Skip to main content

Preparation of Synaptosomes from Mammalian Brain by Subcellular Fractionation and Gradient Centrifugation

  • Protocol
  • First Online:
Clathrin-Mediated Endocytosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1847))

Abstract

More than a trillion nerve terminals interconnect neurons in the human brain. These terminals are fundamental for signal transmission and nerve cell communication. Among other techniques, the isolation of nerve terminals [or synaptosomes (Whittaker et al. Biochem J, 90(2):293–303, 1964)] has been fundamental to study the biochemistry and the physiology of the nervous system. This chapter describes the isolation and purification of intact synaptosomes from rodent brain tissue that can be used to further characterize synaptic structure and function and to examine the molecular mechanisms of neurotransmission.

The original version of this chapter was revised. A correction to this chapter can be found at https://doi.org/10.1007/978-1-4939-8719-1_19

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 24 October 2018

    This book was inadvertently published with the incorrect title as Clathrin-Mediated Endoytosis: Methods and Protocols. This has now been corrected throughout the book to Clathrin-Mediated Endocytosis: Methods and Protocols.

References

  1. Azevedo FAC, Carvalho LRB, Grinberg LT et al (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513(5):532–541. https://doi.org/10.1002/cne.21974

    Article  PubMed  Google Scholar 

  2. Whittaker VP (1993) Thirty years of synaptosome research. J Neurocytol 22(9):735–742. https://doi.org/10.1007/BF01181319

    Article  CAS  PubMed  Google Scholar 

  3. Thorne B, Wonnacott S, Dunkley PR (1991) Isolation of hippocampal synaptosomes on Percoll gradients: cholinergic markers and ligand binding sites. J Neurochem 56(2):479–484. https://doi.org/10.1111/j.1471-4159.1991.tb08175.x

    Article  CAS  PubMed  Google Scholar 

  4. Dunkley PR, Jarvie PE, Heath JW, Kidd GJ, Rostas JA (1986) A rapid method for isolation of synaptosomes on Percoll gradients. Brain Res 372(1):115–129

    Article  CAS  Google Scholar 

  5. Dunkley PR, Heath JW, Harrison SM, Jarvie PE, Glenfield PJ, Rostas JA (1988) A rapid Percoll gradient procedure for isolation of synaptosomes directly from an S1 fraction: homogeneity and morphology of subcellular fractions. Brain Res 441(1–2):59–71

    Article  CAS  Google Scholar 

  6. Dunkley PR, Jarvie PE, Robinson PJ (2008) A rapid Percoll gradient procedure for preparation of synaptosomes. Nat Protoc 3(11):1718–1728. https://doi.org/10.1038/nprot.2008.171

    Article  CAS  PubMed  Google Scholar 

  7. Matsumoto I, Combs MR, Jones DJ (1992) Characterization of 5-hydroxytryptamine1B receptors in rat spinal cord via [125I]iodocyanopindolol binding and inhibition of [3H]-5-hydroxytryptamine release. J Pharmacol Exp Ther 260(2):614–626

    CAS  PubMed  Google Scholar 

  8. Gray EG, Whittaker VP (1962) The isolation of nerve endings from brain: an electron-microscopic study of cell fragments derived by homogenization and centrifugation. J Anat 96(Pt 1):79–88. https://doi.org/10.1111/(ISSN)1469-7580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. De Robertis E, Pellegrino de Iraldi A, Rodriguez de Lores Arnaiz G, Salganicoff L (1962) Cholinergic and non-cholinergic nerve endings in rat brain-i isolation and subcellular distribution of acetylcholine and acetylcholinesterase. J Neurochem:1–19

    Google Scholar 

  10. Whittaker VP, Michaelson IA, Kirkland RJ (1964) The separation of synaptic vesicles from nerve-ending particles (“synaptosomes”). Biochem J 90(2):293–303

    Article  CAS  Google Scholar 

  11. Dunkley PR, Robinson PJ (1986) Depolarization-dependent protein phosphorylation in synaptosomes: mechanisms and significance. Prog Brain Res 69:273–293

    Article  CAS  Google Scholar 

  12. Musante V, Summa M, Cunha RA, Raiteri M, Pittaluga A (2011) Pre-synaptic glycine GlyT1 transporter--NMDA receptor interaction: relevance to NMDA autoreceptor activation in the presence of Mg2+ ions. J Neurochem 117(3):516–527. https://doi.org/10.1111/j.1471-4159.2011.07223.x

    Article  CAS  PubMed  Google Scholar 

  13. Musante V, Neri E, Feligioni M et al (2008) Presynaptic mGlu1 and mGlu5 autoreceptors facilitate glutamate exocytosis from mouse cortical nerve endings. Neuropharmacology 55(4):474–482. https://doi.org/10.1016/j.neuropharm.2008.06.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jovanovic JN, Sihra TS, Nairn AC, Hemmings HC, Greengard P, Czernik AJ (2001) Opposing changes in phosphorylation of specific sites in synapsin I during Ca2+−dependent glutamate release in isolated nerve terminals. J Neurosci 21(20):7944–7953

    Article  CAS  Google Scholar 

  15. Vargas KJ, Makani S, Davis T, Westphal CH, Castillo PE, Chandra SS (2014) Synucleins regulate the kinetics of synaptic vesicle endocytosis. J Neurosci 34(28):9364–9376. https://doi.org/10.1523/JNEUROSCI.4787-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Serulle Y, Sugimori M, Llinás RR (2007) Imaging synaptosomal calcium concentration microdomains and vesicle fusion by using total internal reflection fluorescent microscopy. Proc Natl Acad Sci 104(5):1697–1702. https://doi.org/10.1073/pnas.0610741104

    Article  CAS  PubMed  Google Scholar 

  17. Choi SW, Gerencser AA, Lee DW et al (2011) Intrinsic bioenergetic properties and stress sensitivity of dopaminergic synaptosomes. J Neurosci 31(12):4524–4534. https://doi.org/10.1523/JNEUROSCI.5817-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Villasana LE, Klann E, Tejada-Simon MV (2006) Rapid isolation of synaptoneurosomes and postsynaptic densities from adult mouse hippocampus. J Neurosci Methods 158(1):30–36. https://doi.org/10.1016/j.jneumeth.2006.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. De Camilli P, Cameron R, Greengard P (1983) Synapsin I (protein I), a nerve terminal-specific phosphoprotein. I. Its general distribution in synapses of the central and peripheral nervous system demonstrated by immunofluorescence in frozen and plastic sections. J Cell Biol 96(5):1337–1354

    Article  Google Scholar 

  20. Cousin MA, Robinson PJ (2000) Two mechanisms of synaptic vesicle recycling in rat brain nerve terminals. J Neurochem 75(4):1645–1653

    Article  CAS  Google Scholar 

  21. Robinson PJ, Gehlert DR, Sanna E, Hanbauer I (1989) Two fractions enriched for striatal synaptosomes isolated by Percoll gradient centrifugation: synaptosome morphology, dopamine and serotonin receptor distribution, and adenylate cyclase activity. Neurochem Int 15(3):339–348

    Article  CAS  Google Scholar 

  22. Gleitz J, Beile A, Wilffert B, Tegtmeier F (1993) Cryopreservation of freshly isolated synaptosomes prepared from the cerebral cortex of rats. J Neurosci Methods 47(3):191–197. https://doi.org/10.1016/0165-0270(93)90081-2

    Article  CAS  PubMed  Google Scholar 

  23. Huttner WB, Schiebler W, Greengard P, De Camilli P (1983) Synapsin I (protein I), a nerve terminal-specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation. J Cell Biol 96(5):1374–1388. https://doi.org/10.1083/jcb.96.5.1374

    Article  CAS  PubMed  Google Scholar 

  24. Messa M, Congia S, Defranchi E et al (2010) Tyrosine phosphorylation of synapsin I by Src regulates synaptic-vesicle trafficking. J Cell Sci 123(Pt 13):2256–2265. https://doi.org/10.1242/jcs.068445

    Article  CAS  PubMed  Google Scholar 

  25. Onofri F, Messa M, Matafora V et al (2007) Synapsin phosphorylation by Src tyrosine kinase enhances Src activity in synaptic vesicles. J Biol Chem 282(21):15754–15767. https://doi.org/10.1074/jbc.M701051200

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirko Messa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Messa, M. (2018). Preparation of Synaptosomes from Mammalian Brain by Subcellular Fractionation and Gradient Centrifugation. In: Swan, L. (eds) Clathrin-Mediated Endocytosis. Methods in Molecular Biology, vol 1847. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8719-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8719-1_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8717-7

  • Online ISBN: 978-1-4939-8719-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics