric transformation parameters estimated by the CNN

can be interpreted as simply an approximation or initialization to the

optimal deformation [2]. Therefore, after initial alignment by Geo-

metric-matching CNN, the weight parameters of the CNN model can

be improved by using instance-specific optimization [2]. We input the

initially aligned image pairs again to the Geometric-matching CNN

and independently fine-tune the parameters using gradient descent.

The fine-tuning of the parameters is accomplished by minimizing the

MSE (Mean Squared Error) between the past and current phalangeal

region images.

Results

We experimented with segmentation and registration. In the experi-

ment of segmentation, we used 202 hand CR images divided into right

and left hands in 101 cases and evaluated by fivefold cross validation.

Figure 1 shows an experimental result. In Fig. 1a, b show original,

deformed phalangeal region and (c) shows a fusion image which is

obtained temporal subtraction image by image registration, respec-

tively. IoU (Intersection over Union) and mIoU (mean Intersection

over Union) were used as evaluation metrics. Segmentation of the

phalangeal region by U-Net resulted in IoU of 0.949 for the middle

phalanges, IoU of 0.957 for the proximal phalanges, and mIoU of

0.953.

In the experiment of registration, we used 560 phalangeal region

images generated by U-Net. However, it is difficult to evaluate

accurate registration with real data consisting of pairs of past and

current images due to bone deformation and other factors. Therefore,

we evaluated the synthetic data. The synthetic data was generated by

randomly applying rotation of - 15 to 15 degrees and translation

of - 10 to 10 pixels to the phalangeal region image. The Dice score

was used as the evaluation metric. The proposed method used

gradient descent for 50 iterations on each test pair. The proposed

method was compared with the previous registration methods, Geo-

metric-matching CNN without instance-specific optimization, SIFT

(Scale-Invariant Feature Transform) and GA (Genetic Algorithm).

Experimental results show that the proposed method achieves a Dice

score of 99.0%, outperforming Geometric-matching CNN without

instance-specific optimization, SIFT and GA by 5.5%, 3.6% and

3.2%, respectively. In addition, the computational time of the pro-

posed method is fast, less than 1 s using a GPU.

Conclusion

We propose a temporal subtraction method for phalangeal CR images

using U-Net and Geometric-matching CNN with instance-specific

optimization. The proposed registration method outperforms the

accuracy of previous methods. The temporal subtraction images

created by the proposed method may be useful for radiologists in

detecting interval changes on CR images.
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Purpose

Preoperative assessment of lung cancer invasion and adhesions to the

mediastinum is crucial for determining the appropriate surgical pro-

cedure. Although previous studies have reported that four-

dimensional (4D) computed tomography and magnetic resonance

imaging can effectively assess the invasion and adhesions in lung

cancer, neither can be implemented as a routine protocol because of

their high cost and limited availability [1]. Dynamic chest radiogra-

phy (DCR) is a recently developed, low-cost, low-dose functional

X-ray imaging method that uses a flat-panel detector (FPD) to eval-

uate the pleural invasion and adhesions in lung cancer based on

motion information during respiration [2]. Several approaches, such

as dual energy subtraction and deep learning-based bone suppression

image processing techniques, have been implemented in clinical

practice to improve the detection of lung nodules by reducing bone
Fig. 1 Experimental Result: a original, b deformed phalangeal

region, and c fusion image
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shadows. However, deep learning-based mediastinum suppression

(MS) technique has not been developed, because it is not technically

possible to collect large datasets of paired images with and without a

mediastinum in clinical images. Therefore, we focused on a 4D

extended cardiac-torso (XCAT) phantom. The XCAT phantom flex-

ibly generates realistic virtual patients using defined structures and

parameterized models for cardiac and respiratory motions. We believe

that two-dimensional projection images of the XCAT phantom with

and without a mediastinum can be used to train and validate a network

model that enables the MS technique. This study aimed to develop a

deep learning-based MS technique using a training dataset created

from an XCAT phantom with and without a mediastinum as well as

assess its usefulness in evaluating pleural invasion in lung cancer on

DCR.

Methods

Phantom preparation: A total of 22 XCAT phantoms with heart rate

of 60 beats/min; forced breathing, 10 breaths/min; diaphragm motion,

4 cm; and body mass index, 22–30 kg/m2 were generated using the

XCAT program (male:female ratio, 16:6). The XCAT phantoms

consisted of 150 respiratory phases in 10 s to simulate 15 frames per

second (fps) imaging of a real DCR. A tumor sphere of 30 mm in

diameter was randomly inserted around the mediastinum in the lungs.

The XCAT phantoms without the mediastinum structures, such as the

pericardium, aorta, and esophagus, were also used to produce a per-

fect projection image without the mediastinum.

Creation of projection images: The XCAT phantoms were projected

using the X-ray simulator set to model a dynamic FPD system

(PaxScan, 4343CB, Varian Medical Systems, Inc.) having the same

imaging geometry and conditions as those of actual DCR (100 kV;

0.2 mAs/frame; 15 fps; and source-to-detector distance, 2.0 m). Vir-

tual imaging was performed in the posteroanterior direction, and 150

respiratory phases of projection images were obtained for each XCAT

phantom. In total, 3300 paired projection images with and without a

mediastinum were obtained. The matrix size, pixel size, and grayscale

range were 1024 9 1024, 417 9 417 lm2, and 32 bits Real,

respectively. The image histogram was matched with that of actual

DCR images, and the resulting images were then rescaled into 8-bit

grayscale images in the PNG format.

Network training and creation of MS images: In this study, 2400

paired projection images with and without a mediastinum created

from 16 XCAT phantoms were used for training, while 900 projected

images with a mediastinum created from 6 XCAT phantoms were

used for testing. The generative adversarial network’s pix2pix model

was trained to estimate synthetic images consisting only of medi-

astinum structures from the original image. The test dataset was input

to the trained generator to obtain a mediastinum image, which was

subtracted from the original images to create an MS image (Fig. 1).

The resulting MS images were evaluated based on the structural

similarity index measure (SSIM) to assess their similarity to the

corresponding projection images of the XCAT phantom without

mediastinum, i.e., GS images, and on the peak signal-to-noise ratio

(PSNR) to assess the reproducibility of the obtained MS images rel-

ative to the GS images.

Motion tracking of lung tumor: The kernelized correlation filter

tracking function of OpenCV (version 3.4.2) was used to track the

simulated tumor automatically in both the original and MS images.

The trajectories were compared to the trajectories tracked on the

projected images of the tumor without a background, which was the

ground truth (GT) in this study. The root mean squared error (RMSE)

was calculated to assess the accuracy of tumor tracking on the MS

images.

Results

The MS technique could selectively suppress the mediastinum sha-

dow in any test dataset. The MS images of the XCAT phantoms

showed a low PSNR (20.4) and SSIM (0.837). The means ± standard

deviations of RMSE in the horizontal, vertical, and oblique directions

were 0.195 ± 0.436, 16.2 ± 11.5, and 16.3 ± 11.4 for the original

images and 1.12 ± 0.920, 7.38 ± 3.85, and 7.51 ± 3.87 for the MS

images, respectively. In the original images, the mediastinum shadow

caused a tracking error. However, no significant errors were observed

in any frame of the MS images. The trajectory of the motion target on

the MS images was almost the same as the GT, while that on the

original images deviated from the GT because of the mediastinum

shadows. These results indicate the feasibility of deep learning-based

MS in DCR to allow precise motion tracking of lung cancer and

evaluate pleural invasion. Further studies are required to verify the

usefulness of the proposed method for application in clinical cases.

Conclusion

We developed a deep learning–based MS technique to evaluate the

pleural invasion in lung cancer on DCR. The proposed MS technique

improves the tracking performance of lung tumors around and/or

behind the mediastinum on DCR. Furthermore, this study demon-

strates that simulated images work effectively in deep learning

models, which would facilitate the research and development of deep

learning-based image processing.
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Fig. 1 Improved accuracy of tumor tracking on generated medi-

astinum suppression (MS) images compared to original images (ROI
region of interest, MS mediastinum suppression, GT ground truth)
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Purpose

Microvascular decompression (MVD) is a surgery to relieve abnormal

compression of a cranial nerve causing trigeminal neuralgia, glos-

sopharyngeal neuralgia, or hemifacial spasm. In this regards, precise

preoperative segmentation of abnormal nerve together with sur-

rounding vessels in multi-modal images is crucial for surgical

planning. Abnormal nerve and vascular are typical vessel-like struc-

tures, which occupy a wide area and require segmentation of sharp

edges, thus it presents a great challenge in segmentation. In three-

dimensional (3D) medical imaging, the distribution of the edge and

non-edge voxels of the vessel-like structure is typically very unbal-

anced since the majority of the voxels are non-edge, making it

difficult to identify sharp edges. Consequently, the extraction of edge

part should be particularly emphasized. On the other hand, existing

methods rarely combine different modalities in abnormal nerve and

vessel segmentation, while they can provide more detailed features of

different structures in different modalities required by preoperative

spatial relationship analysis of nerve and vessel.

Methods

In our setting, two MRI modalities (T2 and TOF) are available and

provide different contrast levels. Our proposed method consists of a

bimodal path and a unimodal path with only T2 modality to acquire

the general features and the most relevant features, respectively. We

introduce an attention-based strategy to discover and better preserve

the spatial edge information within each modality and a mutual

information-based co-training strategy to retain the rich mutual

information between two paths. In order to achieve satisfying seg-

mentation performance, the skeleton and the edge parts of vessel-like

structures should be emphasized equally. Inspired by the reverse edge

attention module in [2], we introduce an attention-based strategy to

strengthen the ability of context perceiving as well as edge infor-

mation discovering. By deleting the estimated object areas from the

high-level side-output characteristics, it is inserted between adjacent

layers of the encoder to uncover the edge information, progressively

exploiting complimentary regions and details. Co-training approach

has been applied to tasks with multiple views, where each view is

independently trained and provides complementary information. In

our setting, two MRI modalities (T2 and TOF) are available and

provide different contrast levels. Here, we construct a bimodal path

and a unimodal path with only T2 modality to acquire the general

features and the most relevant features, respectively. We introduce

modality-mutual knowledge transfer learning to allow efficient

mutual information interaction between two paths to promote the

unimodal path to learn from the bimodal path and adds necessary

guidance and regularization to bimodal path.

Results

We perform experiments on our in-house dataset consisting of 100

MRI scans with two modalities: (1) T2-weighted and (2) Time-of-

Flight (TOF) MRA volumes. Each of these modalities capture three

main structures: brainstem, abnormal vascular and nerve. We com-

pared our method with current SOTA method for MVD-related

structure segmentation [1], both are (re)implemented on the nnUNet

framework. To the best of our knowledge, this is the first work that

employ bimodal MRI to achieve brainstem, abnormal vascular and

nerve segmentation. Experimental results presented in Table 1

demonstrate that our method can achieve better performance in all

three targets, and improves significantly in abnorml nerve which is the

hardest to segment. Segmentation results are shown in Fig. 1. Both

methods can detect brainstem and most major vessels, but [1] per-

formed poorly in identifying the continuity of thin vessels and the

presence of irregular nerves. In contrast, our proposed method

achieved better segmentation results in maintaining the vessel conti-

nuity and reduce false-positive results. For quantitative results, our

method achieves better scores in DSC and Jaccard, indicating the

superior performance in the overall segmentation results, lower AHD

indicates our proposed method has better classification ability of edge

part voxels.

Conclusion

In this work, we presented two effective modules, namely a reverse

edge attention module to discover edge part and preserve the spatial

edge information and a co-training strategy between unimodal path

and bimodal path to align feature distributions between modalities.

Experimental results demonstrate the proposed method can outper-

form the SOTA. However, considering that each modality can provide

information for each target of varying uncertainty, our immediate

Table 1 Segmentation performance of comparison methods

Methods DSC HD Jaccard

BS CV CN BS CV CN BS CV CN

[1] 0.909 0.689 0.542 1.414 5.817 8.819 0.907 0.601 0.271

Proposed 0.912 0.722 0.616 2.738 5.000 7.382 0.860 0.677 0.607

BS brainstem, CV cerebrovascular, CN cranial nerve

Fig. 1 Visualization of the segmentation results. The two rows

represent the 3D rendering of two segmentation volumes. From left to

right in each column: ground truths, segmentation results of the

proposed method and [1]
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plan is to focus on utilizing the uncertainty when fusing information

from different modalities.
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Purpose

Accurate evaluation of sarcopenia, or decrease of the body muscle

volume, is important in the assessing and predicting the health status

of patients. In this study, a fully automated segmentation method for

abdominal wall muscles in the cross-section at the 3rd lumbar ver-

tebra (L3) or the 1st lumbar vertebra (L1) levels in CT images.

Methods

Two U-nets with residual convolutional network components were

used in this study. The two U-nets share the network architecture

(Fig. 1).

First, frontal and lateral maximum intensity projection images and

also frontal and lateral mean intensity projection images of the input

CT volume are created. There four images are inputted to the first

U-net, and the cross-sectional line of the body on L3 (or L1) level is

detected. In the training, the inputted ground-truth label was the

corresponding (i.e., frontal or lateral) projection of the final ground-

truth segmentation label of the abdominal muscle in the target (e.g.,

L3) level slice. In the test, the outputted likelihood images (the frontal

and lateral images) were summed up along x- or y-axis, and the slice

with the maximal sum likelihood was selected as the output.

The L3 (or L1) level detection are slightly improved using another

DenseNet-based slice-wise detector. In detail, the detected L3 slice

and ± 4 slices above and below the detected slice are inputted to the

DenseNet-based slice-wise detector and the slice with the highest

output likelihood value is selected. This two-stage vertebral cross-

sectional slice detection scheme imitates the detection manner of

radiologists who firstly detect the target vertebra roughly in the (for

example) scout image or the mid-sagittal cross-section, then refine the

level by checking neighbor slices in axial images.

After the level determination, the detected cross-sectional CT slice

is inputted to the second U-net (for segmentation) and the final seg-

mentation result is outputted. Additionally, the fat region areas of the

outer (subcutaneous) and the inner (visceral) areas were automatically

calculated.

The training was performed with 127 CT volumes which has

various sizes of field of view and imaging range. Although most of

cases were with intravenous contrast agent, some cases were plain

CT. Board-certificated radiologists manually inputted the ground truth

muscle area in the L3 and L1 level cross-section. The loss function

used was Dice loss for both U-nets and binary labels for the Dense-

Net. The training for L1 and L3 was performed separately, thus finally

we trained six models (three for each vertebra).

The test was performed with the other 100 CT volumes. The

evaluation was performed for both the slice detection and the Dice

score in the selected slice (between the automatically segmented

muscle mask and the manually imputed true label binary image). Note

that the calculation of Dice score was performed even when the slice

detection was failed.

Results

The slice determination accuracy (mean absolute difference of slice

position) was 1.02 ± 1.92 slices (mean ± standard deviation), and

the mean similarity (Dice coefficient) between the hand-made and

automated region of interest was 0.830 ± 0.108 for the L3 vertebra

level. For L1 vertebra level, the slice determination accuracy was

0.92 ± 2.32 slices the Dice score was 0.843 ± 0.080. These results

are comparable to those of Pickhardt et. al. [1], in which slice

detection error was 1.41 ± 5.92 slices and Dice score was

0.96 ± 0.02. Another previous study [2] reported slice selection error

was 1.41 ± 5.02 and Dice score was 0.96 ± 0.02. In comparison, the

stability and robustness of our system for detecting the L3 vertebra

level were proven. On the other hand, the Dice score was inferior to

other two studies.

Fig. 1 Outline of the proposed method
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Conclusion

A fast, accurate and robust sarcopenia evaluation tool was presented.

Our automatic system has a sufficient accuracy, and it is ready to be

used for sarcopenia analysis with a large cohort.
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Purpose

Compared to MRI and CT, ultrasound has the advantage of being able

to visualize the internal structures of the body noninvasively and in

real time, regardless of the location. On the other hand, ultrasound

diagnosis requires operator skill in acquiring diagnostic images and is

prone to variations in the measurement of feature values due to

operator habits. In particular, it is extremely difficult for unskilled

operators to distinguish the inferior vena cava (IVC) from the

abdominal aorta, and even skilled operators are prone to variations in

the measurement of the internal diameter in the same cross section

due to their own habits.

Based on the above, the purpose of this paper is to propose a new

image processing method to easily identify the IVC from the

abdominal aorta and to measure the time series of the inner diameter

in the same cross section[1] without operator’s habitual errors by

using deep learning technology.

Methods

Figure 1 shows an overview of the newly proposed method to identify

the IVC from the abdominal aorta and to measure its inner diameter in

the same cross-section. Specifically, first, the IVC is identified from

the abdominal aorta with the aid of YOLACT[2], and segmentation is

performed together with the liver. Since the IVC and abdominal aorta

are parallel, the above two vessel images can be alternately switched

and displayed by manipulating the probe in the elevation direction.

Using this, the probe is operated to switch the above vessel images

until the displayed vessel is identified from the abdominal aorta and

identified as the IVC.

Next, the inner diameter of the IVC is measured in a straight line

approximately perpendicular to the IVC, passing through the center of

gravity of the liver identified from the segmentation results. Here, we

take advantage of the fact that the liver and IVC operate in a similar

manner.

Results

The results of the IoU and Dice coefficients are shown in Table 1. The

goal of this study was to measure the internal diameter of the IVC in

real time, and we believe that YOLACT is effective because it can

detect the IVC in more than 60% of cases and because YOLACT is

excellent for real-time segmentation. Some of the images show proper

internal diameter measurement, while others do not. The accuracy

was 3.30 (mm). The images that failed were those in which the

segmentation failed. We believe that the number of failures will

decrease as the accuracy of the segmentation is improved.

One point for improvement is that the blood vessels are measured

perpendicular to the image. In the actual inspection, the measurement

is made perpendicular to the blood vessels, so improvement is nec-

essary in the future. Fps was about 18. Since the fps of the probe is

about 15, there is no problem with real-time performance.

Conclusion

In this study, we evaluated the accuracy of the segmentation of the

target organ and the accuracy of the measurement of the internal

diameter. In the future, we would like to construct a system that

measures perpendicularly to the internal diameter of the IVC and

improve the accuracy of segmentation and internal diameter

measurement.

Fig. 1 Proposed method
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Purpose

This paper proposes an end-to-end cascaded enhance-and-segment

framework to improve blood vessel segmentation result from dis-

sectingmicroscopic images of cranial windows. Cranial window

allows the cortical vasculature to be easily visualized by dissecting

microscope. Dissecting microscope, also known as a stereomicro-

scope, allows long-term and real-time imaging and observation of

non-sectioned samples. Many disease experiments are performed in

the cortical vessels of mice’s cranial windows. The changes in the

blood vessels and the manipulation of the vessels play a key role in

these experiments.

With the development of medical image processing, it is expected

to utilize dissecting microscopic images to develop an automated

system that can automatically perform automatic manipulation and

structure extraction of blood vessels in the cranial window. However,

the problems of low contrast and noise in dissecting microscope

images make blood vessel segmentation from dissecting microscope

images become difficult.

Therefore, in this paper, we propose a cascaded enhance-and-

segment framework to improve blood vessel segmentation result in

low-quality (LQ) dissecting microscopic images of cranial windows

by using synthesized high-quality (HQ) images. Compared with LQ

images, HQ images have higher contrast and contain less noise. In

addition, compared with LQ images, blood vessels are easier to be

observed and extracted from HQ images. The implementation of

segmentation of blood vessels in dissecting microscope images can

help the robot and researcher can easier localize the position of blood

vessels in cranial windows.

Methods

Overview

Our proposed cascaded enhance-and-segment framework includes

two parts: (1) HQ image generation network and (2) Blood vessel

segmentation network as shown in Fig. 1. The input of the cascaded

framework is noisy, low-contrast LQ microscope images amd the

output is a segmentation result. In the following, we describe our

framework in detail.

Image Enhancement and Denoising Based Image Generation Method

(U-Net 1)

We follow the U-Net [1] generator of the Pixel2pixel [2] as our image

enhancement and denoising network to synthesize HQ images from

LQ images. Compared to the Pixel2pixel, we don’t use the discrim-

inator in our framework, because the subsequent segmentation

network (U-Net 2) provides feedback to the U-Net 1 and make syn-

thesized HQ images more beneficial for vessel segmentation. In the

training phase of the U-Net 1, to enhance contrast and denoise dis-

secting microscopic images, we use LQ images as input and HQ

images as the ground truth. We use L1 loss as the loss function to

train the enhancement and denoising network. In the testing phase,

3-channel LQ images are input U-Net 1 and its outputs is 3-channel

synthesized HQ images.

Table 1 Segmentation performance results

Major-ivc Aorta Major-liver Liver-aorta

IoU 0.641 0.066 0.88 0.781

Dice 0.727 0.08 0.936 0.87

Fig. 1 Upper half: proposed end-to-end cascaded enhance-and-

segment framework. Lower half: qualitative results of image

enhancement and segmentation
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Blood Vessel Segmentation in Dissecting Microscopic Images Based

U-Net (U-Net 2)

In our work, we used a shallow U-Net (some layers are removed from

the original U-Net [1]) as our blood vessel segmentation network. The

schematic illustration is shown in Fig. 1. The input of the U-Net is a

6-channels image which is obtained by combining a 3-channels LQ

image and a 3-channels synthesized HQ image. The output of the

U-Net is a binary image. In the training phase of the U-Net 2, we use

the Dice as a loss function to train the segmentation network. In the

testing, 3-channel LQ images and 3-channel synthesize HQ images

are combined and input to the shallow U-Net (U-Net 2) to segment

blood vessels in microscopic images.

Results

Dataset

69 raw LQ-HQ stereomicroscopic image pairs of pixels were taken by

an experienced researcher using a camera on the single eyepiece of a

Leica S9D dissecting microscope (stereomicroscope). HQ images are

taken at 9 5 magnification, and LQ images are taken at 9 1 mag-

nification. For training, we registered HQ and LQ images using affine

transformation with the SURF feature. Then we cropped LQ region

corresponding to the field of view of HQ images and enlarge cropped

LQ images to the same size as HQ images which means cropped LQ

image is enlarged by 5 times. Therefore, we obtained 65 HQ-LQ

paired images with the size of 1792 9 1792 pixels as our dataset for

generator (U-Net 1). For segmentation, the ground truths were made

manually by annotating at the pixel-level.

Because of computation resource limitations, we resized the

images to size of 1024 9 1024 pixels and cropped patches with a size

of 256 9 256 as input of our cascaded network for training and

testing. Additionally, we conducted a five-fold cross-validation

experiment. Each fold contained 13 images, four were used for

training and one for testing.

Quantitative and qualitative results

As shown in the lower half of Fig. 1, our framework could synthesize

HQ images. In addition, to verify that the synthesize HQ image can

improve the segmentation result as part of the input, we compared

results of our cascaded framework and the shallow U-Net (only

performsegmentation) in our microscopic dataset. The segmentation

results had better performance and especially had better connectivity

for some blood vessels, compared to using only the shallow U-Net as

shown in Fig. 1. We used the accuracy, sensitivity, specificity, Dice,

and clDice measures to quantitatively evaluate the segmentation

results. As shown in Table 1, our cascaded framework had better

quantitative results than the shallow U-Net in our microscope image

data. Compared with the shallow U-Net, Dice and clDice score of our

framework were improved by 0.35% and 0.59% respectively.

Conclusion

We proposed an end-to-end cascaded enhance-and-segment frame-

work to improve blood vessel segmentation result in dissecting

microscopic images of cranial window. The experimental results

showed that our proposed method could obtain better vascular seg-

mentation results than training the segmentation network using only

low-quality data as input. In the future, we will further improve the

vascular segmentation results by improving the network structure and

the cascade training loss function.
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Purpose

Micro-computed tomography (micro-CT) is an X-ray-based imaging

modality that obtains detailed three-dimensional information on the

internal structure of a target object. This technology has recently been

applied to in-vivo small animal imaging in preclinical studies because

micro-CT enables us to perform noninvasive imaging. However,

respiratory motion for living small animals causes motion artifacts

(blurring) on reconstructed images.

To cope with the severe artifacts, some researchers have proposed

retrospective respiratory gating methods that collect the subset of

intensity data for each respiratory phase. Hu et al. [1] discriminated

respiratory phases using the total intensity value of the region of

interest (ROI) set on all intensity data. In addition, a retrospective

respiratory gating system using the average intensity value of ROI has

been implemented in a commercial micro-CT scanner [2] (CosmoS-

can GX (Rigaku Corp., Tokyo, Japan)). This system is effective for

the stable respiratory cycle; however, this system is less effective in

shallow and abnormal breathing cases. In this study, we proposed a

robust respiratory gating method that is applicable to various respi-

ratory cycles and abnormal breathing cases.

Methods

The proposed method consists of three steps: (1) motion gating signal

extraction, (2) determination of projection angles to be used, and (3)

Table 1 Cascaded framework had better quantitative results than the shallow U-Net in microscope image data

Method Accuracy (%) Sensitivity (%) Specificity (%) Dice (%) clDice (%)

Shallow U-Net 92.55 ± 0.54 76.38 ± 2.45 95.76 ± 1.02 77.29 ± 1.93 76.92 ± 2.09

Cascaded framework (ours) 92.67 ± 0.53 76.60 ± 2.37 95.88 ± 1.10 77.64 ± 1.80 77.51 ± 1.71
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reconstruction. Figure 1 shows an outline of the proposed method. A

detailed description of each method is presented below.

Motion gating signal extraction: Let us define all intensity data as

I(x,y,h). Here denotes spatial coordinate of image and denotes the

projection angle. We manually set a rectangle ROI around the dia-

phragm at the same location for all intensity data and calculate the

average intensity value, IROI(h). This intensity waveform includes the

respiratory and heart movement. For example, when the average

intensity value decreases, the proportion of air decreases, indicating

an expiration process; conversely, when the average intensity value

increases, the proportion of air increases, indicating an inspiration

process. This intensity waveform is used as a motion gating signal.

Determination of projection angles to be used: Inspiration and

expiration phases to be used for reconstruction are determined from

IROI(h). First, as IROI(h) includes a projection angle-oriented sine

wave trend as shown in Fig. 1a, it is removed by applying a high-pass

filter. We call the filtered signal IROI,HP(h). Then, its smoothed ver-

sion, IROI,HP,MA(h), is also calculated by moving average technique

with a proper width over one respiration cycle. In the proposed

method, as inspiration phase we extract projection angles satisfying

the following conditions: IROI,HP(h) has the local maximum and is

greater than IROI,HP,MA(h). Similarly, as expiration we extract pro-

jection angles satisfying the following conditions: IROI,HP(h) has the

local minimum and is smaller than IROI,HP,MA(h). Finally, outliers in

IROI,HP(h), which refer to abnormal breathing, are removed by a

threshold value computed by considering the overall waveform.

We compared the performance of the proposed method with the

previous method [2] implemented in commercial micro-CT

(CosmoScan GX). To verify the applicability of the proposed method

for various respiratory cycles, we applied the proposed and the pre-

vious methods to two respiratory cycle data: approximately 1 s (1 s

respiration case) and approximately 0.4 s (0.4 s respiration case),

which is shorter than usual. The specimens used for the experiments

were two 10-week-old adults Wistar rats. We qualitatively evaluated

the adequateness of projection angle selection as well as reconstruc-

tion image quality of 1 s respiratory case.

Results

For 1 s respiration case, both methods collected projection data for

inspiration and expiration phases adequately. For 0.4 s respiration

case, on the other hand, the proposed method succeeded in collecting

the subset of projection data for inspiration and expiration phases

stably, whereas the previous method failed. The previous method used

a band-pass filter in the frequency domain to extract respiratory signal

from the motion gating signal. However, since the range setting of the

band-pass filter is fixed, the respiratory signal is out of range when the

case of a rodent whose respiratory cycle is shorter than usual. The

experimental results demonstrate that the proposed method is more

robust for various respiratory cycles and abnormal breathing cases.

In terms of the reconstructed image, there is little difference

between the proposed and previous methods in the inspiration phase.

However, in the expiration phase, the proposed method reconstructed

CT images with less blur compared to the previous method.

Conclusion

We proposed a respiratory gating method that collects the subset of

projection data for inspiration and expiration phases using the motion

gating signal. Experimental results show that the proposed method

could collect the subset of projection data more stable than the pre-

vious method.
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Purpose

Gradient non-linearity is known to be one of the causes of the

apparent diffusion coefficient (ADC) bias in diffusion-weighted

magnetic resonance imaging (DWI) [1]. A correction software is

recently available in a commercially available scanner. This study

aimed to evaluate the correction software for the ADC bias induced

by gradient non-linearity using an ice water phantom in breast DWI.

Methods

An ice water phantom shows a known ADC value of 1.1 9 10-3

mm2/s at 0 �C [2]. The phantoms simulated bilateral breasts con-

structed from 1.5-L cylindrical plastic bottles with a 120-mm

diameter. Five plastic tubes with a 100-mm long and 15 mm diameter

filled with distilled water were set at the center, upper, right, bottom,

and left positions into the plastic bottles filled with an ice-water bath.

The longitudinal axis of the tube was aligned perpendicular to the

main field and separated by about 30 mm from each other.

The magnetic resonance scanner used for data collection was a

3.0 T whole-body scanner (Ingenia 3.0 T CX, Philips Healthcare,

Best, the Netherlands) with a dedicated 16-channel bilateral breast

coil (dStream Breast 16ch coil, Philips Healthcare, Best, the

Netherlands). The scanner has a maximum gradient amplitude of 45

mT/m and a slew rate of 200 mT/m/ms. Echo-planar imaging

sequence was used for DWI acquisition and the following parameters

were used: repetition time, 10,000 ms; echo time, shortest; flip angle,

Fig. 1 Outline of the proposed method. a Extraction of motion gating

signal from all intensity data. b Determination of projection angles to

be used
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90 degrees; b-value, 0 and 800 mm2/s; bandwidth, 2025 Hz/pixel;

field of view 350 mm, EPI factor, 65; scan time, 120 s; number of

excitations, 2; slice orientation, axial; motion probing gradient, three

orthogonal directions. Correction software named ‘‘ADC correction’’

can be selected in the mode, on/off in DWI acquisition. Five data

were acquired for each correction mode.

The ADC maps were generated with mono-exponential fitting

using b = 0 and b = 800 images on the scanner console and trans-

ferred to and analyzed with the SYNAPSE VINCENT (Fujifilm

Medical Co., Ltd., Tokyo, Japan). The ADC analysis was performed

at three slices (center slice, 30-mm superior slice, and 30-mm inferior

slice) for each ADC map. The 4 9 4 square region of interest (ROI)

was manually set at the center of each tube to prevent the image

artifact. The mean ADC in the ROI was recorded. ADC bias was

defined as the relative percentage difference of ADC from that of

1.1 9 10-3 mm2/s.

ADC bias was evaluated in the anterior–posterior (AP), right-left

(RL), and superior-inferior (SI) directions. Two ROIs were set at ±

25-mm away from the center ROI in the central tube to evaluate the

ADC bias in the AP direction. ADC bias in the RL direction and SI

direction were evaluated using ADC of the center, right, and left tubes

and the center, upper, and bottom tubes, respectively.

Results

ADC bias was observed in the RL directions. ADCs at the outermost

tubes for each phantom were about 5–6% higher than that of

1.1 9 10-3 mm2/s. The ADC correction software improves the ADC

bias at the off-center position; however, Fig. 1, ADCs after correction

were slightly lower than that of 1.1 9 10-3 mm2/s. ADC bias was

also observed in the SI direction; however, the correction software did

not improve the ADC bias and caused about a 2–3% decrease on

average. In the AP direction, the evident ADC bias was not observed

and ADCs after the correction decreased by about 3% as well as in the

other directions.

Conclusion

Our correction software improved the ADC bias in the RL directions;

however, the systematical decrease of ADC was observed after the

correction.
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Purpose

Transcatheter arterial chemoembolization (TACE) is a widely

accepted locoregional therapy for patients with unresectable hepato-

cellular carcinoma. Intraoperatively, the surgeon uses digital

subtraction angiography (DSA) to visualize blood vessel structure,

blood flow, and tumor location. DSA images are generated by sub-

tracting the images before and after contrast agent injection (we call

them mask image and contrast image in this summary). To obtain

clear DSA images, patients need to hold their breathing during DSA

acquisition to avoid artifacts due to respiratory motion. However,

most patients for TACE are elderly and have difficulty in holding

their breathing. Therefore, the acquisition of DSA images under

natural respiration is required.

Previously, our group proposed a respiratory phase matching

method for respiratory-synchronized DSA acquisition under natural

respiration [1]. In that method, a set of contrast images covering a

respiration cycle are captured preoperatively and then subtraction is

performed between arbitrary target intraoperative image without

contrast agent and the contrast image which is most similar to the

target image. In this technique, however, the artifacts tend to appear

due to the insufficient respiratory phase matching between contrast

and mask images or the organs’ movement unrelated to the

respiration.

In this paper, we propose a different subtraction scheme and also

modify our previous method. First, we assume that a set of mask

images covering at least one respiration cycle are captured prior to

live imaging with contrast agent. Next, as modification of the method,

the image matching between for each live image (contrast image) and

a set of mask images is performed on the basis of patch or sub-block.

Methods

The proposed method consists of the following three steps. Let (M1,

M2, …, MS) [ RS9H9W represent a set of mask images covering one

respiratory cycle which are acquired preoperatively. Here S represents

the number of images in the set, and H and W represent the height and

width of each image, respectively. Furthermore, let C [ RH9W rep-

resent a certain contrast image during live image acquisition.

Step 1. For the image C and all images M, we split each image into

sub-blocks with the size of H/N 9 W/N pixels, generating sub-blocks

{c191, …, ci9j, …, cN9N}and {(m1
191, …, m1

i9j, …, m1
N9N), (m2

191,

…, m2
i9j, …, m2

N9N), …, (mS
191, …, mS

i9j, …, mS
N9N)}. Parameter

Fig. 1 The ADC bias in the RL direction. The blue and orange bar

indicate ADC bias without and with correction, respectively. Our

correction software improves the ADC bias, especially at the off-

center positions
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N is the number of patch splits in each direction, and (i, j) represents

the location of the sub-block (i, j = [1, N]). We select the mk
i9j with

the highest similarity to each ci9j from {m1
i9j, m

2
i9j, …, mS

i9j} using

a pattern matching technique. Zero normalized cross-correlation

(ZNCC) is used as a similarity measure.

Step 2. Fine tuning is performed in this step. Let mk
i9j be the sub-

block selected as the most similar to ci9j in Step 1. In step 2, we

search for a more similar sub-block than mk
i9j by shifting two

dimensionally in the sub-block area in Mk. The downhill simplex

method is used for this search.

Step 3. We repeat the above process for all sub-blocks and generate

whole DSA images. In addition, we perform brightness correction for

all sub-blocks when a sub-block has extremely different brightness

compared to the surrounding sub-blocks.

We conducted comparative experiments using contrast and mask

images obtained from 11 patients in Chiba University Hospital. We

generated DSA images by the simple subtraction with a fixed mask

image (conventional method), the previous method (Ohnishi et al.

[1]), and the proposed method. The image size, H 9 W, was

512 9 512 pixels, with 8-bit pixel depth. The frame rate of both

contrast and mask images was 5.0 frames per second. The number of

a set of mask images, S, was approximately 30. We set N be 10.

Results

Figure 1 shows DSA images and zoomed images generated by each

method. The previous method visualized blood structure clearly, but

some artifacts remained in bone and intestinal tract regions. The

proposed method, on the other hand, suppressed artifacts around

them. We confirmed that the proposed method achieved superior

performance than the previous method for all cases.

Conclusion

We proposed a patch-based respiratory phase matching method for

DSA under natural respiration. The experimental results demonstrated

that the proposed method effectively suppressed artifacts compared

with the previous method. For improvement of image quality, the

choice of similarity measure and the way of brightness correction will

be further investigated.
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Purpose

Accurate and quantitative assessment of 3D dynamic knee kinematics

under in vivo conditions is very important for diagnosis, treatment,

and surgical planning of various joint diseases and dysfunction. For

artificial knee implants, to achieve 3D measurement of the dynamic

kinematics, 2D/3D registration techniques which use X-ray fluoro-

scopic images and computer-aided design model of the implants have

been applied to clinical cases. These fluoroscopy-based techniques

have also been applied for motion measurement in knee joints without

implants, where 3D bone models created from CT or MRI images are

utilized. In most conventional techniques, however, the 3D knee

kinematic measurement process requires some manual operations (for

example, setting the region of interest in knee joint images, and set-

ting initial pose for 2D/3D registration, etc.) and is still labor-

intensive and time-consuming work.

In labor-intensive manual operations, to automatically detect and

classify the knee joint (femur, tibia/fibura and patella) from X-ray

fluoroscopic image is very important and meaningful. Such an auto-

matic detection of the knee joint is thought to be also useful for

improving the accuracy of 2D/3D registration. In this study, therefore,

we present automated detection methods of knee joint from X-ray

fluoroscopic images using deep learning. In addition, we validate the

accuracy of 2D/3D registration using the detected each knee image

under in vivo conditions.

Methods

In this study, for detection and classification of knee joint (femur,

tibia/fibura and patella) from X-ray fluoroscopic images based on

deep learning, two object detection methods, single shot multibox

Fig. 1 DSA images and zoomed images generated by the conven-

tional method, the previous method, and the proposed method

Fig. 1 Pose estimation of each knee bone model using intensity-

based 2D/3D registration
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detector (SSD) and you only look once (YOLO) were utilized. In

addition, for pose estimation of femur, tibia/fibura and patella from

the detected each knee image, an intensity-based 2D/3D registration

technique [1] was utilized (Fig. 1).

In order to investigate the performance of detection and classifi-

cation of each knee joint (femur, tibia/fibura and patella) from X-ray

fluoroscopic images based on deep learning (SSD and YOLO), a total

of 1222 X-ray fluoroscopic images of actual knee flexion movements

(14 cases) were used. All images used were labeled (annotated) with

femur, tibia/fibula, and patella, and the performance was evaluated

with a tenfold cross validation test. The detection accuracy for each

knee joint was determined by calculating the Intersection over Union

(IoU) based on the position estimated by each method (SSD and

YOLO) and the position of the correct value determined in advance

on the X-ray image. In this study, the performance was evaluated

using the detection rate when the IoU threshold was 0.8.

In the accuracy validation of the pose estimation of femur, tib-

ia/fibura and patella using the intensity-based 2D/3D registration,

experiments using actual X-ray fluoroscopic images (one case of knee

flexion movement) were conducted. For the correct pose (reference

data), we used 3D pose data obtained by giving appropriate initial

pose through manual operation and carefully applying the intensity-

based 2D/3D registration. Initial guess poses of each knee bone model

were randomly given from within ± 3 mm and ± 3 degree of the

correct pose. Errors in the 3D pose of the model were determined by

comparing the estimated pose to the known pose (the correct pose).

The translation error in the Z direction (perpendicular to the image

plane) was not evaluated in this experiment because this parameter is

not used in the actual knee motion analysis. In this study, the accuracy

of the intensity-based 2D/3D registration was verified in three cases,

case using the image without preprocessing, case using the image of

regions detected by SSD, case using the image of regions detected by

YOLO.

Results

As results of the detection rate for each knee joint (femur, tibia/fibura

and patella) using each method (SSD and YOLO), the SSD method

showed an extremely high detection rate (almost 100%) for all knee

joints, while the YOLO method showed a slight decrease in detection

rate for the patella (98%).

The results of the accuracy of the intensity-based 2D/3D regis-

tration are summarized in Table 1. The root-mean-square errors are

given for each image case and for each knee bone model. In all cases,

the pose estimation accuracy of the patella was particularly poor.

Conclusion

In this study, with the aim of reducing the labor-intensive and time-

consuming work for the 3D knee kinematic measurement process

based on 2D/3D registration using X-ray fluoroscopic images, auto-

mated detection methods of knee joint (femur, tib-ia/fibura and

patella) from X-ray fluoroscopic images using deep learning (SSD

and YOLO) were presented. In addition, the accuracy of the intensity-

based 2D/3D registration using the detected each knee image under

in vivo conditions was validated.

In the result of experiment for the performance of detection and

classification of each knee joint, the SSD method showed a very high

detection rate (almost 100%) for all knee joints, while the YOLO

method showed a slight decrease in detection rate for the patella. The

reason for this is that YOLO method uses Darknet-53, a network with

a large number of layers, and it is thought that patella with relatively

small shapes lose features during feature extraction, leading to poor

detection.

In the result of experiment for accuracy validation in the pose

estimation of each knee joint using the intensity-based 2D/3D regis-

tration, in particular, the patella was found to be inaccurate and

unstable (see Table 1). While, for the femur and tibia/fibura, the

accuracy was high enough to allow 3D kinematic analysis using

actual X-ray fluoroscopic images, especially when using images of

regions detected by SSD. As a future issue, it is necessary to inves-

tigate various image conditions for the purpose of fully automated 3D

knee kinematic measurement.

Table 1 Root-mean-square errors of pose estimation for each image case and for each knee bone model

Image used Bone model Rotation (�) Translation (mm)

X Y Z X Y Z

Image without preprocessing Femur 1.10 3.94 1.11 0.67 1.14 –

Tibia/fibura 1.92 1.52 1.37 0.48 0.73 –

Patella 5.87 3.67 4.85 1.02 1.82 –

Image of regions detected by SSD Femur 1.12 2.03 1.54 0.80 1.10 –

Tibia/fibura 1.27 0.98 1.17 0.48 0.46 –

Patella 4.20 13.44 9.66 7.18 10.98 –

Image of regions detected by YOLO Femur 1.78 2.26 3.05 0.87 2.52 –

Tibia/fibura 1.25 0.94 1.03 0.42 0.46 –

Patella 4.16 5.55 8.87 1.91 4.58 –
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Purpose

Aortic dissections are the most common cause for emergency oper-

ations at the aorta. Affecting 7 in 100.000 inhabitants they are more

than twice as common as ruptured aortic aneurysms. An aortic dis-

section Stanford Type B is characterized by a proximal entry distal to

the orifice of the left subclavian artery in the descending part of the

aorta. Blood flows through this entry tear into the wall thereby cre-

ating a true and a false lumen separated by the dissection membrane.

The false lumen can grow and eventually compress the true lumen

causing organ and leg malperfusion. The treatment of aortic dissec-

tions requires a lot of experience in distinguishing the true and false

lumen when steering the catheter, since a misplaced stentgraft can be

fatal for the patient.

The goal of our research is to develop a simulator for intervention

training and treatment planning on aortic dissections to provide sur-

geons with patient-specific training opportunities. However, due to

the fragile and complex anatomy, aortic dissection models have been

challenging to manufacture. Previously, only few models were ever

made, mostly using complex silicone injection processes not easily

accessible [1]. Zimmermann et al. [2] showed the possibility to 3d

print a model of an aortic dissection, though their model does not

incorporate abdominal outflows. In this abstract we present a 3d-

printed patient-specific anatomical aortic model including abdominal

branching vessels and a thin, flexible dissection flap. The main goals

were as follows: First, the models should work in a hemodynamic

environment in a physiological pressure range. Secondly, the move-

ment of the dissection flap should be observable via ultrasound.

Thirdly, the model should be suitable for stentgraft placement.

Methods

A CT angiography dataset of a patient with an acute Stanford type B

dissection was selected, it featured one main entry and one main

reentry. The dissection ended shortly above the bifurcation. The aorta

was segmented including the dissection flap and major aortic outflows

(brachiocephalic trunk, left common carotid artery, left subclavian

artery, celiac trunk, superior mesenteric artery, renal arteries, com-

mon iliac arteries). The voxel-based segmentation was then converted

into a 3d-surface-model. After cleanup the patient-specific aortic

model was printed on an industrial Stratasys Objet 500 Connex 3 3D

printer (Stratasys Inc., Rechovot, Israel) using a flexible rubber

material (Tangoplus) which is known to reflect the elastic wall

properties of the aorta. To provide realistic extravascular pressure

onto the model during flow, it got embedded in food grade gelatin

which also provided ultrasound visibility. The model was then con-

nected to a pulse duplicator (Vivitro Labs Inc., Victoria, Canada). In

this first setup the flow and pressure in the system were measured and

the movement of the dissection flap was recorded on five previously

defined positions along the dissected aorta. In a second step an already

deployed stentgraft with a length of 10 cm (CTAG, W.L. Gore &

Associates, Flagstaff, AZ, USA) was manually repackaged using an

inhouse developed, 3d-printed applicator and released inside the

model to cover the main entry. Stentgraft position, flow and

Fig. 1 3d-printed model with released stent
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movement changes of the dissection flap were observed on the pre-

viously defined positions.

Results

With the model connected to the pump via a fluid circuit a systolic

blood pressure between 100 and 110 mmHg was applied. The mea-

sured total average flow was around 5.9 l/min. With a heart rate of

60 bpm all three parameters are well within a physiological range. On

all vessel outlets the individual flow rates were recorded as a baseline

for later comparison.

In the ultrasound the dissection flap was clearly visible and

moving in all five defined positions. True and false lumen were

clearly distinguishable.

For this proof-of-concept study, the model was removed from the

circuit and the stentgraft was successfully released in the true lumen

covering the primary entry and extending close to the left subclavian

artery (see Fig. 1). The model was then reconnected to the pump.

After the intervention the total average flow had slightly dropped

to 5.1 l/min. The ultrasound showed that the stentgraft had displaced

the dissection flap to the aortic wall, thereby compressing the false

lumen and re-extending the true lumen to nearly original size. Right

below the stentgraft, the dissection flap curved back to its former

position. Comparing the flap movement in two measuring positions

below the stentgraft revealed a noticeably more pronounced flap

movement after the intervention, indicating a change in pressures

between the true and false lumen.

Comparing the different outflow volumes was especially inter-

esting for the renal arteries since the left renal artery arose from the

false lumen. Its average flow dropped from 0.61 l/min down to 0.35 l/

min while the right renal artery arising from the true lumen jumped

from 0.29 l/min to 0.7 l/min, further indicating an increased true

lumen and decreased false lumen pressure after the intervention.

Conclusion

Our patient specific model incorporates major outlets of the aorta,

combined with image-based entry and reentry tears and a thin, flex-

ible dissection flap. It works in a hemodynamic environment under

physiologic pressures. A stentgraft was successfully deployed in the

model and changes in dissection flap movement and flow differences

in aortic outlets were observed, reflecting shifts in pressure between

true and false lumen. All in all, our models might enable future

patient-specific intervention training and pre-procedural planning.
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Purpose

Deep Learning is now well established as the most efficient method

for medical image segmentation. Yet, it requires large training sets

and ground-truth labels, annotated by clinicians in a time-consuming

process. We propose an unsupervised segmentation method using

multi-atlas registration. The architecture of our registration model is

composed of cascaded networks that produce small amounts of dis-

placement to warp progressively the moving image towards the fixed

image. Once trained, this model can be used to register multiple

annotated magnetic resonance (MR) fetal brain images with a new

target image, combining the propagated labels to form a refined

segmentation. Our experiments show that our segmentation method

produces results similar to one of the most robust state-of-the-art

segmentation methods, without the need for labeled training data.

Accurate tissue segmentation is a crucial first step in the analysis

of fetal brain morphology, as it allows for the identification of specific

regions of interest that may be affected in cases of abnormal brain

development. Numerous deep learning approaches for medical image

segmentation have been proposed, many of which utilize convolu-

tional neural networks (CNNs) with an encoder-decoder structure,

such as U-Net [2]. Before deep learning techniques became the

dominant method for image segmentation, multi-atlas segmentation

(MAS) was often considered the most accurate approach. MAS

involves the use of multiple atlases, or reference images, which are

registered to the target image and used to guide the segmentation

process. One of the key advantages of MAS is that it can be used in an

unsupervised manner. This is particularly useful in cases where

ground-truth labels are difficult to obtain or where the number of

available training examples is limited. In general, the quality of the

segmentation results is directly related to the accuracy of the regis-

tration. In recent years, deep learning DL-based registration methods

have been proposed as a faster alternative to classical methods,

achieving similar results in a shorter amount of time. These (DL)-

based approaches are typically based on UNet-like networks and use

the intensity-based similarity metrics as loss function. In this work,

we propose a multi-atlas segmentation method based on DL cascaded

registration, which includes:

• A novel deep learning-based image registration method that

utilizes cascaded networks to predict a series of deformation

fields. These deformation fields are then combined to align the

moving image with the fixed image.

• A contracted architecture of VoxelMorph [1] for the cascaded

networks, which reduces the memory cost while achieving similar

results, allowing to use more cascades.

• A multi-atlas segmentation (MAS) method using our registration

network, which obtains similar results than nnU-Net [2], without

using labeled data for training.
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Methods

Cascaded registration

We present a cascaded registration model that utilizes multiple net-

works to generate successive deformation fields, which are then

combined to warp the atlases into alignment with the target image.

This cascaded approach allows us to divide the registration process

into smaller, simpler transformations that can be processed at various

spatial levels. The general architecture of our model is shown in

Fig. 1, the first network takes the moving and fixed images, Xmv and

Xfx, as input and produces a dense deformation field u0 that partially

aligns the moving image with the fixed image, forming Xwp,0. The

second network then inputs Xwp,0 and Xfx, and generates u1, which

is summed with u0 to warp Xmv into Xwp,1. This process is repeated

with successive networks in a recursive manner.

Multi-atlas segmentation

Following the cascaded registration method presented in the previous

section, we propose a segmentation method based on multi-atlas

registration. This approach involves using a series of atlas images,

each with its own associated ground-truth labels, and registering them

to the target image in order to create an accurate segmentation. Once

the atlas images have been registered to the target, we select the ones

that align most closely based on the average local cross-correlation

between the atlas and target images. Finally, we combine the labels

from the selected atlas images using a local weighted voting strategy,

which consists of propagating the labels of the warped images based

on a weighting strategy, giving more weight to the labels corre-

sponding to the highest local similarity.

Dataset

We used a dataset of 170 fetal brain Magnetic Resonance Images

between 32 and 37 gestational weeks. The scans were aquired in

Hospital San Joan de Déu and Hospital Clı́nic of Barcelona. The

dataset was split into 140–10-20 for train, validation and test sets,

respectively. As a preprocessing step, the images were cropped to

remove the non brain regions, resized to 128 9 128 9 128 voxels,

and normalized between 0 and 1.

Results

We evaluated the performance of our cascaded registration model on

the IMPACT dataset. The average Dice score obtained by our model

was 0.86 ± 0.02. For comparison, the average Dice score obtained by

VoxelMorph [1] was 0.81 ± 0.02, when trained and tested on the

same dataset. The table presents the results of our multi-atlas seg-

mentation method. In order to compare the performance of our

method to a state-of-the-art deep learning-based approach, we also

trained nnU-Net [2] on the same training set and included the

resulting Dice scores in the table. The results demonstrate that our

method is able to achieve results that are comparable to nnU-Net in

terms of segmentation accuracy.

Label Ours nnU-Net

CSF 0.923 – 0.006 0.897 ± 0.011

Grey matter 0.877 – 0.006 0.871 ± 0.012

White matter 0.915 ± 0.006 0.919 – 0.006

Ventricules 0.902 – 0.005 0.879 ± 0.011

Cerebellum 0.964 ± 0.004 0.965 – 0.004

Thalamus 0.950 ± 0.002 0.957 – 0.004

Brain stem 0.955 – 0.003 0.953 ± 0.006

Average 0.926 – 0.012 0.920 ± 0.014

Conclusion

In this work, we introduce a registration model based on cascaded

networks for multi-atlas segmentation in medical imaging. Our model

decomposes the registration field into a series of simpler transfor-

mations that operate at different spatial scales, allowing for more

efficient and accurate alignment of the atlases with the target image.

Our results show that our approach outperforms state-of-the-art (DL)-

based registration method [1]. In addition, the resulting multi-atlas

segmentation method achieves performance similar to one of the most

robust state-of-the-art segmentation method [2], despite not requiring

any labeled training data. This is a significant advantage, as annotated

fetal MR images can be difficult to obtain.
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Purpose

In recent years, many people around the world have died from

malignant tumors. HIFU (High Intensity Focused Ultrasound) ther-

apy, a non-invasive treatment method, has been attracting attention as

a treatment method for this problem. In HIFU therapy, ultrasound

waves must be focused and continuously irradiated onto the affected

area for a certain period of time, whereas the abdominal organs move

relatively because the abdomen moves in accordance with respiration

(hereinafter referred to as ‘‘body movements’’). This makes inciner-

ation of the affected area difficult, and there is a risk of damaging

surrounding healthy tissues around the affected area. Therefore, in

order to realize safe and effective HIFU therapy of abdominal organs,

it is necessary to track and follow the movement of organs due to

body movements, and methods should be investigated [1]. In this

report, we aim to track organs by estimating 3D organ movements

caused by respiration in advance and utilizing a ultrasound diagnostic

robot for HIFU therapy to cope with the abovementioned problem.

Methods

We conducted experiments using the Robotics Ultrasound Diagnostic

System (RUDS) developed in our laboratory for image acquisition

and robotic manipulation, using Kyoto Chemical Corporation’s

ultrasound phantom (ABDFAN) as the imaging target. In the pro-

posed method, one cycle of echograms is acquired with the probe

fixed in RUDS. The motion of organs is estimated by performing this

operation on multiple cross sections. The motion of organs due to

body movement can be divided into translation and rotation. We have

calculated the amount of translational movement in three dimensions

by calculating and combining the optical flow from the echograms in

two cross sections. In this report, the amount of rotational translation

was calculated by combining the proposed method with orientation

estimation by AEMAD ? ? , which has been performed in our

laboratory [2].

Specifically, we acquired echograms for 90 degrees with breathing

stopped, and extracted the area, diagonal length, vertical length, and

horizontal length of the segmented organs as feature values. This was

also conducted for orthogonal cross sections, and the two were

combined and stored as a database. Afterwards, body movements for

one cycle were imaged in the same cross section as when the database

was constructed, and the orientation were estimated by referring to

the database using approximate nearest neighbor search.

We constructed the system based on U-Net for organ segmenta-

tion. 469 images were used for training, 151 images for validation,

and 60 images for the test data set. ResNet50 was utilized as the

encoder. IoU and Dice Loss were used as evaluation metrics, and

Adaptive Moment Estimation (Adam) was applied for optimization.

Results

First, the segmentation results were 0.9737 for IoU and 0.0144 for

Dice Loss. Second, the results of angle estimation are shown in

Fig. 1. Table 1 shows the accuracy when the allowable error was set

to ± 0 deg, ± 2.5 deg, and ± 5 deg. Although the accuracy at each

angle was lower than in the previous study [2], it was confirmed that

the accuracy in angle estimation at the short-axis image

(50 * 90 deg), which had been a weak point, was improved. One of

the reasons for the low accuracy is that the size of the organs differs

between the database and the test images. Therefore, we plan to

investigate the accuracy when applying relative values based on one

of the features.

Conclusion

The aim of this study is to estimate 3D organ motion due to breathing

using an ultrasound robot. We acquired ultrasound image with body

movements in two cross sections, and the rotational movement of

organs was estimated by modifying the method of a previous study. In

our method, the two cross sections are not necessarily orthogonal. The

results showed decrease in accuracy in the long-axis image compared

to the previous study. However. it shows improvement in accuracy in

the short-axis image. We will continue to improve the performance of

our method so as to be applied in the clinical use.
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Fig. 1 Experimental result of angle estimation

Table 1 Angle estimation accuracy at each angle

Allowable error ± 0 deg (%) ± 2.5 deg (%) ± 5 deg (%)

0–10 0 25 40

10–20 5 20 45

20–30 0 0 30

30–40 0 0 15

40–50 0 16 16

50–60 0 15 40

60–70 5 20 35

70–80 0 5 20

80–90 5 37 63
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Purpose

Patient positioning in computed tomography (CT) examinations is

performed manually by the operator. Adjusting of the table height

correctly is important for optimizing patient dose because inaccurate

positioning in the height direction affects patient exposure dose. Some

modern CT scanners can use automated positioning techniques with a

three-dimensional camera (3D camera) system; assisted positioning

techniques with 3D camera systems are useful to increase the

throughput of CT examinations and to optimize patient exposure

dose. However, automatic height adjustment capability using a 3D

camera system has only been realized in a few modern CT scanners.

The purpose of this study is to develop a patient positioning assistance

technique using CT localizer radiographs instead of a 3D camera

system.

Methods

This retrospective study was approved by the Institute’s Review

Board. The study included a total of 210 patients, divided into 127

regression studies and 83 validation studies.

Regression analysis between localizer image and ideal table height

A linear regression analysis was performed to determine the R2

coefficient and the linear equation relating the mean pixel value of

localizer radiograph image and ideal table height. To measure the

mean pixel value corresponds to patient’s anteroposterior (A–P)

diameter, a 50 9 250 mm of rectangular region of interest was placed

on the localizer image and measured pixel value. A–P diameter from

axial section images were measured and averaged. A total of 51 axial

images per patient were scanned automatically along the vertical

direction, and upper- and lower-coordinates was recorded in each

image; provided that the lower coordinate was defined as the lowest

value of the coordinates recorded. The A–P diameter was obtained by

multiplying the difference of the coordinate values by the pixel size.

A–P diameter was defined by an averaged it from 51 images. Mea-

surement of A–P diameter were parsed automatically using a

homegrown Python script. The ideal table height (THideal) was cal-

culated using axial images.

Estimation of ideal table height

To estimate the ideal table height, the average pixel values of the

localizer adiograph image were substituted into the regression equa-

tion obtained in the previous section.

Results

Linear regression analysis indicated high coefficient of determination

(R2 = 0.91) between mean pixel value of the localizer radiograph

image and THideal. The correlation coefficient between THideal and the

table height determined by the regression equation (THest) was 0.95,

95% confidence interval 0.92–0.97 (P\ 0.0001), systematic bias was

0.2 mm, and limits of agreement were - 5.4–5.9 (P = 0.78). The

offset of the table height with THest indicated 2.8 ± 2.1 mm, Fig. 1.

Conclusion

This study showed important results for a technique that assists

accurate table height setting for CT examinations. Notably, our

method requires no additional hardware such as 3D camera system, to

optimize the table height. Our results surpassed the positioning

accuracy of CT systems equipped with a 3D camera. The proposed

estimation method using localizer radiograph images could improve

the automatic optimization of table height in CT and does not require

additional hardware and can be a general-purpose automatic posi-

tioning technique.
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Purpose

3-D printed virtual heart models can facilitate navigation guidance

during a hybrid procedure to close ventricular septal defects (VSD)

[1]. However, interventional cardiologists lose direct observation of

the patient‘‘s heart when they focus on the virtual models to manip-

ulate their surgical instruments. HoloLens 2 and other augmented or

mixed reality technology has been proposed for image-guided inter-

ventions, mainly in interventional workflow to superimpose pre or

intra operative image directly onto the patient, to see the target.

Recent advances in computer vision allowed significant improve-

ments of the tracking of the eyes and the tracking of the hand for such

application. This study evaluates the hand tracking accuracy of the

augmented reality helmet HoloLens 2, for augmented reality in

interventional cardiology specifically for manual palpation of the

heart. The purpose of this project was to determine the accuracy of

HoloLens2’s detection system, first in terms of movement detection,

but also in terms of object tracking and detection, in the context of a

surgical intervention.

Methods

For movement detection, we focused on hand tracking, specifically

the thumb and the index, which are the two mainly used fingers in our

context. For object detection, we want to determine if the HoloLens 2

can be used as a real-time tool tracking device. Ground truth mea-

surements were obtained using an electromagnetic measurement

Fig. 1 Bland–Altman plot of the table height for manually adjusted

by the operator (a) and estimated by our method (b)
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system (EMS) (NDI Aurora, Waterloo, Canada). This device, used in

the medical field, allows to track any sensor linked to the device in

real-time with an accuracy between 0.4 mm and 1.4 mm. The EMS’

coordinate system’s position in the real world is known, which will be

useful for calibration.

A custom software was developed to record the fingers position in

3D of the HoloLens2. This application was developed using the Unity

software with the Microsoft Mixed Reality Toolkit (MRTK) exten-

sion and the VisionLib library was chosen to test object tracking. To

ensure that the HoloLens2 and the ground truth are measuring into the

same 3D coordinate system, we chose to implement a QR code

scanning system into the HoloLens2: by placing the QR code phys-

ically at the centre of the electromagnetic emitter, which corresponds

to the origin of the EMS’ coordinate system, and then scanning the

code with the helmet, we can place a virtual 3D object oriented so that

its x (horizontal), y (vertical) and z (depth) axes are aligned with the

EMS ones, and its origin at the same global position as the EMS

origin. We then use this object’s local coordinate system to measure

our coordinates. To acquire the data, users were asked to wear an

electromagnetic sensor on the index and thumb and to wear the

Hololens2 while our application is running. Simple tasks were defined

and organized in different categories: (1) no hand movement, (2)

simple hand movements and (3) using a custom 3-D printed object.

Timestamps were used to synchronize both data stream in Python, and

outliers were filtered out using a distance-between-points threshold.

The accuracy was computed using the Absolute Mean Error

(AME) between the electromagnetic sensor and the HoloLens 2.

Results

Figure 1 shows the thumb’s position in the x-axis over time during

the first experiment (static hands with head movements), measured by

both HoloLens 2 and the EMS. The time gap between data points is

used to distinguish every gesture of our experiment. While there is a

visible difference between the HoloLens 2’s measures and the ground

truth, the graphs’ tendencies remain very close, showing that the

helmet is robust in its detection. To calculate the accuracy, an error is

defined as significant only above 1.40 mm, that being the minimum

accuracy of our reference.

The overall accuracy ranged between 16.3 mm and 19.7 mm,

which is slightly better than a similar study [2], which also measured

HoloLens2’s hand tracking accuracy (between 18.3 and 26.3 mm).

First in terms of axis, the measurements in X (horizontal) axis often

show poor accuracy versus the Y and Z axis. Between the thumb and

the index, there is no notable difference in accuracy. Accuracy

decreased when the hands were moving (- 2 mm), and even more

when an object masked part of the fingers (- 20 mm).

We obtained better results than prior studies [2], but, as it is, an

accuracy of nearly 2 cm is good for most usage but can’t be accepted

in the medical field for high precision interventions. Nonetheless, the

experiment was done with only one test subject. If the error appears to

be systematic with multiple users, we could consider calibrating the

system and counterbalance that error. As it can be seen in Fig. 1, it

looks like the error isn’t random, so finding the source of error will

hopefully allow to virtually manipulate the surgical site with preci-

sion. We could also use the EMS to assist the helmet and increase its

accuracy.

Conclusion

Mixed reality is still very promising as new technologies could

emerge in the years to come and become a reliable asset in the

medical field. While the accuracy is not suitable directly for direct

navigation guidance, with proper calibration and with EMS guidance

in the surgical tool and in the index of the cardiologist, the HoloLens

2 could provide some guidance to the target. As of future work, we

will evaluate the HoloLens 2 with a larger sample of users. We will

also integrate this system with the 3D printed heart models [1], and

with ultrasound guidance in real-time, with gesture and 3D models of

the heart in the same reference frame.
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Purpose

This paper proposes a post-hoc aleatoric uncertainty estimation

method for trained semantic segmentation networks. Our approach is

an incremental work based on BayesCap [1], which estimates alea-

toric uncertainty for trained neural networks in regression tasks

(super-resolution, deblurring, etc.).

Semantic segmentation in the laparoscopic video is an important

task to provide information for further computer-assisted surgeries

(CAS) systems and it has been advanced by the power of neural

networks in recent years. However, the predictions from the seg-

mentation network could be inconsistent and unreliable due to some

problems such as insufficient training or noise in training data.
Fig. 1 Position measurement (x-axis) of the thumb during experience

n�1
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Therefore, uncertainty estimation for network’s outputs is crucial

regarding the practical usage in CAS. There are some methods to

estimate uncertainty such as minimizing Gaussian Negative Likeli-

hood (GNLL) [2]. However, these methods require training networks

from scratch. Besides, in most cases, since different institutes have

developed their own segmentation network, retraining these networks

is resource insufficient. Even though we have enough time and data to

retrain these networks, it doesn’t guarantee new networks with the

same segmentation performance. These problems turn us to seek for

post-hoc uncertainty estimation methods for segmentation networks.

One of the important previous works for post-hoc uncertainty

estimation is called BayesCap [1]. BayesCap estimates aleatoric

uncertainty by constructing a twin network that is identical to the

trained network but with two extra branches and minimizes Gener-

alized Gaussian Negative Log-likelihood (GGNLL) regarding their

outputs. However, it is designed for regression tasks such as super-

resolution. The post-hoc manner and strong performance of BayesCap

make it a potential solution to previous problems. However, it is not

trivial to extend BayesCap to segmentation networks due to the fol-

lowing reasons: (1) regression task requires minimizing GGNLL over

networks’’ output logits while segmentation network outputs proba-

bility maps; (2) Segmentation networks usually have outputs with

more than one channel (each channel per semantic class) while

regression task generally has one-channel outputs.

To solve these problems, we propose a new post-hoc aleatoric

uncertainty estimation framework for semantic segmentation in

laparoscopic images with (1) computing GGNLL across all proba-

bility maps; (2) a fusion scheme utilizing multi-scale representations

from the frozen network to maintain segmentation performance; (3) a

light-decoder that can replace twin network in BayesCap to reduce

parameters.

Methods

The proposed framework is based on BayesCap with some modifi-

cations. BayesCap first trained a regression network for a certain task,

then freeze that network and build up a twin network (with a similar

structure to the frozen network) at the end. By training the newly

added parts with GGNLL, BayesCap can estimate uncertainty and a

refined output. Like BayesCap, we first train our segmentation net-

works (segformer, b0 in our case, where its decoder utilizes multi-

scale representations from the encoder.) with the training dataset of

EndoVis18 (https://endovissub2018-roboticscenesegmentation.grand-

challenge.org/) and save the trained network. Then the trained net

work (hereinafter referred to as T_{fix}) is plugged into our

framework. There is a light decoder on the top of T_{fix} whose

inputs are multi-scale representations of T_{fix} and outputs are

probability maps, uncertainty alpha (scale), and uncertainty beta

(shape) respectively (we encourage readers to check the definition of

GGNLL in [1] for details). Finally, we train other parts of our

framework except T_{fix} with GGNLL to each channel of outputs.

The followings are details of our framework:

� (1) Light-weight decoder with uncertainty estimation branches

Compared to BayeCap which uses a twin network as an uncer-

tainty estimation branch, instead, we leverage a lightweight decoder

on the top of T_{fix}. Its inputs are the outputs and multi-scale rep-

resentations from T_{fix}. Two more decoder paths built with two

convolution blocks are used for estimating uncertainty alpha and

uncertainty beta. The reduction of parameters could speed up training

and reduce hardware requirements.

� (2) Multi-scale Fusion

As mentioned above, the lightweight decoder utilizes multi-scale

representations, and therefore a fusion module to mix these repre-

sentations to the same scale is necessary. Hence, we added a fusion

module by a sequence of several convolution blocks and down-

sampling to fuse representations from T_{fix} to fully utilize its

information.

� (3) GGNLL over Prediction Probability Maps

In regression tasks, the outputs are usually one-channel therefore

GGNLL can easily be applied. However, segmentation tasks contain

multi-channel outputs. Therefore, we straightforwardly apply

GGNLL to all output channels respectively.

Results

We followed the official EndoVis18, which is a laparoscopic image

dataset, for training and testing. 10 semantic classes including shaft,

clasper, wrist, parenchyma, covered kidney, thread, clamps, needle,

intestine, and probe were used for evaluation. The segmentation

performance (IoU, %) for the trained network was 63.02, 29.55,

31.66, 74.65, 44.66, 6.87, 25.58, 0, 71.12, and 4.51, respectively.

After adding the uncertainty estimation branch, the segmentation

performance became 53.04, 32.71, 25.86, 67.41, 51.48, 5.54, 33.36, 0,

67.74, and 5.87, which was a comparable performance to the frozen

network. The visualization of uncertainty (alpha uncertainty) was

shown in Fig. 1. From Fig. 1 we observed the prediction mask for

each class was highly related to the low uncertainty region (e.g.: the

prediction maps of each class have the lowest uncertainty in their

corresponding uncertainty maps).

Conclusion

We investigated an approach for estimating aleatoric uncertainty

based on BayesCap in the laparoscopic video. The visualization

results showed the relation between segmentation regions and cor-

responding uncertainty. Further investigation will be on how to

handle the temporal consistency within a laparoscopic video clip.
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Fig. 1 Visualizations. a Laparoscopic image; b GT label images;

c * d, e * f, g * h, and i * j are prediction labels and alpha

uncertainty maps for the shaft (green), clasper (blue), wrist (light

green) and small intestine (dark green). We use JET colormap to

visualize alpha uncertainty and red means higher while blue means

lower uncertainty
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Purpose

Bone surgery is associated with direct contact of instruments with the

bone causing friction, heat and pressure and hence, damaging the

bone and surrounding soft tissues. We introduce the technology of

navigated cold ablation robot-guided laser osteotomy, present

potential applications, and preliminary pre-clinical cadaver test results

in the field of hand-, wrist- and forearm surgery [1,2].

Methods

Technique
CARLO� is a miniaturized ablation laser with an optical system

controlled by a navigation system. The system uses Yttrium Alu-

minum Garnet doped with Erbium (Er:YAG), with a wavelength of

2943 nm, which corresponds to peak absorption coefficient for water

and hydroxyapatite. The energy of a laser pulse hitting the bone tissue

heats up the water content of the bone and vaporizes it. The increase

in local pressure causes ‘‘micro-explosions’’, breaking up the bone

structure. The debris is being expelled immediately and at high

velocity, providing a clean-cut line with preservation of the bone

structure. CARLO� also has an Optical Coherence Tomography

(OCT)-based depth control system to visualize the current cutting

level and avoid soft-tissue damage.

Cadaver tests
We first evaluated if laser-osteotomies in long bones were possible.

CARLO� was then used for corrective osteotomies of the distal

metaphyseal radius, ulna as well of the metacarpal one (Wilson’s

Osteotomy). Standard surgical approaches were carried out and the

navigation device mounted at the end of the surgical field. Different

cutting patterns were applied and tested for precision and primary

stability. The osteotomies were stabilized using lag screws only.

Results

Laser osteotomies in long bones were feasible using the OCT. Best

cutting patterns were sine and sawtooth in terms of primary stability

and precision, Fig. 1. Multiple plane cuts were performed to allow for

corrections in the x, y, z plane. The bone cuts in dia-, meta and

epiphyseal regions did not show any carbonisation. The lag screws

provided good compression and stability.

Conclusion

First cadaveric results are promising. New bone cutting patterns are

feasible which are not possible to carry out manually. CARLO�
allows to perform corrective osteotomies without the use of patient-

specific guides with high precision and probably less hardware.

Future steps are stability testing of the osteosynthesis and application

in smaller bones (carpal, metacarpal and digital bones) followed by

certification and first use in patients.
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Purpose

Lateral locking-plate fixation is commonly used for distal femur

fractures, and pre-contoured plates attempt to match the bony anat-

omy of the target patient population. However, plate fit is highly

variable due to inter-subject morphological differences. Average

proximal plate misfit of 11.4 mm has been reported for Korean

cadaver femora [1]. Digital plate templating on pre-operative total

knee arthroplasty (TKA) x-rays demonstrated an average metaphyseal

misfit of 6.6 mm [2]. The plate is often used as a reduction template;

Fig. 1 Possible cut geometries on a 3D printed model
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if plate misfit is not recognised and addressed, this can result in axial

malalignment. This study evaluates the effects of age, sex, height, and

ethnicity on the anatomical fit of the LCP Distal Femur plate, to better

inform the clinical community and aid future implant shape

optimisation.

Methods

Unilateral 3D bone models of 70 (35 male, 35 female) Caucasian and

60 (30 male, 30 female) Vietnamese femora were utilised from earlier

studies. Mean age and height were 58 years (range 22–96) and

166 cm (range 150–193) for Caucasians, and 58 years (range 31–84)

and 160 cm (range 144–176) for Vietnamese. Both cohorts were

separated into subgroups of young (\ 65 years) and old (C 65 years)

subjects, with groups of 33 young and 37 old Caucasian, and 30

young and 30 old Vietnamese.

Plate undersurface and screw trajectories were obtained from

reverse engineered 3D scans of an 11-hole and a 13-hole LCP Distal

Femur plate (DePuy Synthes, Switzerland). Plate length was selected

such that the proximal tip was C 2 cm away from the lesser tro-

chanter. Through an iterative process using reverse engineering

software (RapidForm2006, Inus Technology, Korea), the undersur-

face of the plate was positioned correctly on the bone model (Fig. 1).

The undersurface was positioned to achieve plate-bone contact at

three locations: distal anterior, distal posterior, and shaft [1]. It was

ensured that there was no screw penetration in the intercondylar fossa,

and the most proximal screw was located within the intramedullary

canal. The plate fit criteria (Fig. 1) were defined based on clinical

requirements:

Criteria 1: Plate to bone distance B 1 mm at most anterior distal

location;

Criteria 2: Plate to bone distance B 2 mm at nine points over the

metaphyseal region, including distal tip;

Criteria 3: Plate to bone distance B 3 mm for points (anterior,

centre, posterior) on the shaft spaced at * 4 cm intervals,

including proximal tip.

A customised batch-process module (MATLAB, MathWorks, USA)

measured/recorded plate-bone distances on the plate-bone assemblies.

Anatomical plate fit was defined as satisfying all three criteria.

Femoral radius of curvature (ROC) was measured to assess the

effect of mismatch of the plate bow radius on plate fit.

Results

Satisfactory plate conformity was achieved from the plate head up to

screw hole 6, with most measurement locations fitting between

52–100% of bones for both ethnicities. The exception were locations

(3rd to 5th point) along the posterior plate edge in the metaphyseal to

distal shaft region, with plate fit of 7–40%. The most anterior point on

the plate head also fit poorer (p = 0.005) for Caucasians (43%)

compared to Vietnamese (63%), although the posterior point fit 100%

for both.

Other ethnicity specific differences were: a larger (p\ 0.001)

mean plate-bone distance at the plate tip of 1.8 mm (0.7–5.9 mm) for

Caucasian vs 1.3 mm (0.4–2.5 mm) for Vietnamese; and smaller

(p\ 0.032) mean plate-bone distances along the 2nd and 3rd rows of

distal measurement points ranging from 1.1–3.4 mm for Caucasian vs

1.3–4.1 mm for Vietnamese. For both ethnicities, there was plate

misfit from level of proximal 5–6 holes, with plate fit of 0–44% in that

region, and a mean distance of 11.7 mm (0–23 mm) at the proximal

plate tip for Caucasians and 15.4 mm (4.8–31.2 mm) for Vietnamese,

respectively. Plate misfit was worse (p B 0.01) for Vietnamese in that

region.

For the entire dataset, and for the ethnic subgroups, age (young vs

old) had limited impact on the plate-bone distances with no significant

differences for height and ROC, except for the younger Vietnamese

who had a larger (p = 0.022) ROC compared to the older.

Sex affected plate fit as females had larger (p\ 0.038) plate-bone

distances at some distal locations and for most of the shaft; they were

also shorter (p\ 0.001) and had a smaller (p = 0.030) ROC. Female

Caucasians were on average shorter (p\ 0.001) while their ROC was

not significantly different. However, their plate-bone distances at

level of proximal 8–10 holes were larger (p\ 0.045). Vietnamese

female had larger (p\ 0.039) plate-bone distances for the majority of

measurements points, were shorter (p\ 0.001), and had a smaller

(p = 0.012) ROC.

Based on the three defined criteria, anatomical fitting was not

achieved for any bones in our dataset. A plate ROC = 940 mm was

obtained from the reverse engineered plate. The mean ROC of

1008 mm (615–1739 mm) for Caucasians was larger (p\ 0.001) vs

866 mm (471–1505 mm) for Vietnamese. Caucasians were also taller

(p = 0.002) on average, and ROC positively correlated (rs = 0.40;

p\ 0.001) with height. Height and ROC positively correlated (rs =

0.43, 0.33; p\ 0.001) with the distal plate tip-bone distance, while

most plate-bone distances in the proximal metaphysis and in the shaft

showed negative correlations (rs = - 0.20 to - 0.55; p\ 0.023).

Age only showed positive associations (rs = 0.24 to 0.25; p\ 0.008)

with plate-bone distances along the 1st row of distal measurement

points.

Conclusion

This study demonstrated satisfactory fit from plate head to midshaft

for both ethnicities. To our knowledge this is the first report of

proximal shaft plate misfit for Caucasians, which was of similar

magnitude to Koreans [1]. The metaphyseal misfit in our study was

below reported values [2], perhaps reflecting differences between 3D

modelling and 2D templating, and/or normal anatomy vs Caucasian

TKA patients.

Combining 3D modelling with patient demographics revealed both

patient height and ROC are negatively associated with plate fit, par-

ticularly in the shaft. This, together with the positive correlation of

ROC and height, helps to explain the poorer plate fit observed clin-

ically for Asians and females, who are generally shorter compared to

Caucasians and males.
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Fig. 1 13-Hole plate undersurface positioned on lateral distal femur

with fit criteria for shaft and plate head. Light blue dots show

locations of the plate-bone distance measurements, along with

maximal acceptable distance thresholds
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Purpose

There are many disagreements about the merits of navigation in total

knee arthroplasty (TKA). We compared and analyzed the difference

in the accuracy of femoral resection according to the degree of lateral

femoral bowing in two surgical methods (conventional and navigation

assisted TKA) [1,2].

Methods

A total of 238 cases participated, with 100 cases underwent naviga-

tion TKA and 138 cases underwent conventional TKA from 2016 to

2021. The surgeon first performed TKA as main operator since 2016.

Most of the TKA was navigation assisted between 2016 and 2018,

and most of the TKA was conventional between 2019 and 2021. For

more accurate distal femoral cutting in patients with lateral femoral

bowing, preoperative scanogram was used to set up the insertion point

of IM rod in conventional TKA, see also Figs. 1 and 2. Femoral

lateral bowing was divided into three groups based on the angle.

Group 1 is divided into groups with negative values, group 2 is

divided into mild bowing of 0 to 5 degrees, and group 3 is divided

into groups with moderate bowing of 5 degrees or more. Postopera-

tive mechanical hip knee ankle (mHKA) angle and mechanical lateral

distal femoral angle (mLDFA) were aimed to be 0� and 90�. The

allowable range of each value was set as 0� ± 3� and 90� ± 3�
Results

The distribution of outliers of mLDFA in the three groups divided

according to lateral femoral bowing in the navigation-assisted group

was not statistically significant (P = 0.59). In the other hand, the

distribution of outliers of mLDFA was statistically significant in

conventional method group (p = 0.01). The odds ratio of outlier

occurrence of mLDFA in the conventional method was 2.50, which

was statistically significant (P = 0.03). And, when the lateral femoral

bowing value was moderate, having 5 degrees or more, the odds ratio

was 4.20, which was statistically significant (P = 0.003).

Conclusion

For patients with lateral femoral bowing greater than 5 degrees,

navigation helps more accurate femur resection compared to con-

ventional TKA.
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Purpose

Minimally invasive laparoscopic surgery requires specialized skills,

including hand–eye coordination (to operate on the tissue) and depth

perception (to view and navigate the operative field displayed on a flat

two-dimensional screen). This presents unique challenges to surgical

training. The conventional surgical training apprenticeship model

(where a mentor teaches a mentee) is difficult to execute due to the

work-hour constraints, demand to increase operating room throughput

(as operative time is extended), and ethical concerns about novice

surgeons operating on live patients. As a result, surgical simulators

are used for training of minimally invasive surgeries. These simula-

tors can be broadly classified into: virtual reality (VR) based

simulators (e.g. LapVR—CAE and Lap Mentor—Simbionix) and

box-trainers (e.g. Simsei and Laparo). Realism of tool-tissue inter-

action is essential to simulate realistic tissue behavior and properties

when operated by a surgical instrument. However, VR simulators lack

this feature as virtual models of the tissue and surgical instrument are

used in computer-generated environment. The tool-tissue interactions

(such as during cutting, suturing, and cauterization) cannot be simu-

lated with high fidelity (by a computer) as compared to the real-world.

Also, the force-feedback on the simulator’s interfaces mimicking

surgical instruments is absent or relatively poor. On the other hand,

while the box trainers overcome the limitation of VR simulators, they

are not able to render realistic operative field inside the insufflated

cavity of a surgical scenario. This gap between the training on real

surgical environment and on box trainers usually leads to a subopti-

mal training experience for surgeons [1], and are thus limited to FLS

training curriculums (which mostly include peg transfer, pattern

cutting, ligating loop, and intra-corporeal and extra-corporeal knot

tying). This work proposes a mixed reality surgical simulator that

merges the advantages of both box trainers (i.e. realistic tool-tissue

interactions) and virtual reality simulators (i.e. true-to-life operative

field). The simulator enables an operator to view the surgical site from

different perspectives using a scope and perform the tool-tissue

interaction required to operate at the surgical site.

Methods

The proposed mixed reality surgical simulator setup (as shown in

Fig. 1) includes a workstation, visualization screen, an optical

tracking system, scope, and a simulation box. The simulation box

consists of a box tracking frame, a Chroma background, and holes

(mimicking incisions) to insert the minimally invasive surgical

instruments. The video stream (acquired from the scope) and the

tracking data (acquired from the optical tracking system) are fed to

the simulation workstation. The simulation workstation processes the

information and renders a mixed reality scene. The software modules

were implemented based on an augmented reality platform [2]. The

simulator can be configured with different procedure specific opera-

tive fields. A surgical scene involves multiple tissues. If the tissue is

operated by the surgical instrument (such as during cutting, cauteri-

zation, suturing, grasping), a deformable soft tissue physical model is

used. The model is placed at a specific pose inside the simulation box

with a Chroma background. On other hand, if the tissue in the surgical

scene does not interact with surgical instrument, a virtual mesh model

of the surrounding tissue structures is generated and is registered with

respect to the simulation box to be rendered as a part of the back-

ground/foreground scene of the operative field. Both the virtual and

physical tissue models are registered with respect to the simulation

box. An optical tracking system is used to continuously track the pose

of the scope and simulation box during simulation. The video frames

acquired from the scope are processed using imaging filters and

Chroma key technique to remove the background. As the pose of

simulation box and scope camera is tracked in real-time using optical

tracking system, a mixed reality scene of the operative field is gen-

erated by merging the virtual mesh models and the viewing plane of

the filtered video stream depicting the interaction of the surgical

instrument with deformable soft tissues.

Results

A mixed-reality scene of the operative field is generated by the sur-

gical simulator (Fig. 1). The rendering produced by the simulator

Fig. 1 Setup of the mixed-reality surgical simulation system. The

sequential time-stamped images (Ti denotes ith timestamp) of the

simulated operative field depict the dissection of a tubular soft tissue

performed by the operator. During the scope movment (panning left

and right, rotating anticlockwise and clockwise, and tilting down and

up), the relative pose of the 3D virtual meshes (constituting the

foreground and background of operative field) and physical models

(comprising of the tissue to be operated) remains same creating an

immersive experience
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demonstrate the relative poses of the virtual operative field, soft tissue

models, and surgical instruments are synchronized during the move-

ment of the scope. The developed mixed reality surgical simulator

was evaluated for accuracy in aligning the physical world with the

virtual environment during scope movements (panning, tilting, and

zooming). A rectangular strip (4 cm 9 3 cm) of a silicon tissue

composing the operative field was placed in front of the scope at a

distance of 10 cm. The scope was actuated with different angular

speeds (varying from 5, 10, and 15 degrees per seconds at remote

centre of motion) using a UR5e robot. The pose of the scope tip and

tissue were tracked using an optical tracking system. This enabled

rendering of a 2D virtual plane at the position of the tissue in the

simulator. The video feed acquired from the scope was processed to

extract the corners of the real tissue and were compared with the

virtual ones projected on the scope’s viewing plane. For a video feed

of 640 9 480 pixels, the average alignment error for 5, 10, and 15

degree/second were [4.2, 3.2, 2.7], [6.9, 4.5, 2.8], and [8.4, 5.1, 2.8]

pixels in case of panning, tilting, and zooming, respectively. The

alignment was accurate (with errors less than 1.5%) to create a

seamless and immersive mixed reality experience. It enabled the

operator to perceive the virtual elements as if they were physically

present and facilitated the physical elements to behave realistically

within the virtual environment.

Conclusion

The proposed mixed-reality surgical simulator tends to provide true-

to-life tool-tissue interactions while rendering a realistic operative

field during surgical training. The simulator can also be configured for

robot-assisted minimally invasive surgeries as well. As a part of

future work, we aim to conduct user-studies with surgeons to assess

the mixed reality surgical simulator for procedure as well as patient

specific surgical scenarios.

Acknowledgment

This work was supported by NPRP award (NPRP12S-0119-190006)

from the Qatar National Research Fund (a member of The Qatar

Foundation). All opinions, findings, conclusions or recommendations

expressed in this work are those of the authors and do not necessarily

reflect the views of our sponsors.

References

[1] Jin C, Dai L, Wang T (2021) ‘‘The application of virtual reality

in the training of laparoscopic surgery: a systematic review and

meta-analysis.’’ International Journal of Surgery 87: 105,859.

[2] D Shabir, Abdurahiman N, Padhan J, Trinh M, Balakrishnan S,

Kurer M, Ali O, Al-Ansari A, Yaacoub E, Deng Z, Erbad A,

Mohammed A, Navkar N (2022) Towards development of a

tele-mentoring framework for minimally invasive surgeries. The

international Journal of Medical Robotics and Computer

Assisted Surgery 18(5).

Surgical workflow recognition for effective use

of plastic surgery videos

T. Kobayashi1, H. Kajita2, Y. Takatsume3, Y. Aoki4

1Keio University, Integrated design engineering, Yokohama, Japan
2Keio University School of Medicine, Department of Plastic

and Reconstructive Surgery, Tokyo, Japan 3Keio University School

of Medicine, Department of Anatomy, Tokyo, Japan 4Keio

University, Department of Electrical Engineering, Faculty of Science

and Technology, Yokohama, Japan

Keywords Surgical Workflow, Surgical Phase Recognition, Plastic

Surgery, Transformer.

Purpose

The automatic classification of surgical processes can make the sur-

gical workflow more distinct, making it an integral aspect of the

efficient use of long videos. This task can be applied to video cap-

tioning and summarization for the training of physicians. In addition,

real-time process classification can be utilized for the decision support

of physicians. Given the foregoing, it is evident that surgical work-

flow recognition has a wide range of applications. Many studies have

been conducted in the domain of laparoscopic surgery because of the

original use of a camera and the large amount of data that has been

collected in this area. On the other hand, these studies are limited to

endoscopic surgeries, and only a few studies have been conducted on

other surgeries, including open surgery. There are two reasons for

this:

1. In the case of a non-endoscopic surgery, it is necessary to film the

surgery from the outside, and the quality of the video is low due

to the occlusion caused by the hand and head.

2. The variety of body parts and the types of surgeries require a

versatile model.

The purpose of this study is to create a dataset of first-person

viewpoint videos using a loupe-mounted camera in plastic surgery.

Thereafter, a surgical workflow recognition model will be proposed

for utilizing surgical videos in a wider area.

Methods

The flow of the surgical process classification is shown in Fig. 1. The

inputs to our model are the visual features obtained from the feature

extractor and the surgical tool presence classification results. They are

combined and input into the ASFormer [1] to obtain the final clas-

sification result. ResNet50 is used as the visual feature extractor.

Since our datasets have strong data imbalance, Importance Balanced

Loss and Focal Loss(IBFloss) are introduced. In addition, for tool

identification, there are frames wherein some annotated tools do not

appear. Therefore, they are trained by binary cross-entropy after

Sigmoid activation. In addition, the ResNet50 model is a multitask

learning process that classifies workflow and surgical tools, so we

introduce automatic weighted loss to adjust these weights.

Datasets
We captured 15 plastic surgery videos using the NanoCamHDi. In the

first-person video by NanoCam, there are frames in which the surgeon

is not looking at the surgical field. These frames are irrelevant to the

surgical process and need to be removed. We created a video with

Fig. 1 Proposed process flow
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these frames removed using optical flow and semi-supervised learn-

ing. The algorithm consists of three steps:

1. The inference results are obtained in a ResNet50 model that has

been trained to determine whether a surgical field frame or an

irrelevant frame is used in five surgical videos.

2. We divide the video into five-second segments and use the

following as a criterion of confidence: whether or not at least

one optical flow point could be traced in each segment.

Specifically, if no optical flow is obtained, it is likely to be an

irrelevant frame; if it is obtained, it is likely to be a surgical field

frame.

3. Frames with high confidence are used as input to the ResNet50

model as a new dataset.

To build a dataset, we annotate 15 recreated videos with the sur-

gical process and surgical instruments. The videos are labeled at 30

fps with phase and tool presence annotations. Since there are only a

few irrelevant frames in this video, no annotations are made in these.

Annotation is also not done if the phase recognition is ambiguous or if

the person wearing the NanoCam is not the main surgeon. Since tools

may be only partially visible and difficult to recognize visually, a tool

is defined as present in the image if at least half its tip is visible. The

tool is annotated only with the surgical tools in the hand of the sur-

geon performing the main operation, so a maximum of one tool is

annotated per frame.

Experiments
Our dataset is divided into 12 videos for training and three videos for

testing. The dataset was subsampled to 5fps and used as input for the

model. The visual feature extractor is trained using frames segmented

at 1 fps, and approximately 45,000 frames are used for training. The

models are evaluated using accuracy, F1 score, and Jaccard index.

The accuracy and F1 score are evaluated using the overall test data

and the average of the per-video values (VA). We also perform

ASFormer, Tool Presence, and IBFloss ablation experiments to val-

idate each element of our model. TeCNO[2] is used for comparison.

Results

As shown in Table 1, our method achieves high accuracy (78%) on

difficult datasets and an F1 score of 73%. This shows that universal

features can be extracted and taken into account in different surgeries.

Furthermore, the use of the ASFormer as a temporal model greatly

improves the accuracy compared with existing surgical workflow

recognition models. This indicates that the model works efficiently in

general action segmentation tasks because our plastic surgery videos

show hand movements and their relationship with the surgical tools.

Feature Extractor
As seen in Table 1, the feature extractor improves the F1 score by 5%

using our proposed loss. This is because the impact of class imbalance

in surgical process classification is significant, and our approach

eliminates this problem.

Tool Presence
We input the tool classification results into the temporal model as new

features. This way, we can increase the accuracy by about 2%. Since

the F1 score of the surgical tool classification is 62%, further

improvement of the accuracy is expected to make a further

contribution.

Conclusion

In this study, we were able to achieve high accuracy for the difficult

task of process classification in plastic surgery. The findings showed

the possibility of utilizing surgical videos over a wider area by per-

forming process classification in plastic surgery. Furthermore, this

method has the potential to be applied to existing datasets.
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Purpose

In this work we present a low cost device for lung navigation utilising

a novel magnetic sensor technology. Typical sensors used in most

electromagnetically tracked devices are simple wire-wound coil based

sensors, but by moving to an on-chip solution, the cost of disposable

medical devices can be considerably reduced. We demonstrate the

operation of this device in a lung phantom and report accurate nav-

igation to within 2 mm.

Electromagnetic Tracking Systems (EMTS) are a commonly used

method of determining the location of surgical tools and instruments

without direct line of sight [1]. EMTS generally comprises a source of

Table 1 Results of feature extraction

Acc F1 Acc(VA) F1(VA) Jacc Acc(Tool) F1(Tool)

ResNet ? AW 0.617 0.547 – – – 0.934 0.572

ResNet ? AWIBF 0.649 0.597 – – – 0.938 0.621

TeCNO 0.633 0.574 0.684 0.582 – – –

TeCNO ? ours 0.664 0.62 0.715 0.628 – – –

ASFormer 0.732 0.694 0.733 0.679 0.55 – –

Ours 0.776 0.753 0.786 0.733 0.611 – –

Ours w/o IBF loss 0.75 0.679 0.747 0.718 0.602 – –

Ours w/o Tool label 0.742 0.712 0.754 0.718 0.602 – –
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magnetic fields and a miniature sensing element that can be integrated

into surgical devices. By measuring the magnetic field seen by the

sensor, its position and orientation can be calculated [2].

Typical EMT sensors used in various image guided interventions

can be an expensive component, particularly in low margin disposable

procedures. The coil based sensors can often cost between $10–200

depending on the size and complexity of the sensor, and this can be a

significant portion of the overall materials cost for a device. Coil-

based sensors are also susceptible to cable noise and electromagnetic

interference (EMI) effects. By migrating to sensors that can be mass

produced using standard silicon fabrication techniques and processes,

these magnetic sensors can be produced for substantially less than $1

when manufacturing at large scale.

Recent chip-based solutions yield only 3D position coordinates

without angular information. Pitch, yaw, and roll angles are critical

for clinical applications [1], such as robotic bronchoscopy, which uses

angular information to visualize lung airways, and electrophysiology

(EP) mapping catheters and biopsy devices, which require extremely

small sensors, typically less than 0.5 mm in diameter. Previous chip-

based solutions have failed to integrate on-chip sensing coils resulting

in large footprints offering little advantage in form-factor and scaling

compared to discrete solutions.

Methods

AC electromagnetic tracking systems are typically based on Fara-

day’s law to induce a voltage in a search coil [1], [2]. EM tracking

generally operates with magnetic fields from multiple sources that are

spatially varying functions given. Once the flux has been measured,

the position and orientation of the sensor can be determined by using

a non-linear least squares algorithm such as the Levenberg–Marquardt

(LM) method [2].

The sensor proposed in this work is created on a standard silicon

process in the form of an air-core, multilayer spiral coil as seen in

Fig. 1b. The sensor is a rectangular coil (1200 lm 9 450 lm) and

this form factor is used to minimise the width of the device. The on-

chip sensor achieves improved sensitivity by the usage of thick metals

at top and thin metals at bottom with varied width and number of

turns on each layer. The wide and thick metals are used at top to

minimise resistance, but the number of turns is high enough to obtain

good sensitivity to the magnetic field. The multilayer stacking

improves sensor coil sensitivity by increasing the area of metal traces

as well as the amount of field captured by increasing the effective

cross-sectional area within a given region. The on-chip sensor uses

Metal Layers M8, M9 and M10 of a 65 nm silicon process arranged in

stacked fashion, implemented to maximize sensitivity and minimize

resistance in a given area. This method allows to capture more flux by

increasing the effective cross-sectional area without increasing the

area of the inductor on a die. The weak sensor signal is amplified by

an on-board low noise, high gain amplifier, the output of the chip

sensor is then digitised and processed in Matlab to calculate its

position and orientation.

The resulting sensor is wire-bonded onto a flex PCB substrate and

inserted into flexible catheter tube for evaluation. Flex PCB carrier

measures 1.7 mm wide, 0.4 mm thick and 1 m long. This is shown

Fig. 1a. Accuracy of the system is verified using a rigid mechanical

grid and pre-clinical validation was demonstrated in a 3D printed lung

phantom.

Results

To demonstrate the tracking performance of the sensor, full EMT

system measurements were carried out using the Anser open-hard-

ware EMT system [2]. The sensor outputs were sampled at 200 kHz

and 10,000 samples were used per pose estimate, resulting in a 20 Hz

update rate (substantially faster than 1–2 Hz) The accuracy was

determined by recording a grid of measurements and comparing to the

true mechanical positions of the sensor holder. 243 test points were

recorded in a 9 9 9 9 3 grid at x–y intervals of 15.9 mm on each

layer and z = 38.4 mm between layers. The tests were repeated with

two different sensor orientations (z-directed and y-directed) giving a

total of 486 test points. Position error is defined as the error between

the measured grid of points and its ideal grid when both grids are

aligned using Horn’s Absolute Orientation algorithm. Each test point

is averaged for 2 s with the sensors position sampled at 20 Hz. The

measured results of the accuracy experiments are shown in Fig. 1d.

The mean measured results show an accuracy of 2 mm position error

with standard deviation of 1.4 mm and 1� errors for orientation.

Table 1 compares this sensor solution with a commercially available

magnetic sensor by Northern Digital (Waterloo, Canada). A critical

Fig. 1 a Wire bonded sensor attached to a flex PCB substrate and

inserted into flexible catheter tube for evaluation, b close up of wire

bonded chip to carrier, c schematic representation of the on-chip coil

sensor with front-end low noise amplifiers, d accuracy results

showing the true position of the sensor compared to the predicted

position based on the sensors magnetic field measurements, a mean

accuracy of 2 mm is observed during this test
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advantage of this design is a significant reduction in overall sensor

volume, crucial in minimally invasive image-guided interventions.

Conclusion

The integrated EMT sensor described in this work is the first of its

kind designed for clinical EMT of image guided interventions. On-

chip EMT was possible due to the on-board low noise, high gain

amplifier even with induced voltages on the order of lV, resulted in

an overall accuracy of system accuracy of 2 mm. The solution can

dramatically cut sensor cost, increase scalability and reduce reliance

on harmful x-ray radiation guided imaging.
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Purpose

Bone tumors are accidentally diagnosed and primarily treated by

traditional open surgery. This surgical treatment not only accompa-

nies a wide incision and a large bone window into the patient but also

increases the risk of infection, a lengthy recovery period, and sec-

ondary fracture. Although minimally invasive procedures for bone

tumor surgery have been reported, it is not widely spread because of a

lack of dedicated surgical tools Thus, this study aimed to evaluate a

proposed bone tumor surgery robotic system in a series of experi-

ments on phantoms and a tibia of animal studies.

Methods

The Bone tumor surgical robotic system has been designed and

manufactured under IEC-60601–1(International Product Safety

Standards for Medical Devices) and IEC 80,601–2-77 (Particular

requirements for the basic safety and essential performance of

robotically assisted surgical equipment). The robotic system has a

bendable drilling module and a remote controller. The bendable drill

can be inserted and debrided the tumor legion inside the bone via a

12 mm bone hole. Performance tests and IEC regulation tests eval-

uated the safety and validation. The mimicking materials for bone

tumors were fabricated with 2.0 wt% agarose solution and 0.1 wt%

MRI contrast media. Three series of phantom and animal models were

manufactured by inserting a 25(L) mm 9 25(W) mm 9 15(H) mm

volume of a solid block into a sawbones femur and the left tibia of a

dead cow. The robotic system debrided the bone tumor models and

evaluated the operation. We compared the remaining bone tumor

model using MR images after the removal procedures.

Results

The safety and design regulation of the robotic surgery system was

proved by compliance with (IEC 6060–1-1-2nd and IEC-60601–1-2-

3rd) at a qualified testing agency. The validation was verified by

providing the repeatability of the Standard deviation for degree travel

is less than 1 degree and the travel range is less than 0.3 mm. The

removal rate for bone tumor-mimicking materials in the phantom

model was 88.5%, 100%, and 100%. In the preclinical studies, the

removal rate was 54.87%, 98.08%, and 75.07%. The three surgeries

were performed within 50 min with a bendable endoscope. An inci-

sion size was 45 mm and the bone hole size was 12 mm.

Conclusion

In this paper, we have developed a robotic system for assisting bone

tumor surgery and designed it according to safety standards. A 5 mm

Outer diameter bendable burr can be used for minimally invasive

bone tumor removal. We tested the safety of the robotic system

according to safety standards and evaluated the robot system using

MR-scannable bone tumor models. We proved the preclinical vali-

dation. The average removal rate for the MR-scannable bone tumor

model was 88.5% to 100% in the phantom studies and 54.87% to

98.08% in the preclinical studies. This bone tumor robot surgery

Table 1 Comparison between the performance and parameters of the sensor described in this work and a traditional, off the shelf wound coil

sensor

Metric This work Open source EMTS with NDI Aurora 610,099

Localization accuracy (mm) 2 1.1

Angular accuracy (�) 1 0.07

Sensor type On-chip Discrete

Sensor volume (mm3) 0.18 1.27

Sensitivity (V/Hz/T) 0.0002 0.12

Sensor resistance (X) 1300 68

Sensor inductance (mH) 0.012 4.9

Sensor coil thermal noise density (nV/sqrt(Hz)) 4.6 1
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approach method will apply to future studies regarding human

cadavers and clinical trials.
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Purpose

We present a method to determine and visualize the functional center

of rotation (FCOR) during total hip arthroplasty (THA) using off-the-

shelf augmented reality (AR) hardware. It is demonstrated through

this phantom study that current AR technology, together with inter-

nally developed image processing techniques, are sufficient for

interventional use. It eliminates the need for traditional computer-

aided navigational (CAN) hardware outside the AR head mounted

device (HMD) itself.

Methods

An AR-HMD (Microsoft Hololens II) was adapted to provide inside-

out 3D tracking of existing commercial passive infrared (IR) trackers.

The tracked instrumentation being a generic tracker rigidly affixed to

cadaver femurs and a reference tracker fixed to 3D printed cups to

define a cartesian coordinate system. 20 different cadaver femurs

were rotated into 3D printed acetabulum analogues with respect to the

physiological range of motion. Both observers rotated each femur

twice in its matching cup, producing 80 measurements. Through a

pivot-fitting algorithm, the FCOR was determined based on the point

cloud generated from displacement of the femoral tracker to the

acetabular tracker. This FCOR was compared to the ground truth

femoral and acetabular COR determined on CT.

Results

Determination of FCOR through the proposed functional, AR-based

method resulted in an absolute error of 2.9 ± 1.4 mm and

2.9 ± 1.1 mm for the acetabular cups and femoral heads respectively.

The 95th percentiles were below 5.6 mm and 4.7 mm respectively.

Conclusion

Our AR-HMD imageless navigation system offers an accurate and

easy way to determine and render the femoral and acetabular FCOR

in an experimental setting. After validation in a cadaver setting, this

system could be used to navigate the insertion of both, the femoral

and acetabular components of a total hip arthroplasty.
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Purpose

Recently, laparoscopic surgery is widely employed in various kinds of

treatment. The surgical tools used in laparoscopic surgery are straight

in shape, making it difficult to operate deep inside the body. To solve

this problem, we proposed a method in which a flexible surgical tool

is used after being secured the path of the tool with an outer sheath

that can be changed the rigidity of the main body [1, 2]. Although a

rigidity variable outer sheath that can be bent deep inside the body has

been developed, it lacks the degree of freedom for rotating the flexible

surgical tool which is inside the sheath. In this paper, the rotational

performance of the crown gear rotation mechanism, which we pro-

posed for the outer sheath, was evaluated for controlling the rotation

posture of the flexible surgical tools around the axis.

Methods

We proposed a method to rotate a flexible surgical tool around the

axis of the tool by attaching a rotation mechanism to the tip of the

outer sheath. The rotation mechanism is based on crown gears. For

controlling the posture of the flexible tool, the rotational angle is

required more than 360� around the axis of the tool. Figure 1 shows a

schematic image of the proposed crown gear. The rotation mechanism

consists of a rotating crown gear, three linear crown gears, three push-

up parts for linear crown gear and main frame. Each linear crown gear

is placed with the gap of one third pitch of the crown gear each other.

This structure enables to generate a force to rotate the rotational

crown gear when the linear crown gear is pushed up by the push-up

part. It is possible to rotate the crown gear by pushing up the three

linear crown gears with shifted cycle by one third cycle each other.

The three push-up parts are driven by wire. The wires for driving the

push-up parts are connected to the wire driving mechanism based on

cylindrical cam to realize wire traction for three linear crown gears

with shifted cycle by one third cycle each other. The rotation angle,

rotation speed, and rotation torque were evaluated as the rotational

Fig. 1 Schematic image of the proposed crown gear
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performance of the crown gear rotation mechanism. The angle and the

speed of the rotational crown gear were measured using poten-

tiometers. The rotational torque was defined as the required torque to

stop the rotation during the crown gear rotating mechanism rotates

steadily. The rotational torque was calculated from the output of a

torque transducer coupled to the center of the crown gear.

Results

The crown gear rotation mechanism rotates 500� clockwise with a

maximum error of 1.8� and 500� counterclockwise with a maximum

error of 11.2�. A possible cause of the larger counterclockwise rota-

tion error is the tilting of the linear crown gear. The measured

rotational speeds were 0.6, 1.2, 2.4 rpm compared to the designed

values of 0.6, 1.2, 2.4 rpm, respectively. The rotational torques were

48, 40, 36 mN�m for rotational speeds of 0.6, 1.2, 2.4 rpm, respec-

tively. The torque varied linear with the reciprocal of the rotational

speed.

Conclusion

In this paper, the angle, the speed and the torque were evaluated as the

rotational performance of the crown gear rotation mechanism for

controlling the rotational posture of a flexible surgical tool around the

axis. Though the rotation angle had a maximum error of 1.8� clock-

wise and 11.2� counterclockwise, more than 360� rotational angle was

achieved. The rotational mechanism rotated the designed rotational

speed. These results indicate that the rotational mechanism is appli-

cable to the rotation mechanism of the outer sheath for controlling the

posture of a flexible surgical tool.
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Purpose

Intracytoplasmic sperm injection (ICSI) is performed as one of

in vitro fertilization (IVF) procedures. In ICSI, an operator (embry-

ologist) injects the sperm into the ooplasm in the oocyte by

micromanipulations using micropipettes while observing magnified

views from a microscope. Since these operations require highly

skilled operators, an assistance system for the micromanipulations in

ICSI is desired. Therefore, we have been developing a micromanip-

ulation assistance system in ICSI [1]. In ICSI, it is vital to inject the

sperm into the ooplasm without damaging the spindle. However, the

spindle cannot be observed using a conventional microscope. Since

the spindle is generally located near the polar body, the operator

adjusts the oocyte orientation using a micropipette while observing

the polar body in the oocyte before performing the microinjection.

Therefore, it is crucial to recognize the polar body position in the

oocyte during ICSI. A micromanipulation assistance system for ICSI

would be able to provide appropriate support if it could automatically

recognize the position of the polar body in the oocyte from micro-

scopic images. The purpose of this study is to develop a method for

analyzing the position of the polar body in the oocyte from micro-

scopic images for assisting ICSI.

Methods

The proposed method recognizes the position of the polar body in the

oocyte from microscopic images. The proposed method consists of

two parts, (1) segmentation of structures in the oocyte in the image

and (2) classification of the status of the oocytes in the image based on

the position of the polar body. In the first part, we extract the polar

body, the transparent body, and the ooplasm in the microscopic image

using 2D U-Net [2]. We use Dice loss as a loss function and Adam as

an optimizer for training the 2D U-Net. The segmentation results from

2D U-Net have some false negative and false positive regions. We

modify the segmentation results to reduce these regions by applying

morphological opening and closing operators, and connected com-

ponent analysis. In the second part, we classify the statuses of the

oocyte in the image based on the positions of the polar body in the

oocyte. After the segmentation, the proposed method calculates the

center of gravity in each segmented region. Positional relationship

between the polar body and the ooplasm regions are analyzed using

their centers. Then, we compute the clock position of the polar body

in the oocyte. The proposed method classifies the images into five

statuses based on the position of the polar body. Five statuses are

(Status 1) no polar body locates in the oocyte, (Status 2) the polar

body locates around the 3 o’clock position in the oocyte, (Status 3)

the polar body locates around the 6 o’clock position in the oocyte,

(Status 4) the polar body locates around the 9 o’clock position in the

oocyte, and (Status 5) the polar body locates around the 12 o’clock

position in the oocyte.

Results

We applied the proposed method to microscopic images from five

porcine oocytes. We used about 200 images from four porcine

oocytes for training and about 50 images from one porcine oocyte for

evaluation. Mean Dice coefficients of the segmentation results using

2D U-Net for the polar body, the transparent body, and the ooplasm

were 0.38, 0.86, and 0.97, respectively. The classification accuracy of

five statuses based on the polar body positions was 70.0%. An

example of a correctly classified result is shown in Fig. 1. In center

image of Fig. 1, green, blue, and purple regions indicate the polar

body, the transparent body, and the ooplasm regions extracted using

2D U-Net. In the right image of Fig. 1, green and blue regions show

the centers of gravity in the polar body and ooplasm regions to

Fig. 1 Example of correctly classified result. This image is classified

as polar body located 12 o’clock position in oocyte. Left, center, right

images indicate microscopic image, segmentation result of polar body

(green), transparent body (blue), and ooplasm (purple), and centers of

polar body region (green) and ooplasm region (blue), respectively
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compute the clock positions. This image was correctly classified as

(Status 5) the polar body located the 12 o’clock position in the oocyte.

As shown in this figure, the proposed method could classify micro-

scopic images into five statuses using the segmentation of structures

in the oocyte. Since the proposed method obtains the position of the

polar body in the oocyte from a microscopic image, it will provide

useful information to a micromanipulation assistance system in ICSI.

Conclusion

This paper reported a method for analyzing the position of the polar

body in the oocyte from microscopic images. We extracted structures

in the oocyte from microscopic images using 2D U-Net and analyzed

the position of the polar body in the oocyte based on the segmentation

results. The experimental results showed that the proposed method

could obtain the position of the polar body in the oocyte from

microscopic images. Future works include evaluation using a large

amount of data and application of the proposed method to a micro-

manipulation assistance system.
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Purpose

Research and development activities aimed at image-based computer

aided diagnosis (CAD) are being conducted in various medical fields.

Additionally, active studies on organ and lesion detection using AI

technologies are also underway [1]. Diabetic retinopathy, one of the

three major complications of diabetes, is regarded as typical cause of

acquired blindness. Conventional diagnosis of diabetic retinopathy is

accomplished by an ophthalmologist comparing a series of fundus

images taken over time. However, the diagnostic performance of this

method has considerable dependence on ophthalmologist skill, pre-

senting a degree of difficulty in the objective and accurate

identification of lesions. This study considers a method of identifying

diabetic retinopathy that relies on abnormality detection using an

autoencoder that is trained using deep learning technology. The

autoencoder is prepared by training with only normal fundus images.

When a diseased fundus image is input into the trained autoencoder,

abnormal regions are not reconstructed. This enables the detection of

abnormal shadows by obtaining the difference with the original

image.

Methods

(1) Preprocessing

First, the color fundus image is converted to an image containing only

the green component. The extracted green component has higher

contrast with blood vessels and surrounding tissues compared with the

color fundus image. At the same time, image size homogenization is

also performed.

(2) Skip-GANomaly-based abnormality detection

The autoencoder configured in this study is based on Skip-GANomaly

by Akçay et al.[2] Both encoder and decoder were extended to five-

layer architectures. In the original study, skip connections were used

for all layers. For this study, this was changed to just the intermediate

4th layer. Figure 1 shows the configuration of the autoencoder used in

this study. This change was determined by conducting a preliminary

study of the optimal skip connection configuration. The all-layer skip

connection configuration used in the original study resulted in the

incorporation of diseased region parameters for which learning had

not been conducted, impeding abnormality detection. Integrations of

the skip connection into various layers, such as the 5th layer, the 4th

and 5th layers, and the three layers from the 3rd to the 5th, were

similarly evaluated. These showed that integration of the skip con-

nection in the 4th layer was optimal for fundus images.

(3) Method of diabetic retinopathy identification

In diabetic retinopathy identification, judgement is made by calcu-

lating agreement using the root mean squared error (RMSE) of input

images and of reconstructed images obtained from abnormality

detection. The higher the agreement with reconstructed images, the

lower the RMSE. Conversely, the higher the number of abnormal

regions, the less reconstruction, resulting in a higher RMSE. This

makes possible the use abnormality detection to identify diabetic

retinopathy.

Results

(1) Autoencoder training

Autoencoder training was conducted using fundus images from

476 healthy subjects. Training parameters were: No. of epochs 5000;

Batch size 64; Latent dimensions 100.

(2) Evaluation using test data

Fig. 1 Diagram of the auto-encoder used in this method

Fig. 2 Reconstructed image of diabetic retinopathy
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The image data used in this experiment as test data comprised 52

healthy subject images and 98 diabetic retinopathy patient images for

a total of 150 images.

Figure 2 shows an example of a reconstructed image from the

autoencoder and an input/output difference image. The difference is

expressed as the absolute value difference. Contrast is set to five times

to facilitate viewing the displayed image. The average RMSE for

healthy subjects was 9.71, while the average for diabetic retinopathy

patients was 13.40. A t-test was performed to verify the significance

of the difference between RMSE values. A p-value of 0.000005

(\ 0.05) was obtained, confirming significance.

Conclusion

This study considered RMSE-based diabetic retinopathy identification

in which the detection of diabetic retinopathy abnormalities was

conducted using a method that extends Skip-GANomaly by adjusting

it for medical images. Reconstruction effected from abnormality

detection and differences with the original image enabled detection of

leukoderma and hemorrhage areas. T-tests based on the RMSE values

showed that the differences were a significant. These results suggest

the effectiveness of this method in the identification of diabetic

retinopathy.
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Purpose

In general, medical students, residents, and inexperienced physicians

learn how to read diagnostic imaging using so-called teaching files,

which are collections of typical and characteristic diagnostic imaging

cases [1]. However, with the spread of Computer-Aided Diagnosis

(CAD), the way of diagnostic imaging is changing. That is, the final

diagnosis is now made by referring not only to the images but also to

the results of abnormal shadow detection by CAD. Currently, there is

no learning system for this type of diagnosis method.

Therefore, this study proposes a learning system for diagnostic

imaging methods in a reading method based on the combined use of

CAD. This also allows users to learn about CAD characteristics. In

addition, this study proposes a CAD system installed in a particular

hospital that should evolve by learning additional methods from the

hospital’s images, and this diagnostic imaging method learning sys-

tem is also enhanced as the CAD system evolves. As CAD evolves,

the number of teaching files in the diagnostic imaging method

learning system increases.

Methods

(1) CAD system

The CAD system used in this study was based on breast cancer

mass shadows. CAD discriminator consisting of 350 training images,

44 validation images, and 216 test images were developed using 550

images collected from five institutions. Yolov5, an AI-based auto-

matic segmentation process, was used for training. In 50 unknown

cases (4 images in 2 directions per person, left and right, for a total of

200 images), the CAD detection performance was 86.0% (%) for TP

and 0.504 (points/image) for FP.

(2) Imaging Diagnostics Learning System

The 4 K LCD monitor displays four images in two directions, left

and right, for each patient. At the click of a button, the results of CAD

detection are displayed as ROIs, with TP indicated by a white border,

FP by a yellow border, and FN (lesions not detected by CAD) by a

blue border. This database of 54 examples is saved and can be viewed

over and over again to learn how to read breast cancer mass shadows

as well as learn CAD characteristics.

(3) Evolutionary image processing method learning system

The CAD system was trained with image data collected from

several hospitals, but the CAD system was also designed to enhance

the learning system for image reading methods when the CAD system

was installed at a particular facility. With CAD installed in the hos-

pital, the physician’s accurate diagnosis results are fed back into this

diagnostic imaging method learning system and added to the case

database. The CAD system is updated and evolves by regularly

adding and retraining the database itself as learning data. In other

words, CAD is customized to the images taken at the hospital, which

are added as a teaching file to this diagnostic imaging learning

system.

(4) Reading evaluation experiment

To confirm the effectiveness of the proposed system, reading

experiments were conducted with the following three systems. Sys-

tem A was a case where reading is performed in a test case with no

learning at all; System B assumes the conventional learning method

and performs a reading test by learning with the location of the lesion

indicated on the images; System C assumes the proposed system,

where the original images were displayed, and displays the CAD

results, and correct answers were showed in colored frames when

Fig. 1 ROC curves with three system learning methods
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clicked. The System C displays the original image and, at the click of

a button, displays the CAD results and correct answers. Furthermore,

in System C, the number of cases for learning was increased,

assuming that a certain period of time has passed since the intro-

duction of the system to the hospital.

(5) Experimental conditions and evaluation methods

Interpretations experiments with systems A, B, and C were con-

ducted on 14 medical students. After learning each system, the

students were asked to read 200 images from a separately prepared

test case, and the diagnostic performance of each system was com-

pared using the area under the ROC curve Az based on the 3-step

confidence method ROC evaluation [2]. First, all patients were

evaluated with System A. After an interval of about 2 months, half of

the patients were evaluated with System B and the other half with

System C. ROC evaluation results were compared using System B

and System C, respectively. After a further interval of approximately

2 months, the remaining systems were evaluated.

Results

Figure 1 shows the ROC curves summarizing the results of the

reading experiment with the test cases of the three systems. The Az

for System A in the case of no learning at all is 0.6524. The Az of

System B is 0.6771 when learning with the conventional teaching file,

and the Az of System C is 0.8288 when learning with the proposed

evolutionary image diagnostics learning system.

Conclusion

The results of the reading experiment with the test cases confirmed

that the interpretation method using the proposed system significantly

improves interpretations ability, suggesting its effectiveness.
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Purpose

Medical imaging plays a crucial role in the diagnostic process, as it

allows physicians to visualize and analyze internal organs and tissues

for signs of disease or abnormalities. However, the low resolution of

such images can compromise their interpretability, leading to uncer-

tainty in the labeling of structures or abnormalities and posing

challenges in the training and evaluation of machine learning (ML)

models. In particular, the labels provided by different experts may

vary, resulting in uncertainty in the training process.

In addressing this clinical challenge, this study proposes a ML

approach for the classification of pancreatic cystic lesions (PCLs) as

potentially malignant or non-potentially malignant. PCLs are a

common type of lesion that can be difficult to detect on Computed

Tomography (CT) scans and have the potential to progress to pan-

creatic cancer, a highly lethal form of cancer with a poor prognosis.

Furthermore, the study aims to address the issue of having mul-

tiple labels for the same CT image. To do this, various techniques for

merging these labels are evaluated, and their influence on the per-

formance of the classification of PCLs is studied in order to identify

the most effective method. Through this approach, the ultimate goal

of the study is to develop a reliable ML approach for accurately

classifying PCLs, thereby improving the classification and manage-

ment of pancreatic cancer.

Methods

The four types of PCLs that are commonly encountered in clinical

practice are: intraductal papillary mucinous neoplasm (IPMN),

mucinous cyst neoplasm (MCN), serous cystadenoma (SCA), and

pseudocysts. These PCLs are divided into two main groups based on

their likelihood of progressing to pancreatic cancer: high probability

to malignize (IPMN and MCN) and low probability to malignize

(SCA and pseudocysts).

Several factors that may influence the likelihood of progression to

pancreatic cancer of the PCLs were considered: the location of the

cyst (inside, partially inside, or outside of the pancreatic organ), the

position with respect to the pancreas (head, body or tail), the presence

of calcifications in the cyst or pancreas, and the ratio of the biggest to

smallest axis of the volume of the PCL.

The training dataset for this study consisted of 154 studies with 81

non-mucinous and 73 mucinous, corresponding approximately to the

50% each. The distribution of sex among the subjects was 95 male

subjects (60%) and 59 female subjects (40%). The mean age was

69 years, with a standard deviation of 12 years, meaning that the

main subjects are found within 6912 years. The range of ages in the

training dataset was from 33 to 91 years, with a median of 62 years.

The testing dataset consisted of 95 studies with 53 not mucinous

and 42 mucinous, which approximately corresponds to 55% and 45%

respectively. The distribution of sex among the subjects was also

roughly equal, with 60 male subjects (60%) and 35 female subjects

(40%). The mean age was 70 years, with a standard deviation of

12 years and the range of ages was from 38 to 87 years, with a

median of 62.5 years.

Overall, both the training and testing datasets were well-balanced

with respect to the likelihood of malignancy and sex, and the age

distributions were consistent with similar statistical values.

The ML method used was the Gradient Boosting classifier. It

consists of an ensemble of weighted decision trees which each of

them outputs a prediction that is then averaged with the other’s

applying their corresponding relevance and merged into one final

prediction. The Gradient Boosting classifier was trained with 10,000

estimators, which are the boosting stages to perform; a maximum

depth of 1000, which limits the nodes of each tree; and, an initial

learning rate of 0.0001.

This training was repeated per each dataset generated from the

merging methods stated below and used to study their performance

and influence in the PCLs classification.

Fig. 1 Equation used to obtain the final merged ground truths. A(x, y,

z) is the number of annotators that labeled voxel (x, y, z) as

containing the structure of interest; N the total number of annotators;

and, p the threshold applied to generate the final ground truth
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Three main techniques used for merging labels were studied [1].

They are carried out through probability maps, as depicted in the

equation in Fig. 1, assigning each voxel to the final corresponding

class depending on the applied threshold p:

– Intersection (p = 1), voxels marked by all annotators.

– Union (p = 1/n), voxels marked by at least one annotator.

– Majority voting (p = 0.5), voxels marked by at least half of the

annotators after smoothing the probability map with a Gaussian

kernel.

Results

The results of the Gradient Boosting classifier are shown in Table 1.

For the training of all the multiple labels as independent studies an

accuracy of 88% in the training and an accuracy of 79% in the testing

dataset were obtained, which already outperforms the PCLs classifi-

cation rate of medical experts which is between 40 and 65% [2].

Comparing both training and testing accuracies, it can be seen that

the higher two belong to the dataset with no merging. Moreover, the

majority voting gets a higher accuracy in training but a lower in

testing, which maybe shows a worse performance of a merging

algorithm that turns out in a worse training dataset. It can also be

observed that all the specificities tend to be a bit lower than the

sensitivities which means that the classification tends to over-classify

potentially malignant cysts and under-classify benign cysts. Even if

this is not the best performance, it is better to over-classify potentially

malignant cyst due to the impact that ignoring a potentially malignant

cyst may cause.

Conclusion

Preliminary results indicate that the classification tends to over-clas-

sify potentially malignant cysts and under-classify benign cysts. This

could be beneficial in terms of minimizing false negatives, but further

work is needed to improve the classification scheme.

The presence of multiple labels per image presented a significant

challenge. In order to study more thoroughly its influence on the PCLs

classification, a dataset with more than two labelers per CT is needed.

In order to address these issues and improve the accuracy of the

classification, future work will be focused on expanding and

improving the dataset and evaluating a wider range of merging

algorithms.
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Purpose

Accurate epileptogenic zone (EZ) localization is key to successful

epilepsy surgery for patients with medically refractory focal epilepsy.

Currently, Electrophysiological recording and medical imaging are

two fundamental techniques in preoperative evaluation of epilepsy

surgery. Stereoelectroencephalogram (SEEG) is a gold standard for

EZ localization by monitoring the abnormal electrophysiological

neural activity from a holistic 3D perspective. However, SEEG can

only be utilized to detect the seizure electrodes independently, and its

limitation of local brain coverage fails to capture the global brain

connection relationship. While medical imaging can demonstrate the

whole brain structural abnormalities, it is incapable of detecting

functional electrophysiological changes. Due to the heterogeneous

nature of the two modals, it is challenging to localize EZ precisely by

comprehensively analyzing the combination of SEEG signal and

structural imaging.

Methods

This paper proposed an automatic and accurate EZ localization

method for focal epilepsy, which subtly integrated the SEEG and

Diffusion Tensor Imaging (DTI) to simultaneously detect the func-

tional and structural abnormalities for EZ localization. The proposed

method consisted of two steps: the determination of the region of

interest (ROI) through SEEG and the accurate EZ localization

through structural connectivity based on the SEEG-informed ROI. In

order to determine ROI with abnormal functional neural activity, we

first presented a spectral-temporal-aware fusion network for the

SEEG signal identification to determine which region the implanted

Table 1 PCLs classification results for the different label merging techniques

Training dataset Accuracy (%) Accuracy test (%) Sensitivity test (%) Specificity test (%)

No merging 88 79 82 76

Intersection 72 75 77 71

Union 72 75 79 69

Majority voting 81 73 81 62

The first column indicates which case we are studying: no merging (all labels used for training as independent studies), intersection, union and

majority voting merging techniques. The second column shows the accuracy obtained in the training and the third, fourth and fifth columns are

metrics obtained from inferring the testing dataset
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electrode contact belonged to. These regions were the EZSEEG,

propagation zone (PZSEEG), and brain regions not involved with

epileptiform activity (NIZSEEG), which were defined as whether the

electrodes demonstrate initial, subsequent or no seizure activity [1].

The SEEG-informed ROI is defined by EZSEEG and PZSEEG.

Specifically, the proposed spectral-temporal-aware fusion network

integrated the spectral and temporal features of SEEG subband sig-

nals and utilized the hierarchical multi-domain representations with

squeeze-and-excitation (SE) block to extract features for fusion.

Subsequently, the feature representation was fed into the convolu-

tional neural network (CNN) for SEEG seizure detection, then the

SEEG electrode of these three regions can be recognized according to

the Epileptogenicity Index (EI) of SEEG seizure signals. Though the

SEEG recording can help to identify the local seizure points of EZ, it

still failed to determine the EZ boundary. Inspired by [1], which

demonstrated that the structural connectivity between EZ and non-

seizure regions was significantly decreased, while the connectivity of

EZ itself was not significantly changed, we aimed to accurately

localize the EZ by the brain structural connectivity. Therefore, we

proposed a regional structural connectivity network based on the

SEEG-informed ROI to further accurately localize the EZ. The

electrode contact localization of SEEG-defined ROI were co-regis-

trated through a post-implantation Computer Tomography (CT) scan

with DTI. Due to the significant structural connectivity differences

between nodes of the epileptogenic network, we performed the

analysis of whole-brain structural connectivity and the regional

structural connectivity within and between the SEEG-informed ROI,

and then calculated the connectivity strengths from different regions.

Finally, the EZ boundary can be further accurately determined

according to these connectivity strengths from different regions.

Results

We conducted our experiments using the dataset of the SEEG signals

and DTI imaging of 10 patients. The experimental results illustrated

that the SEEG identification results of our method can achieve the

average accuracy of 95.94% and the average precision of 98.25%,

shown in Table 1, which outperformed the state-of-the-art methods

for SEEG identification. The experimental results of EZ localization

determined by structural connectivity illustrated that the significant

structural connectivity differences within and between three SEEG-

informed brain regions can assist to localize the EZ boundary, shown

in Fig. 1. Meanwhile, we conducted the ablation study of SEEG

determination, DTI determination, and the combination determination

of SEEG and DTI for EZ localization, and the results demonstrated

that our combination determination method showed better perfor-

mance for EZ localization, and the EZ localization determined by our

method was almost consistent with the result of doctor’s decision.

Conclusion

Our method can assist neurosurgeons in more automatic and accurate

EZ localization for focal epilepsy via SEEG informed structural

connectivity by the combination of functional electrophysiological

information with global structural connectivity information, which

can provide an important auxiliary way to precisely locate the EZ for

epileptic preoperative assessment. While for the preoperative

assessment, more modal data can be considered for the localization of

EZ from functional and metabolic aspects, including resting-state

functional magnetic resonance imaging (rsfMRI), positron emission

tomography-Computer Tomography (PET-CT), etc., so in the future,

our immediate plan is to integrate more modal information for the

preoperative assessment of epilepsy.
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Table 1 The average accuracy and precision (%) of different methods to identify SEEG from EZ, PZ and NIZ with tenfold cross-validation

Method Accuracy Precision

EMD ? SVM 85.69 ± 0.73 86.65 ± 0.87

CWT ? SVM 88.03 ± 0.68 89.40 ± 0.41

CWT ? CNN 90.89 ± 0.35 91.90 ± 0.70

Ours 95.94 ± 1.97 98.25 ± 0.83

Fig. 1 The EZ localization process by structural connectivity

differences from SEEG defined different regions. The EZ localization

is determined through structural connectivity strengthens within and

between EZSEEG, PZSEEG and NIZSEEG. The connectivity of EZ itself

is not significantly changed, whereas the strengthens of the structural

connectivity within seizure zone and non-seizure zones is signifi-

cantly decreased. The region with the red circles denotes the EZSEEG,

the green circles denotes the PZSEEG, the yellow circles denotes the

PZSEEG, the circles denotes the electrode contacts, and the blue region

denotes the final EZ localization
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Purpose

Severe anaphylactic reactions to non-ionic iodine contrast media

administered intravenously are rare, but it is known that there are

cases in which the initial symptoms are mild but rapidly become

severe, and the initial response is often difficult. The World Allergy

Organization has summarized the criteria in 2020[1] into two. Acute

onset of an illness (minutes to several hours) with simultaneous

involvement of the skin, mucosal tissue, or both and at least one of the

following: Respiratory compromise, Circulatory compromise, Severe

gastrointestinal symptoms. Acute onset of hypotension or bron-

chospasm or laryngeal involvement after exposure to a known or

highly probable allergen for that patient (minutes to several hours),

even in the absence of typical skin involvement. Severe anaphylactic

reactions have been considered that most cases do not belong to the

type-I hypersensitivity reactions [2]. However, there is an older theory

of IgE-mediated reactions to contrast media, other pathophysiological

mechanisms (including direct secretory actions on mast cells and

basophils, and activation of the complement system with or without

association with the plasma contact system) are also much debated.

Anaphylaxis and anaphylactoid reactions are ultimately clinically

indistinguishable. It is currently no established method knows to

avoid anaphylaxis due to contrast media. Although training and pre-

vention of these side effects are important, but because they occur so

rarely, it is difficult to diagnose and cure them in a clinical situation.

Thus, if not handled correctly, it can lead to death.

Although little is known about imaging findings at the onset of

anaphylaxis, it has been reported that the inferior vena cava (IVC) is

diminished. Therefore, in this study, we developed a method to

automatically detect the diminished of IVCs due to anaphylaxis by

machine learning.

Methods

In this study, 61 cases with contrast-enhanced computed tomography

(CT) scans using non-ionic iodine contrast media between April 2011

and April 2022 were included in the study. The 61 cases included 20

patients (male-to-female patient ratio, 10:10; mean age:

61.2 years ± 14.3 [standard deviation]) who had no contrast-induced

symptoms at the time of CT examination (Normal group), 20 cases

(male-to-female patient ratio, 13:7; mean age: 60.3 years ± 21.3)

who had mild to moderate allergic symptoms (Allergic group), and 21

cases (male-to-female patient ratio, 10:11; mean age: 65.1 years ±

17.2) who required initial treatment for anaphylactic reactions

(Anaphylactic group).

In each case, 5 contiguous slices of 5 mm-thick images were

extracted from both plain and contrast-enhanced CT on the same

examination date. Extracted areas were 10 mm to 35 mm headword

from the celiac artery branch. The board-certified radiologist

Table 1 Anaphylaxis predictive results

Random forest SVM Neural network Naive Bayes

1 2 3 4 5 Average

TP 16 17 18 17 17 85 6 14 11

FP 3 2 2 1 2 10 0 5 19

FN 5 4 3 4 4 20 15 7 10

TN 37 38 38 39 38 190 40 35 21

Binary accuracy 86.9% 90.2% 91.8% 91.8% 90.2% 90.2% ± 2.0 75.4% 80.3% 52.5%

Balanced accuracy 84.3% 88.0% 90.4% 89.2% 88.0% 88.0% ± 2.3 64.3% 77.1% 52.4%

Classification error rate 13.1% 9.8% 8.2% 8.2% 9.8% 9.8% ± 2.0 24.6% 19.7% 47.5%

Precision 84.2% 89.5% 90.0% 94.4% 89.5% 89.5% ± 3.6 100.0% 73.7% 36.7%

F-score 80.0% 85.0% 87.8% 87.2% 85.0% 85.0% ± 3.1 44.4% 70.0% 43.1%

Sensitivity 76.2% 81.0% 85.7% 81.0% 81.0% 81.0% ± 3.4 28.6% 66.7% 52.4%

Specificity 92.5% 95.0% 95.0% 97.5% 95.0% 95.0% ± 1.8 100.0% 87.5% 52.5%

TP true positive, FP false positive, FN false negative, TN true negative

Fig. 1 Outline of the proposed method
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manually contoured the IVC to the extracted images under the blind

for the symptoms, etc., and created label images. From the label

images, features such as area, major diameter, minor diameter, and

angle were extracted. These were machine-learned (Naive Bayes

(NB), Support Vector Machine (SVM), Random Forest (RF), Neural

Network (NN)) by Orange (Ver. 3.32. 0) using the five-part validation

method, and the cases causing anaphylaxis were classified based on

the results. In RF, five iterations were performed, and the average

value was utilized.

Results

The prediction accuracy of anaphylaxis by five-part validation was

analyzed in 61 patients who underwent contrast-enhanced CT. The

Binary Accuracy and Balanced Accuracy of prediction by four

machine learning methods were 52.5% and 52.4% (NB), 75.4% and

64.3% (SVM), 90.2% ± 2 and 88.8% ± 2.3 (RF), and 80.3% and

77.1% (NN) (Table 1). In this study, RF performance was the best,

although results varied.

Conclusion

In this study, we developed a method to detect anaphylaxis from

contrast-enhanced CT images obtained by machine learning the label

images of IVC before and after imaging, and demonstrated its use-

fulness in predicting the onset (Fig. 1).
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Purpose

When diagnosing coronary artery disease (CAD) which is the main

cause of death in the world, medical doctors check two factors: one is

the shape and motion of the patient’s heart (referred to as ‘‘dynamic

cardiac shape’’) and the other is the metadata of patient including

patient’s lifestyle and family history of CAD. One noninvasive

method for capturing the dynamic heart shape is to use cardiac MR

images (CMR images). The CMR image consists of a sequence of 3D

images during a cardiac cycle. The dynamic 3D heart shape changes

are observed by the CMR images. Using the CMR images, Biffi et al.
[1] proposed a diagnostic support system for hypertrophic car-

diomyopathy composed of ladder variational autoencoder (LVAE)

and multilayer perceptron (MLP). However, the system employed

only the dynamic heart shape as input to the system.

Therefore, we propose a new diagnostic support system for CAD

by using dynamic heart shapes and multiple metadata including

lifestyle and genetic information.

Methods

Figure 1 shows the overview of our system which classifies CAD

patients and healthy subjects using the dynamic heart shape and

metadata. The dynamic heart shape is described with a set of voxel

models of the left ventricle. Each voxel model with 80 9 80 9 80

[voxel] is generated from the CMR image in a frame during a cardiac

cycle by using joint learning model [2]. Here, in the previous research

[1], only 2-frame voxel models are used as the dynamic heart shape

(2-frame dynamic heart shape). On the other hand, our system uses

10-frame voxel models as the dynamic heart shape (10-frame

dynamic heart shape) to consider more detailed shape changes during

the cardiac cycle.

The metadata used in our system are three types: 6 continuous data

(systolic/diastolic blood pressures, body fat percentage, BMI, forced

vital capacity, and pulse rate), 3 discrete data (alcohol frequency and

past/current tobacco frequencies), and 7 single nucleotide polymor-

phisms (SNPs) which are highly relevant to CAD. Among the

metadata, the continuous data are converted to a 6-dimentional vector

after applying z-score normalization to each datum, and the discrete

data are converted to one-hot vectors. Also, 7 SNPs are described as a

7-dimentional vector where each element represents the number of

minor alleles (0, 1, or 2) in its corresponding SNP. By collecting the

data, the input metadata is a 29-dimentional vector.

In our system, when the dynamic heart shape is given, a 3D

convolutional encoder extracts the feature vector from the dynamic

heart shape. The extracted feature vector and the metadata vector are

inputted to a 3-layer LVAE encoder to obtain a latent variable z3
corresponding to the input vectors. Using z3, MLP conducts a binary

classification between CAD patients and healthy subjects.

To train our system, we define our loss function L as follows:

L ¼ cðR3
i¼1kiKi þ cCÞ þ Dþ mM;

where Ki is a Kullback–Leibler divergence to bring a distribution of

the latent variable zi of the ith-layer of LVAE closer to a Gaussian

distribution. C is a cross entropy loss to evaluate error of binary

classification. In the training of our system, to construct the LVAE

encoder, the input dynamic heart shape and metadata vector are

restored by using 3-layer LVAE decoder and 3D convolutional

decoder. Therefore, D is the dice coefficient between the input and

restored dynamic heart shapes. M is squared errors between the input

and restored metadata vectors. Through a preliminary experiment,

scale factors m, ki, c, c of each term are set to m = 3.0, k1 = 0.02,

k2 = 0.001, k3 = 0.0001, c = 3.0, and c = 1. Also, latent variables z1,
z2, and z3 of each layer are set to 48, 32, and 2, respectively.

Fig. 1 Overview of our diagnose system for CAD
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Results

To validate the availability of our system, we conducted four

experiments by using four systems with different inputs: (1) 10-frame

dynamic heart shapes and metadata (our system), (2) only metadata,

(3) only 10-frame dynamic heart shapes, and (4) only 2-frame

dynamic heart shapes which is the previous system [1]. In the

experiments, we used the dataset composed of 100 healthy subjects

and 100 patients with CAD published in UK Biobank. By dividing the

dataset into four sub-datasets so that each sub-dataset includes 50

data, we performed fourfold cross-validation by using one sub-dataset

as test data and others as training data.

Table 1 shows the average accuracy, precision, and recall of each

experiment. From rows 4 and 5 of Table 1, increasing the number of

frames in the dynamic heart shape from 2 (previous system [1]) to 10

improved the classification accuracy. Moreover, as shown in rows

from 2 to 4 of Table 1, our system inputting both the dynamic heart

shape and metadata greatly improved the classification accuracy

compared to the cases inputting them separately.

Conclusion

We proposed a diagnostic support system for CAD using the dynamic

heart shape and patient’s metadata. Through the experiment, we

confirmed that the classification accuracy of our system outperforms

that of the baseline.
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Purpose

The principle of intraoral radiography is difficult for undergraduate

students to understand. We have therefore introduced a system in

which, after lectures, undergraduate students take images of each

other during practical sessions of intraoral radiography. The expan-

sion of Covid-19 has made it difficult for undergraduate students to

practice radiography with each other in intraoral radiography due to

the risk of infection. Under these circumstances, we have tried to

develop an environment that facilitates students’ understanding of the

principles. In recent years, educational methods using Extended

Reality (XR) have been introduced in various fields [1]. We have

developed an educational system for intraoral radiography practice

using XR, Fig. 1.

Methods

This educational system involves undergraduates wearing a Virtual

Reality (VR) headset and practicing intraoral radiography within the

VR. In the VR, there is a skull, a film, and an xray tube, and

undergraduate students can learn the appropriate bisecting technique

and orthoradial projection for the film and teeth on which the denti-

tion is placed. For the data of this educational system, first, CT

scanned skull image data was output as a polygon file using a

workstation, and then the data was converted to VR headset data.

Those datasets were loaded into a VR headset. In a similar way, the

film and xray tube datasets were loaded into the VR headset. The VR

headset used was the Meta Quest 2(Meta,USA), and the conversion of

polygon files to VR headset data was done using the web-

site(Holoeyes Inc.,Tokyo,Japan).

One of our staff members wore the VR headset of this system to

check the operability and operational status of the system. Other staff

members checked the images from the VR headset output externally

to a PC.

Results

This educational system operated without major problems and was

generally easy to operate. Instructors commented that they had a

better understanding of intraoral radiography and that they could learn

efficiently in the VR space, regardless of their location. On the other

hand, some said that they could not reproduce the feeling of holding

Table 1 Experimental results with different inputs to the system

Accuracy Precision Recall

Our system (10-frame dynamic heart shape ? metadata) 0.86 ± 0.02 0.87 ± 0.07 0.85 ± 0.08

Only metadata 0.76 ± 0.05 0.76 ± 0.06 0.75 ± 0.05

Only 10-frame dynamic heart shape 0.76 ± 0.04 0.80 ± 0.09 0.72 ± 0.10

Previous system [1] (only 2-frame dynamic heart shape) 0.70 ± 0.04 0.72 ± 0.05 0.65 ± 0.07

Fig. 1 Diagram of the education system
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the xray tube, that they needed to get used to the operation, and that

they could not get instructions from the instructor in the VR.

Conclusion

We have developed an educational system for the practice of intraoral

radiography using XR, and confirmed the system in terms of its

usability. In our opinion, the system was largely satisfactory. In the

future, we plan to customize the system and solve the problems. We

believe that this educational system will make a significant contri-

bution to students’’ future use of intraoral radiography in real patients.
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Purpose

Laryngeal cancer is the most common malignant tumor of the head

and neck except for thyroid cancer. In the case of laryngeal cancer,

the presence or absence of lesions is determined through endoscopy,

and malignancy is confirmed through biopsy. Results read from

endoscopic images may vary depending on the proficiency of the

clinician, and even skilled people may not find microtumors.

Accordingly, there is a need to develop a diagnostic assistance

technology to reduce the deviation of image reading and maintain

constant accuracy.

Currently, research on artificial intelligence technology that ana-

lyzes and classifies MRI and CT images to assist diagnosis is being

actively conducted, but few studies have incorporated artificial

intelligence technology in the field of endoscopy [1].

Therefore, in this study aims to improve clinicians’ reading

accuracy and reduce misdiagnosis by comparing the Yolov5 and

Yolov6 models and developing a lesion detection model using them.

Methods

In this study, laryngeal endoscopy was performed on adult patients

who underwent laryngeal endoscopy. The collected 1500 pieces of

data consist of normal data, benign data, and malignant data, and the

learning was conducted by dividing them into 900 training data and

600 model performance evaluation data data. To detect the presence

or absence of lesions, the Yolov5 and Yolov6 models, which are the

first-stage object detection frameworks, were used. The deep learning

environment was learned by setting the number of epochs to 200, the

batch size to 16, and the input image size to 640 9 640.

Results

The performance evaluation of the model was expressed in terms of

precision, recall, and average precision (AP). According to the

threshold, when checking the precision and recall values of the data

predicted by the Yolov5 and Yolov6 models to have lesions, if the

threshold is set to 0.5, the accuracy of the Yolov5 model is 94%, the

recall rate is 68%, the accuracy of the Yolov6 model is 93%, and the

recall rate is 74%, Table 1. When the critical value was set to 0.8, it

showed 94% accuracy and 65% recovery rate for the Yolov5 model,

96% accuracy and 61% recovery rate for the Yolov6 model. In

addition, the difference between the two models was confirmed in the

data that is difficult to locate the lesion, and the Yolv6 model was

found to detect the lesion closer to the actual lesion site than the

Yolov5 model.

Conclusion

Both Yolov5 and Yolov6 showed that the area of the lesion predicted

by the model was detected close to the area of the actual lesion. Since

benign tumors are more prominent than malignant tumors, the trained

model captures the benign data almost the same as the ground truth,

while for malignant data, we detect wider than the ground truth, and

this difference is greater in the Yolov5 model than in the Yolov6

model, Fig. 1. In addition, all data with lesions were not found among

the model performance evaluation data, and it is judged that it is

necessary to supplement them through future research.

In future studies, it is expected that generalized model perfor-

mance will be obtained through cross-validation, and the detection

ability for various types of tumors will be improved through model

advancement by increasing the number of cases for tumors that have

not been found.

Table 1 Model performance results according to threshold

Model Prob TP FN FP Recall precision FPPI

YOLOv5 0.5 137 63 8 0.68 0.94 0.04

0.8 131 69 7 0.65 0.94 0.03

YOLOv6 0.5 148 52 10 0.74 0.94 0.04

0.8 123 77 4 0.61 0.96 0.02

Fig. 1 The location of the lesion predicted by the model in data

where lesion detection is difficult; the red box is what the model

predicted, and the blue box is the Ground-truth
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Purpose

In clinical practice, using two standard mammogram views (cranial–

caudal (CC) and mediolateral-oblique (MLO)) helps radiologists

make more reliable clinical decisions by providing information of

correspondence. Some studies proposed deep learning algorithms

based on matching mass patch images extracted from each view for

FP reduction. However, these methods could ignore each breast

mass’s surrounding information and location characteristics. There-

fore, this study aimed to investigate the effectiveness of a proposed AI

algorithm for improving the performance of breast mass detection by

considering the relational information in the paired whole mammo-

gram [1].

Methods

We collected 1050 mammograms from Hologic Lorad Selenia 2D

Digital Mammography machine (Hologic) and 586 mammograms

from General Electric healthcare Senographe Essential (GE). We used

1476 data (944 Hologic and 532 GE data) for training models. The

160 data (106 Hologic data, 54 GE data) were not used for training

the models but for evaluating the model performance. The convolu-

tional neural network (CNN) extracts a feature map based on the

information for each channel by performing convolution operations

according to the channel. Therefore, we generated synthesized

pseudo-color images from the gray-scale original mammogram by

adjusting the histogram distribution and fusing each image along the

channel axis. The collected mammograms have 2560 9 3328 (pixel)

or 3328 9 4096 (pixel) resolution, which is a considerable size

comparing other data in deep learning algorithms of computer vision

(256 9 256 (pixel) or 512 9 512 (pixel)). Hence, when the original

images are used as they are, excessive computation and memory

problems occur due to their large size. To prevent this situation, we

resampled the image size to 512 9 512 (pixel). The height of the

image was reduced to 512 pixels, and the width was resized to

maintain the original ratio based on the height. Then we applied zero-

padding to fit and scaled the width and height to 512 pixels. Since the

number of training data is proportional to the model’s performance, a

data augmentation technique was applied to compensate for the small

number of data. To simultaneously utilize the correlated information

from the whole paired views, we propose a CNN algorithm using

cosine similarity and the Squeeze and Excitation method, which

applies weights using each channel of the feature map extracted from

the convolution layer. The proposed network consists of a U-shape

structure which has shown excellent performance in medical image

segmentation. The proposed structure comprises encoders and deco-

ders, and we applied VGGnet16 as an encoder. To demonstrate the

effectiveness of the proposed method, we compared it with the per-

formance of the single view model, which has one U-shape structure

and extracts feature maps using a single image to not share the pair-

view-based information.

Results

We compared the performance results with the single view models

and the paired view model in 160 test sets. We extracted the seg-

mentation results from model output and the detection results of

rectangle boxes from mass area. In the segmentation results, the

proposed paired-view model achieved 0.709 dice similarity score

(DSC), and the single-view model (the contrast model) reached 0.579

DSC. From the segmented map from models and ground truth, we get

box region including mass and calculated the detection performance

for verifying the localization ability of models. The proposed model

achieved 0.950 sensitivity and 0.900 precision at 0.156 false positive

per images (FPPI). The single-view model achieved 0.813 sensitivity

and 0.747 precision at 0.188 FPPI in single view model. The Table 1

show the results of detection performance from each model. Our

study shows that the proposed algorithm effectively reduced FPPI and

increased sensitivity by sharing the feature map between the two

views, increasing the weight of channels that could be missed from

one side and lowering the weights of insignificant channels.

Conclusion

In this paper, we proposed a deep learning-based artificial intelli-

gence algorithm that enhances breast mass detection performance

by extracting significant features by using two standard mammo-

gram images simultaneously. The validity of the proposed

Table 1 The performance results from models

View Sensitivity (95% CI) Precision (95% CI) FPPI (95% CI)

Pair 0.95 (0.912–0.988) 0.9 (0.859–0.941) 0.156 (0.092–0.22)

Single 0.813 (0.749–0.876) 0.747 (0.684–0.809) 0.188 (0.118–0.257)

Fig. 1 Example images of the prediction results from models. The

green rectangles and regions represent to ground truth and the red

rectangles and regions represent to prediction from models. a Original

images. b Ground truth. c Results from single-view model. d Results

from paired-view model. False positive, FP; False negative, FN
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algorithm based on the dual images is verified by comparing the

performance of a single view based algorithm. As shown in Fig. 1,

the result demonstrates the effectiveness of the proposed algorithm

for reducing the false positives and preventing missing true posi-

tives comparing based on single view algorithm. We expect that

this proposed method can provide practical diagnostic solutions for

improving patients’ treatment as a computer-aided diagnosis

system.
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