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Abstract— A methodology to detect sleep apnea/hypopnea 

events in the respiratory signals of polysomnographic 

recordings is presented. It applies empirical mode 

decomposition (EMD), Hilbert-Huang transform (HHT), fuzzy 

logic and signal preprocessing techniques for feature 

extraction, expert criteria and context analysis. EMD, HHT 

and fuzzy logic are used for artifact detection and preliminary 

detection of respiration signal zones with significant variations 

in the amplitude of the signal; feature extraction, expert 

criteria and context analysis are used to characterize and 

validate the respiratory events. An annotated database of 30 

all-night polysomnographic recordings, acquired from 30 

healthy ten-year-old children, was divided in a training set of 

15 recordings (485 sleep apnea/hypopnea events), a validation 

set of five recordings (109 sleep apnea/hypopnea events), and a 

testing set of ten recordings (281 sleep apnea/hypopnea events). 

The overall detection performance on the testing data set was 

89.7% sensitivity and 16.3% false-positive rate. The next step is 

to include discrimination among apneas, hypopneas and 

respiratory pauses. 

I. INTRODUCTION 

Under normal conditions pharyngeal muscles maintain 
the upper airway permeable and allow air circulation towards 
the lungs. Although these muscles are relaxed during sleep, 
the upper airway remains open enough to allow adequate air 
circulation. However, in some people the passage is 
narrower, which may cause complete or partial air flow 
obstruction towards the lungs due to muscle relaxation during 
sleep. 

Sleep-related breathing disorders (SRBD) can be 
classified from the respiratory patterns that occur during 
sleep. The most characteristic SRBD are repetitive upper 
airway obstructions during sleep. If the obstruction is 
complete and therefore there is no airflow, it’s called apnea, 
whereas if the obstruction is partial, resulting in a reduction 
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of airflow, it’s labeled as hypopnea [1]. Other relevant SRBD 
are respiratory effort related arousals (RERAs), in which the 
patient shows a progressive increase in the respiratory effort 
that ends with arousal. SRBD are correlated with sleep 
disruption, fatigue, sleepiness, and decreased attention and 
concentration capabilities [2], as well as impaired quality of 
life, increased accident risks, and depressed cognitive 
functions. Several pathologies are associated with SRBD, 
including hypertension and cardiovascular disease. Reliable 
identification of these patterns is critical for case 
identification and disease severity estimation [1]. 

Different research groups have worked on automated 
respiratory pattern detection. Waxman et al. [3] used a LArge 
Memory Storage And Retrieval (LAMSTAR) neural network 
and wavelets transform for feature extraction on six 
physiological signals obtained from 30-s segmented 
polysomnogram recordings to predict apnea and hypopnea in 
healthy adult recordings. The method was tested during non-
REM and REM sleep. The best prediction performance was 
obtained during non-REM sleep, showing 80.6% and 74.4% 
sensitivity, and 72.8% and 68.8% specificity for apnea and 
hypopnea prediction, respectively. Tian and Liu [4] applied a 
time delay neural network (TDNN) on airflow and SaO2 
signals to detect apnea and hypopnea events on 30 adult all-
night recordings (15 used for training and 15 used for 
testing). The results in the testing data set showed 90.7% and 
80.8% sensitivity, and 86.4% and 81.4% specificity rate for 
apnea and hypopnea detection, respectively. Authors note 
that the changes in SaO2 show an important delay with 
respect to the airflow signal. Fontenla-Romero et al. [5] 
developed a method to discriminate obstructive, central and 
mixed apneas, based on artificial neural networks (ANN) and 
wavelet transform. To train and test the system, 120 events 
from selected segments of six recordings were used, 
obtaining 83.8% classification accuracy. Varady et al. [6] 
developed a signal classification method to detect on-line 
respiratory patterns (normal breathing, hypopnea, and apnea) 
based on the preprocessed respiration signal and ANN. The 
test was applied on 30 5-min segments from 16 different 
adult recordings, obtaining 90% of detection performance. 
Mijović et al. [7] applied ensemble empirical mode 
decomposition (EEMD) on the EKG signal to obtain intrinsic 
mode functions (IMFs), amplitudes and frequencies for each 
IMF. Linear discriminant analysis was used to classify 
obstructive sleep apnea events. Test results (25 recordings) 
showed 89% sensitivity and 83% accuracy. Mietus et al [8] 
presented an automated method to quantify sleep apnea from 
EKG segments. This method applies Hilbert transform (HT) 
to determine the instantaneous amplitude and frequency, and 
establishes thresholds criteria. Testing performed on the 
Computer in Cardiology sleep apnea dataset showed 84.5% 
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sensitivity. Otero et al. [9] developed a method to identify 
apneas and hypopneas using oxyhemoglobin saturation 
(SpO2) introducing fuzzy logic to represent medical 
knowledge. Five adult recordings (41 hours, with 881 apneas 
and 316 hypopneas) were used to evaluate the method, 
showing 96% sensitivity and 6% false-positive (FP) rate for 
apnea detection, and 92% sensitivity and 8.7% FP rate for 
hypopnea detection. Restrepo [10] used Biopac’s abdominal 
strain gauge to collect segments of respiratory signals. The 
algorithm combines autoregressive (AR) models and a fuzzy 
logic classification scheme to detect normal respiration, 
respiration with artifacts or apneas. Experimental results 
showed that fuzzy logic provides a flexible and adaptable 
classification mechanism to reduce false alarms. 

The main objective of this work is to develop a novel 
method for automated detection and characterization of sleep 
apnea/hypopnea events in children based on advanced signal 
processing algorithms, expert criteria and multi-channel 
context analysis. In this paper we present preliminary 
detection results, without differentiating among patterns 
types. Additionally, we are building a significant annotated 
sleep patterns database of all-night polysomnographic 
recordings of children for proper validation, that includes: 
respiratory patterns (obstructive apnea, central apnea, mixed 
apnea, hypopnea, respiratory pause, RERA and snore), sleep 
spindles (SS), rapid eye movements events (REMs), cyclic 
alternating patterns (CAP), and background EEG activity.   

II. METHODOLOGY 

A. Subjects, Recordings and Database 

The database consists of 30 all-night polysomnographic 
recordings acquired from healthy ten-year-old children at the 
Sleep Laboratory of the Instituto de Nutrición y Tecnología 
de los Alimentos (INTA), Universidad de Chile. The 
recordings were performed using an Easy EEG-II 32-channel 
polygraph (Cadwell, WA, USA, 2000). Each channel was 
sampled at a 200 Hz rate and saved in EDF format for offline 
analysis. Neural networks were applied to separate the 
database in 15 recordings for the training set (TS, 485 sleep 
apnea/hipopnea events), five recordings for the validation set 
(VS, 109 sleep apnea/hipopnea events), and ten recordings 
for the testing set (281 sleep apnea/hipopnea events). 

Sleep experts at the INTA Sleep Laboratory marked the 
beginning and the end of each sleep apnea/hypopnea event 
using the visualization and marking tools of the Sleep-
Analyzer software [11] (Fig.1). The Sleep-Analyzer is a tool, 
developed in MATLAB

®
, to visualize and analyze 

polysomnographic signals, sleep patterns and hypnograms. 
This tool is being developed by our group at the Electrical 
Engineering Department in collaboration with the Sleep 
Laboratory, INTA, both from the Universidad de Chile. 

B. Sleep Apnea/Hypopnea Events Detection System 

The method is organized as a cascade of four modules, as 
shown in Fig.2. It does not need preprocessing of all-night 
polysomnograms, automatically sorting out each sleep 
apnea/hypopnea event position throughout the recording. 

Module I applies artifact detection and signal processing 
tools including empirical mode decomposition (EMD) [12], 
Hilbert-Huang  transform  (HHT)  [13] and fuzzy logic on the  

 

Fig. 1. The Sleep-Analyzer is a computational system to visualize 
polysomnographic recordings; to detect, mark, process and analyze sleep 
patterns and hypnograms. The figure shows one visualization window, which 
includes a set of channels (EEG, EMG, body movements, EKG, respiratory 
signal and abdominal movements), the hypnogram, patient information and 
control buttons. In this example one can see an obstructive apnea event 
marked by the medical expert on the RespSign channel. 

respiratory signal to estimate the quality of the recording, and 
to detect the zones with significant variations in the 
amplitude of the respiratory signal, compatible with SRBD.  
Module II focuses on the selected zones to generate sleep 
apnea/hypopnea candidate events using feature extraction. 
Module III applies expert criteria and multi-channel context 
analyses to validate and characterize the detected respiratory 
events (start and end positions). Module IV is a classification 
system to discriminate among the different manifestations, 
based on expert knowledge. This module is currently under 
construction, and is not included in the results shown in this 
paper. 

B.1 Module I: Detection of respiratory signal zones with 

significant amplitude variations 

Module I consists in two stages and allows to focus the 
sleep apnea/hipopnea detection in the compatible zones of the 
respiratory signal. 

The first stage applies artifact detection based on root 
mean square (RMS) power analysis on the respiratory signal 
and duration criteria to determine whether the quality of each 

 

Fig. 2. Block diagram of the proposed sleep apnea/hypopnea events detection 
system. Modules I to III allow the detection of SRBD signals without 
discriminating the pattern types. This paper describes these results. The 
dashed line shows module IV, which is currently being implemented, and 
that will allow the classification of each event in its corresponding category. 



  

30-s window of respiratory signal is compatible with SRBD 
detection. Using classification rules, each window is 
qualified as: good, acceptable or poor. Poor windows are 
discarded from further analysis. 

In the second stage, SRBD compatible zones detection is 
applied to determine the zones where the respiratory signal 
amplitude decreases significantly. EMD is applied as a bank 
of filters on the respiratory signal using a 10-s moving 
window to decompose the signal in a series of components 
called intrinsic mode functions (IMFs). The EMD separates, 
in an iterative form, a time series in high-frequency 
components (IMF) and a lower frequency component or 
residue. Fig. 3 shows an application example of EMD on a 
segment of respiratory signal. HHT is used to determine 
instantaneous amplitude (a(t)) and instantaneous frequency 
(w(t)). Fuzzy logic is applied to model a(t) and w(t); 
classification rules are used to define the analysis zones 
(empirically determined using the TS). 

B.2 Module II: Sleep apnea/hypopnea candidate events 

generation 

Module II applies feature extraction criteria on the zones 
defined by module I to generate the respiratory event 
candidates. 

The respiratory all-night signal is filtered and the minima 
and maxima are identified, using sign changes in the signal 
slope (determined by linear regression) and duration criteria. 
Three consecutive peaks: min–max–min are identified by 
their amplitude-time coordinates (AL, tL), (AC, tC) and (AR, 
tR), define the respiratory cycle. The sub indices stand for 
left, center and right, respectively (see Fig.4). 

The following features are calculated for each respiratory 
cycle: amplitude:           {|     | |     |}[  ]  
duration:         (     )[ ]  base line:         
(     )

(     )
(    )      volume:        ∑ | (  )  

 
   

(
(     )

(     )
(     )    )|   and the volume variation defined 

in each 10-s moving windows:         
       (          )

      (          )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 

Empirical threshold values and detection rules based on 
expert criteria are applied on these features to generate the 
sleep apnea/hypopnea event candidates. 

B.3 Module III: Sleep apnea/hypopnea events validation and 

characterization 

Module III is used to validate and characterize the sleep 
apnea/hypopnea candidate events generated by module II. 
The method is based on expert criteria and multi-channel 
context analysis, the aim is to mimic the expert procedure 
during visual detection of sleep respiratory patterns. 

Sleep experts detect a SRBD event candidate on the 
respiratory signal and then apply a multi-channel context 
analysis, including other polysomnographic signals (EEG, 
EMG, body movements, EKG and abdominal movement). 
Fig. 5 shows an example of the context information for 
expert analysis: the respiratory signal shows an 
apnea/hipopnea candidate. One could classify the event as an 
apnea,  but  the  context  analysis  unveils  that  other  signals  

 
Fig. 3. Example of the application of EMD on a respiratory signal. The 
original respiratory signal is in the graph at the top (RespSign). It shows 
three sleep apnea/hypopnea events marked by the sleep expert (EMi). IMF5 
unveils sleep apnea/hypopnea events (circles) behavior. 

 

Fig. 4. Minima and maxima signal identification to establish the respiratory 
cycles. 

present significant artifacts, dismissing the initial 
classification. 

Features for other polysomnographic channels are 
determinated: EEG amplitude:         {|   
  | |     |}[  ]  normalized RMS power:     

    

(           )
 for EEG (      )  abdominal movements 

(      ) and EMG (      )  movement index:     
   {                   }  and EEG spectral power in 

the alpha ([7, 13] Hz) and “high frequency” ([30, 60] Hz) 
bands to detect arousals. Classification rules are applied on 
these features to generate the output of this module, i.e. 
initial and end positions of each sleep apnea/hypopnea event 
throughout the night. 

 
Fig. 5. Example of context information for expert criteria in multi-channel 
polysomnographic analysis. The use of context information means looking 
at other channels to determine if an apnea/hypopnea candidate corresponds 
to a real event (RESP NASAL). In this case, the presence of high frequency 
contamination in the EEG, EMG saturation and artifacts in the body 
movement channel convey that the candidate found in the respiratory signal 
cannot be classified as a respiratory event. 



  

TABLE I. AUTOMATED SLEEP APNEA/HYPOPNEA EVENTS DETECTION. 

 

III. RESULTS 

The system was trained and the parameters were adjusted 
using the TS and VS. The performance of the system was 
measured using the testing dataset. The overall results are 
presented in Table I. 

IV. DISCUSSION AND CONCLUSION 

The system obtained a sensitivity of 89.7% and a FP rate 

of 16.3% for the testing dataset. We consider it a good 

performance of the detection tool. However, further tests and 

improvements are under way. Comparing our results with 

others revised in the introduction, the ones obtained by 

Otero et al. [9] show a better performance. However, in our 

experience the use of SpO2 information generates an 

important delay in detection of the beginning of the event. In 

the same line, Tian and Liu show that as the SaO2 changes 

are commonly delayed by 10 or more seconds compared to 

the airflow signal [4]. 

On the other hand, sleep patterns detection in infants and 

children is a complex and not effectively explored task [14]. 

Most research in the literature apply their work on adult 

recordings [3]-[10]. Children polysomnograms present an 

important level of noise and artifacts, and the patterns, 

including apnea/hypopnea events, are not necessarily that 

well established as in adults. For example, children and 

adolescents with obstructive sleep apnea have fewer EEG 

arousals than adults with obstructive sleep apnea. Indeed, 

obstructive apneas and hypopneas in children and 

adolescents often do not cause EEG arousals. The total 

arousal index is frequently only modestly elevated in 

children with obstructive sleep apnea syndrome. For 

instance, in preschoolers not more than half of obstructive 

apneas were associated with arousals [15].  

Detection and characterization in children recordings is the 

main contribution of this work. In addition, the proposed 

approach has the advantage that it does not need 

preprocessing of the recordings or selecting noise-free 

segments. An automated sleep apnea/hypopnea pattern 

detector is a relevant contribution to reduce expert visual 

analysis time and to standardize criteria among evaluators. 

This proposed detection system is part of a larger project 

to develop different tools oriented to support sleep studies in 

children, including sleep classification algorithms [16],[17], 

automatic SS detection in children at different ages 

[18],[19], REM events identification [20], integrated in a 

visualization and analysis system, the Sleep-Analyzer [11].  
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