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Abstract
Tropical montane forests in the Andes are subjected to deforestation and subse-
quent transformation into pastures. Abandoned pastures are frequently reforested 
by planting monoculture timber plantations, resulting in reduced aboveground diver-
sity and changes in soil characteristics compared to primary forests. In this study, we 
evaluated differences in soil properties (litter layer thickness, pH, water content, and 
C-to-N ratio) between degraded primary montane forest and monoculture pine (Pinus 
patula) and alder (Alnus acuminata) plantations and their effects on density, diversity, 
and community structure of litter and soil-living mesofauna, with focus on oribatid 
mites (Acariformes). The study was performed in a montane region in the south-
ern Ecuadorian Andes (2,000–2,600 m a.s.l.). C-to-N ratios in the litter and upper 
5 cm soil layer were higher in pine plantations, while other soil characteristics were 
similar between vegetation types. Surprisingly, microbial biomass and density of soil 
mesofauna in the litter layer did not differ between vegetation types, while density 
and species richness of oribatid mites were higher in pine plantations. Community 
structure of oribatid mites differed between vegetation types with only a few spe-
cies overlapping. The results indicate that quality and diversity of litter were not the 
major factors regulating the mesofauna community. Instead, soil animals benefited 
from increased habitat structure in thicker litter layers and potentially increased 
availability of root-derived resources. Overall, the results suggest that from a soil 
animal perspective, monoculture plantations are less detrimental than commonly as-
sumed and enrichment of abandoned plantations with native tree species may help 
to restore tropical montane forests.
Abstract in Spanish is available with online material.

K E Y W O R D S

alder, degraded primary forest, Ecuadorian Andes, litter, mesofauna, monoculture, oribatid 
mites, pine

www.wileyonlinelibrary.com/journal/btp
mailto:﻿
https://orcid.org/0000-0002-4913-4347
https://orcid.org/0000-0003-4350-9520
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:fmarian@gwdg.de


1144  |     MARIAN et al.

1  | INTRODUC TION

Montane rain forests of the high tropical Andes are among the most 
diverse ecosystems on earth (Myers, Mittermeier, Mittermeier, da 
Fonseca, & Kent,  2000) containing exceptionally high numbers of 
endemic plant and animal species (Barthlott, Mutke, Rafiqpoor, Kier, 
& Kreft, 2005; Brehm, Strutzenberger, & Fiedler, 2013; Henderson, 
Churchill, & Luteyn,  1991; Myers et  al.,  2000). Increasingly, these 
ecosystems are threatened by anthropogenic disturbances, with de-
forestation and subsequent land-use change being among the most 
important threats (Ferreira, Leite, de Araújo, & Eisenhauer,  2016). 
Since much of the remaining primary forests in Ecuador are in 
protected areas (21% of all Ecuadorian forests are protected; 
UNEP, 2002), the main portion of recent deforestation concerns de-
graded primary forests, which previously have been logged in part 
or otherwise affected by human disturbance (Beck, Bendix, Kottke, 
Makeschin, & Mosandl, 2008). Large areas of degraded primary 
forests, especially at higher elevations, are converted into pasture-
land (Beck et al., 2008; Günter et al., 2009; Hofstede, Groenendijk, 
Coppus, Fehse, & Sevink, 2006; Tapia-Armijos, Homeier, Espinosa, 
Leuschner, & De La Cruz, 2015) and subsequently transformed into 
timber plantations, when their productivity declines (Weber, Günter, 
Aguirre, Stimm, & Mosandl, 2008). Currently, 90% of all forest plan-
tations in Ecuador consist of non-native tree species, predominantly 
of the genera Eucalyptus, Pinus, and Cupressus (FAO, 2011; Weber 
et al., 2008). These monoculture plantations—although successful in 
providing local communities with timber—have led to the homoge-
nization of the landscape (Lamb, Erskine, & Parrotta, 2005), result-
ing in increased susceptibility to fires and plant diseases, reduced 
aboveground plant and animal diversity, and changes in soil prop-
erties (Chaudhary, Burivalova, Koh, & Hellweg, 2016; D’Antonio & 
Meyerson, 2002; Lamb et al., 2005).

Changes in soil properties are closely linked to changes in 
important ecosystem functions provided by forest soils, for ex-
ample, carbon storage, nutrient cycling, and erosion control. As 
part of the regulatory forces of ecosystem processes, the meso-
fauna contribute directly and indirectly to the decomposition of 
organic matter, nutrient cycling, and soil physical and chemical 
properties (Bardgett,  2002; Lavelle et  al.,  2006). With the plant 
community influencing soil characteristics, such as pH, organic 
carbon, and nutrient content as well as soil texture, land-use 
and plant community changes also impact the mesofauna com-
munity structure and their contribution to ecosystem processes 
(Barrios,  2007; Ekschmitt, Liu, Vetter, Fox, & Wolters,  2005; 
Fanin & Bertrand, 2016; Tsiafouli et al., 2015; Yesilonis, Szlavecz, 
Pouyat, Whigham, & Xia, 2016). Especially in a region character-
ized by an exceptionally high number of plant species, such as the 
high tropical Andes (Homeier, Dalitz, & Breckle, 2002), burning of 
degraded primary forest and the subsequent use as pastureland 
followed by a conversion into monoculture timber plantations 
(Günter et al., 2009) are expected to have major consequences for 
mesofauna communities.

The soil mesofauna community in tropical montane rain for-
ests of the Andes is dominated by microarthropods, in particular 
oribatid mites, while larger macro-decomposers are rare or lacking 
(Illig, Langel, Norton, Scheu, & Maraun,  2005; Maraun, Sandmann, 
Krashevska, Norton, & Scheu, 2008). Despite their seemingly homo-
geneous habitat in the litter and upper soil layers, oribatid mites are 
exceptionally diverse and span over up to three trophic levels from 
primary decomposers to secondary decomposers to predators (Illig 
et al., 2005; Scheu, 2002; Schneider, Renker, Scheu, & Maraun, 2004; 
Walter & Proctor,  1998). With nearly 10,000 described species 
(Subias, 2018) and an estimated total of 110,000 species worldwide 
(Walter & Proctor,  2013), oribatid mites are the most species-rich 
subgroup within the Acari. They contribute not only to the break-
down of organic matter, but are also closely linked to microbial ac-
tivity and biomass in soil (Barros et al., 2003; Behan-Pelletier, 1999; 
Dindal, 1990; Muturi et al., 2009; Nielsen, Osler, Campbell, Burslem, 
& van der Wal, 2012). With a lifespan of typically between one to 
two years and low reproductive output, oribatid mites invest strongly 
in defense mechanisms, such as camouflage, strong sclerotization, 
defensive glands, and protective structures and, as a result, are well 
defended and little preyed upon by mesofauna predators (Heethoff, 
Koerner, Norton, & Raspotnig,  2011; Heethoff & Raspotnig,  2012; 
Peschel, Norton, Scheu, & Maraun, 2006; Schneider & Maraun, 2009; 
Figure 2). Major structuring forces of oribatid mite communities, be-
sides resource availability and quality, include soil pH and habitat 
space, that is, low pH and thick organic layers favor oribatid mite den-
sity and species richness (Maraun & Scheu, 2000; Ramírez Castillo 
et al., 2018; Schaefer & Schauermann, 1990). Changes in the avail-
ability and quality of resources are also associated with the reproduc-
tive mode in oribatid mite communities. In general, parthenogenesis 
is more abundant in oribatid mites than in any other group of Acari 
(Krantz et  al.,  2009). However, the percentage of parthenogenetic 
species and individuals varies between habitats, with harsh envi-
ronmental conditions and low resource availability being associated 
with low frequency of parthenogenetic species (Maraun et al., 2011; 
Marian, Sandmann, Krashevska, Maraun, & Scheu,  2018; Scheu & 
Drossel,  2007). Since factors structuring the mesofauna and espe-
cially oribatid mite communities largely depend on the aboveground 
plant community (Eisenhauer et al., 2011; Scheu, 2001), their density, 
species richness, and community structure may be valuable indica-
tors for shifts in ecosystem processes related to the conversion of de-
graded primary montane forest into monoculture timber plantations.

In this study, we compared the density, species richness, and 
community structure of litter and soil-living mesofauna, with a focus 
on oribatid mites, between remnants of degraded primary tropical 
montane rain forest (referred to as degraded forest hereafter) and 
monoculture plantations of native and non-native tree species.

We hypothesized that (a) the conversion of degraded forest into 
pastures and later into plantations results in an overall decrease in soil 
mesofauna density and species richness, due to reduced plant diver-
sity, and the associated decrease in resource and niche diversity for 
the soil mesofauna, and (b) the density of soil mesofauna is higher in 
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the plantation type with thicker organic layers, that is, pine. Further, 
we hypothesized that (c) oribatid mite species composition is more sim-
ilar between degraded forest and native alder plantations with a larger 
overlap in oribatid mites species compared to non-native pine planta-
tions with more cosmopolitan oribatid mite species, and (d) the number 
of parthenogenetic species is higher in alder and pine plantations due 
to ample supply of uniform resources, that is, single-species litter.

2  | METHODS

2.1 | Study sites

The study sites were located in the Andean montane region of 
southern Ecuador in the valley of the regional capital Loja (Figure 1). 
Native vegetation in the region is upper montane forest, but the na-
tive forest has largely been replaced by pine (Pinus patula Schiede 
& Deppe), Sydney blue gum (Eucalyptus saligna Smith), and Andean 
alder (Alnus acuminata Kunth) plantations with some fragments of 
degraded primary montane forest remaining in a scattered land-
scape surrounding the city (Iñiguez-Armijos, Leiva, Frede, Hampel, & 
Breuer, 2014). In this study, we focused on pine and alder plantations 

because pine is of major economic importance for timber production 
in the region and alder has commercial potential due to its use in 
other Andean countries. Alder has a rather shallow root system and 
forms associations with nitrogen-fixing rhizobacteria (Actinomyces 
alni; syn. Franki alni) as well as both ecto- and arbuscular mycor-
rhizal fungi (Becerra, Zak, Horton, & Micolini, 2005; Carú, Becerra, 
Sepúlveda, & Cabello,  2000). By contrast, pine is associated only 
with ectomycorrhizal fungi, but has deeper roots than alder (CAB 
International, 2019; World Agroforestry, 2019).

The natural upper montane forest in the Andes is character-
ized by an exceptionally high diversity of tree species, with up 
to 200 tree species per hectare in the Podocarpus National Park 
located in close proximity to the present study sites (Homeier, 
Breckle, Günter, Rollenbeck, & Leuschner,  2010). Dominant tree 
species in the natural forest are in the Lauraceae, Euphorbiaceae, 
Melastomataceae, and Rubiaceae (Homeier et al., 2002). Rooting 
depth is rather shallow and the mycorrhizal community is dom-
inated by arbuscular mycorrhizal fungi (Camenzind et  al.,  2014; 
Kottke, Beck, Oberwinkler, Homeier, & Neill,  2004), with only 
few plant species forming associations with ectomycorrhizal 
fungi (Haug et  al.,  2004; Haug, Weiss, Homeier, Oberwinkler, & 
Kottke,  2005; Kottke & Haug,  2004). The degraded forest sites 

F I G U R E  1   Location of the study sites comprising four replicates of degraded forests (yellow squares), Andean alder plantations (orange 
circles), and pine plantations (green triangles) around the city of Loja, southern Ecuador
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investigated in this study are remnants of the natural upper mon-
tane rain forest in the region, which have been partially logged for 
profitable timber species, and typically are exposed to moderate 
human disturbance, such as selected logging or grazing by cattle. 
Tree species diversity therefore is reduced, and primary forest 
trees are scarce or lacking. The region has a semi-humid climate 
with 6–8 humid months per year; the rainy season lasts from April 
to July alternating with a drier season from September to March 
(Ortiz et  al.,  2006). Annual precipitation averages 947 mm/year, 
and mean annual air temperature is 16°C (Günter et al., 2008).

Twelve study sites were selected in the Loja valley between 
2,400 and 2,600 m a.s.l.: (a) four pine and (b) four alder plantations, 
and (c) four degraded forests (Figure 1). All sites were located within 
forest fragments/plantations larger than 8 ha and on low slope areas 
to avoid topographic variations. Plantations were selected based on 
the following criteria: (a) age of trees (15–25 years); (b) similar levels 
of management; and (c) permission by landowner. Following com-
mon practice in the region, the plantations have not been intensively 
managed but left largely unattended after planting of tree seedlings, 
resulting in a dense understory vegetation, especially in alder plan-
tations. In each forest fragment/plantation, one experimental plot 
of 24 × 24 m was established. Within each plot, four samples were 
taken at randomly selected points, resulting in a total of 48 sampling 
points for each investigated parameter; similar designs have been 
used to study soil characteristics and microarthropod communities 
in temperate regions (Klarner et al., 2014; Pollierer & Scheu, 2017). 
We used a soil corer 5 cm in diameter. Each core was divided into O 
horizon (litter layer) and Ah horizon (5 cm of mineral soil underneath 
the litter layer), which were analyzed separately for all parameters, 
including soil mesofauna abundance and diversity. Sampling was 
performed after at least 2 days without strong rain to ensure com-
parable soil moisture conditions.

2.2 | Environmental factors

Samples for habitat characteristics (pH, litter thickness, and soil 
water content) and litter quality (C-to-N ratio) were taken at the four 
sampling points within each plot. Soils in the region are dominantly 
Umbrisols (Quichimbo et  al.,  2017). For measuring carbon (C) and 
nitrogen (N) concentrations, an aliquot of both the litter and min-
eral soil was milled to powder; 3–4 mg were analyzed for C and N 
concentrations using an elemental analyzer (Vario EL III, Elementar) 
(Butenschoen et al., 2014; Marian, Sandmann, Krashevska, Maraun, 
& Scheu, 2017). Water content in both layers was measured from 
aliquots dried at 60°C for 2 days.

2.3 | Microbial parameters

At each of the four sampling points, two samples for microbial 
parameters were taken in close proximity (20–50  cm distance). 
Following the procedure established and used previously (Marian, 

Brown, Sandmann, Maraun, & Scheu,  2019; Marian et  al.,  2017), 
samples were divided into litter and mineral soil layer as described 
above, placed in plastic bags, stored at 4°C, and transferred to 
Germany. Microbial basal respiration (BR) and substrate-induced 
respiration (SIR) were determined by measuring O2 consumption 
using a computer-controlled O2 microcompensation apparatus 
(Scheu, 1992). Prior to measurement, an aliquot of leaf litter was 
cut into pieces <0.5  cm2 and the soil was sieved through 2-mm 
mesh and mixed thoroughly. Before measuring, the samples were 
rested for 4 days at room temperature to avoid including increased 
basal respiration caused by cutting of leaf litter and homogeni-
zation. Moist samples equivalent to 0.2 (litter) and 2 (soil) g dry 
weight were supplemented with glucose equivalent to 80 (litter) 
and 8 (soil) mg/g dry weight, and BR was measured for 24 h with 
readings taken every hour. Microbial biomass (Cmic) was calculated 
from the maximum initial respiratory response (MIRR; μl O2 g−1 dry 
weight h−1) as Cmic = 38 × MIRR (Anderson & Domsch, 1978; Beck 
et al., 1997; Joergensen & Scheu, 1999).

2.4 | Soil mesofauna

For the analysis of soil mesofauna, one additional soil core was 
taken at each sampling point (48 cores) and divided into leaf litter 
and soil as described above. Mobile soil animals were extracted by 
heat within 24 h after sampling (Kempson, Lloyd, & Ghelardi, 1963). 
Extracted animals were stored in 70% ethanol and transferred to 
Germany. Most animal groups were determined to order, suborder, 
or cohort level using Schaefer (2010) except for adult oribatid mites, 
which were determined to species level or sorted into morphospe-
cies. Due to the lack of appropriate keys for determination and the 
high number of undescribed species, this was not possible for the 
families Galumnidae and Phthiracaridae, which made up 9.0% of the 
adult oribatid mite individuals. For the determination of the other 
oribatid mite taxa, the keys of Balogh and Balogh (1988, 2002) and 
Weigmann (2006) were used. All oribatid mite species were cata-
logued in the Ecotaxonomy data base (http://ecota​xonomy.org/). 
Species names and distribution of oribatid mites follow Subias 
(2018). Reproductive mode of oribatid mite species was determined 
according to literature (Maraun et  al.,  2019; Maraun, Fronczek, 
Marian, Sandmann, & Scheu, 2013; Marian et al., 2018) and personal 
communication with Dr. Roy A. Norton.

2.5 | Statistical analysis

Statistical analyses were performed using R version 3.5.1 (R Core 
Team, 2018) with R studio interface (RStudio Team, 2016). Differences 
in environmental factors (pH, litter thickness, C-to-N ratio, and water 
content) and microbial parameters (Cmic and BR) between degraded 
forest, and alder and pine plantations were analyzed using linear 
mixed-effects models as implemented in the nlme package (Pinheiro, 
Bates, DebRoy, & Sarkar, 2018). The same was done for density of 

http://ecotaxonomy.org/


     |  1147MARIAN et al.

total soil mesofauna and dominant soil fauna groups (oribatid mites, 
mesostigmatid mites, and collembolans), species richness of oribatid 
mites, percentage of parthenogenetic individuals and taxa of orib-
atid mites, and the number and percentage of juvenile oribatid mites. 
Vegetation type (pine, alder, and degraded forest) was used as fixed 
factor, and sample site was included as random factor to account for 
replicate samples (four) taken per site. The significance of the fixed 

factor was inspected using the ANOVA function. Data were inspected 
for normality by Shapiro–Wilk test using the mvn package (Korkmaz, 
Goksuluk, & Zararsiz, 2014) prior to the analyses. Data were log-trans-
formed except for percentage data which were arcsine-square-root 
transformed if necessary to improve homogeneity of variances.

Oribatid mite community composition was analyzed by discrim-
inant function analysis (DFA) using Statistica 13.3 for Windows 

TA B L E  1   Density (mean ± standard deviation, SD) of mesofauna groups (total mesofauna, oribatid and mesostigmatid mites, and 
collembolans) in the litter and soil layer in three vegetation types (alder = alder plantations, pine = pine plantations, and degraded 
forest = degraded primary tropical montane forests). F and p statistics given with level of significance (*p < .05)

Animal group Layer

Individuals per m2 (mean ± SD) Statistics

Pinus Alnus Degraded forest F2/9-value p-value

Total mesofauna Litter 110,612 ± 64,269 61,652 ± 37,686 84,525 ± 51,192 1.71 .2339

Soil 17,274 ± 19,429 13,202 ± 11,852 4,835 ± 4,753 6.56 .0175*

Total 127,886 ± 65,378 74,854 ± 37,063 89,361 ± 53,729 2.08 .1805

Oribatid mites Litter 60,411 ± 45,206 22,650 ± 17,594 21,314 ± 14,887 3.24 .0874

Soil 3,276 ± 4,782 922 ± 1,355 254 ± 371 2.91 .1057

Total 63,688 ± 45,590 23,573 ± 17,23 21,568 ± 15,059 3.87 .0613

Collembolans Litter 31,621 ± 18,617 21,823 ± 27,368 28,631 ± 27,393 1.53 .2681

Soil 6,330 ± 7,692 2,163 ± 3,062 6,362 ± 10,497 1.56 .2616

Total 37,984 ± 20,249 28,154 ± 29,424 30,794 ± 29,789 1.14 .3622

Mesostigmatid mites Litter 9,130 ± 5,271 9,671 ± 11,204 19,310 ± 14,711 1.15 .3598

Soil 2,131 ± 1,775 636 ± 881 572 ± 1,032 5.29 .0303*

Total 11,261 ± 4,774 10,307 ± 11,116 19,882 ± 14,892 1.12 .3682

F I G U R E  2   Oribatid mites from primary tropical montane rain forests of southern Ecuador sampled in the Podocarpus National Park. (a) 
Rhynchoribates cf mirus, (b) Beckiella capitulum, (c) Cosmozetes reticulatus, (d) Nanhermannia elegantissima, (e) Rostrozetes aculeatus, (f) Schaleria 
brevisetosa. Photograph credit: Mark Maraun and Dorothea Hause-Reitner

(a) (b) (c)

(d) (e) (f)
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(TIBCO Software Inc, 2017). Prior to DFA, dimensions were reduced 
to six by non-metric multidimensional scaling (NMDS) using Canoco 
5.02 (ter Braak & Simlauer, 2012). Inter-relationships between envi-
ronmental factors and oribatid mite species in the litter layer were 
analyzed using canonical correspondence analysis (CCA) as imple-
mented in Canoco 5.02 (ter Braak & Simlauer, 2012). Environmental 
factors and microbial parameters in the litter layer (litter thickness, 
C-to-N ratio, pH, water content, BR, and Cmic) were included as 
explanatory variables; vegetation type was included as a passive 
variable not affecting the ordination. We considered only species 
present in two or more independent samples; only oribatid mites 
identified to species level were included.

3  | RESULTS

3.1 | Environmental factors, microbial biomass, and 
basal respiration

The C-to-N ratio differed between vegetation types in both litter 
and soil layer (F2/9 = 24.33, p < .001 and F2/9 = 4.83, p = .038, re-
spectively). In the litter and soil layer, the C-to-N ratio was higher 
in pine (33.0 ± 4.7 and 17.9 ± 3.5, respectively) compared to alder 
plantations (17.3 ± 2.0 and 13.1 ± 1.0, respectively) and degraded 
forests (16.3 ± 3.9 and 11.8 ± 2.8, respectively). The water content 
in the litter layer showed a trend toward lower moisture content in 
pine plantations (F2/9 = 4.12, p =  .054), with 29.2 ± 6.0% of total 
fresh weight in pine plantations compared to 41.9 ± 7.0% in alder 
plantations and 40.3  ±  8.7% in the degraded forests. Leaf litter 
thickness, water content in soil, and soil and litter pH did not dif-
fer significantly between vegetation types. Both BR and Cmic did 
not differ significantly between vegetation types in both litter 
and soil layers (BR: F2/9 = 0.95, p = .423 and F2/9 = 2.40, p = .146, 
respectively; Cmic: F2/9 = 0.29, p =  .753 and F2/9 = 1.09, p =  .375, 
respectively).

3.2 | Soil mesofauna

Density of total soil mesofauna in the soil layer differed between 
vegetation types, with the density lower in degraded forests 
compared to pine and alder plantations (Table 1). Total soil meso-
fauna density in the litter layer as well as in the litter and soil layer 
combined was not affected by vegetation type. Collembolan den-
sity in both litter and soil layer was not affected by vegetation 
type, while the density of mesostigmatid mites in the soil layer 
differed between vegetation types, with higher densities in pine 
plantations compared to alder plantations and degraded forests 
(Table 1). Total oribatid mite density in soil and litter layers com-
bined tended to differ between vegetation types, with the highest 
density in pine plantations (Table 1). Overall, standard deviations 
were high in each of the mesofauna groups reflecting high spatial 
variation in all vegetation types.

In total, 3,162 oribatid mite individuals from 126 species were 
collected of which 25.1% were juvenile and not further inspected. 
The number of species recorded was highest in pine plantations 
(76) and degraded forests (76), and lower in alder plantations (52). 
Twenty-two of the recorded species occurred in all the three vege-
tation types. Pine plantations and degraded forests shared 36 spe-
cies, alder plantations and degraded forests 30, and pine and alder 
plantations also 30. In pine plantations, degraded forests, and alder 
plantations, 32, 28, and 14 species were exclusive to the respec-
tive vegetation type. Overall, our dataset included 56 rare species, 
one recorded in only one sample. Of these rare species, 22 were 
recorded in pine plantations, 12 in alder plantations, and 22 in de-
graded forests. Overall, the majority of oribatid mite species were 
tropical and subtropical or had only been recorded in Ecuador, while 
only 15 species had a cosmopolitan distribution (Figure S1: species 
list in supplementary material; Figure 2: example species from tropi-
cal montane rain forest sites).

The number of oribatid mite species per soil core (henceforth 
referred to as species richness) tended to differ between vegetation 
types (F2/9 = 4.2, p = .051), with 15.6 ± 4.7 species per core in pine 
plantations compared to 8.5 ± 4.4 and 11.9 ± 4.9 species per core in 
alder plantations and degraded forests, respectively. Both the num-
ber and percentage of juvenile oribatid mites were not significantly 
affected by vegetation type. The overall percentage of parthenoge-
netic individuals (41.4 ± 8.2% of total oribatid mite individuals) and 
species (40.7  ±  6.8% of total oribatid mite species) was high, but 
both did not differ significantly between vegetation types.

Discriminant function analysis (DFA) separated the oribatid mite 
communities in pine plantations from those in both alder plantations 
(F2/9 = 12.81, p < .0001; squared Mahalanobis distance 10.81) and 
degraded forests (F2/9  =  13.36, p  <  .0001; squared Mahalanobis 
distance 11.28). Further, communities in alder plantations and 
degraded forests tended to differ (F2/9  =  2.21, p  <  .062; squared 
Mahalanobis distance 1.86). Canonical correspondence analysis 
(CCA) of the oribatid mite community separated the communities 
of pine plantations from the communities in alder plantations and 
degraded forests along both axes (Figure 3).

The test on all axes was highly significant (p  =  .002 with 499 
permutations), and the axes 1 and 2 explained 7.26% and 4.01% of 
the total variation in the data, respectively. The explanatory vari-
ables accounted for 21.2% of the variation in the species data. High 
C-to-N ratio and litter thickness were associated with pine planta-
tions, while high water content was associated with degraded for-
ests and alder plantations. Parthenogenetic species of oribatid mites 
spread evenly along the first axis, but sexual species contributed 
more to the separation along the second axes reflecting differences 
between alder and pine plantations.

The most abundant oribatid mite species in the degraded forests 
were Suctobelbella peracuta, Kokoppia cf. euramosa, Nanhermannia 
nana, Oppiella cf. nova, and Scheloribates cf. vulgaris (Table  2). 
Dominant oribatid mite species in pine plantations were Rostrozetes 
ovulum followed by Novosuctobelbella cf. andrassy, Ramusella cf. 
puertomontensis, Microppia minus, and Oppiella cf. nova. In alder 
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plantations, Scheloribates cf. vulgaris, Suctobelbella peracuta, 
Nanhermannia nana, Rostrozetes ovulum, and Oppiella cf. nova had 
highest densities (Table 2).

4  | DISCUSSION

Differences in biotic and abiotic conditions between the three in-
vestigated vegetation types were not as pronounced as expected, 
and density of the studied mesofauna groups and species richness 
of oribatid mites were highest in non-native pine plantations, con-
tradicting our first hypothesis.

Compared to natural forests, plantations harbor fewer species 
and often lack the appropriate conditions for the establishment of 
rich and abundant aboveground animal communities (Chaudhary 
et  al.,  2016; Phillips, Newbold, & Purvis,  2017). However, forest 
plantations can provide habitat for a number of plant and animal 
species, especially when compared to other anthropogenic land-use 
systems, such as the dominant grass and bracken fern pastures in 

tropical montane regions (Barbaro, Pontcharraud, Vetillard, Guyon, 
& Jactel, 2005; Brockerhoff, Jactel, Parrotta, Quine, & Sayer, 2008; 
Carnus et al., 2006; Chaudhary et al., 2016). This is especially the 
case in older plantations, which often harbor a more diverse un-
derstory vegetation, pronounced organic layers, and diverse fungal 
and bacterial communities (Brockerhoff et  al.,  2008; Chaudhary 
et al., 2016).

In the present study, lower litter quality and water content in 
pine plantations, combined with the reduced diversity of litter 
input into the decomposer food web of monoculture plantations 
(Zaninovich, Fontana, & Gatti, 2016), indicate that resource quality 
and environmental conditions in the soil and litter layer were less 
favorable. These unfavorable conditions, however, did not result in 
reduced microbial activity, contrasting with results from a global me-
ta-analysis (Chen, Chen, Chen, & Huang, 2019). Saprotrophic micro-
organisms play an important role as primary decomposers; however, 
the fact that their biomass distribution was not directly linked to 
the abundance of soil mesofauna, which differed between the three 
vegetation types, suggests that they are of minor importance as a 

F I G U R E  3   Canonical correspondence analysis (CCA) of oribatid mite species with vegetation types (alder = alder plantations, pine = pine 
plantations, and degraded forest = degraded primary tropical montane forests) as supplementary variables, and environmental variables in 
the litter layer (C/N ratio = C-to-N ratio, water content, litter thickness = thickness of litter layer, pH = litter pH), basal respiration (BR), and 
microbial biomass (Cmic) as explanatory variables. Species given in blue reproduce via parthenogenesis
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food resource for the mesofauna community (Scheu, 2002). Instead, 
other biotic or abiotic factors, not assessed in the present study, for 
example, quality and availability of root-derived resources, availabil-
ity of habitat space in the litter layer, and small-scale variations in 
soil type, might play a larger role in structuring the microarthropod 
community.

The low density of mesofauna in the soil layer of degraded forest is 
surprising, since that none of the measured soil environmental param-
eters indicate less favorable conditions in this vegetation type. From 
both temperate and tropical forest ecosystems, there is increasing 
evidence that the mesofauna community is predominantly structured 
by belowground characteristics of the plant community, for example, 
root morphology and root-derived resources (i.e., root exudates and 
direct feeding on roots and mycorrhizal hyphae) (Marian et al., 2019; 
Pollierer, Langel, Körner, Maraun, & Scheu, 2007; Schneider, Renker, & 
Maraun, 2005; Zieger, Eissfeller, Maraun, & Scheu, 2015). Differences 
in root morphology and mycorrhization between vegetation types 
therefore may not just reflect structural differences in the nutri-
ent acquisition strategy and nutrient availability between the three 

vegetation types, but potentially also contribute to the reduced me-
sofauna density in the soil layer of the degraded forests. Research 
into root morphology and availability of root-derived resources in the 
three vegetation types is necessary to evaluate their importance in 
structuring soil mesofauna communities in these systems.

As a note of caution, plantations may not have been established 
at random, but based on specific combinations of biotic and abiotic 
parameters related to the long-term management history of the 
area, such as proximity to roads, streams, and settlements. These 
selection criteria might have resulted in systematic differences be-
tween the studied sites and thereby affected soil characteristics and 
soil mesofauna community structure. However, considering the sim-
ilarity of the study sites with respect to abiotic and microbial param-
eters, these differences likely were small.

In the litter layer, where mesofauna densities were highest, only 
the density of the two most abundant mite groups (mesostigmatid and 
oribatid mites) differed between the three vegetation types. Contrary 
to our hypothesis, oribatid mite density was highest in pine plan-
tations, reaching more than three times the density in undisturbed 

Species
ind m−2 
(mean ± SD)

% of 
total Distribution

Degraded forest

Suctobelbella peracuta Balogh & 
Mahunka, 1980

1,717 ± 1,345 8.06 Neotropical

Kokoppia euramosa Balogh & 
Mahunka, 1969

1,558 ± 2,842 7.31 Neotropical

Nanhermannia nana Nicolet 1855 763 ± 1,772 3.58 Holarctic, 
Neotropical, 
Antarctica

Oppiella cf nova Oudemans 1902 540 ± 908 2.54 Cosmopolitan

Scheloribates cf vulgaris Hammer 
1961

509 ± 863 2.39 Neotropical and 
Oriental

Pine plantations

Rostrozetes ovulum Berlese 1908 11,166 ± 21,133 18.48 Pantropical and 
subtropical

Novosuctobelba cf andrassyi 
Balogh & Mahunka, 1981

4,167 ± 8,406 6.90 Neotropical

Ramusella cf puertomonttensis 
Hammer 1962

3,499 ± 5,560 5.79 Tropical

Microppia minus Paoli 1908 3,117 ± 4,146 5.16 Cosmopolitan

Oppiella cf nova Oudemans 1902 2,417 ± 2,222 4.00 Cosmopolitan

Alder plantations

Scheloribates cf vulgaris Hammer 
1961

3,213 ± 6,369 14.19 Neotropical and 
Oriental

Suctobelbella peracuta Balogh & 
Mahunka, 1980

1,113 ± 2,131 4.92 Neotropical

Nanhermannia nana Nicolet 1855 795 ± 1,220 3.51 Holarctic, 
Neotropical, and 
Antarctica

Rostrozetes ovulum Berlese 1908 381 ± 1,145 1.69 Pantropical and 
subtropical

Oppiella cf nova Oudemans 1902 381 ± 661 1.69 Cosmopolitan

TA B L E  2   Biogeographic distribution 
(based on Subias, 2018), density per 
square meter (means ± SD), and relative 
abundance as percentage of total 
oribatid mite density (% of total) for the 
most abundant oribatid mite species in 
three vegetation types (alder = alder 
plantations, pine = pine plantations, and 
degraded forest = degraded primary 
tropical montane forests)
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tropical montane rain forest in close proximity to our study sites 
(17,051  ±  7,486  ind./m2; F. Marian, unpublished data). In younger 
(7-year-old) pine and alder plantations in the region, differences be-
tween alder and pine plantations were not as pronounced, with about 
25,000 ind./m2 in alder and 35,000 ind./m2 in pine plantations, while 
in abandoned pastures, oribatid mite density was considerably lower 
(ca. 15,000 ind./m2; Ramírez Castillo et al., 2018). This suggests that 
in particular in pine plantations, the density of oribatid mites increases 
as the trees mature, which is similar to patterns reported for abo-
veground animal groups in monoculture tree plantations such as birds 
(Clout & Gaze,  1984; Donald, Fuller, Evans, & Gough,  1998; Lopez 
& Moro,  1997) and insects (Lindenmayer & Hobbs,  2004; Pawson, 
Brockerhoff, Meenken, & Didham,  2008). Ramírez Castillo et al. 
(2018) attributed the higher density of oribatid mites in young pine 
plantations mainly to the thick organic litter layer in these plantations. 
This is consistent with the pattern in temperate coniferous forests, 
where thick organic layers favor high densities of soil mesofauna, due 
to increased habitat space (Maraun & Scheu, 2000). Although differ-
ences in litter layer thickness between vegetation types were not sig-
nificant in the present study, a trend toward thicker litter layers in pine 
plantations was present, suggesting that oribatid mite densities might 
at least in part be controlled by the available habitat space.

The recorded number of species of oribatid mites in the three 
vegetation types (76 in pine plantations and degraded forest, and 
52 in alder plantations) was similar to that in undisturbed tropi-
cal montane rain forests in the area (~80 at 2,000 m a.s.l.; Marian 
et al., 2018). Both pine plantations and degraded forests contain a 
similar number of species, suggesting that both vegetation types 
provide a high number of ecological niches for oribatid mites.

Mean species richness of oribatid mites per soil core resem-
bled the patterns found for fauna density. In alder plantations 
and degraded forests, species richness was similar to undisturbed 
tropical montane rain forests in the region (7.88  ±  2.59 species 
per 5  cm soil core; F. Marian unpublished data). In pine planta-
tions, however, species richness of oribatid mites was almost twice 
as high, suggesting that especially oribatid mites benefit from in-
creased niche availability in pine plantations, persumably via in-
creased litter layer thickness, changes in root morphology, and 
availability of root-derived resources.

Availability and structure of resources also drive the number of 
parthenogenetic individuals and species. According to the struc-
tured resource theory of sex, parthenogenetic reproduction dom-
inates if resources are unstructured and in ample supply (Scheu & 
Drossel,  2007). In our study, the percentage of parthenogenetic 
species did not differ between the three vegetation types (~40%) 
and was similar to undisturbed tropical montane rain forests (34%; 
Marian et al., 2018). By contrast, in pastures and young pine planta-
tions in the region it was much higher (75%; Ramírez Castillo et al., 
2018). This indicates that resources become more scarce and struc-
tured with increasing age of plantations, thereby approaching con-
ditions similar to those in undisturbed montane rain forests in close 
proximity to the study site.

In contrast to our expectation, the introduction of non-native 
trees did not result in a reduction of tropical oribatid mite species, 
with tropical and subtropical species dominating in all three veg-
etation types. Although species overlap was similar between the 
three vegetation types, the community composition of oribatid 
mites in pine plantations differed significantly from that in alder 
plantations and degraded forests. These findings indicate that, 
although species numbers and abundance of oribatid mites were 
higher in pine plantations, from a community structure perspec-
tive the native alder plantations better resemble the species com-
position present in degraded forest fragments, which might be due 
to a more diverse understory vegetation in this plantation type. 
However, both plantation types appear to provide suitable condi-
tions for the establishment of functionally diverse microarthropod 
communities, and reforestation with both native and non-native 
tree species may speed up rather than retard the recovery of the 
decomposer food web after deforestation (Ramírez Castillo et al., 
2018).

5  | CONCLUSIONS

Results of the present study did not support most of our hypotheses. 
Density of soil mesofauna in forest plantations was similar to that 
in degraded forests, while density and species richness of oribatid 
mites were at a maximum in plantations with non-native pine trees. 
Tree diversity and aboveground leaf litter quality appear not to be 
the major controlling forces regulating the density and community 
composition of soil arthropods. Beneficial conditions for mesofauna 
in monoculture pine plantations are presumably due to increased 
thickness of the organic layer in pine plantations and, potentially, dif-
ferences in root-derived resource availability. Contrasting the docu-
mented decline in diversity and density of aboveground fauna with 
conversion of rain forest into pastures and later into plantations, our 
results suggest that such conversion only moderately affects the soil 
mesofauna. This indicates that from a soil animal perspective, mono-
culture plantations appear to be less detrimental than commonly as-
sumed. Enrichment planting with native tree species in plantations 
therefore may accelerate the restoration of tropical montane forests 
and help to conserve mesofauna diversity and associated ecosystem 
functions.
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