Skip to main content

Caulimovirus Isolation and DNA Extraction

  • Protocol
Plant Virology Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 81))

Abstract

Members of the caulimovirus group (1) each have a circular double-stranded DNA genome of approx 8 kbp that is encapsidated in a spherical, naked nucleocapsid of approx 50 nm diameter (Fig. 1). Caulimoviruses characteristically produce subcellular inclusion bodies in infected tissues that contain most of the virions found in cells, embedded in an apparently random manner. The host ranges of individual caulimoviruses tend to be restricted to one or a few plant families, and group members are transmitted between plants by aphid vectors. Based on possession of all, or most, of these characteristics, 12 definite, and 3 possible, members of the group have been identified (2).

Virions and genome organization of a typical caulimovirus, CaMV. The virus particles of CaMV (left) are isometric and about 50 nm in diameter (the subunits are schematic and are not a true representation). The DNA genome of CaMV is a circular double-stranded DNA of 8 kbp with three site-specific discontinuities (small closed circles). One of these (top of map) is in the DNA (−)-strand and is adjacent to the sequence homologous to the host tRNA that primes CaMV DNA synthesis by reverse transcription of 35S RNA. The other two gaps are in the (+)-strand adjacent to sequences controlling initiation of (+)-strand DNA synthesis. The genome has six major open reading frames (inner closed arrows), for which protein products have been identified. Gene I encodes a protein involved in cell-to-cell spread, gene II specifies the aphid transmission factor, the gene III product is a DNA-binding protein associated with virions, gene IV encodes the major CP, gene V specifies the viral polymerase (reverse transcriptase and RNAse H), and the gene VI product is an apparently multifunctional protein involved in transactivating viral protein synthesis, and in sequestering virions in inclusion bodies; it is also a major pathogenic determinant of symptom development. There are two major viral transcripts: 35S RNA, which probably serves two roles, one as a replication template and another as a viral mRNA; and 19S and 35S promoters (P19 and P35), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Howell, S. H. (1985) The molecular biology of plant DNA viruses. CRC Crit. Rev. Plant Sci. 2, 287–316.

    Article  CAS  Google Scholar 

  2. Covey, S. N. and Hull, R. (1992) Genetic engineering with double-stranded DNA viruses, in Genetic Engineering with Plant Viruses (Davies, J. W. and Wilson, T. M. A., eds.), CRC, Boca Raton, p. 217.

    Google Scholar 

  3. Franck, A., Guilley, H., Jonard, G., Richards, K., and Hirth, L. (1980) Nucleotide sequence of cauliflower mosaic virus DNA. Cell 21, 285–294.

    Article  PubMed  CAS  Google Scholar 

  4. Gardner, R. C., Howarth, A. J., Hahn, P., Brownluedi, M., Shepherd, R. J., and Messing, J. (1981) The complete nucleotide sequence of an infectious clone of cauliflower mosaic virus by M13mp7 shotgun sequencing. Nucleic Acids Res. 9, 2871–2888.

    Article  PubMed  CAS  Google Scholar 

  5. Howarth, A. J., Gardner, R. C., Messing, J., and Shepherd, R. J. (1981) Nucleotide sequence of naturally occurring deletion mutants of cauliflower mosaic virus is transmitted naturally by aphids. Virology 112, 678–685.

    Article  PubMed  CAS  Google Scholar 

  6. Balazs, E., Guilley, H., Jonard, G., and Richards, K. (1982) Nucleotide sequence of DNA from an altered-virulence isolate D/H of cauliflower mosaic virus. Gene 19, 239–249.

    Article  PubMed  CAS  Google Scholar 

  7. Fang, R., Wu, X., Bu, M., Tian, Y., Cai, F., and Mang, K. (1985) Complete nucleotide sequence of cauliflower mosaic virus (Xinjiang isolate) genomic DNA. Chin. J. Virol. 1, 247–256.

    CAS  Google Scholar 

  8. Chenault, K. D., Steffens, D. L., and Melcher, U. K. (1992) Nucleotide sequence of cauliflower mosaic virus isolate NY8153. Plant Physiol. 100, 542–545.

    Article  PubMed  CAS  Google Scholar 

  9. Chenault, K. D. and Melcher, U. (1993) Cauliflower mosaic virus isolate CMV-1. Plant Physiol. 101, 1395–1396.

    Article  PubMed  CAS  Google Scholar 

  10. Chenault, K. D. and Melcher, U. K. (1993) The complete nucleotide sequence of cauliflower mosaic virus isolate BBC. Gene 123, 255–257.

    Article  PubMed  CAS  Google Scholar 

  11. Hull, R., Sadler, J., and Longstaff, M. (1986) The sequence of carnation etched ring virus DNA: comparison with cauliflower mosaic virus and retroviruses. EMBO J. 5, 3083–3090.

    PubMed  CAS  Google Scholar 

  12. Richins, R. D., Scholthof, H. B., and Shepherd, R. J. (1987) Sequence of figwort mosaic virus DNA (caulimovirus group). Nucleic Acids Res. 15, 8451–8466.

    Article  PubMed  CAS  Google Scholar 

  13. Hasegawa, A., Verver, J., Shimada, A., Saito, M., Goldbach, R., van Kammen, A., Mlki, K., Kameyaiwaki, M., and Hibi, T. (1989) The complete sequence of soybean chlorotic mottle virus DNA and the identification of a novel promoter. Nucleic Acids Res. 17, 9993–10,015.

    Article  PubMed  CAS  Google Scholar 

  14. Calvert, L. A., Ospina, M. D., and Shepherd, R. J. (1995) Characterization of cassava vein mosaic virus: a distinct plant pararetrovirus. J. Gen. Virol. 76, 1271–1276.

    Article  PubMed  CAS  Google Scholar 

  15. Hull, R., Shepherd, R. J., and Harvey, J. D. (1976) Cauliflower mosaic virus: an improved purification procedure and some properties of the virus particle. J. Gen. Virol. 31, 93–100.

    Article  Google Scholar 

  16. Espinoza, A. M., Medina, V., Hull, R., and Markham, P. G. (1991) Cauliflower mosaic virus gene II product forms distinct inclusion bodies in infected plant cells. Virology 185, 337–344.

    Article  PubMed  CAS  Google Scholar 

  17. Shepherd, R. J., Richins, R., and Shalla, T. A. (1980) Isolation and properties of the inclusion bodies of cauliflower mosaic virus. Virology 102, 389–400.

    Article  PubMed  CAS  Google Scholar 

  18. Stratford, R., Plaskitt, K. A., Turner, D. S., Markham, P. G., and Covey, S. N. (1988) Molecular properties of Bari 1, a mild strain of cauliflower mosaic virus. J. Gen. Virol. 69, 2375–2386.

    Article  CAS  Google Scholar 

  19. Hull, R. and Covey, S. N. (1983) Characterisation of cauliflower mosaic virus DNA forms isolated from infected turnip leaves. Nucleic Acids Res. 11, 1881–1895.

    Article  PubMed  CAS  Google Scholar 

  20. Gardner, R. C. and Shepherd, R. J. (1980) A procedure for rapid isolation and analysis of cauliflower mosaic virus DNA. Virology 106, 159–161.

    Article  PubMed  CAS  Google Scholar 

  21. Covey, S. N., Turner, D. S., Lucy, A. P., and Saunders, K. (1990) Host regulation of the cauliflower mosaic virus multiplication cycle. Proc. Natl. Acad. Sci. USA 87, 1633–1637.

    Article  PubMed  CAS  Google Scholar 

  22. Turner, D. S and Covey, S. N. (1993) Reverse transcription products generated by defective plus-strand synthesis during cauliflower mosaic virus replication. Virus Res. 28, 171–185.

    Article  CAS  Google Scholar 

  23. DuPlessis, D. H. and Smith, P. (1981) Glycosylation of the cauliflower mosaic virus capsid polypeptide. Virology 109, 403–408.

    Article  CAS  Google Scholar 

  24. Hahn, P. and Shepherd, R. J. (1982) Evidence for a 58-kilodalton polypeptide as precursor of the coat protein of cauliflower mosaic virus. Virology 116, 480–488.

    Article  PubMed  CAS  Google Scholar 

  25. Al Ani, R., Pfeiffer, P., and Lebeurier, G. (1979) The structure of cauliflower mosaic virus. II. Identity and location of the viral polypeptides. Virology 93, 188–197.

    Google Scholar 

  26. Al-Kaff, N. S. and Covey, S. N. (1995) Biological diversity of cauliflower mosaic virus isolates expressed in two Brassica species. Plant Pathol. 44, 516–526.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

Covey, S.N., Noad, R.J., Al-Kaff, N.S., Turner, D.S. (1998). Caulimovirus Isolation and DNA Extraction. In: Foster, G.D., Taylor, S.C. (eds) Plant Virology Protocols. Methods in Molecular Biology™, vol 81. Humana Press. https://doi.org/10.1385/0-89603-385-6:53

Download citation

  • DOI: https://doi.org/10.1385/0-89603-385-6:53

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-385-6

  • Online ISBN: 978-1-59259-566-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics