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ABSTRACT 

 

Gastropods, like many other marine invertebrates undergo a two-stage life cycle. As the adult 

body plan results in narrow environmental tolerances and restricted mobility, the optimum 

opportunity for dispersal occurs during the initial larval phase. Dispersal is considered to be 

a major influence on the evolutionary trends of different larval strategies. Three larval 

strategies are recognised in this research: planktotrophy, lecithotrophy and direct 

development. Planktotrophic larvae are able to feed and swim in the plankton resulting in 

the greatest dispersal potential. Lecithotrophic larvae have a reduced planktic period and are 

considered to have more restricted dispersal. The planktic period is absent in direct 

developing larvae and therefore dispersal potential in these taxa is extremely limited.  Each 

of these larval strategies can be confidently inferred from the shells of fossil gastropods and 

the evolutionary trends associated with modes of development can be examined using both 

phylogenetic and non-phylogenetic techniques. This research uses Cenozoic gastropods from 

southeastern Australia to examine evolutionary trends associated with larval mode. 

 

To ensure the species used in analyses are distinct and correctly assigned, a taxonomic review 

of the six families included in this study was undertaken. The families included in this study 

were the Volutidae, Nassariidae, Raphitomidae, Borsoniidae, Mangeliidae and Turridae. 

Phylogenetic analyses were used to examine the relationships between taxa and to 

determine the order and timing of changes in larval mode throughout the Cenozoic. 

Traditionally, planktotrophy has been considered the ancestral mode of development. 

However, using maximum parsimony and maximum-likelihood analysis, this research 

suggests that the ancestral developmental mode cannot be confidently determined in 

gastropods from southeastern Australia. Similarly, evidence that transitions between larval 

strategies might be reversible contradicts the general view that regaining the specialised 

structures associated with planktotrophy is so difficult that it is considered extremely unlikely 

to occur. When the timing of switches in larval mode was examined they were found to be 

scattered at different points in time rather than clustered to specific periods and therefore 

no inference can be made as to the likely factors driving transitions between larval modes. 

The correlation between mode of development and macroevolutionary trends was examined 

using non-phylogenetic techniques. The results do not concur with the hypothesis that 

species with planktotrophic larvae will exhibit wider geographic ranges, longer species 

durations and lower speciation rates then lecithotrophic or direct developing taxa. The 
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analyses are thought to be hindered by a strong preservation bias and gaps within the fossil 

record. The quality of the fossil record and the congruence between phylogenies and 

stratigraphy is examined using the Stratigraphic Consistency Index, the Relative 

Completeness Index and the Gap Excess Ratio. 
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CHAPTER 1  

 

INTRODUCTION 

 

A great deal of research has concentrated on the biological mechanics of larval 

development in marine invertebrates (e.g. Thorson, 1950; Mileikovsky, 1971; Shuto, 1974; 

Jablonski & Lutz, 1980, Wray, 1992, 2006; Raff & Byrne, 2006) but considerably less is 

known about the evolution of larvae and the factors that influence early development. It is 

well documented that the dispersal ability of a species during its larval stage may have a 

profound influence on its geographic distribution (Shuto, 1974; Hansen, 1980; Jablonski & 

Lutz, 1983; Scheltema & Williams, 1983; Jablonski, 1986; Johannesson, 1988; Ó Foighil, 

1989; Martel & Chia, 1991; Emlet, 1995; Hoskin, 1997; Collin, 2001; Jeffery & Emlet, 2003; 

Jablonski & Hunt, 2006; Paulay & Meyer, 2006; Arellano & Young, 2009), species longevity 

(Hansen, 1978, 1980; Koch, 1980; Scheltema & Williams, 1983; Jablonski, 1986; Gili & 

Martinell, 1994; Jeffery & Emlet 2003; Jablonski & Hunt, 2006) and speciation rates (Shuto, 

1974; Hansen, 1978; Murphy, 1978; Collin, 2001; Jablonski & Roy, 2003; Paulay & Meyer, 

2006) but these ideas are yet to be adequately tested, either in living or fossil taxa. Studies 

to date have concentrated on limited taxonomic examples at few geological time periods 

(e.g. Hansen, 1982; Jablonski, 1986; Jeffery, 1997; Gili & Martinell, 1994; Cunningham & 

Jeffery Abt, 2009).  

 

The lack of knowledge about larval evolution is in part due to preservation biases within the 

fossil record of different developmental stages (more fragile stages are not often 

preserved) but also a result of inadequate linking of larval and adult forms and poorly 

resolved phylogenies for different groups of marine invertebrates. By approaching our 

understanding of larval strategies from a palaeontological perspective, as opposed to a 

biological one, we are able to include the dimension of time from the fossil record that is 

unavailable in biological studies that focus on living taxa only. This thesis aims to fill a gap in 

our understanding by focusing on larval strategies of fossil marine gastropods from the 

Cenozoic sedimentary rocks of southeastern Australia which will complement a similar data 

on echinoids in this region (Jeffery & Emlet, 2003). The study will examine the 

macroevolutionary consequences of different larval strategies and resolve phylogenies to a 

sufficient level that switches in larval mode can be mapped and the plesiomorphic larval 

condition determined.  
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Gastropods from the Cenozoic sedimentary strata of Australia provide an ideal study group 

for a number of reasons. Gastropods are one of only a few groups of marine invertebrates 

whose larval strategy can be inferred from the adult shell. It is therefore possible to unravel 

the evolutionary history of larval strategies in gastropods without the need to make direct 

observations of larvae. In addition, a variety of larval strategies are found within the 

Gastropoda making it possible to review the macroevolutionary consequences of varying 

larval strategies. This study will provide a complementary dataset to similar echinoid data 

from the Cenozoic of southeastern Australia (Jeffery & Emlet, 2003). The widely 

outcropping carbonate rocks of southeastern Australia are stratigraphically well 

constrained and contain abundant, diverse and very well preserved gastropod specimens. 

As there has been no relative movement of localities since deposition, geographic ranges 

can be better constrained. In addition, the excellent and well curated collections of both 

type and non-type material housed within Museum Victoria in Melbourne, the South 

Australia Museum in Adelaide and The Natural History Museum in London provide a useful 

source of specimens to be included in this study. Lastly, there is scope for taxonomic 

revision of families within the Gastropoda of this region and development of phylogenies 

using morphological characters to better resolve the relationships between taxa and to 

improve our understanding of the evolutionary history of larval strategies in the Cenozoic. 

 

 

1.1 LARVAL STRATEGIES 

 

Many marine invertebrates, including gastropods, possess a two-stage life cycle, initially 

hatching from eggs as planktic larvae before metamorphosing into benthic adults (Figure 

1.1). The adult body plan hampers mobility and the organism often develops narrow 

environmental tolerances during this life stage. As a result the larval stage provides the 

optimum opportunity for dispersal. From examination of living taxa, a number of different 

larval strategies are recognised in marine invertebrates. However, these can be broadly 

grouped into two types: planktotrophs and nonplanktotrophs. Species with larvae that have 

the ability to feed in the plankton (planktotrophs) are shown to have greater dispersal 

abilities as a result of their prolonged survival in the water column, whereas species with 

nonfeeding larvae (nonplanktotrophs) have more restricted dispersal abilities as they 

metamorphose into benthic adults more quickly. The ability to disperse is arguably the 

most influential factor controlling evolutionary trends (see Jablonski & Lutz, 1983 for 

review).  
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Figure 1.1 Idealised metazoan life cycle with the larval life stage highlighted in red and life stages prior to 
hatching (and not observable in fossil specimens) highlighted in grey. Modified from Figure 2 in McEdward & 

Janies, 1993 (pg. 260).  

 

1.1.1 PLANKTOTROPHY 

 

Planktotrophic (or planktic) larvae are sometimes referred to as feeding larvae (e.g. 

Strathmann, 1974, 1978, 1985) and are capable of spending a significant time in the 

plankton. They are hatched from large numbers of small, yolk-poor eggs and have 

specialised structures for feeding and locomotion within the plankton. These structures are 

either lost or reabsorbed during metamorphosis into a juvenile. The number of eggs 

spawned by an individual parent organism can vary from thousands to millions. For 

example, the gastropod Littorina irrorata can spawn up to 85,000 eggs at any one time 

(Bingham, 1972) whilst up to 70 million eggs can be produced by a single spawning of the 

oyster Crassostrea virginica (Davis and Chanley, 1956). Once the eggs are released into the 

water column many factors, including predation and starvation, result in high mortality 

rates, as high as 99% in some cases (e.g. Thorson, 1950, 1966; Mileikovsky, 1971). However, 
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the evolutionary success of this larval type was highlighted by Thorson (1950), who 

estimates that 70% of living benthic marine species undergo this type of development. 

 

Planktotrophic larvae can spend long periods of time in the plankton and as a result are 

often subject to relocation by ocean currents. Many taxa spend two or three months as 

larvae, such as the echinoid Strongylocentrotus pallidus and the holothuroid Parastichopus 

californicus (Strathmann, 1978), whilst the phyllosoma larvae of the spiny lobster can 

remain in their pelagic, feeding state for up to a year (Mileikovsky, 1971).  If larval 

behaviour causes no interference then dispersal by ocean currents can be heavily 

influenced by the length of the pelagic phase. Currents of 0.5km/h can transport 

planktotrophic larvae as far as 150km to 500km within a single breeding period (Scheltema, 

1977) if unaffected by other factors, such as temperature (e.g. O’Connor et al., 2007; 

Scheltema, 1986), predation and the ability to find an appropriate settlement site 

(Strathmann & Branscomb, 1979).  

 

Larvae which spend very long periods of time as pelagic, feeding organisms and which have 

the ability to be dispersed across great distances are referred to as teleplanic (“far 

wandering”, Scheltema, 1971) and are often found among the tropical benthos (Jablonski 

and Lutz, 1983). Demersal development refers to species whose larvae swim or crawl near 

the substrate gaining nutrition from organic detritus in or close to the substrate (Jablonski 

& Lutz, 1983). Inclusion of this larval type under the planktotrophic umbrella is contentious 

as some demersal species do not feed at all and would therefore be better placed in the 

nonplanktotrophic category (Jablonski & Lutz, 1983). Demersal development is most often 

seen in high latitude, deep sea regions (Pearse, 1969; Mileikovsky, 1971; Clarke, 1979).  This 

type of benthic dispersal can be advantageous as larvae are exposed to more stable benthic 

food resources and the less variable temperature and salinity regimes associated with 

upper part of the water column (e.g. Levinton, 1974; Hendler, 1977; Whitlatch, 1977; 

McCall, 1978).  

  

1.1.2 NONPLANKTOTROPHY 

 

Nonplanktotrophic (or nonplanktic) larvae are sometimes referred to as nonfeeding larvae 

(Strathmann, 1978; Marshall & Keough, 2003) and spend little or no time in the plankton 

prior to metamorphosis. The reduced pelagic period in this larval strategy has led to the 

hypothesis that nonplanktotrophic species have more limited dispersal abilities than 
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planktotrophic species. Nonplanktotrophs gain all their nutrition from the large, yolk-rich 

eggs from which they hatch. As a result of this higher maternal input, the parent organism 

spawns a much smaller number of eggs than seen in planktotrophic species, usually 

thousands rather than millions. For example, the bivalve Nucula proxima spawns 

approximately 4100 eggs per parent and the related Nucula annulata 1200 eggs per parent 

(Scheltema, 1972). The reproductive effort of the parent is considerably higher per egg in 

nonplanktotrophs than planktotrophs. Lower mortality rates are predicted in 

nonplanktotrophic larvae, if there is a correlation between residence in the plankton and 

mortality rate (Scheltema, 1972). 

 

Lecithotrophy refers to nonfeeding larvae which undergo a short pelagic phase. Nutrition is 

entirely sourced from the egg and the pelagic phase rarely exceeds a few days whilst still 

enabling a degree of dispersal (Thorson, 1950). The suggestion that lecithotrophy is absent 

in gastropods (Thorson, 1950) has been refuted by numerous studies and it has in fact now 

been recorded in the Patellidae, Acmaeidae, Trochidae, Olividae, Muricidae and Conidae 

(e.g. Natarajan, 1957; Marcus & Marcus, 1959; Kohn, 1961; Fretter & Graham, 1962; 

Anderson, 1962, 1966; Gohar & Eisawy, 1967; Eisawy, 1970; Underwood, 1972, 1979; 

Spight, 1977; Gallardo, 1981; Heslinga, 1981; Perron, 1981a, b; Rex and Warén, 1982; 

Ellingson & Krug, 2006). This type of development is thought to be the dominant larval 

strategy in deep sea bivalves (Knudsen, 1979; Schein, 1989) and in asterinid starfish (Byrne, 

2006) but is also common in other molluscs and echinoderms. 

 

Direct development occurs when full development to the juvenile stage takes places within 

the egg mass (Thorson, 1946, 1950; Mileikovsky, 1971, 1974; Webber, 1977; Jablonski & 

Lutz, 1983). The egg mass or egg case is often attached to the substrate and protects the 

larvae until metamorphosis is complete. True direct development has only been observed 

in a relatively small number of marine invertebrates including most cephalopods (Boletzky, 

1974; Arnold and Williams-Arnold, 1977; Wells and Wells, 1977), some echinoderms (Chia, 

1974), a number of opisthobranchs (Bonar, 1978) and some authors also report direct 

development in the Polyplacophora (Pearse, 1979). Oviparous development occurs where 

the parent organism provides nurse eggs as an extra food source for the viable eggs, e.g. 

the gastropod Buccinum undatum (Portman, 1925). The ratio of viable eggs to nurse eggs 

can be variable but often nurse eggs considerably outnumber eggs that produce offspring 

(Jablonski & Lutz, 1983).  
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Brooded development occurs in species where the larvae are retained within the parent 

organism until metamorphosis is complete and they can emerge as juveniles. It is worth 

noting that this strategy offers the greatest protection to the offspring but fewer eggs can 

be developed and the reproductive effort required of the parent organism is distinctly 

greater than in any other strategy (Hughes & Roberts, 1980). It has been noted that some 

species developing embryos within their eggs attach those eggs to the shell or the body of 

the parent until full development is complete (Lindberg & Dobberteen, 1981). Brooded 

development is the dominant larval strategy in Antarctic echinoids (e.g. Poulin, 1996) with 

over 95% of Antarctic species displaying brooded development (Magniez, 1983). 

 

Mixed development (seen in a number of benthic marine groups including gastropods) 

occurs where early development is encapsulated but larvae are still hatched as free-

swimming and premetamorphic, e.g. the gastropod Conus pennaceus (Perron, 1981c). This 

strategy may reduce the risk of predation which is very high at early stages of development 

(Pechenik, 1979). 

 

In summary, three main divisions of nonplanktotrophic development can be recognised. 

The first refers to species whose development is nonfeeding and pelagic and is termed 

lecithotrophy. The second refers to nonpelagic, nonfeeding larvae and is termed direct 

development. The final category occurs where the parent organism retains the eggs until 

full development has occurred within its protection and is known as brooded development.  

 

1.1.3 CLASSIFICATION SCHEMES 

Species of marine invertebrate show a wide range of different larval types as outlined in the 

previous sections. However, the great diversity of larval form has hindered the creation of a 

universally accepted classification scheme. Many researchers have attempted to produce 

classification schemes that can be used either for specific groups or which aim to 

encompass all groups of marine invertebrates or which highlight specific dichotomies (e.g. 

feeding vs. nonfeeding, pelagic vs. nonpelagic, direct vs. indirect development). 

 

Classification schemes of larval strategies in marine invertebrates commonly follow the 

scheme outlined by Thorson (1950) who recognised pelagic and nonpelagic development in 

molluscs (e.g. Ocklemann, (1965); Thompson, (1967). Pelagic strategies included 

planktotrophy and lecithotrophy whilst nonpelagic strategies included direct and viviparous 



7 
 

development, where viviparous refers to giving birth to live young (Thorson, 1950). Studies 

on echinoids often show a modification of this scheme, replacing direct development with 

brooded development (e.g. Strathmann, 1974a; Emlet, 1990, 1995; Jeffery & Emlet, 2003). 

Studies on neogastropods have often further modified Thorson’s scheme when examining 

larval ecology. Scheltema (1977, 1978, 1979) refers to larvae as either pelagic and 

nonpelagic, or feeding and nonfeeding, thereby concentrating on the time spent within the 

water column and, as a result, their differing dispersal patterns. A planktic vs. nonplanktic 

dichotomous scheme was employed by Hansen (1980a) where planktic species are those 

with planktotrophic larvae and those with nonplanktic larvae include lecithotrophic and 

direct development.  

 

Creating a universally accepted classification scheme is difficult for a number of reasons. 

Firstly, the scheme used needs to suit the purpose of the study. For example, 

palaeobiogeography studies are likely to be interested in feeding capabilities of different 

types of larvae which can affect their dispersal patterns and may therefore employ a 

scheme which recognises only planktotrophic and nonplanktotrophic development. On the 

other hand, an embryology study might be more concerned with the presence or absence 

of a true larval stage and so may adopt a direct vs. indirect classification scheme.  The 

second issue arises in studies which focus on fossil species. As it is not possible to make 

direct observations of early development in extinct species it is often hard to define the 

subtle differences in larval development from fossil species. As a result a simple 

dichotomous scheme (e.g. planktotrophic vs. nonplanktotrophic) is often used when 

examining species with no living representatives. 

 

This study will follow a trichotomous scheme where planktotrophic, lecithotrophic and 

direct developing larvae are recognised. This is a practical approach as inference of these 

larval types is relatively straightforward from examination of fossil gastropods. As dispersal 

of larvae is considered to be a major controlling factor in the macroevolution of benthic 

marine invertebrates, including gastropods, this is the most appropriate scheme to use. A 

summary of different classification schemes including the one used in this study can be 

seen in Table 1.1. 
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Table 1.1 Summary table of various classification schemes for larval strategies in the literature. This thesis uses 
a trichotomous scheme but it should be noted that in reality these form members of a wider spectrum of 

possible larval strategies. 
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1.2 MACROEVOLUTIONARY CONSEQUENCES OF LARVAL STRATEGIES 

 

The link between macroevolutionary trends and larval strategy is often debated within the 

literature (see Jablonski & Lutz, 1983 for review).  It has been proposed that species with 

planktotrophic larvae have greater dispersal abilities than nonplanktotrophic species due to 

their longer pelagic phase and that this will result in wider geographic ranges (e.g. Shuto, 

1974; Scheltema, 1977, 1978, 1979; Ó Foighil, 1989; Emlet, 1995). It is often argued that 

wide geographic range is linked to long species duration because widely distributed species 

are less vulnerable to local catastrophes. If this is the case then it is also logical to assume 

that planktotrophic species will exhibit lower speciation rates than nonplanktotrophs due 

to their reduced vulnerability to localised extinction events. These predictions are 

summarised in Table 1.2. Despite much discussion of the possible consequences of 

different larval strategies in the literature, the topic remains relatively untested. Testing 

these hypotheses is particularly difficulty when examining changes through geological time 

due to preservation biases in the fossil record and the paucity of well resolved phylogenies 

of certain groups, such as gastropods.  

 

  
Geographic 
distribution 

 
Species 

longevity 

 
Speciation 

Rate 
 

 
Planktotrophic 

 
Wide 

 
Long 

 
Low 

 
Nonplanktotrophic Narrow Short High 

 

 

Table 1.2 Summary table of predicted macroevolutionary consequences for species with planktotrophic and 
nonplanktotrophic larvae. 

 

1.2.1 GEOGRAPHIC DISTRIBUTION 

 

Both living and fossil species of marine invertebrates have been used to examine the 

correlation between larval mode, dispersal ability and geographic distribution. Much of the 

literature has focused on species of benthic marine invertebrates in the mollusc classes 

Gastropoda and Bivalvia and the phylum Echinodermata. 

 

Studies on living gastropods from the Indo-Pacific region have shown that species with 

planktotrophic larvae have greater dispersal abilities and as a result wider geographic 
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distributions (e.g.  species from the genera Batillaria, Cerithium, Clypeomorus, Strombus, 

Tibia, Drupa, Lambis, Apollon, Bursa, Cassis, Tonna, Thais, Nassarius and from the families 

Triphoridae and Terebridae (Shuto, 1974)). By contrast, nonplanktotrophic species from the 

same region have more limited dispersal and therefore narrower distributions (e.g. species 

from the genera Olivella, Fulgoraria, Granulifusus, Siphonalia, Babylonia, Hindsia, 

Cantharus, Murex, Ocenebra, Latiaxis, Caecum and Margarites (Shuto, 1974)). A similar 

pattern is seen in species of the slipper limpet Crepidula in the waters of the Atlantic and 

Gulf Coast of USA where direct developers are seen to form geographically distinct 

monophyletic clades (Collin, 2001). Comparison of gastropod families in Polynesia and the 

Western Pacific show that teleplanic larvae have considerably wider geographic 

distributions when compared to those species without a planktic phase (Scheltema and 

Williams, 1983). Data from southeastern Australia suggests that species of prosobranch 

gastropods with direct developing offspring inhabit relatively closed local populations 

which evolve independently from one another (Hoskin, 1997). 

 

These patterns can also be seen in fossil gastropods from various regions. Planktic species 

of the family Volutidae from the Neogene of the Gulf Coast of USA have wide geographic 

distributions even during periods of regression when delta building is taking place, 

indicating that oceanic barriers of this type do not affect planktic larvae dispersal patterns 

(Hansen, 1980). The median geographic range of planktic species of various neogastropod 

families equalled 5.5 geographic units compared with the median geographic range of 

nonplanktic species of only 1.0 unit. This difference was found to be statistically significant 

using a Mann-Whitney U-test (P<0.05). Late Cretaceous gastropods from the Atlantic Coast 

Plain show a statistically significant difference (P<0.01, Kolmogorov-Smirnov test) in 

geographic range between planktotrophs (median = 1,860km) and nonplanktotrophs 

(median = 380km) (Jablonski, 1986; Jablonski and Hunt, 2006).  

 

A small number of studies on gastropods have contradicted these results. Poor correlation 

between planktonic period and geographic range is seen in species from the family 

Cypraeidae in insular, dispersal-limited settings of the Indo-West Pacific (Paulay and Meyer, 

2006) but this is likely the result of estimation error, intraspecific variation and 

inappropriate taxonomic scale which can obscure macroecological patterns (Paulay and 

Meyer, 2006). Similarly, the brooding species Littorina saxtilis has been shown to be more 

widespread than the closely related planktonic species Littorina littorea in the northern 
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Atlantic but it is noted that the observations are scattered and more data are required to 

corroborate these results (Johannesson, 1988). 

 

Studies on the geographic range of different larval types in marine bivalves have shown 

much more variable results than those seen in gastropods. The deep-sea mussel 

“Bathymodiolus” childressi is considered to have teleplanic planktotrophic larvae, perhaps 

spending more than one year within the plankton, and is shown to have wide distribution 

patterns across the Gulf of Mexico and the amphi-Atlantic which supports the hypothesis of 

wide geographic range in planktotrophic larvae (Arellano and Young, 2009). Similar results 

are seen in species of the family Pinnidae in the western Pacific and Polynesia (Scheltema 

and Williams, 1983). However, many studies on bivalves show that planktotrophic larvae 

are often less widespread than nonplanktotrophic species. Species of Lasaea with 

planktotrophic development appear to be confined to the Western Pacific whilst species 

without a pelagic larval phase are found on all continents (with the exception of Antarctica) 

and on numerous oceanic islands (Ó Foighil, 1989). Ó Foighil (1989) suggests that the 

greater collective geographic range of Lasaea species which release crawl-away juveniles 

implies that a pelagic phase is not always necessary for long distance dispersal within this 

genus although by treating the data collectively the author loses resolution within his data. 

He further suggests that rafting of juveniles and small adults promotes the evolutionary 

success of brooding species. Similarly, Martel and Chia (1991) propose that if species have 

no pelagic larval phase then dispersal opportunities may arise during juvenile and early 

adult stages by drifting in currents using mucus threads. Frequent drifting excursions in the 

brooding species Musculus sp., Lasaea sp. and Transenella tantilla are thought to favour 

long distance dispersal during post-metamorphic stages resulting in wider geographic 

distributions (Martel and Chia, 1991). Research on fossil bivalves from the Late Cretaceous 

have also shown that geographic range in planktotrophs is not significantly greater than in 

nonplanktotrophs (Jablonski and Hunt, 2006) but the authors caution that low numbers of 

nonplanktotrophs in the dataset may skew the results.  

 

A study on fossil temnopleurid echinoids from the Cenozoic of southern Australia (Jeffery & 

Emlet, 2003) shows that when a non-phylogenetic approach is employed a Mann-Whitney 

U-test reveals that planktotrophic species have a significantly greater geographic 

distribution than species with nonplanktotrophic larvae (P=0.02). However, phylogenetic 

analysis from the same study shows that analysis by independent contrasts reveals no 

significant difference in the geographic distribution of species with different larval 
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strategies although it should be taken into account that low numbers of contrasts will 

impact the results. The study demonstrates that geographic ranges of fossil temnopleurid 

echinoids are relatively small compared to extant taxa and other fossil taxa with median 

geographic ranges of 460km and only 36km in planktotrophs and nonplanktotrophs 

respectively (Jeffery and Emlet, 2003). The low values of geographic range seen in this 

study may be a result of the distribution of echinoid bearing outcrops in southeastern 

Australia. The quality of the fossil record, in terms of both taphonomic and sampling biases, 

is likely to be a major influence on our understanding of evolutionary trends and has been 

the focus of a number of recent studies, e.g. Cherns et al, 2011; Vilhena & Smith, 2013; 

Smith & Benson, 2013. Evidence from living temnopleurid and cidarid echinoids has shown 

that developmental mode only affects geographic range in species occurring in depths of 

less than 100m and planktic residence time does not appear to be correlated to distribution 

patterns (Emlet, 1995). The same study suggests that rafting of adults seen in molluscs is 

not seen in temnopleurid and cidarid echinoids with brooded larvae but geographic ranges 

of both planktotrophic and brooded larvae are significantly larger than those seen in other 

living benthic marine invertebrates (Emlet, 1995). 

 

1.2.2 SPECIES LONGEVITY 

 

A number of studies have shown that the species longevity of planktotrophic species is 

longer than that seen in nonplanktotrophic species (e.g. Hansen, 1978, 1980; Jablonski, 

1982, 1986; Gili & Martinell, 1994). These findings provide support for theoretical models 

(Shuto, 1974; Scheltema, 1977; Jablonski & Lutz, 1983) which predict that a greater ability 

to disperse will increase geographical and stratigraphical range reducing vulnerability to 

local catastrophes. There is a severe paucity of data for species longevity of marine 

invertebrates which may be the result of gaps in the fossil record. Species longevity is often 

correlated with geographic distribution rather than larval mode based on the presumed 

relationship between larval dispersal and geographic range (e.g. Jablonski & Hunt, 2006; 

Powell, 2007). This may be the result of poorly constrained stratigraphy making it difficult 

to define first and last occurrences of species or may be due to poorly understood 

taxonomy. Studies need to concentrate of species level larval data to overcome 

complications at higher taxonomic levels (e.g. congeneric species can have different larval 

strategies). It is an area in much need of attention if we are to fully appreciate the 

macroevolutionary consequences of larval mode in marine invertebrates. 
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A study of forty species of nassariid fossils from the Neogene strata of the Mediterranean 

and North East Atlantic coasts (specifically North Africa, Portugal, France, Italy, Turkey, 

Belgium, Denmark & UK) shows a strong correlation between larval mode and species 

longevity (Gili and Martinell, 1994). The median duration of planktotrophs was found to be 

9.8 million years compared to only 2.8 million years in nonplanktotrophs. Of the forty 

species, twelve were found to have the greatest coincidence of absolute duration of 2.8 

million years which represents the Pliocene period. A Mann-Whitney U-test found the 

difference in species longevity between planktotrophs and nonplanktotrophs to be highly 

significant (P<0.001). Studies on Tertiary neogastropods from the Gulf Coast of the USA 

show comparable results (Hansen, 1978, 1980). Tertiary species from the family Volutidae 

show that planktic species have a mean species duration double that seen in nonplanktic 

species, 4.4million years and 2.2million years respectively (Hansen, 1978). The median 

duration was 5 million years in planktic species and 1 million years in nonplanktic. 

Cretaceous fossil prosobranch and shelled opisthobranch species from the Gulf Coast and 

Atlantic Coast Plain of North America showed that species with planktotrophic larvae 

showed significant frequencies of overlapping stratigraphic range whilst species with 

nonplanktotrophic larvae showed significant frequencies of abutting species durations 

(Jablonski, 1986). The same study shows that the median duration of planktotrophic species 

in this region is 6 million years and 2 million years in nonplanktotrophic species. The 

difference is shown to be statistically significant (P<0.01, Kolmogorov-Smirnov test). These 

results strongly support the hypothesis that planktotrophic species with greater dispersal 

abilities show greater species durations through geological time. By contrast, gastropod 

species from the families Architectonicidae, Cymatiidae, Tonnidae and Volutidae in 

Polynesia and the western Pacific islands do not strongly support the argument that 

temporal longevity is related to mode of development (Scheltema and Williams, 1983). 

 

Cenomanian bivalves from the Western Interior of North America show a positive 

correlation between geographic distribution and species longevity significant at the 5% 

level, but species duration was not correlated with larval mode (Koch, 1980). Similarly, Late 

Cretaceous bivalves from the Gulf and Atlantic Coastal Plain of USA show geographic 

distribution and species longevity to be related but there is no significant correlation 

between larval mode and species longevity (Jablonski & Hunt, 2006). Tertiary temnopleurid 

echinoids from southern Australia show median durations of 9 million years for 

planktotrophic taxa and 3 million years for nonplanktotrophic taxa. A Mann-Whiney U-test 

indicated that the difference is statistically significant, P=0.02 (Jeffery & Emlet, 2003). The 
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same study showed that analysis by independent contrasts does not find the difference in 

range between modes of development to be significantly different (P=0.10) but all 

standardised contrasts were shown to be negative, indicating that nonplanktotrophic taxa 

have shorter species durations than planktotrophic taxa (Jeffery & Emlet, 2003). 

 

1.2.3 SPECIATION RATES 

It is predicted in the literature that those species with wide geographic distributions are less 

vulnerable to localised extinction events resulting in longer species duration and 

consequently low speciation rates. If planktotrophic taxa are able to disperse across wider 

distances than nonplanktotrophic taxa then low speciation rates would be expected as 

gene flow would be maintained between populations. Electrophoretic and biochemical 

studies on living populations of marine invertebrates support this prediction with evidence 

that planktotrophic species exhibit low levels of genetic differentiation compared to 

nonplanktotrophic species (e.g. Wium-Andersen, 1970; Gooch et al., 1972; Berger, 1973; 

Snyder and Gooch, 1973; Gooch, 1975; Campbell, 1978; Crisp, 1978; Grassle & Grassle, 

1978; Siebnaller, 1978; Wilkins et al., 1978; Black & Johnson, 1979; Buroker et al., 1979a, b; 

Ward & Warwick, 1980). Although this theory is often outlined in the literature it is yet to 

be adequately tested. As with species longevity, speciation rates are often correlated to 

geographic range rather than larval mode (e.g. Jablonski & Roy, 2003).  

 

Species with nonfeeding larvae are predicted to be less able to maintain gene flow between 

geographically isolated populations resulting in increased speciation events (Shuto, 1974). 

Significant genetic differentiation seen within living populations of nonplanktotrophic 

Crepidula gastropods compared with limited variation in planktotrophic populations of the 

same genus along the Gulf and Atlantic coasts of North America corroborates this 

prediction (Collin, 2001). Cretaceous gastropods from the Gulf Coast and Atlantic Coastal 

Plain show a significant inverse relationship between geographic range and speciation rate 

(N=90 genera, Spearman’s Rank-Order Correlation, R=-0.68, P<0.00001) but show a weak 

inverse relation between geographic range and total number of species originating within a 

genus (R=-0.17, P=0.10) (Jablonski & Roy, 2003). Neither the total number of species 

produced through time nor the number of species within a single time interval is found to 

be a positively correlated with the geographic range of species in a clade (Jablonski & Roy, 

2003).  
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Jeffery & Emlet (2003) show that speciation rates of planktotrophic larvae of temnopleurid 

echinoids are significantly higher than in nonplanktotrophic taxa (P=0.03, Mann-Whitney U-

Test) but also caution that phylogenetic evidence of switches in larval mode is not taken 

into account in this data. A study on cowries from the Indo-West Pacific examines the 

potential for diversification and its relationship with planktonic period (Paulay & Meyer, 

2006). The study proposes that planktonic period is roughly correlated with “geographic 

scale of speciation” which in turn is related to the rate of diversification. The authors note 

that diversification is limited for highly dispersive species due to the reduced opportunities 

for isolation whilst diversification of poorly dispersive species is limited by the slow build up 

of sympatric diversity (Paulay & Meyer, 2006). The study notes that those species with 

intermediate levels of dispersal are likely to have the greatest potential for diversification. 

Evidence from Tertiary volute gastropods of the Gulf Coast supports the hypothesis that 

larval ecology influences evolutionary rates (Hansen, 1978). The study shows that species 

with nonplanktonic, low dispersal larvae are easily isolated by local barriers along 

continental shelves during periods of regression and that this results in increased extinction 

and speciation rates (and as a result decreases average species longevity). Research on the 

acmaeid limpet Collisella shows that during periods of warming planktic larvae of warm-

water species can successfully settle at higher latitudes resulting in an extension of their 

geographic range (Murphy, 1978). If a subsequent cooling event occurs geographic ranges 

will return to more equatorial regions but it is possible that some species may continue to 

survive at higher latitudes in warmer embayments resulting in isolation and possible 

increased speciation (Murphy, 1978).  

 

Figure 1.2 shows the locations where studies on the macroevolutionary consequences of 

larval mode in different phyla have been undertaken. These examples demonstrate that 

understanding the relationship between larval mode and speciation rates is not simple and 

requires greater knowledge of the influences on geographic range. Environmental tolerance 

may also contribute to determination of geographic range and species longevity and as a 

result speciation rates. 
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Figure 1.2 Map summarising localities of studies discussed in this chapter. Gastropods: 1. Shuto, 1974; 2. Collin, 
2001; 3. Scheltema & Williams, 1983; 4. Hoskin, 1997; 5. Hansen, 1978, 1980, 1982, 1983; 6. Jablonski & Hunt, 

2006;  7. Paulay & Meyer, 2006; 8. Johannesson, 1988; 12. Gili & Martinell, 1994; 14. Jablonski & Roy, 2003. 
Echinoids: 11. Jeffery & Emlet, 2003. Bivalves: 9. Arellano & Young, 2009; 10. Ó Foighil, 1989; 13. Koch, 1980.



17 
 

1.3 EVOLUTION OF LARVAL MODE 

 

Relatively little research has focused on unravelling the evolutionary history of marine 

invertebrate larvae through geological time. Preservation biases in the fossil record, due to 

the extremely patchy preservation of more fragile life stages, means direct observations are 

often not possible. Well-resolved phylogenies can be difficult to develop, often a result of 

poorly defined characters and character states, particularly in the molluscs. Consequently 

our ability to map evolutionary changes in larval mode is severely hampered. This 

combination of challenges means that questions regarding the plesiomorphic larval 

condition and the timing and order of switches in larval mode are yet to be adequately 

answered. The completeness and adequacy of the fossil record have been the focus of a 

number studies which has shed light on the challenges faced by researchers examining 

evolutionary patterns and trends (e.g. Donovan & Paul, 1998; Cherns et al, 2011; Vilhena & 

Smith, 2013; Smith & Benson, 2013). 

 

In order to fully understand the evolutionary patterns of larval strategies both evolutionary 

and developmental biology must be taken into account (e.g. von Baer, 1828; Haekel, 1866). 

Evolutionary biology examines the changes of heritable traits of a particular population 

over successive populations whilst developmental biology examines the changes in 

morphology of an organism from its early life stages through to its adult body plan. Until 

relatively recently these two aspects of biological science have been treated separately and 

the link between them has not been taken into consideration. The integration of these two 

disciplines has resulted in the creation of evolutionary developmental biology (“evo-devo”). 

The advancement of new techniques in developmental biology over the past thirty years 

has played a large part in the establishment of “evo-devo” (e.g. Scott & Weiner, 1984; 

McGinnis et al, 1984a, b). A significant amount of “evo-devo” research is focused on 

understanding the relationship between evolutionary and developmental events occurring 

throughout geological time. Unravelling the evolutionary history of larvae and their 

subsequent development into adults is just one part of this diverse research area. The term 

“species selection” is often used within “evo-devo” literature and refers to the evolutionary 

patterns created by differences in speciation and extinction rates resulting from the 

interaction of intrinsic biological traits with the environment.  

 

Understanding the relationship between different larval strategies and the timing and order 

of shifts, often requires well-resolved phylogenies (e.g. Emlet, 1990; Hart, 2000; Collin, 
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2001). This may account for the limited published data regarding the evolutionary trends of 

gastropod larvae. Due to the continuous, incremental growth of the gastropod shell and the 

lack of anatomical or genetic material in fossilised shells it is often difficult to identify useful 

characters and character states required for phylogenetic analysis. Despite this challenge a 

number of researchers have examined the evolutionary patterns of gastropod larval 

strategies using both phylogenetic and non-phylogenetic techniques (e.g. Hansen, 1982; 

Reid, 1989; Lieberman et al., 1993). Some researchers suggest that whilst planktotrophic 

species often give rise to nonplanktotrophic species, the opposite is extremely rare, 

possibly due to the presumed difficulty in reacquiring the specialised feeding and swimming 

structures associated with planktotrophic development once they are abandoned (e.g. 

Strathmann, 1974; 1978).   

 

Neogastropods from the Palaeogene of the Gulf Coast of the USA show that there is a high 

rate of diversification in nonplanktotrophic species and a unidirectional trend in 

developmental change with nonplanktotrophic species evolving from planktotrophic 

species but no evidence of the reverse (Hansen, 1982). The same study shows that a 

planktotrophic species has never been known to result from an entirely nonplanktotrophic 

genus in the Eocene of this region and that entirely nonplanktotrophic groups remain so 

even if the pressures initially resulting in this larval mode are removed. These results 

support the view that planktotrophic species often give rise to nonplanktotrophic species.   

 

Recent advances in molecular phylogenies have proved a useful tool when examining the 

evolution of larval mode in living gastropods. A molecular study of Recent Turritellidae 

species has investigated the evolution of larval modes and the role of species selection and 

development in determining transitions in larval strategies (Lieberman et al., 1993). The 

study found planktotrophy to be the plesiomorphic condition in the Turritellidae and 

showed that nonplanktotrophy must have been acquired at least twice based on a 

molecular phylogenetic analysis. The results also supported the general view that 

nonplanktotrophic lineages are unlikely to give rise to planktotrophic species but did not 

rule out the possibility completely. Examination of each of the separate lineages acquiring 

nonplanktotrophic larval type suggested that species selection may play an important role 

but the authors argued that developmental processes are also an important factor in 

transitions between larval modes (e.g. independently acquired nonplanktotrophic larvae 

are not descended from the same common ancestor (Lieberman et al., 1993)).  
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Molecular phylogenetic reconstructions of living species of the genus Conus from the Indo-

West Pacific and Western Atlantic found that the relationship between clades was poorly 

resolved and attributed this to saturation of the phylogenetic signal due to potential 

repeated substitutions occurring over time (Duda & Palumbi, 1999). As with other taxa it 

was determined that planktotrophy is the primitive larval condition and nonplanktotrophy 

the derived larval condition in species of Conus. Shifts from planktotrophy to 

nonplanktotrophy were shown to occur at least eight times and there was no indication 

that a nonplanktotrophic lineage could give rise to planktotrophic species. As with other 

studies (e.g. Lieberman et al., 1993) the authors rejected the hypothesis that species 

selection alone controls diversification in nonplanktotrophic taxa but instead stated that 

“developmental shifts and species selection represent two extremes that can be used to 

explain why there have been increases in the number of nonplanktotrophic species relative 

to species with planktotrophic larvae in prosobranch gastropods” (Duda & Palumbi, 1999: 

10276).  

 

A phylogenetic reconstruction of the family Littorinidae based on morphological characters 

shows that within a single clade of six genera, the Lacuninae, both planktotrophic and 

nonplanktotrophic larvae are represented (Reid, 1989). The study used phylogenetic 

analysis along with shell morphology to determine the possibility of a transition from 

nonplanktotrophy to planktotrophy within the clade. The results show that the shells of the 

planktotrophic species more closely resemble the shells of their nonplanktotrophic sister 

taxa than those of other planktotrophic littorinids and other gastropods. Reid (1989) 

suggests that the similarity in shell morphology and the phylogenetic analysis imply a 

recent reversal from nonplanktotrophy to planktotrophy among the Lacuninae.  

 

The question of the reacquisition of the specialised structures used for mobility and feeding 

in planktotrophic taxa is yet to be explored in detail in the Gastropoda. There is a general 

bias in interpretations towards the loss of feeding larvae due to the presumed difficulty in 

reacquiring the complex morphology required for an extended planktonic period. However, 

there is some evidence that gastropods can retain specialised larval structures in 

nonplanktotrophic taxa, such as those required for feeding and swimming (e.g. opposed-

band ciliary mechanism required for feeding), making a transition from nonfeeding to 

feeding development possible (Collin, 2004; Collin et al., 2007).  
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Echinoderms present an excellent opportunity to investigate evolutionary patterns in 

marine invertebrate larvae using a phylogenetic approach. Echinoids are often used as a 

model organism due to their morphological complexity which makes them relatively 

straightforward to classify both taxonomically and phylogenetically (Jeffery et al., 2003). A 

number of studies show that planktotrophy is the primitive larval mode within various 

groups of echinoderms (e.g. Jägersten, 1972; Strathmann, 1978, 1993; Wray 1992, 1995, 

1996; McEdward & Janies, 1997; Jeffery & Emlet, 2003; Jeffery et al., 2003; Cunningham & 

Jeffery Abt, 2009) and that in many lineages it has been lost entirely due to the increased 

speciation of nonplanktotrophs (Strathmann, 1985; Wray, 1996). There is no evidence to 

suggest that nonplanktotrophic echinoid larvae existed until the end-Cretaceous (Jeffery, 

1997) although it is estimated that it has independently arisen a minimum of twenty times 

since that point through the loss or reduction of complex larval structures (Wray, 1995; 

Jeffery, 1997). Phylogenetic analysis of Recent temnopleurid echinoids from southern 

Australia using both parsimony and maximum likelihood analyses supports the hypothesis 

that planktotrophy is the primitive larval condition in this group if the transition from 

planktotrophy to lecithotrophy is irreversible (Jeffery et al., 2003). The same study showed 

a single transformation to lecithotrophy in this group with the lecithotrophs forming a 

single monophyletic group suggesting that reversal to planktotrophy had not occurred. 

Similarly, Tertiary temnopleurid echinoids showed that nonplanktotrophy had 

independently arisen in three clades (Jeffery & Emlet, 2003). Because the 

nonplanktotrophic taxa in this study are found in clades which contain no planktotrophic 

taxa, the authors suggest that the transition is both unidirectional and irreversible. 

Research on Cretaceous spatangoid echinoids showed that nonplanktotrophy arose 

independently five times within this group (Cunningham & Jeffery Abt, 2009). Switches 

were shown to be concentrated at a discrete geological time interval suggesting that 

external factors, such as predation or nutrition, were influencing shifts to 

nonplanktotrophy. Some species of echinoid are thought to represent intermediary forms 

between planktotrophy and nonplanktotrophy due to evidence of reduced larval structures 

(Emlet, 1986) suggesting that it is possible to reacquire planktotrophy from 

nonplanktotrophic taxa within this group (e.g. the echinoid Clypeaster rosaceus). 

 

Molecular phylogenetic analysis of the asterinid starfish genera Patiriella and Asterina 

suggests that the manner in which characters and character states are treated can greatly 

alter our understanding of the evolutionary history of larval strategies (Hart et al., 1997). 

The authors reconstructed ancestral larval strategies under three differing assumptions of 
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four differing character states: feeding, planktonic development; nonfeeding, planktonic 

development; development in benthic egg masses; viviparous brooding (see Figure 1.3). If 

these larval traits are treated as unordered and reversible then there is no conclusion 

regarding ancestral mode of development. If the characters are treated as ordered but 

reversible (feeding planktonic ↔ nonfeeding planktonic ↔ benthic egg masses ↔ 

viviparous brooding) either planktonic, nonfeeding or benthic egg mass development is 

found to be ancestral with parallel evolution of feeding larvae and viviparous brooding 

occurring. Where shifts in mode of development were treated as ordered and irreversible 

(feeding planktonic → nonfeeding planktonic → benthic egg masses → viviparous brooding) 

it was shown that the loss of ancestral feeding larvae increased the number of inferred 

switches in larval strategy (from six to nine steps). These results do not wholly support the 

widely held assumption that planktotrophy is the ancestral larval strategy in the genera 

Patiriella and Asterina (Hart et al., 1997) but show that the way in which we analyse data 

can greatly alter our conclusions regarding larval strategy evolution.  

 

 

 

Figure 1.3 Phylogenetic trees showing the number and order of changes in type of developmental mode of 
asterinid starfish from the genera Patiriella and Asterina (redrawn from Hart et al. (1997: 1854)). A Unordered: 

mode of development can evolve between character states in any order or direction. B Ordered: developmental 
mode can evolve in one order but any direction (feeding planktonic ↔ nonfeeding planktonic ↔ benthic egg 

masses ↔ viviparous brooding). C Irreversible: developmental mode can evolve in one order and one direction 
only (feeding planktonic → nonfeeding planktonic → benthic egg masses → viviparous brooding). 
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Although a great deal of research supports the hypothesis that planktotrophy is ancestral in 

marine invertebrates there is some evidence to suggest that this may not be the case (e.g. 

von Salvini-Plawen, 1985; Chaffee & Lindberg, 1986; Peterson, 2005; Nielsen, 2009). 

Examination of fossilised eggs and embryos from the Precambrian and Cambrian suggests 

that planktotrophic larvae did not exist in many marine invertebrate groups at this time 

(see discussion in Nielsen, 2009). However, the apparent absence of planktotrophy at this 

time does not necessarily prove the plesiomorphic character of direct development and 

such evidence should be treated with caution. Molecular clock analysis has provided 

evidence that nonfeeding is the ancestral larval strategy in a number of marine invertebrate 

groups with between four and eight instances of planktotrophy independently evolving 

between the Late Cambrian and Middle Ordovician (Peterson, 2005). 

 

From the literature, it is clear that a number of factors influence our understanding of the 

evolution of larval strategies in marine invertebrates. Species from different geological time 

periods may not produce the same conclusions even if they are from the same group and it 

is worth comparing fossils of the same time period to draw conclusions about the bigger 

picture. Similarly, the ancestral state and timing and order of switches in larval mode may 

alter depending on the taxonomic level of the taxa being examined. The results for the 

phylum might not mirror the results for individual genera, families or classes. When using 

phylogenetic analysis it is important to understand the limitations of the technique and to 

examine the data in a way that reduces the need for assumptions based on limited 

evidence e.g. assumptions regarding the order or reversibility of different characters. 

 

 

1.4 FACTORS DRIVING SWITCHES IN LARVAL STRATEGY 

 

Despite research showing that switches in larval strategy are both possible and evident in 

the fossil record, very little research has focused on examining the factors that influence 

such shifts. Coordinated shifts in larval strategies have been shown to occur in echinoids as 

well as other marine invertebrate groups (Jeffery, 1997; Peterson, 2005; Cunningham & 

Jeffery Abt, 2009) suggesting that environmental changes may be responsible for switches 

in developmental mode, although increased numbers of predatory organisms have also 

been considered (Wray, 1995; Peterson, 2005).  
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Peterson (2005) discusses the role of predation in determining shifts in larval strategies. He 

suggests that the exploitation of the pelagic realm by nonfeeding larvae at the end of the 

Cambrian was likely driven by the onset of benthic predation. Peterson argues that limited 

predation in the pelagic realm at this time created a safe environment in which larvae could 

undergo their early development. He further suggests that the radiation of epifaunal 

suspension feeders from the Upper Cambrian to the Middle Ordovician resulted in 

coordinated shifts to planktotrophy, increasing the numbers of offspring, whilst later 

switches to nonplanktotrophy, increasing parental protection, were driven by increased 

benthic predation. Wray (1995) argues that increased time to metamorphosis into the 

benthic adult body plan can be disadvantageous during periods of high predation therefore 

forcing species to reduce the transition time from planktic larvae to benthic juvenile. The 

role of predation is considered in studies on echinoids where coordinated shifts to 

nonplanktotrophy at the end of the Cretaceous occur (Cunningham & Jeffery Abt, 2009).  

The authors suggest that a major radiation of benthic predators occurred earlier in the 

Cretaceous than the shift to nonplanktotrophy indicating that there is no correlation 

between high predation levels and shifts in developmental mode. 

   

Since the 1950s there has been a great deal of research examining the distribution of 

developmental mode in marine invertebrates across a variety of habitats and 

environmental conditions (e.g. Thorson, 1950; Mileikovsky, 1971; Vance, 1973; Strathmann, 

1985;  Pearse et al. 1991; Tyler & Young, 1992), mostly associated with latitude and depth. 

“Thorson’s Rule” (coined by Mileikovsky, 1971) suggests that low latitudes favour 

planktotrophic larvae whilst high latitudes favour nonplanktotrophic larvae (Thorson, 

1950). Similarly, at greater depths Thorson (1950) notes that nonplanktotrophic 

development is more prevalent. He attributes this global trend in benthic marine 

invertebrates to restricted nutrient availability and colder temperatures at high latitudes 

and greater depths. A number of authors have found similar results in a variety of benthic 

marine invertebrates (e.g. Vance, 1973; Christiansen & Fenchel, 1979; Picken, 1980; 

Strathmann, 1985; Roughgarden, 1989). However, a number of studies have revealed the 

many exceptions to this general rule (e.g. Pearse et al. 1991; Tyler and Young 1992; Clarke, 

1992; Pearse 1994). Many of the most prevalent marine invertebrates in Antarctica, such as 

asteroids and bivalves, produce planktotrophic larvae. In gastropods, there are exceptions 

within the nudibranch and ascoglossan opisthobranchs, where direct developing larvae are 
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most often seen in the tropics (Clark & Goetzfried, 1978) and within the stenoglossa which 

are predominantly nonplanktotrophic at all latitudes (Radwin & Chamberlain, 1973).  

 

Studies on fossil echinoids in southern Australia have shown some interesting patterns. 

Cold water temperature was thought to be responsible for the large numbers of brooding 

taxa occurring in southern Australia during the Eocene following the opening of Drakes 

Passage (Foster, 1974). However, more recent studies in the same region have shown that 

there is no positive correlation between cold palaeotemperatures and the high numbers of 

brooding echinoids in this region (McNamara, 1994). Instead, it is suggested that the 

northward migration of Australia during the Cenozoic towards lower latitudes resulted in 

greater environmental instability and consequently reduced diversity of brooding 

echinoids. Present day brooding echinoids dominate the environmentally stable Antarctic 

region whilst southern Australia is dominated by lecithotrophic taxa. Evidence from the end 

Maastrichtian shows that coordinated switches to nonplanktotrophy in many independent 

echinoid lineages is confined to a relatively short period of time (Jeffery, 1997; Cunningham 

& Jeffery Abt, 2009). These studies suggest that increasing seasonality at the end of the 

Cretaceous resulted in less stable nutrient supply. As nonplanktotrophs gain all their 

nutrition from the egg from which they hatch, it is likely that it is the more favourable 

developmental mode in environmentally unstable regions and as a result a switch from 

planktotrophy might occur. Recent echinoderms living in areas of unstable nutrient supply 

(e.g. Pearse & Cameron, 1991) either synchronise their reproductive cycles to coincide with 

nutrient blooms, or acquire nonplanktotrophic development in order to be independent of 

nutrient supply. 

 

Very little of the research on developmental mode in marine invertebrates concentrates on 

correlating shifts in larval strategy with possible environmental factors and it is an area still 

in need of much work. It is possible that different groups respond in very different ways to 

changes in environment and therefore one rule may not apply to all marine invertebrates 

(Table 1.3). 
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Geological Period Direction of switch Possible external cause 

Campanian/Maastrichtian 
Feeding  

Nonfeeding 
Environmental instability 

P/T Mass Extinction 

Ordovician 
Nonfeeding  

Feeding 

Suspension feeder 

predation 

Cambrian 
Larvae absent 

Nonfeeding 
Benthic predation 

 

Table 1.3 Examples of possible external factors causing switches in larval strategy. 

 

1.5 AIMS AND OBJECTIVES 

 

Despite the vast amount of research examining larval strategies from a biological 

perspective, such as “evo-devo” (discussed previously), there is a real paucity of knowledge 

of historical patterns that can be gleaned from the fossil record. Studies using fossil 

material could shed light on the causes and consequences of different larval modes. As 

gastropods are one of a few groups where larval mode can be determined from fossil 

specimens (discussed fully in Chapter 5), they provide an excellent opportunity to test 

whether predications on the evolution of larval mode from living taxa are evident 

throughout geological time. 

 

Examination of the published literature on larval strategies and their evolutionary trends 

suggests that a number of general “rules” have been established. It is predicted that 

planktotrophic larvae will exhibit wider geographic distributions than nonplanktotrophic 

species as a result of greater dispersal ability. This is thought to result in increased species 

longevity in planktotrophs, due to their decreased vulnerability to local catastrophes, and 

low speciation rates when compared to nonplanktotrophs.  These predictions are generally 

accepted in the literature despite a lack of supporting data. The literature reveals a large 

gap in published data to establish whether these predictions are true patterns in the fossil 

record or simply a logical assumption based on suggested trends seen in living species. This 

research seeks to increase the global dataset examining the macroevolutionary 
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consequences of larval strategies in fossil marine invertebrates using Cenozoic gastropods 

from southeastern Australia as an example (Table 1.4). 

 

Southeastern Australia Gulf Coast, USA  

? √                
(e.g. Hansen, 1978, 1980) 

G
astro

p
o

d
s 

√ 

(e.g. Jeffery & Emlet, 2003) 

? 

Ech
in

o
id

s 

The first three 

chapters of this 

thesis provide 

the foundations for the analyses carried out in later chapters. Chapter 1 has ascertained 

what is already known about the evolution of larval strategies by examining the key 

literature, identifies the general rules that are to be tested and provides the justification for 

this research. Chapter 2 examines the geology of the area from which both collected and 

museum specimens have come from. This provides some insight into the possible 

taphonomic and sampling biases whilst also aiding our understanding of 

palaeoenvironments, which may be important in trying to unravel whether external factors 

cause shifts in larval mode. Chapter 3 is a taxonomic revision of all the taxa used in this 

research. Close examination of type material provides the justification for distinguishing 

between individual species. 

 

Most published research suggests that planktotrophy is the ancestral larval strategy in 

marine invertebrates, with nonplanktotrophy being acquired independently in a variety of 

groups (e.g. echinoids, gastropods) although there are examples of the opposite having 

occurred. However, due to the difficulties in creating well resolved phylogenies of 

gastropods (similar to those based on echinoids) there is a paucity of phylogenetically 

tested data. In order to increase our understanding of the plesiomorphic larval strategy and 

the subsequent switches in developmental mode, attempts must be made to increase our 

confidence in phylogenetic data. As part of this study phylogenetic analyses will be carried 

out (Chapter 4) in order to show the relationships between taxa and to map switches in 

Table 1.4 Table to show where research has been carried out on gastropods and 
echinoids in the main research regions of southeastern Australia and the Gulf Coast of 

USA. The star indicates the research to be carried out in this study. 
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larval strategy throughout the Cenozoic in marine gastropods (Chapter 5). Whilst our 

understanding of evolutionary trends in developmental mode of marine invertebrates is 

slowly increasing, the external factors which control switches are still yet to be fully 

explored. Suggestions to date include increased predation and environmental instability but 

this has only been tested on limited taxa and with limited temporal and spatial constraints. 

By establishing well resolved phylogenies and it may be possible to show if switches in 

larval mode correlate to environmental and ecological disturbances.  

 

It is predicted that taxa with planktotrophic larvae will exhibit wider geographic 

distributions, longer species durations and lower speciation rates than taxa with 

nonplanktotrophic larvae. Chapter 6 uses nonphylogenetic and phylogenetic analyses to 

test these assumptions and compares the results to studies on gastropods from the Gulf 

Coast of USA and on echinoids from southeastern Australia. 

 

In summary, this study aims to 1) identify larval strategies of Cenozoic marine gastropods 

from southeastern Australia, 2) establish the macroevolutionary consequences of different 

developmental modes to test widely held predictions, 3) build phylogenies on which larval 

strategies can be mapped to determine the plesiomorphic larval strategy and any switches 

occurring in this region during this time period and 4) propose possible factors influencing 

coordinated switches using geological data, if applicable. The data provided will help to 

expand the existing global dataset and, as a result aid, our understanding of evolutionary 

patterns of larval strategies. 
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CHAPTER 2 

 

GEOLOGICAL SETTING 

  

In order to determine the macroevolutionary consequences of different larval strategies 

and the possible environmental factors influencing switches in developmental mode, the 

geology of southeastern Australia must be understood. A review of the Cenozoic 

stratigraphic framework of the region will help to ascertain the temporal distribution of 

gastropod species.  

 

The majority of specimens used in this thesis come from the extensive collections housed in 

the Museum Victoria in Melbourne, the South Australian Museum in Adelaide and the 

Natural History Museum in London. Other specimens have been collected in the field and 

are used where type material has not been available for examination. Despite the extensive 

fossil bearing formations in each of the sedimentary basins, gastropod specimens were 

restricted to particular horizons resulting in significant gaps in the gastropod fossil record of 

southeastern Australia. Gastropod moulds have been found outside of these fossil-rich 

horizons but unfortunately they cannot be adequately identified and therefore are 

excluded from this study. Specimens included in this thesis come from six basins: St Vincent 

Basin, Murray Basin, Otway Basin, Torquay Basin, Port Phillip Basin, and Gippsland Basin 

(Figure 2.1). The focus of this chapter is to provide a brief stratigraphic overview of each of 

these basins. Some of the fossil gastropods from southeastern Australia have wide 

distributions extending into Western Australia and Tasmania. A brief summary of these 

Western Australian and Tasmanian formations is also provided.  

 

Full locality descriptions, with longitude and latitude data, are available in Appendix 1 and 

have been assigned locality codes which are used throughout this thesis. Localities are 

often found in small clusters (often within metres of one another) and each cluster is 

usually a considerable distance from the next. As a result a locality map is deemed 

impractical and is therefore not included.   
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Figure 2.1 Map of Australia showing state boundaries and all major cities (a); Inset showing major sedimentary 
basins of southern Australia (redrawn from McGowran et al., 2004: 460, Fig. 1) with outline of specimen 

collection area in red (b).   
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2.1 SOUTH AUSTRALIA 

 

In South Australia fossil gastropod specimens have been collected from two basins: the St 

Vincent Basin and the Murray Basin (Figure 2.1b). In each basin three formations contain 

gastropods relevant to this research. 

 

2.1.1 ST VINCENT BASIN 

 

The St Vincent Basin is located in South Australia, covering the Gulf St Vincent and 

surrounding coastal regions (Figure 2.2). The basin extends to the Mount Lofty Ranges in 

the east and is separated in the south from the southern continental margin and Eucla 

Basin by Kangaroo Island (Lindsay & Alley, 1995). Throughout its history, the St Vincent 

Basin has had restricted marine access to the Southern Ocean through Backstairs Passage 

and Investigator Strait (Lindsay & Alley, 1995). The St Vincent Basin is subdivided into four 

sub-basins from north to south: the Adelaide Plains Sub-basin, Golden Grove Embayment, 

Noarlunga Embayment and Willunga Embayment (Figure 2.2). The majority of specimens 

from the St Vincent Basin used in this thesis have been recovered from the Willunga 

Embayment. 

 

The St Vincent Basin is an intracratonic, elongate graben resulting from fault reactivation 

and sediment deposition initiated by the northerly migration of Australia from Antarctica 

during the Paleogene and Early Neogene. Older lines of weakness were reactivated 

approximately 45-42 million years ago resulting in faulting, much of which is still active 

today (James & Bone, 2000). By 42Ma the St Vincent Basin was a large, open gulf facing the 

Southern Ocean and basin development continued until the Early Neogene. The eastern 

margin of the basin (Mount Lofty Ranges) is part of a Neogene fold and thrust belt which 

has created a series of half-graben embayments. Deposition occurred in these shallow 

grabens, and strata are up to 700m thick (Lindsay & Alley, 1995). The four sub-basins follow 

the grain of the underlying Delamerian fold belt (Lindsay & Alley, 1995). Of the four sub-

basins, the Adelaide Plains Sub-basin is the largest and has been the subject of much 

exploration into groundwater supplies resulting in well understood subsurface stratigraphy 

(e.g. Shepherd, 1975; Sheard & Bowman, 1996). The remaining three sub-basins are all 

asymmetric tectonic wedges with strata dipping gently south and strata thickness 

increasing southeasterly towards presumed fault margins (Lindsay & Alley, 1995). 
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Figure 2.2 Location map of the St Vincent Basin. Redrawn from James & Bone (2000: 763, Fig. 1). 

 

The geology of the St Vincent Basin has been the focus of numerous studies since the late 

nineteenth century. Work by Glaessner during the 1950s and 1960s provided the 

foundations of modern stratigraphic studies in South Australia and included a detailed 

review of the St Vincent Basin (e.g. Glaessner & Wade, 1958). The first modern stratigraphic 

review of the basin was compiled by Reynolds (1953) with modifications of this stratigraphy 

made by Cooper (1979), Jenkins et al. (1982) and Fairburn (1998). More recent studies 

examining the geology and stratigraphy of the St Vincent Basin have concentrated on 

particular aspects of formations (e.g. mineralogy, biostratigraphy, palaeoceanography or 

geological time periods (e.g. Lindsay, 1967; Jenkins, 1974; Jones & Fitzgerald, 1984, 1987; 

Lindsay & McGowran, 1986; McGowran, 1987; McGowran et al., 1992, 1997, 2004; Boreen 

& James, 1995; Dyson 1998; James & Bone, 2000)). A brief overview of the geological 

history of the basin and the formations can be found in Alley & Lindsay (1995) whilst 

Boreen & James (1995) examined the sedimentology and sedimentary structures of the 

Willunga Embayment in detail. Correlation of the St Vincent Basin stratigraphy with other 

southeastern Australian Basins is examined in McGowran et al. (2004).  
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Specimens used in this thesis have been recovered from the Late Eocene Blanche Point 

Formation (Figure 2.3a, b, c) and the Pliocene Dry Creek Sand and Hallett Cove Sandstone 

Formations. The Dry Creek Sand was not observed in the field as access to outcrops is 

restricted. Details of the localities and species associated with each formation are 

presented in Table 2.1. 

 

The Blanche Point Formation is Late Eocene in age and is comprised of four members: the 

Tuketja Member, the Gull Rock Member, the Perkana Member and the Tuit Member (which 

does not occur in the Willunga or Noarlunga Embayments). The Tuketja Member is 

approximately 2.3m thick and comprises green/grey, glauconitic, fossiliferous mudstone 

with limestone lenses (Lindsay & Alley, 1995). The presence of the planktonic foraminifera 

Hantkenina alabamensis has been valuable in regional correlations and is indicative of 

warm conditions (McGowran, 1989, 1991). The Gull Rock Member is approximately 12.2m 

thick (Lindsay & Alley, 1995) and consists of interbedded fossiliferous glauconitic, non-

fossiliferous glauconitic and burrowed marlstones. The fossil content includes bryozoans, 

bivalves, gastropods, cephalopods, sponges, corals and brachiopods. The majority of 

gastropod fossils in this member are turritellids and it is likely that all the specimens from 

this formation included in this thesis come from this member, although washout on the cliff 

makes it difficult to be entirely confident in this assessment. The Perkana Member is a 

massive calcareous mudstone with spiculite beds. It is not found under the city of Adelaide, 

probably a result of erosion (Lindsay & Alley, 1995). The youngest member, the Tuit 

Member, is comprised of fossiliferous glauconitic and burrowed marlstones and chert-

bearing bands (Lindsay & Alley, 1995; James & Bone, 2000). Specimens from this formation 

included both collected material and museum types. Material collected in the field was not 

collected incrementally due to washout on the cliff.  

 

The Dry Creek Sand underlies and interfingers the Hallett Cove Sandstone in the Adelaide 

Plain Sub-basin. This formation is between 43m and 60m thick and is mostly confined to the 

Adelaide Plains Sub-Basin. The shelly sand has been dated as Late Pliocene based on the 

molluscan faunas preserved in it (Ludbrook, 1963, 1973). Towards the base of this unit the 

sand becomes finer grained and siltier and is often referred to as the “Croydon Facies” 

(Lindsay, 1969). This basal unit is glauconitic with numerous bryozoans and foraminifera 

indicating Early Pliocene age (Lindsay & Alley, 1995). The Dry Creek Sand only includes 

specimens from museum collections. 
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The Hallett Cove Sandstone varies from 1m to 4m thick and is somewhat variable in its 

lithology. In the Hallett Cove area it is identified as a transgressive, shallow marine 

sandstone to sandy limestone whereas near Port Willunga it consists of interbedded 

sandstone, limestone and sand with thick horizons of fossiliferous shelly sand towards the 

base of the unit (Lindsay & Alley, 1995). All specimens from this formation are from 

museum collections.  

 

 

Formation Age Localities Species 

 
Hallett Cove Sandstone 

 
Cheltenhamian – Yatalan 
(Pliocene – Pleistocene) 
5.0-2.4Ma 
 

 
SA033 

 
Nassarius (Hima) tatei tatei 

Dry Creek Sand Kalimnan – Yatalan 
(Pliocene) 
4.4-2.59Ma 

SA030  
SA031 
SA032 

Nannamoria strophodon 
strophodon 
Notovoluta ellipsoidea 
Antiguraleus incisus 
Guraleus adelaidensis 
Guraleus subnitidus 
Nassarius (Zeuxis) spiraliscabrus 
Nassarius (Zeuxis) subcopiosus 

 
Blanche Point Formation Johannian – Aldingan 

(Late Eocene) 
37.8 – 34.0Ma 

SA034 
SA035 
SA036 
SA037 
SA049 

 

Notovoluta capitonica 
Alcithoe (Waihaoia) pagodoides 
pagodoides 
Notopeplum protorhysum 
Guraleus eocenicus 
Alcithoe (Waihaoia) cribrosa 

 

Table 2.1 Table of formations from the St Vincent Basin with details of associated gastropod fossils and 
localities. Localities presented as codes. Full locality descriptions can be found in Appendix 1. Gastropod species 

found in these formations include both collected and museum material which will be used in later analyses. 
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Figure 2.3 Photos of outcrops of the Blanche Point Formation and the Hallet Cove Sandstone. a) View towards 
Blanche Point from Maslin Beach showing the contact between the Blanche Point Formation and the Hallet 

Cove Sandstone; b) Blanche Point viewed from the south at the beach at Port Willunga c) Photo of gastropod 
fossils in the Gull Rock Member of the Blanche Point Marl (Scale = 3cm). 
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2.1.2 MURRAY BASIN 

 

The Murray Basin covers an area of approximately 300,000 km² across southeastern South 

Australia, northwestern Victoria and southwestern New South Wales (Cowley & Barnett, 

2007), although only the South Australian region is considered in this research (Figure 2.4). 

The South Australian area of the Murray Basin is bound to the south by the Padthaway 

Ridge Palaeozoic basement high, to the north and west by uplifted Neoproterozoic and 

Cambrian metasediments and Cambrian – Ordovician granites (Rogers et al., 1995). The 

Cenozoic sequence lies unconformably on Neoproterozoic – Early Palaeozoic basement, the 

Late Palaeozoic Troubridge and Nadda Basins and the Early Cretaceous Monash Formation 

of the Berri Basin (Rogers et al., 1995). The Cenozoic sedimentary succession can be 

simplistically divided into four depositional sets: Late Palaeocene to Early Oligocene fluvial, 

lacustrine and marginal marine sediments including the Renmark Group; Oligocene to 

Middle Miocene shallow, marine sediments including the Murray Group; Late Miocene to 

Pliocene marine, estuarine and fluvial sediments; and Pliocene to Pleistocene lacustrine and 

marginal marine sediments (Rogers et al., 1995; Cowley & Barnett, 2007; McLaren et al., 

2011).  

 

The Murray Basin is a shallow, epicratonic Cenozoic basin occurring as a result of the rifting 

of Australia from Antarctica (Pufahl et al., 2004). The rifting event resulted in a number of 

normal faults which created a series of northeast-trending grabens that underwent 

intermittent reactivation throughout the Cenozoic, the most recent of which occurred in 

the Late Miocene and the Late Pliocene (Dickinson et al., 2002; Pufahl et al., 2004). The Late 

Miocene event caused the reactivation of the Cretaceous Florieton, Morgan, Hamley and 

Murrayville faults resulting in localised folding of the Murray Group formations (Benbow et 

al., 1995; Telfer et al., 2003; Pufahl et al., 2004). It has been noted that this uplift event may 

have been a major influence on the current course of the River Murray (Twidale et al., 

1978; Pufahl et al., 2004). The weaker Late Pliocene uplift event resulted in the upward 

movement of the Pinnaroo Block leading to reduced outflow from the River Murray and 

forming a large, tectonically limited lacustrine system referred to as Lake Bungunnia 

(Stephenson, 1986; Brown & Stephenson, 1991; Pufahl et al,. 2004; McLaren et al., 2011). 
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Figure 2.4 Location map of the Murray Basin. Redrawn from Rogers et al. (1995). 

 

The stratigraphy of the Murray Basin was first reviewed in detail by Ludbrook (1961) and 

Pels (1969). The most recent comprehensive review of the Murray Basin stratigraphy can 

be found in Rogers et al (1995) but more concise accounts have also been published (e.g. 

Drexel & Preiss, 1995; Fabris, 2002). Much of the modern literature examining the geology 

and stratigraphy of the Murray Basin is restricted to particular geographic areas (e.g. Gill, 

1973) or geological time periods (e.g. Lukasik & James, 1998; Gallagher & Gourley, 2007) 

whilst other authors have examined the stratigraphy in order to characterise particular 
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sediments (e.g. Carter, 1985; Lukasik et al., 2000; Lukasik & James, 2003; Pufahl et al., 

2004). Authors whose main concern is examining the palaeontological aspects of the 

Murray Basin have also contributed to the understanding of the stratigraphy in this region 

of South Australia (e.g. Beu & Darragh, 2001; Fitzgerald, 2004). The Murray Basin region is 

rich in mineral resources and is also an important area for groundwater exploration which 

has resulted in increased efforts to understand the geology (e.g. Lindsay & Barnett, 1989; 

Brown & Stephenson, 1991; Rogers et al., 1995; Cowley & Barnett, 2007). 

 

Specimens used in this thesis have been recovered from the Eocene – Oligocene Buccleuch 

Formation, the Miocene Cadell Formation and the Late Miocene Bookpurnong Formation, 

although only the Cadell Formation has been observed in the field (Figure 2.5). The 

Buccleuch Formation is Late Eocene – Middle Oligocene in age and consists of three distinct 

units: a bryozoal limestone and glauconitic limestone with a glauconitic marl base overlain 

by bryozoal clay sand and black pyritic clay overlain by a thin, ferruginous black clay 

(Ludbrook, 1961). This series can only be recognised in the northwestern Padthaway Ridge, 

and is distinguished from the underlying Olney Formation by the absence of quartz sand 

and mica, and the presence of shelly fossils and bryozoal calarenite (Rogers et al., 1995). All 

specimens from this formation come from museum collections and, due to logistical 

restrictions, the formation has not been examined in the field.  

 

The Middle Miocene Cadell Formation, originally the Cadell Marl Lens (Ludbrook, 1958), 

was promoted to formation status by Lukasik & James (1998) on the basis of its distinctive 

lithological and palaeontological attributes. This formation is comprised of two members: 

the Murbko Marl Member and the Overland Corner Clay Member (Lukasik & James, 1998). 

The Murbko Marl Member is a brown-grey, heavily weathered marl with thin laminated 

green-grey clay beds. It is extremely fossiliferous, dominated by gastropods (in particular 

turritellids), bivalves and scaphopods, all of which are exceptionally well preserved (Figure 

2.5c). The Overland Corner Clay Member is a grey weathered, unlithified dark green clay 

with some irregular beds of marlstone and calcarenite. It is much less fossiliferous than the 

Murbko Marl Member, with only gastropod moulds and the uncommon bryozoans. The two 

members occur along the River Murray where access to outcrops is often limited due to 

high water levels. Specimens from this formation are likely to come exclusively from the 

Murbko Marl Member and include both collected specimens and museum material. 

Specimens collected from the cliffs of the River Murray were not collected incrementally 
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because of extreme wash out and collapse of the cliff due to the soft nature of the rock and 

the degree of weathering.  

 

The Late Miocene Bookpurnong Formation is comprised of marl, silty clay and sand (Rogers 

et al., 1995) and contains numerous shelly fossils, glauconite and mica (Ludbrook, 1961; 

Carter, 1985). The widest distribution of this formation in South Australia is east of Loxton, 

although exposures within Loxton itself are limited (Rogers et al., 1995). A review of the 

molluscs found in this formation has indicated that the sediments were deposited in warm, 

shallow marine water (Ludbrook, 1973). Specimens from the Bookpurnong Formation used 

in this study were all museum specimens.  

 

Formation Age Localities Species 

 
Bookpurnong Formation 

 
Mitchellian 
(L. Miocene) 
7.2 – 6.5Ma 

  

 
SA002 
SA044 
SA045 
SA046 
SA047 
SA048 
NSW037 

 

 
Athleta (Ternivoluta) antiscalaris 
antispinosa  
Nannamoria strophodon 
strophodon 
Notovoluta tabulate 
Alcithoe (Alcithoe) macrocephala 

Cadell Formation Batesfordian 
(M. Miocene) 
15.5 – 15.0Ma 

SA001  

 
Athleta (Ternivoluta) antiscalaris 
antiscalaris 
Amoria costellifera 
Nannamoria trionyma  
Nannamoria strophodon 
strophodon  
Notovoluta cathedralis 
Notovoluta lintea 
Alcithoe (Waihaoia) sarissa 
Ericusa ancilloides 
Livonia heptagonalis 
Notopeplum mccoyi translucidum 
Nassarius (Hima) tatei tatei  
Bathytoma rhomboidalis 
Lophiotoma murrayana 

 
Buccleuch Formation Johannian – Janjukian 

(L. Eocene – M. Oligocene) 
38.0 – 28.0Ma 

SA038 Alcithoe (Waihaoia) pagodoides 
pagodoides 

 

Table 2.2 Table of formations from the Murray Basin with details of associated gastropod fossils and localities. 
Localities presented as codes. Full locality descriptions can be found in Appendix 1. Gastropod species found in 

these formations include both collected and museum material which will be used in later analyses. 

 

 

 



40 
 

 

 

 

 

 
Figure 2.5 Photos of the outcrop of the Murbko Marl Member of the Cadell Formation on the River Murray Cliffs 

south of Morgan, South Australia. a) Photo of the contact between the Cadell Formation and the overlying 
Bryant Creek Formation (day-bags by tree for scale); b) Photo showing the fossiliferous Cadell Formation; c) 
Magnified view of the exceptionally well preserved gastropod fossils of the Cadell Formation (Scale = 3cm). 
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2.2 VICTORIA 

 

In Victoria, four sedimentary basins contain fossil gastropods used in this research. The 

Otway Basin contains ten formations that are useful in this study, most of which have been 

observed in the field. The Torquay, Port Phillip and Gippsland Basins each contain two 

formations which have yielded fossil gastropods useful to this study. Of these, only the 

Gippsland Basin has not been visited.  

 

2.2.1 OTWAY BASIN 

 

The Otway Basin covers an area of approximately 60,000km² in western Victoria (Figure 

2.6) extending from Lacepede Bay in South Australia to the eastern edge of the Otway 

Ranges in Victoria (Gallagher & Holdgate, 2000; Holdgate & Gallagher, 2003). The basin is 

bound to the north by Palaeozoic basement and to the south by the edge of the continental 

slope in the Hunter sub-basin (Holdgate & Gallagher, 2003). A limited seismic study 

suggests that the basin extends substantially further than this into water depths up to 

4500m in the Southern Ocean, although the sedimentary fill is yet to be fully understood 

(Moore et al., 2000). The onshore portion of the basin comprises approximately half the 

total area and is subdivided into a number of embayments, troughs and ridges including the 

Gambier Embayment (which occurs in South Australia), the Portland Trough and the Port 

Campbell Embayment (Holdgate & Gallagher, 2003). The Otway Basin has the most 

gastropod fossil bearing formations of any basin included in this thesis and the majority of 

specimens come from this region.  

 

The Otway Basin is a northwest-striking passive margin rift basin which belongs to a series 

of sedimentary basins along the southern margin of Australia that formed during the break 

up of Gondwana and the separation of Antarctica from Australia (Willcox & Stagg, 1990). 

The sedimentary fill is comprised of Late Jurassic to Recent sedimentary rocks of both 

marine and terrestrial origin. The basin rift system was initiated in the Late Jurassic as a 

result of north-south extension, forming a series of asymmetric half-grabens (Williamson et 

al., 1990; Cooper & Hill, 1997). Throughout the Late Mesozoic the Otway Basin underwent 

periods of rifting and uplift. A 6.5Ma hiatus during the Late Cretaceous was followed by a 

new phase of extension and rifting during which syn-rift sedimentation occurred (Partridge, 

1997; Lavin, 1997). Thermal subsidence and a paucity of clastic material resulted in the 
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deposition of marine sediments during the Eocene (Jensen-Schmidt et al., 2002). 

Wrenching and compression, intiated during the Miocene, has proved an important factor 

to consider in hydrocarbon exploration (Boult et al., 2002). Extensive volcanic activity, 

perhaps influenced by Miocene – Recent faulting (Perincek & Cockshell, 1995), occurred in 

two phases during the Late Neogene: the Pliocene-Pleistocene “older volcanics” and the 

Pleistocene-Holocene “newer volcanics” (Sheard, 1990; Jensen-Schmidt et al., 2002). A 

concise review of the tectonic history of the basin is available in Jensen-Schmidt et al. 

(2002). 

 

 

Figure 2.6 Location map of the Otway Basin. Redrawn from Dickinson et al. (2002: 291, Fig. 4). 

 

Due to both mineral and hydrocarbon resource potential, the Otway Basin has received 

considerable attention in the published literature, with a strong focus on the stratigraphy 

which may aid exploration. The stratigraphy of the basin is reviewed as a whole by a 

number of authors (e.g. Reynolds, 1971; Singleton, 1973; Abele et al., 1976; Douglas, 1977; 

Douglas & Ferguson, 1988; Birch, 2003; Hall & Keetley, 2009) whilst some authors choose 

to concentrate their efforts on particular sub-basins or embayments (e.g. Glenie, 1971; 

Kenley, 1971; Holdgate, 1980). Much of the literature examines the biostratigraphy of the 

basin, with a strong emphasis on palynology and foraminifera (e.g. Harris, 1971; 

McGowran, 1970; McGowran et al., 1971; Darragh, 1985; Glenie, 1988; Gallagher et al., 

1999; Li et al., 1999, 2000) although the lithostratigraphy has also been examined (e.g. 
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Morton et al., 1995). The hydrocarbon potential of the basin has significantly improved our 

understanding of the complex stratigraphic and structural framework (e.g. Felton & 

Jackson, 1987; Holdgate, 1981; Geological Survey of Victoria, 1995; Morgan et al., 1995). 

Efforts have also been focused on correlating the various sub-basins and embayments with 

one another and the basin as a whole with other basins along the southeastern coastline of 

Australia (e.g. Ludbrook, 1971; McGowran et al., 2004). 

 

Specimens used in this thesis have been recovered from: the Palaeocene Dilwyn and Pebble 

Point Formations; the Eocene-Oligocene Glen Aire and Browns Creek Clays; the Oligo-

Miocene Fishing Point Marl and Gellibrand Marl; the Miocene Muddy Creek Marl and Port 

Campbell Limestone; and the Pliocene Whalers Bluff and Grange Burn Formations (Table 

2.3). A number of these have been briefly observed in the field. Specimens used in this 

study from formations not observed in the field are from museum collections. 

 

The Pebble Point Formation is the oldest unit of the Wangerrip Group and is Middle to Late 

Palaeocene in age. The formation is comprised of dark green-grey clayey sandstone, with 

the occasional gravel bed and carbonaceous sandy claystone (Geological Survey of Victoria, 

1995). The formation is bioturbated throughout. Well logs have indicated that a middle 

sandy unit is sandwiched between clays (Holdgate, 1977). A few horizons contain molluscs, 

corals and shark teeth (Boult et al., 2002). Foraminifera, pollen and microplankton are also 

found in this formation (e.g. Harris, 1965; McGowran, 1965; Cookson & Eisenack, 1965). 

The Pebble Point Formation was deposited in a marginal marine environment. All 

specimens from this formation are housed in the museum collections in Melbourne and 

Adelaide.  

 

The Dilwyn Formation is a member of the Wangerrip Group and is Early Eocene in age. The 

formation is exposed along the southeast coast of the Otway Basin and along the 

northwestern margin of the Otway Ranges (Geological Survey of Victoria, 1995). The unit 

conformably overlies the Pember Mudstone (Holdgate & Gallagher, 2003). The lower part 

of the formation consists of carbonaceous silty clay with ferruginous and pyritic sandstone. 

The upper portion of the Dilwyn Formation is a carbonaceous sandy claystone interbedded 

with fine- to medium- grained sandstone (Geological Survey of Victoria, 1995). Close to the 

margins of the basin are aggregates of thick cyclic sand units. The formation includes a 

number of different fossils including molluscs, echinoderms, bryozoans, foraminifera and 

shark teeth (Boult et al., 2002). The Dilwyn Formation has been interpreted as being 
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deposited in a prograding deltaic environment (Geological Survey of Victoria, 1995). All 

material from this formation are museum specimens.  

 

The Miocene Gellibrand Marl is a member of the Heytesbury Group and is best exposed at 

the eastern end of the Otway Basin, near Princetown. This formation is comprised of grey 

calcareous silty claystone to clayey siltstone, with minor calcarenite beds. Bedding is often 

distinguished by calcareous concretions. Horizons of cemented burrows are found within 

this unit. The marl of this formation is abundant in fossil material including molluscs, 

bryozoans, echinoids, brachiopods, corals, crabs and shark teeth (Geological Survey of 

Victoria, 1995). The Gellibrand Marl was deposited in a low energy, shelf environment. The 

presence of glauconite suggests that water depths were in excess of 60m (Deacon, 1990). 

Although this formation has been examined, all specimens included in this study were from 

museum collections.  

 

The Miocene Muddy Creek Marl is exposed along the banks of Muddy Creek and Grange 

Burn near Hamilton and includes a diverse array of fossil gastropods (Figure 2.7c). The 

formation consists of fossiliferous grey silty marlstone with distinct limonite, phosphatised 

burrows and shell horizons (Dickinson et al., 2002; Fitzgerald, 2004). It conformably overlies 

the Bochara Limestone (Gill, 1957) and is disconformably overlain by the Grange Burn 

Formation (Fitzgerald, 2004). This formation has been observed in the field and specimens 

were collected. 

 

The Miocene Port Campbell Limestone is a member of the Heytesbury Group and is best 

exposed in coastal cliffs southeast and west of Port Campbell (Baker, 1944). The formation 

consists of grey to yellow, weakly cemented calcisiltite to fine-grained calcarenite (Figure 

2.7b). The base of the formation is characterised by marley and clayey limestone beds. 

Extensive bioturbation can be seen in the marley units. Fossils found in this formation 

include abundant molluscs and bryzoans, echinoids and brachiopods, and occasional crab 

shells. The Port Campbell Limestone was deposited in moderate energy continental shelf 

environments above fair weather wave base (Geological Survey of Victoria, 1995). Access to 

this formation is extremely restricted. All specimens from this formation are from museum 

collections. 

 

The Late Miocene - Pliocene Grange Burn Formation consists of shelly marlstones and 

sandy to pebbly limestones. It outcrops along the banks of Muddy Creek and Grange Burn 
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near Hamilton (Figure 2.7a). The base of the formation is a phosphate nodule horizon with 

abundant marine vertebrate fossils, disconformably overlying the Muddy Creek Marl 

(Turnbull et al., 1965; Dickinson et al., 2002). The formation is interpreted as being 

deposited during a marine transgression (Macphail, 1996). This formation has been 

observed in the field and fossil material collected.  

 

The Late Miocene - Pliocene Whalers Bluff Formation is comprised of fossiliferous 

claystones, oyster beds and sandy limestones overlying a karst surface above the Port 

Campbell Limestone. This formation outcrops in Portland and is suggested to be the 

sedimentary infill of submarine canyons formed during the Late Miocene (Leach & Wallace, 

2001). This formation has not been observed in the field and all specimens from the 

Whalers Bluff Formation are from museum collections.  

 

Formation Age Localities Species 

 
Whalers Bluff Formation 

 
Micthellian – Yatalan 
(L. Miocene - Pliocene) 
6.0-3.0Ma  
 

 
VIC020 
VIC096 

 

 
Amoria undulata undulata 
Ericusa sowerbyi sowerbyi 

Grange Burn Formation Mitchellian – Kalimnan 
(L. Miocene - Pliocene) 
6.0-4.0Ma 

VIC060 
VIC061 

Lyria gemmata 
Amoria undulata masoni 
Ericusa fulgetroides 
Nassarius (Niotha) sublirellus 
Nassarius (Niotha) crassigranosus 
Nassarius (Hima) tatei tatei  

 
Port Campbell Limestone Batesfordian – Mitchellian 

(M. – L. Miocene) 
16.0-6.0Ma 

VIC040 
VIC043 
VIC110 

Athleta (Ternivoluta) antiscalaris 
antispinosa 
Nannamoria limbata 
Nannamoria strophodon 
strophodon 
Lyria gemmata 
Amoria undulata masoni 
Nannamoria paraboloides 
Alcithoe (Alcithoe) macrocephala 
Nannamoria deplexa 

 
Muddy Creek Marl Balcombian – Bairnsdalian 

(M. Miocene) 
15.0-11.0Ma 

VIC038 
VIC039 
 

Athleta (Ternivoluta) antiscalaris 
antiscalaris 
Athleta (Ternivoluta) antiscalaris 
levior 
Lyria acuticostulata 
Lyria harpularia 
Leptoscapha crassilabrum 
Amoria costellifera 
Nannamoria ralphi 
Nannamoria limbata 
Nannamoria trionyma 
Nannamoria strophodon 
strophodon 



46 
 

Formation Age Localities Species 

 
Muddy Creek Marl 
Continued 

 
Balcombian – Bairnsdalian 
(M. Miocene) 
15.0-11.0Ma 

 
VIC038 
VIC039 

 

 
Notovoluta pseudolirata 
Notovoluta cathedralis 
Notovoluta ellipsoidea 
Alcithoe (Waihaoia) sarissa 
Alcithoe (Waihaoia) pagodoides 
pagodoides 
Ericusa ancilloides 
Ericusa hamiltonensis 
Livonia mortoni connudata 
Livonia gatliffi 
Livonia hannafordi 
Notopeplum mccoyi translucidum 
Notopeplum politum 
Cymbiola macdonaldi 
Microdrillia steiroides 
Bathytoma rhomboidalis 
Bathytoma fontinalis 
Guraleus volutiformis 
Lophiotoma murndaliana 
Turris septemliratus 
Optoturris optatus 

 
Gellibrand Marl Longfordian 

(E. Miocene) 
23.0-16.5Ma 

VIC009 
VIC016 
VIC017 
VIC018 
VIC019 
VIC035 
VIC036 
VIC037 
VIC041 
VIC042 
VIC081 
VIC082 
VIC087 
VIC100 
VIC113 
VIC116 

 

Athleta (Ternivoluta) antiscalaris 
antispinosa 
Athleta (Ternivoluta) antiscalaris 
antiscalaris 
Athleta (Ternivoluta) anticingulata 
craticula 
Athleta (Ternivoluta) antiscalaris 
levior 
Lyria acuticostulata 
Amoria costellifera 
Nannamoria weldii 
Nannamoria deplexa 
Nannamoria limbata 
Nannamoria strophodon 
strophodon 
Notovoluta pseudolirata 
Notovoluta differta 
Notovoluta ellipsoidea 
Alcithoe (Waihaoia) sarissa 
Ericusa sowerbyi pellita 
Ericusa atkinsoni 
Ericusa ancilloides 
Ericusa hamiltonensis 
Livonia spenceri 
Livonia hannafordi 
Notopeplum mccoyi translucidum 
Cymbiola macdonaldi 
Nassarius (Hima) tatei tatei 
Zemacies procerior 
Bathytoma decomposita 
Gemmula gellibrandensis 
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Formation Age Localities Species 

 
Dilwyn Formation 

 
Johannian 
(E. Eocene) 
53.5-46.5Ma 

 

 
VIC001 

 

 
Athleta (Ternivoluta) 
wangerrip 

Pebble Point Formation Wangerripian 
(L. Palaeocene) 
61.0-56.0Ma 

 

VIC118 Zemacies procerior 

 

Table 2.3 Table of formations from the Otway Basin with details of associated gastropod fossils and localities. 
Localities presented as codes. Full locality descriptions can be found in Appendix 1. Gastropod species found in 

these formations include both collected and museum material which will be used in later analyses. 

 

Stratigraphic sequences occurring on the southwestern margin of the Otway Ranges 

(referred to as the Aire district) are thought to be different from other areas of the Otway 

Basin (Holdgate & Gallagher, 2003). Within this area three gastropod fossil bearing 

formations occur: the Browns Creek Clay, the Glen Aire Clay and the Fishing Point Marl 

(Table 2.4). Compared to other areas of the Otway Basin, this region has received much less 

attention in terms of its stratigraphy and correlation. 

 

The Browns Creek Clay is Late Eocene in age and consists of clayey calcarenite and banded 

marlstone with intermittent beds of shelly claystones and occasional sandstone horizons 

(Holdgate & Gallagher, 2003). The formation is extremely fossiliferous with gastropods 

dominating both in terms of frequency and diversity although fossils of bivalves, 

foraminifera, ostracods, bryozoans and corals are also present. The formation is interpreted 

as being deposited within a marine shelf environment (Holdgate & Gallagher, 2003). All 

specimens from this formation included in this research are from museum collections.  

 

The Glen Aire Clay is Late Eocene to Early Oligocene in age (Abele, 1994) and outcrops 

along coastal regions at Cape Otway. The formation is comprised of carbonaceous sandy 

claystone with interbedded limestone and ironstone. Pyritic bryozoal claystone occur 

towards the base of the unit. Like other formations from this part of the Otway Basin, 

detailed descriptions are not available in modern literature. Specimens from the Glen Aire 

Clay are from museum collections.  

 

The Fishing Point Marl, originally referred to as the Upper Glen Aire Clay, is equivalent to 

the lower beds of the Gellibrand Marl and considered to be Miocene in age (Holdgate & 
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Gallagher, 2003). The formation is a grey marlstone interbedded with claystone and 

calcarenite bands (Darragh, 1985). Molluscs are the most common fossils found in this 

formation and outcrops from which they can be recovered are confined to the north shore 

of Lake Craven (Darragh, 1985). Museum specimens have been used to represent this 

formation.  

 

 

Formation Age Localities Species 

 
Fishing Point Marl 

 
Longfordian 
(E. Miocene) 
23.0-17.0Ma  

 
VIC011 
VIC012 
VIC021 

 

 
Athleta (Ternivoluta) 
subcrenulifera 
Nannamoria fasciculate 
Nannamoria deplexa 
Notovoluta linigera 
Alcithoe (Waihaoia) sarissa 
Ericusa sowerbyi pellita 
Ericusa atkinsoni 
Notopeplum mccoyi translucidum 
Cymbiola macdonaldi 

 
Glen Aire Clay Aldingan  - Willunhgan 

(L. Eocene – E. Oligocene) 
35.0-31.5Ma 

VIC002 
VIC003 
  

 

Athleta (Ternivoluta) curvicostata 
Notovoluta variculifera 
Alcithoe (Waihaoia) cribrosa 
Alcithoe (Waihaoia) pagodoides 
pagodoides 
Notopeplum primarugatum 
Borsonia protensa 
Borsonia otwayensis 
Borsonia polycesta 
Guraleus eocenicus 

 
Browns Creek Clay Johannian – Aldingan 

(L. Eocene) 
38.5-35.5Ma 

VIC091 
VIC092 
VIC114 

 

Scaphella (Aurinia) johannae 
Notovoluta variculifera 
Notovoluta capitonica 
Alcithoe (Waihaoia) cribrosa 
Alcithoe (Waihaoia) pagodoides 
pagodoides 
Notopeplum protorhysum 
Cryptocordieria variabilis 
Borsonia tatei 
Guraleus eocenicus 
Macteola eocenica 
Gemmula (Clavogemmula) prima 

 

 

Table 2.4 Table of formations from the Aire District of the Otway Basin with details of associated gastropod 
fossils and localities. Localities presented as codes. Full locality descriptions can be found in Appendix 1. 

Gastropod species found in these formations include both collected and museum material which will be used in 
later analyses. 
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Figure 2.7 Photos of outcrop of the Grange Burn Formation, Port Campbell Limestone and Muddy Creek Marl in 
Victoria. a) Grange Burn Formation outcrop on the banks of Muddy Creek, Hamilton, b) Port Campbell 

Limestone exposed in the cliffs along the Great Ocean Road and c) Clifton Bank, Muddy Creek, Hamilton. 



50 
 

2.2.2 TORQUAY BASIN 

 

The Torquay Basin is one of a series of basins referred to as the Central Coastal Basins. The 

literature often refers to the Torquay Basin as a sub-basin of the Otway Basin (e.g. 

Dickinson et al., 2002; Holford et al., 2011). The formations of the basin outcrop in the 

coastal cliffs between Eastern View in the south and Torquay in the north (Holdgate & 

Gallagher, 2003). The basin is located adjacent to the Otway Ranges (Figure 2.8) which 

separate it from the Port Campbell Embayment of the Otway Basin, although the majority 

lies offshore (Holdgate & Gallagher, 2003). It is bound on all sides by Cretaceous rock highs: 

northerly by the Barrabool High, easterly by the Bellerine High and westerly by the Otway 

Ranges High (Li et al., 1999). Tectonically, this basin has undergone much of the same 

evolution as the Otway Basin, forming as a result of the separation of Australia from 

Antarctica (Holdgate & Gallagher, 2003). Much of the literature examining the geology of 

this region is a result of exploration of coal measures (e.g. Holdgate & Clarke, 2000; 

Holdgate et al., 2001) although it has also been the focus for researchers examining 

particular geological time periods (e.g. Li et al., 1999; Dickinson et al., 2002) and has also 

been examined as part of a synthesis of the regional geology of Victoria (e.g. Holdgate & 

Gallagher, 2003). 

 

Two gastropod fossil bearing formations are included in this research from the Torquay 

Basin: the Jan Juc Marl and the Puebla Clay (Table 2.5). Although both formations have 

been observed in the field, collecting of fossils is extremely limited along the Torquay 

coastline due to it being a protected area and therefore all fossils from this basin are 

museum specimens.  

 

The Jan Juc Marl is Late Oligocene in age and is best exposed along the coast at Bird Rock in 

Torquay. The exposure of this formation at Jan Juc Beach forms the type section for the 

Janjukian Australian Stage (Hall & Pritchard, 1902; Singleton, 1941; Holdgate & Gallagher, 

2003). The Oligo-Miocene boundary is suggested to correspond to the contact between the 

Jan Juc Marl and the overlying Puebla Formation (Holdgate & Gallagher, 2003). The 

formation consists of silty glauconitic marlstone interbedded with clayey glauconitic 

wackestones. Horizons of thin skeletal grainstone and mollusc packstones also occur (Li et 

al., 1999). The formation is heavily burrowed and includes a wide diversity of fossil material 

with turritellid gastropods and bivalves dominating (Li et al., 1999).  
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Figure 2.8 Location map of the Torquay Basin. Modified from Kelly & Webb (1999: 100, Fig 1). 

 

The Puebla Formation is Early – Middle Miocene in age and can be subdivided into four 

members: the Puebla Clay Members, Cellepora Beds, Zeally Limestone and Yellow Bluff 

Beds (Boreen & James, 1995). The formation consists of fossiliferous and bioturbated 

calcareous claystones and siltstones with bryozoal calcarenite at its type section between 

Bird Rock and Jan Juc Creek (George & Wallace, 1992; Reeckmann, 1994). The Puebla Clay 

member comprises bioturbated and pyritic shelly calcareous siltstone and claystone whilst 

the Cellepora Beds are characterised by bryozoal calcarenites interbedded with silty 

claystone. The Zeally Limestone consists of massive bryozoal calcarenites (Holdgate & 

Gallagher, 2003). The Yellow Bluff Beds are bioturbated, interbedded packstones and 

claystones with echinoderms and bryozoan fossils (Cook & O’Brien, 1990). The Puebla Clay 

member has been interpreted as being deposited in cool, deep water whilst the other 

members of this formation are likely to have been deposited in shallower, warmer marine 

conditions (Smith, 1998). All specimens from this formation are from museum collections. 

 

The Jan Juc Marl is Late Oligocene in age and is best exposed along the coast at Bird Rock in 

Torquay. The exposure of this formation at Jan Juc Beach forms the type section for the 

Janjukian Australian Stage (Hall & Pritchard, 1902; Singleton, 1941; Holdgate & Gallagher, 

2003). The Oligo-Miocene boundary is suggested to correspond to the contact between the 

Jan Juc Marl and the overlying Puebla Formation (Holdgate & Gallagher, 2003). The 
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formation consists of silty glauconitic marlstone interbedded with clayey glauconitic 

wackestones. Horizons of thin skeletal grainstone and mollusc packstones also occur (Li et 

al., 1999). The formation is heavily burrowed and includes a wide diversity of fossil material 

with turritellid gastropods and bivalves dominating (Li et al., 1999).  

 

Formation Age Localities Species 

 
Puebla Formation 

 
Longfordian – Balcombian 
(E. – M. Miocene) 
23.0-14.0Ma 

 
VIC008 

 

 
Athleta (Ternivoluta) anticingulata 
craticula 
Nannamoria weldii 
Notovoluta linigera 
Alcithoe (Waihaoia) sarissa 
Ericusa sowerbyi pellita 
Ericusa atkinsoni 
Livonia spenceri  
 

Jan Juc Marl Janjukian 
(L. Oligocene) 
25.0–23.0Ma 

VIC004 
VIC005 
VIC006 
VIC007 
VIC093 
VIC097  

 

Athleta (Ternivoluta) anticingulata 
anticingulata 
Nannamoria weldii 
Alcithoe (Waihaoia) pagodoides 
pagodoides 
Alcithoe (Waihaoia) pagodoides 
sorcula 
Alcithoe (Waihaoia) neglectoides 
Alcithoe (Waihaoia) pueblensis 
Ericusa sowerbyi pellita 
Ericusa macroptera 
Ericusa atkinsoni 
Ericusa ancilloides 
Livonia stephensi 
Borsonia balteata 
Borsonia torquayensis 
Bathytoma fontinalis 
Bathytoma decomposita 

 

 

Table 2.5 Table of formations from the Torquay Basin with details of associated gastropod fossils and localities. 
Localities presented as codes. Full locality descriptions can be found in Appendix 1. Gastropod species found in 

these formations include both collected and museum material which will be used in later analyses. 
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2.2.3 PORT PHILLIP BASIN 

 

The Port Phillip Basin (another of the Central Coastal Basins) lies to the east of Melbourne, 

covering the area of Port Phillip Bay and the surrounding coast (Figure 2.9). It is considered 

to be an extension of the Torquay (and therefore Otway) Basin, separated by the Bellarine 

and Nepean Peninsulas (Abele et al., 1976; Holdgate & Gallagher, 2003). The basin covers 

an area of approximately 40,000km² and is bound to the northeast by the Melbourne 

Monocline, to the northwest by the Rowsley Fault and to the southeast by the Selwyn Fault 

(Gourley & Gallagher, 2004). Excellent outcrops of gastropod fossil bearing formations 

occur around Batesford (with particularly good exposure in Batesford Quarry) and around 

the coast near Beaumaris and Mornington. 

 

Like all other basins along the southern Australian coastline, the sediment fill of the Port 

Phillip basin coincides with the breakup of Gondwana during the Late Cretaceous and the 

subsequent opening of the Southern Ocean as Antarctica and Australia separated (Gourley 

& Gallagher, 2004). The tectonic history of the Port Phillip Basin follows that of the Otway 

Basin, although a detailed review specific to the basin provides more insight into the 

regional tectonics (Bowler, 1966). 

 

The geology and stratigraphy of the Port Phillip Basin has received less attention in recent 

years than other basins in southeastern Australia. Much of the work carried out on the 

basin relates to the extensive coal seams that occur in the northern parts of the basin (e.g. 

Anderson & MacKay, 1974; Ripper, 1975; Holdgate & Clarke, 2000; Holdgate et al., 2002). In 

relation to these coal studies, other researchers have examined the palynology of the 

formations in this basin which can be a useful tool in producing a stratigraphic framework 

and palaeoenvironmental analysis of the basin (e.g. Partridge, 1971, 1997a, b, 2001a, b, c). 

In addition a number of palaeontological studies have proved useful in building up a 

geological history of the Port Phillip Basin (e.g. Christophel, 1985). As with other basins 

covered in this chapter a brief overview of the stratigraphy of the basin can be found in 

Holdgate & Gallagher (2003). 
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Figure 2.9 Location map of the Port Phillip Basin. Modified from Gourley & Gallagher (2004: 295, Fig. 1c). 

 

Two formations from the Port Phillip Basin have yielded gastropod fossils used as part of 

this study: the Miocene Fyansford Formation and the Pliocene Black Rock Sandstone (Table 

2.6). Only the Fyansford Formation has been observed in the field. 

 

The Fyansford Formation, originally referred to as the Newport Formation, is Miocene in 

age. The formation outcrops in the region of the Moorabool and Barwon Rivers near 

Geelong (Figure 2.10a, b) and in the coastal cliffs surrounding Mornington (Holdgate & 

Gallagher, 2003). The formation consists of calcareous marlstones, clayey siltstones and 

sandstone (Holdgate & Gallagher, 2003). The formation is rich in mollusc fossils, particularly 

well preserved gastropods, although the diverse ostracode and foraminifera fossils have 

been useful in identifying the palaeoenvironment of the formation and constraining the age 

of the formation (Gourley & Gallagher, 2004). The Fyansford Formation is considered to 

have been deposited in marine shelf conditions (Holdgate & Gallagher, 2003). Fossils from 

this formation included in this research are both collected and museum material.  

 

The Black Rock Sandstone is a member of the Brighton Group (Kenley, 1967) and is Pliocene 

in age (Holdgate & Gallagher, 2003). Outcrop of this formation at Beaumaris, south of 

Melbourne, is considered to be the type section for the Cheltenhamian Australian stage 
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(Singleton, 1941). The basal contact of the formation is distinguished by the presence of 

ferriginous and phosphatic nodules which include vertebrate fossils (Woodburne, 1969; 

Wilkinson, 1969; Simpson, 1970; Holdgate & Gallagher, 2003). The formation consists of 

fine calcareous sandstones and siltstones which coarsen upwards with gravel beds 

occurring higher in the section (Wallace et al., 2005). Fossils found in this formation include 

a variety of molluscs and echinoids as well as extensive burrowing (Darragh, 1985; Wallace 

et al., 2005). The sediments were likely to have been deposited in shoreface conditions 

(Wallace et al., 2005). All fossils from this formation are museum specimens. 

 

Formation Age Localities Species 

 
Black Rock Sandstone 

 
Mitchellian - Cheltenhamian 
(L. Miocene – M. Pliocene) 
6.0–4.0Ma 

 

 
VIC103 
VIC104 

 

 
Amoria undulata undulata  

Fyansford Formation Janjukian - Micthellian 
(L. Oligocene - L. Miocene) 
25 - 8Ma 

VIC013 
VIC014 
VIC015 
VIC027 
VIC028 
VIC029 
VIC030 
VIC031 
VIC032 
VIC033 
VIC034 
VIC079 
VIC080 
VIC083 
VIC084 
VIC085 
VIC088 
VIC089 
VIC090 
VIC094 
VIC098 
VIC108 
VIC109 
VIC111 
VIC112 

Athleta (Ternivoluta) antiscalaris 
antiscalaris 
Athleta (Ternivoluta) antiscalaris 
levior 
Lyria acuticostulata 
Lyria harpularia 
Amoria costellifera 
Nannamoria ralphi 
Nannamoria deplexa 
Nannamoria limbata 
Nannamoria trionyma 
Nannamoria strophodon 
strophodon 
Notovoluta pseudolirata 
Notovoluta differta 
Notovoluta cathedralis 
Alcithoe (Waihaoia) sarissa 
Ericusa sowerbyi pellita 
Ericusa ancilloides 
Ericusa hamiltonensis 
Livonia mortoni connudata 
Livonia spenceri 
Livonia hannafordi 
Notopeplum mccoyi translucidum 
Cymbiola macdonaldi 
Nassarius (Hima) tatei tatei 
Daphnella cuspidatus 
Borsonia balteata 
Borsonia tatei 
Bathytoma decomposita 
Lophiotoma murndaliana 
Turris septemliratus 

 
 

Table 2.6 Table of formations from the Port Phillip Basin with details of associated gastropod fossils and 
localities. Localities presented as codes. Full locality descriptions can be found in Appendix 1. Gastropod species 

found in these formations include both collected and museum material which will be used in later analyses. 
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Figure 2.10 Outcrops of the Fyansford Formation at Batesford Quarry. a) View across the quarry looking 
northeast, b) View of quarry cliff showing the well-bedded grey strata of the Fyansford Formation. 

 

2.2.4 GIPPSLAND BASIN 

 

The Gippsland Basin is located in Victoria, approximately 200km east of Melbourne  (Figure 

2.11) and covers an area of approximately 56,000km² (Smith, 1982) of which less than 30% 

occurs onshore (Holdgate & Gallagher, 2003). The basin includes Cretaceous and Cenozoic 

sediments which represent terrestrial, marginal marine and marine deposition. The basin is 

bound to the north by the Palaeozoic Eastern Uplands, to the east by the foot of the 

present day continental slope and to the south and southwest by the Bassian Rise which 

separates it from the Bass Basin (Holdgate & Gallagher, 2003). The Gippsland Basin is one of 

the most prolific hydrocarbon regions in Australia and as a result a great deal of research 

concentrates on hydrocarbon exploration in this area (e.g. Burns et al., 1984; Bernecker et 

al., 2001; Moore & Wong, 2001; Norvick & Smith, 2001; Volk et al., 2001; Wong & 

Bernecker, 2001; O’Brien et al., 2008).  

 

 During the Late Mesozoic the Gippsland Basin was part of a rift system that occurred 

between the Australian and Antarctic Plates (Rahmanian et al., 1990). The Late Cretaceous 

saw regional extension and the development of syn-rift troughs and volcanism, separating 

the Gippsland Basin from the Otway and Bass Basins (Mehin & Bock, 1998). Compression, 

occurring during the Late Eocene, resulted in a series of northeast to east-northeast 

trending anticlines (Smith, 1988). Major fold structures associated with the occurrence of 

hydrocarbons formed as a result of compression during the Middle Miocene whilst younger 

sediments are characterised by monoclonal folding and topographic uplift resulting from 
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onshore faulting initiated during the Pliocene (Dickinson et al., 2002; Holdgate & Gallagher, 

2003). 

 

 

Figure 2.11 Location map of the Gippsland Basin. Modified from Holdgate & Gallagher (2003: 325, Fig. 10.31). 

 

The geology and stratigraphy of the Gippsland Basin is often examined in studies whose 

focus is hydrocarbon exploration (e.g. Weeks & Hopkins, 1967; Shibaoka et al, 1978; 

Rahmanian et al., 1990; Holdgate et al, 1995, 2009). Many of these studies focus on the 

coal seams that characterise the stratigraphy of the basin. The tectonics of the basin, 

including research into major unconformities, has been the focus of a number of recent 

studies (e.g. Dickinson et al., 2001, 2002; Holdgate et al., 2003). Sedimentological studies 

and facies analysis has provided useful insights into the geological history of the Gippsland 

Basin (e.g. Tosolini et al., 1999; Wallace et al., 2002; Mitchell et al., 2007). The 

palaeoenvironment and palaeoceanography of the basin has also been considered (e.g. 

Gallagher et al., 2001). A review of the tectonic history and stratigraphy of this basin can be 

found in Holdgate and Gallagher (2003). 

 

Specimens used in this thesis from the Gippsland Basin have been recovered from the Late 

Miocene Tambo River Formation and the Pliocene Jemmys Point Formation (Table 2.7). The 

basin was not visited as part of field work in southeastern Australia due to logistical 

constraints.  

 

The Tambo River Formation is a member of the Seaspray group and is Late Miocene in age 

(Holdgate & Gallagher, 2003). The best exposures are seen in the Bairnsdale area, just 

inland from the coast around Lakes Entrance. The formation consists of marlstones and 
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marly limestones with glauconitic sandy conquinas and lenses of sandstone and siltstone 

(Darragh, 1985). It conformably overlies the Bairnsdale Limestone Member of the 

Gippsland Limestone (Holdgate & Gallagher, 2003; Fitzgerald, 2004). The dominant 

invertebrate fossils found in the Tambo River Formation are echinoids, brachiopods and 

bivalves although the sandstone and siltstone lenses are rich in gastropod and bivalve shells 

(Darragh, 1985). The formation is interpreted as being deposited in cool-water carbonate 

shelf conditions (Holdgate & Gallagher, 2003). All gastropod material from this formation 

used in this research are museum specimens. 

 

The Jemmys Point Formation is Pliocene in age and overlies the closely related Tambo River 

Formation (Dickinson, 2002; Holdgate & Gallagher, 2003). The formation is the youngest 

member of the Seaspray Group (Crespin, 1943; Holdgate & Gallagher, 2003) and is best 

exposed around Lakes Entrance and nearby North Arm and Jemmys Point. The formation is 

comprised of sandy claystone beds with intermittent shell beds (e.g. Abele et al., 1988). 

Isolated bones, skulls and vertebrae from vertebrates such as sharks have been found in 

this formation (Fitzgerald, 2004) but the dominant fossils are molluscs and other marine 

invertebrates (Darragh, 1985). The formation has been interpreted as being deposited in 

shoreface to offshore marine environments (Wallace et al., 2005). All gastropod material 

from this formation used in this research are museum specimens. 

 

Formation Age Localities Species 

 
Jemmys Point Formation 

 
Mitchellian - Kalimnan 
(Pliocene) 
5.5–4.0Ma  

 
VIC045 
VIC046 
VIC047 
VIC048 
VIC049 
VIC050 
VIC051 
VIC062 
VIC095 
VIC102 
VIC106 
VIC107 

 

 
Athleta (Ternivoluta) antiscalaris 
antispinosa 
Athleta (Ternivoluta) bungae 
Amoria undulata undulata 
Nannamoria paraboloides 
Nannamoria amplexa 
Ericusa sowerbyi sowerbyi 
Nassarius (Niotha) crassigranosus 
Nassarius (Zeuxis) pyrrhus 

Tambo River Formation Micthellian 
(L. Miocene) 
10.0–5.5Ma 

VIC044 Athleta (Ternivoluta) antiscalaris 
antispinosa 
Amoria undulata undulate 
Nannamoria paraboloides 

  
 

Table 2.7 Table of formations from the Gippsland Basin with details of associated gastropod fossils and 
localities. Localities presented as codes. Full locality descriptions can be found in Appendix 1. Gastropods 

species include both collected and museum material. 
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2.3 STRATIGRAPHIC CORRELATION 

 

A stratigraphic correlation chart is shown in Figure 2.12. The chart shows the formations 

from which gastropod fossil specimens have been collected as well as outlining the major 

gaps in the gastropod fossil record in southeastern Australia. Within these gaps, gastropod 

moulds have been found but it is not possible to use moulds as part of this study. This 

suggests that the stratigraphic range of the specimens used in this research may be longer 

than predicted by this study. It is not within the scope of this study to examine the cause of 

lack of original shell material in those formations only containing moulds but is an area in 

need of attention. Major gaps in the Cenozoic fossil record of gastropods from 

southeastern Australia occur in the Palaeocene, Eocene (except in the Otway Basin) and the 

Late Oligocene.   

 

2.4 OTHER FORMATIONS 

 

A number of species used within this research have wide geographic distributions which 

extend beyond the southeastern coast of Australia and into Tasmania and/or Western 

Australia. The age of these formations and the species associated with them are shown in 

Tables 2.8, 2.9 and 2.10. 

 

In Tasmania, four formations contain gastropod fossils used in this research. The Cameron 

Inlet and Memana Formations occur on Flinders Island, on the Bassian Rise between the 

Bass and Gippsland Basins in the Bass Strait (Table 2.8). The Fossil Bluff and Freestone Cove 

Sandstones occur in Wynyard on the northern coast of Tasmania, just off the southern 

margin of the Bass Basin (Table 2.9). Six species are found exclusively in Tasmania with no 

occurrences along the southeastern coast of Australia but are included in this research to 

aid completeness of familial taxonomy in the region. These species are: Nannamoria 

stolida, Notovoluta saginata, Alcithoe (Waihaoia) tateana, Livonia mortoni mortoni, Livonia 

voluminosa and Teleochilus gracillima. 

 

In Western Australia, two formations contain fossil gastropods useful to this study (Table 

2.10). The Ascot Formation occurs in the Perth Basin and the Roe Calcarenite occurs in the 

Nullarbor Plains within the Eucla Basin. Species occurring in this region also have 

occurrences along the southeastern coast of Australia. 
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Figure 2.12 Stratigraphic correlation chart of formations occurring in basins along the southeastern coast of 
Australia. Formations in bold and highlighted in grey are those from which specimens have been collected. Data 
from Rogers et al. (1995), Lukasik & James (1998), Holdgate & Gallagher (2003), Fitzgerald (2004). Wallace et al. 

(2005), Mantle et al. (2009) and McLaren et al. (2011). 
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Formation Lithology Age Localities Species 

 
Memana Formation 

 
Shelly sands and 
limestones, horizons 
of gravel and clay (Beu 
& Darragh, 2001). 

 
Yatalan – 
Werrikooian 
(E. Pleistocene) 
2.5 – 1.5Ma 

 
TAS038 
TAS039 
 

 
Amoria undulata undulata 
 

Cameron Inlet 
Formation 

Fine, silty, coquina 
limestones and sands 
(Fitzgerald, 2004). 

Kalimnan – 
Yatalan 
(L. Pliocene) 
3.5 – 2.5Ma 

TAS034 
TAS035 
TAS036 
TAS037 

 

Amoria undulata undulata 
Nannamoria cinctuta 
Nannamoria paraboloides 
Alcithoe (Alcithoe) 
orphanata 
Ericusa sowerbyi sowerbyi 

  

Table 2.8 Table of formations from Flinders Island, Tasmania with details of associated gastropod fossils and 
localities. Localities presented as codes. Full locality descriptions can be found in Appendix 1. Gastropods 

species include both collected and museum material. 

Formation Lithology Age Localities Species 

 
Fossil Bluff 
Sandstone 

 
Coarse ferriginous 
shelly sandstone 
(Sutherland et al., 
2004). 

 
Longfordian 
(E. Miocene) 
23.0–21.0Ma 

 

 
TAS002 

 

 
Athleta (Ternivoluta) 
anticingulata 
anticingulata 
Nannamoria weldii 
Notovoluta saginata 
Alcithoe (Waihaoia) 
tateana 
Ericusa sowerbyi pellita 
Livonia mortoni mortoni 
Livonia voluminosa 
Notopeplum mccoyi 
mccoyi 
Teleochilus gracillima 

 
Freestone Cove 
Sandstone 

Fine siltstonesm 
shales, and glauconitic 
calcareous sandstone 
rich in vertebrate, 
invertebrate and plant 
fossils (Kemp, 1991; 
Fitzgerald, 2004). 
 

Longfordian 
(E. Miocene) 
23.9 – 23Ma 

TAS001 Athleta (Ternivoluta) 
anticingulata 
anticingulata 
Lyria semiacuticostata 
Nannamoria stolida 
Nannamoria weldii 
Notovoluta saginata 
Alcithoe (Waihaoia) 
tateana 
Ericusa sowerbyi pellita 
Ericusa atkinsoni 
Ericusa ancilloides 
Livonia mortoni mortoni 
Livonia voluminosa 
Livonia stephensi 
Livonia spenceri 
Notopeplum mccoyi 
mccoyi 
Teleochilus gracillima 

  

Table 2.9 Table of formations from Wynyard, Tasmania with details of associated gastropod fossils and 
localities. Localities presented as codes. Full locality descriptions can be found in Appendix 1. Gastropods 

species include both collected and museum material. 
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Formation Lithology Age Localities Species 

 
Ascot Formation 

 
Shelly calcarenites , 
silty and glauconitic 
clay and abundant 
molluscs (Gozzard, 
2007). 

 
Kalimnan - 
Yatalan 
(L. Pliocene - E. 
Pleistocene) 
2.59–1.8Ma  

 
WA027 

 
Nassarius (Zeuxis) 
spiraliscabrus  

Roe Calcarenite Unlithified, friable 
sandy limestone, rich 
in large macrofossils, 
particularly molluscs 
(James et al., 2006). 

Kalimnan –
Yatalan 
(L. Pliocene) 
4.4 – 2.59Ma 

WA026 
WA028 
WA029 
WA031 
WA032 

 

Nassarius (Zeuxis) 
subcopiosus 
Nassarius (Hima) tatei 
tatei 
Amoria undulata undulata 

  

 

Table 2.10 Table of formations from Western Australia with details of associated gastropod fossils and localities. 
Localities presented as codes. Full locality descriptions can be found in Appendix 1. Gastropods species include 

both collected and museum material. 
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CHAPTER 3 

 

TAXONOMY OF CENOZOIC GASTROPODS FROM SOUTHEASTERN 

AUSTRALIA  

 

The Cenozoic gastropod fauna of southeastern Australia is extremely diverse and abundant 

and includes a variety of families, many of which are assigned to the order Neogastropoda. 

Despite the numerous published taxonomic descriptions, very few authors have attempted 

to revise the taxonomy of complete families, resulting in a confusing and disjointed 

taxonomic record of many Cenozoic families in this region. Some publications have sought 

to resolve this issue by dealing with the taxonomy of single families, often restricted to a 

particular time period (e.g. Darragh, 1971, 1988; Cernohorsky, 1984) and this has resolved 

many issues regarding taxonomic assignment of species.  

 

The taxonomy that follows is based on both direct observations and reviews of the 

literature. Material collected in the field, as well as type and non-type specimens from the 

museum collections at the South Australian Museum in Adelaide and the Museum Victoria 

in Melbourne were examined. The families Volutidae, Nassariidae, Raphitomidae, 

Mangeliidae, Borsoniidae and Turridae were selected for this study. These families provide 

an abundance of material which is representative of the Cenozoic gastropod fauna of 

southeastern Australia. In addition they include many of the most commonly found species, 

can be found across all sedimentary basins in the field area and cover the whole of the 

Cenozoic. Most importantly they include both planktotrophic and nonplanktotrophic taxa. 

The taxonomy presented here includes only those species that can be confidently assigned 

to a particular genus and family and as a result some families are more complete than 

others. 

 

Diagnoses are provided for all species in this study, as well as associated genera and 

families. Dichotomous keys for genera and species aid navigation through the chapter and 

outline diagnostic features of genera and species. For brevity, synonymy lists are often not 

exhaustive (instead including only the first use of any one name). Where this is the case a 

reference is provided for a full published synonymy list. Distribution data includes the 

stratigraphic and geographic range of each taxon and for each species description this 

includes locality codes for specific localities. Full information for localities can be found in 
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Appendix 1. The abbreviation “TL” refers to the type locality. Type specimen data includes 

abbreviated institution names (see Table 3.1 for full names). The main morphological 

features used to distinguish between species are highlighted in Figure 3.1. 

 

Abbreviation 
 
Insititution name 
 

 

AIM 

 

Auckland Institute and Museum, Auckland 

AMS Australian Museum, Sydney 

BMNH The Natural History Museum, London 

MHN Muséum d’Histoire Naturelle, Geneva 

MUGD Melbourne University Geology Department, Melbourne 

NMV Museum Victoria, Melbourne 

SAM South Australian Museum, Adelaide 

TM Tasmanian Museum, Hobart 

ZHMU Zoological Museum, Humboldt University, Berlin 

 

Table 3.1 Abbreviations for institution names. 

 

 

Figure 3.1 Diagram of the main morphological features of the gastropod shell. 
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3.1 FAMILY VOLUTIDAE 

 

The gastropod family Volutidae are assigned to the superfamily Muricoidea within the 

Neogastropoda.  Darragh (1988) provided the only full revision of Tertiary volute species 

from southeastern Australia, with the subfamily Athletinae being dealt with separately 

(Darragh, 1971).  The beauty and diversity of this group has resulted in it receiving a great 

deal of attention but very little work has attempted to evaluate the family as a whole, 

including both fossil and living species.  Most of the published work deals with living species 

(e.g. Weaver & du Pont, 1970; Wilson, 1972; Bail & Poppe, 2001; Bail et al., 2010) and 

publications on fossil species tend to be specific to individual genera or geographic regions 

(e.g. del Río & Martínez, 2006; Landau & da Silva, 2006; Nielsen & Frassinetti, 2007). 

Subfamilial division is greatly variable between publications with many subfamilies and 

tribes becoming interchangeable. The size and diversity of this family make a complete 

taxonomic revision extremely difficult and outside the scope of this thesis. 

 

Many of the species descriptions for fossil representatives of the family Volutidae were 

published in the nineteenth and early twentieth centuries (e.g. Tate, 1888, 1889b; 

Pritchard, 1896, 1898, 1913; Johnston, 1880, 1888; McCoy, 1866, 1874, 1876) with many of 

these taxa assigned to the genus Voluta or Lyria. The first overview of fossil volutes (Tate, 

1898) comprised thirty-two species which were split into two genera, Volutilithes and 

Voluta, of which Voluta had nine ‘sections’. Much of Tate’s classification is still valid except 

for modifications relating to nomenclature (e.g. changes to Latinised species names). 

Cotton (1949) suggested a classification of both living and fossil species, including all 

twenty-two genera, forty-eight fossil and seventy-nine living species described up to that 

point in time. However, the lack of critical appraisal resulted in a vast overestimation of the 

number of valid species and genera. The current classification of this family accepted by 

most authors is that of Pilsbry & Olsson (1954).  

 

Australian waters probably account for the greatest diversity of volute genera and one-

third of described living species. Fossil species are thought to have lived in similar 

conditions to extant species (as supported by sedimentological evidence): temperate to 

warm-temperate waters, between 0 and 250m. Darragh (1971, 1988) provided the basis for 

the taxonomy of the family Volutidae from the Cenozoic sediments of southeastern 

Australia. The author recognised five subfamilies (Athletinae, Volutinae, Scaphellinae, 

Amoriinae and Zidoninae), fifteen genera (Athleta, Lyria, Lyreneta, Leptoscapha, Mitreola, 
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Scaphella, Notovoluta, Amoria, Nannamoria, Alcithoe, Ericusa, Livonia, Notopeplum, 

Cymbiola, Melo) and 111 species in this region. Darragh (1988) did not assign the genus 

Notovoluta to a subfamily but instead left it as “subfamily uncertain”.  

 

3.1.1 SYSTEMATIC PALAEONTOLOGY 

 

The family Volutidae is a diverse, large family. Examination of the type specimens and 

comparison with other Australian species (both living and fossil) described in the literature 

has been used to assign species to genera. The following taxonomic revision closely follows 

Wilson (1972), Darragh (1971) and Darragh (1988) which provide the most recent 

comprehensive taxonomic revisions of this family in Australia. 

 

 

CLASS GASTROPODA 

ORDER NEOGASTROPODA 

SUPERFAMILY MURICOIDEA Rafinesque, 1815 

Family VOLUTIDAE Rafinesque, 1815 

 

1815 Volutidae Rafinesque, p.145. 

 

DIAGNOSIS 

Shell shape variable, often ovate to fusiform, sometimes biconic. Sculpture variable, axial 

and radial elements, sometimes cancellate or smooth. Aperture elongate. Short, wide, well 

developed anterior canal. Siphonal notch and fasciole of varying degrees of development. 

Outer lip simple, slightly thickened, sometimes winged. Inner lip often with strong, oblique 

folds, weaker folds at posterior. 

 

DISTRIBUTION 

Late Cretaceous - Recent. Cosmopolitan. 

 

REMARKS 

The Volutidae have rarely been evaluated as a whole family. There are several reasons for 

this. Most workers concentrate their efforts either on living representatives or fossil species 

but rarely make comparisons between the two. The lack of overlap in studies of Recent and 
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fossil species has resulted in excessive splitting and the creation of monotypic genera, 

poorly resolved relationships between taxa and inflation of species numbers. Some living 

species, such as those belonging to the genera Notopeplum, Notovoluta and Ternivoluta, 

have only recently been studied due to their habitation in moderately deep water, beyond 

the reach of normal collecting techniques. The Volutidae is in need of a complete critical 

appraisal but this may be difficult due to the large number of species and cosmopolitan 

distribution (see Darragh (1988)). 

 

 

Subfamily ATHLETINAE Pilsbry & Olsson, 1954 

 

1954 Athletinae Pilsbry & Olsson, p.15. 

 

DIAGNOSIS 

Shell generally strombiform, high spired, strong cancellate sculpture. Occasional thick callus 

covering parietal wall and spire. Protoconch small to medium, one or more whorls, 

elevated, turbinate, sharp apex. Teleoconch with rounded or angled shoulder, smooth, 

nodular or bearing spines. Sculpture often partly or wholly smooth. Straight anterior canal, 

shallow siphonal notch, basal fasciole usually absent. One or more columellar plaits, strong 

or weak. Parietal callus thin or thick with variable extension across ventral shell surface. 

 

DISTRIBUTION 

Upper Cretaceous - Recent. Cosmopolitan. 

 

REMARKS 

In Australia the subfamily Athletinae is represented by nine species from the subgenus 

Athleta (Ternivoluta) during the Cenozoic.  

 

 

Genus ATHLETA Conrad, 1853 

 

1853 Athleta Conrad, pp.448-9.  

1890 Volutocorbis Dall, p.75  

1890 Neoathleta Bellardi, p.304.  

1890  Volutopupa Dall, p.77.  
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1897  Ternivoluta Martens, p.177.  

1906 Volutospina Newton, pp.102-103.  

1926 Notoplejona Marwick, pp.262, 270. 

1945 Eoathleta Gardner, p.227.  

1954 Volutov etus Pilsbry & Olsson, p.22.  

1957 Bendeluta Eames, p. 46.  

1971 Athleta Conrad, Darragh, p. 168. 

 

TYPE SPECIES 

Voluta rarispina Lamarck, 1811 by subsequent designation (Dall, 1890). Miocene, France. 

 

DIAGNOSIS 

Shell small for family, fusiform to biconic, spire gradate in most species. Teleoconch 

sculpture variable, cancellate with spiral and axial elements equally developed, prominent 

axial costa and/or peripheral tubercles and weaker spiral elements, or smooth. Columella 

narrow to strongly padded, sometimes smooth. Variable developed parietal callus. Outer 

lip often thin but sometimes thickened, variciform or denticulate. Siphonal notch shallow to 

moderately deep, fasciole weakly to strongly developed. 

 

DISTRIBUTION 

Late Cretaceous - Recent. Cosmopolitan. 

 

REMARKS 

Athleta is taxonomically complex as evident from the large number of synonyms attached 

to it. The type species Athleta rarispina is considered to be atypical of the genus (Cossman, 

1906; Darragh, 1971; Maxwell, 2003) and this may be the cause of some confusion. In many 

cases there appear to be geographically distinct groups placed in this genus (e.g. Maxwell, 

2003). Darragh (1971) argued that Athleta is a large and diverse genus with great variability 

in characters whilst Maxwell (2003) suggests that Athleta may be a polyphyletic group and 

that some clades may be better recognised as subgenera or genera in their own right. Many 

issues regarding the placement of species in this genus may be resolved by a detailed 

phylogenetic study. Athleta s.s. is not found within the Cenozoic sediments of southeastern 

Australia but Athleta (Ternivoluta) is. 
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Subgenus TERNIVOLUTA Martens 1897 

 

1897  Voluta (Ternivoluta) Martens, p.177.  

1929 Volutocorbis (Ternivoluta) Thiele, p.345. 

1949 Austrovoluta Cotton, p.185.  

1970  Ternivoluta Weaver & du Pont, p.13. 

 

TYPE SPECIES 

Voluta (Ternivoluta) studeri Martens, 1897 by subsequent designation (Sykes, Smith & 

Crick, 1898). Recent, Australia. 

 

DIAGNOSIS 

Shell fusiform to subfusiform, often with gradate spire, protoconch deviated. Often 

prominent axial costae with nodules/spines on shoulder. Spiral threads present on anterior 

of body whorl. Aperture elongate-elliptical. Shallow siphonal notch, weakly developed 

plaits. Columella with two to four major plaits. Siphonal fasciole absent.  

 

DISTRIBUTION 

Eocene - Recent. Australia. 

 

REMARKS 

The subgenus Ternivoluta is distinguished from others within the subfamily by the deviated 

protoconch and smooth interior of the outer lip (Darragh, 1971). Ternivoluta is comprised 

of nine fossil species and one living species from Australia. The living species Athleta 

(Ternivoluta) studeri is not included in this study due to its occurrence outside of the field 

area and lack of fossil record. 

 

 

KEY TO SPECIES FOUND AS FOSSILS IN SOUTHEASTERN AUSTRALIA: 

1. Shell broadly fusiform.     Go to 2 

 Shell pyriform.      antiscalaris antispinosa 

 

2. Columella with two to three plaits.   Go to 3 

 Columella with three to four plaits.   Go to 6 
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3. Spiral threads over whole shell.    Go to 4 

 Spiral threads on anterior of body whorl.  Got to 5 

 

4. Sculpture weakly cancellate.    subcrenulifera 

 Sculpture intersection nodulate.   antiscalaris antiscalaris 

 

5. Axial costae nodular at suture.    wangerrip 

 Axial costae rounded at suture.    curvicostata 

 

6. Spiral sculpture absent on spire.    Go to 7 

 Spiral sculpture over whole shell.   anticingulata craticula 

 

7. Axial sculpture extending over half of body whorl. Go to 8. 

 Axial sculpture extending over quarter over body whorl.  

        antiscalaris levior 

 

8. Whorls shouldered.     anticingulata anticingulata 

 Whorls lacking shoulder.    bungae 

 

Athleta (Ternivoluta) antiscalaris antispinosa (Tate, 1899) 

 

1899 Volutilithes antispinosus Tate, p.107, pl. 1, figs. 5a, b. 

1949 Austrovoluta antispinosa Cotton, pl. 15. 

1988 Athleta (Ternivoluta) antiscalaris antispinosa Darragh, p.181, pl. 16, figs. 29, 34, 37. 

 

DIAGNOSIS 

Shell pyriform, squat subconical spire, abruptly tapered anteriorly. Prominent shoulder on 

body whorl. Axial costae spinose at shoulder, wide, short, extending over up to a third of 

body whorl. Spiral threads on anterior of body whorl and anterior canal. Columella with 

three to four plaits. 

 

TYPE SPECIMENS 

HOLOTYPE: Athleta (Ternivoluta) antiscalaris antispinosa, SAM, T1449. 

HYPOTYPES: Athleta (Ternivoluta) antiscalaris antispinosa, NMV, P22487, P22488. 

DISTRIBUTION 
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Longfordian – Kalimanan (Early Miocene – Pliocene): South Australia to Victoria (SA002 (TL), 

VIC040-045). 

 

REMARKS 

The very short squat spire characterises this species. Geological younger specimens exhibit 

a row of subspinose sutural nodules indicating the close relationship with A. (T.) antiscalaris 

levior. 

 

Athleta (Ternivoluta) subcrenulifera Darragh, 1971 

 

1971 Athleta (Athleta) subcrenulifera Darragh, p.176, pl. 15, figs. 18-19, 22. 

 

DIAGNOSIS 

Shell elongate-fusiform, high gradate spire, gently tapered anteriorly. Axial costae thin, 

erect, numerous, extending over half body whorl. Spiral threads well developed over whole 

shell, weakly nodulate at intersection with axial costae. Columella with two to three plaits.  

 

TYPE SPECIMENS 

HOLOTYPE: Athleta (Ternivoluta) subcrenulifera, NMV, P22481.  

PARATYPES: Athleta (Ternivoluta) subcrenulifera, NMV, P22482, P22483. 

 

DISTRIBUTION 

Longfordian (Early Miocene): Victoria (VIC011 (TL), VIC012). 

 

REMARKS 

Species is distinguished by elongate shell and weakly cancellate sculpture. Occurs alongside 

A. (T.) antiscalaris antiscalaris in the Fishing Point Marl of the Aire district but not 

elsewhere. 

 

Athleta (Ternivoluta) antiscalaris antiscalaris (McCoy, 1866) 

 

Plate 1, figs. 1a, b. 

 

1866 Voluta antiscalaris McCoy, p.378. 

1897 Volutilithes antiscalaris Harris, p.97 partim. 
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1949  Austrovoluta antiscalaris Cotton, p.185, pl. 15. 

1971 Athleta (Ternivoluta) antiscalaris antiscalaris Darragh, p.177, pl. 15, figs. 17, 20-21, 

23; pl. 16, fig. 25; fig. B. 

Refer to Darragh (1971) for full synonymy. 

 

DIAGNOSIS 

Shell broadly fusiform, tapered abruptly at anterior. Axial costae erect, extending over third 

of body whorl. Spiral threads well developed over whole shell, nodular at intersection with 

axial costae. Columella with two to three plaits. 

 

TYPE SPECIMENS 

LECTOTYPE: Athleta (Ternivoluta) antiscalaris antiscalaris, NMV, P12164. 

PARALECTOTYPES: Athleta (Ternivoluta) antiscalaris antiscalaris, NMV, P12163, P22486. 

HYPOTYPE: Athleta (Ternivoluta) antiscalaris antiscalaris, NMV, P22484. 

 

DISTRIBUTION 

Janjukian – Mitchellian (Late Oligocene – Late Miocene): South Australia to Victoria (SA001, 

VIC022 (TL), VIC023-039). 

 

REMARKS 

Darragh (1971) distinguished this subspecies based on the broader fusiform shape and 

strongly developed spiral sculpture. 

 

Athleta (Ternivoluta) wangerrip (Darragh, 1971) 

 

1971 Athleta (Athleta) wangerrip Darragh, p.168, pl. 16, figs. 27-28, 31-32. 

 

DIAGNOSIS 

Shell fusiform, tumid, tapered at anterior. Axial costae present, nodular at suture, extended 

over half of anterior whorl slope, less spinose at shoulder on mature specimens, Spiral 

sculpture of fine threads on anterior slope of body whorl. Columella with two plaits. 

 

TYPE SPECIMENS 

HOLOTYPE: Athleta (Athleta) wangerrip, NMV, P28032.  

PARATYPES: Athleta (Athleta) wangerrip, NMV, P22474, P22475. 
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DISTRIBUTION 

Johannian (Early Eocene): Victoria (VIC001, (TL)). 

 

REMARKS 

Darragh (1971) assigned this species to Athleta (sensu stricto) due to its turbinate 

protoconch. However, shell morphology seems to be much more similar to Athleta 

(Ternivoluta) species (e.g. A. (Ternivoluta) curvicostata). This revision agrees with Maxwell 

(2003) in placing this species in the subgenus Ternivoluta. The subgeneric division of Athleta 

(sensu stricto) and Athleta (Ternivoluta) is likely in need of some attention. 

 

Athleta (Ternivoluta) curvivostata Darragh, 1971 

 

1971 Athleta (Ternivoluta) curvicostata Darragh, p.172, pl. 14, figs. 1, 3, 5-6. 

 

DIAGNOSIS 

Shell fusiform, gradate spire, rounded body whorl gently tapered at anterior. Protoconch, 

large, deviated. Suture deeply grooved. Axial costae thin, elongate, numerous, rounded at 

suture. Spiral threads only present on anterior third of body whorl.  Columella with 2-3 

plaits. 

 

TYPE SPECIMENS 

HOLOTYPE: Athleta (Ternivoluta) curvicostata, NMV, P22476.  

PARATYPES: Athleta (Ternivoluta) curvicostata, NMV, P22477, P22478. 

 

DISTRIBUTION 

Aldingan – Willungan (Late Eocene – Early Oligocene): Victoria (VIC002 (TL), VIC003).  

 

REMARKS 

This species is very similar to the Wangerripian species Athleta (Ternivoluta) wangerrip but 

can be distinguished by its lack of spinosity at the shoulder, slender, elongate costae, deep 

groove at suture and large, deviated, globose protoconch.  

 

Athleta (Ternivoluta) anticingulata craticula Darragh, 1971 

 

1971 Athleta (Ternivoluta) anticingulata craticula Darragh, p.174, pl. 14, figs. 2, 4, 7. 
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DIAGNOSIS 

Shell fusiform, tumid, tapered abruptly at anterior. Axial costae numerous, nodulate at 

shoulder, extending over half of body whorl. Spiral threads over whole shell, subnodular at 

intersection with axial costae. Columella with four strong plaits. 

 

TYPE SPECIMENS 

HOLOTYPE: Athleta (Ternivoluta) anticingulata craticula, NMV, P22479.  

PARATYPE:  Athleta (Ternivoluta) anticingulata craticula, NMV, P22480. 

 

DISTRIBUTION 

Longfordian - Balcombian (Early - Middle Miocene): Victoria (VIC008 (TL), VIC009-010). 

 

REMARKS 

This subspecies is distinguished from Athleta (Ternivoluta) anticingulata anticingulata at 

subspecies level by the presence of spiral threads over the whole shell.  

 

Athleta (Ternivoluta) antiscalaris levior (McCoy, 1866) 

 

1866 Voluta antiscalaris levior McCoy, p.379 

1897 Volutilithes antiscalaris Harris, p.97, pl.4, figs.8a-b. 

1971 Athleta (Ternivoluta) antiscalaris levior Darragh, p.178, pl. 15, figs. 15-16, pl. 16, 

 figs. 35-36. 

 

DIAGNOSIS 

Shell fusiform, narrowly tapered anteriorly. Axial costae short, prominent, extended over 

quarter of body whorl. Spiral threads absent on spire, weakly developed on body whorl. 

Columella with three to four plaits. 

 

TYPE SPECIMENS 

LECTOTYPE: Athleta (Ternivoluta) antiscalaris levior, NMV, P12166. 

PARALECTOTYPES: Athleta (Ternivoluta) antiscalaris levior, NMV, P12165, P12167, P12168. 

DISTRIBUTION 

Janjukian – Mitchellian (Late Oligocene – Late Miocene): Victoria (VIC022 (TL), VIC023-039). 
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REMARKS 

This subspecies is distinguished by its narrower body whorl, shorter axial costae and 

decreased prominence of spiral threads.  

 

Athleta (Ternivoluta) anticingulata anticingulata (McCoy, 1866) 

 

1866 Voluta anticingulata McCoy, p.379. 

1866 Voluta anticingulata var. b  indivisa McCoy, p.380. 

1866 Voluta anticingulata var. a  perstriata McCoy, p.380 (lapsus for persulcata). 

1874 Voluta anticingulata var. a  persulcata McCoy, p.25. 

1888  Voluta antiscalaris Johnston, pl. 30, fig. 5, 5a-b. (Non McCoy 1866). 

1889 Voluta anticingulata, Tate, p.133. 

1897 Volutilithes anticingulatus, Harris, p.93. 

1949 Austrovoluta anticingulata, Cotton, p.185, pl. 15. 

1971 Athleta (Ternivoluta) anticingulata anticingulata, Darragh, p.173, pl. 14,  figs. 8-14. 

Refer to Darragh (1971) for full synonymy. 

 

DIAGNOSIS 

Shell fusiform, abruptly tapered at anterior. Axial costae extend over half of body whorl. 

Narrow sutural groove, sometimes nodular, sometimes shouldered. Spiral threads usually 

absent on spire whorls, extended over half of body whorl. Columella with three to four 

plaits. 

 

TYPE SPECIMENS 

SYNTYPES: Athleta (Ternivoluta) anticingulata anticingulata var. persulcata, NMV, P12159. 

Athleta (Ternivoluta) anticingulata anticingulata var. indivisa, NMV, P12160, P12161, 

P12162. 

LECTOTYPE: Athleta (Ternivoluta) anticingulata anticingulata, NMV, P12157.  

PARALECTOTYPES: Athleta (Ternivoluta) anticingulata anticingulata, NMV, P12156. 

 

DISTRIBUTION 

Janjukian - Longfordian (Late Oligocene – Early Miocene): Victoria to Tasmania (VIC004 (TL) 

VIC005-007, TAS001-002). 
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REMARKS 

This subspecies shows much variation within its morphology. Darragh (1971) attributed this 

to varying ecological conditions and comments on the different forms found both in 

Victoria and Tasmania. 

 

Athleta (Ternivoluta) bungae Darragh, 1971 

 

1971 Athleta (Ternivoluta) bungae Darragh, p.182 

 

DIAGNOSIS 

Shell fusiform-biconic with squat spire. Numerous, thin axial costae extending over half 

body whorl. Spiral threads present over anterior of body whorl, nodular where intersecting 

with axial costae, seen as cancellate sculpture. Columella with four well developed plaits. 

 

TYPE SPECIMENS 

HOLOTYPE: Athleta (Ternivoluta) bungae, NMV, P22485. 

 

DISTRIBUTION 

Kalimnan (Pliocene): Victoria (VIC046 (TL), VIC047-051). 

 

REMARKS 

This species is distinguished by its shape, lack of spines, lack of shoulder and cancellate 

sculpture. It bears no obvious similarities with the other Gippsland species Athleta 

(Ternivoluta) antiscalaris antispinosa (Darragh, 1971). 

 

 

Subfamily VOLUTINAE Rafinesque, 1815 

 

1815 Volutinae Rafinesque, p.145. 

1954 Lyriinae Pilsbry & Olsson, p.15. 

1954  Volutilithinae Pilsbry & Olsson, p.14. 

1954 Calliotectinae Pilsbry & Olsson, p.19. 
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DIAGNOSIS 

Shell ovate to fusiform, spire elevated or blunt. Sculpture of axial costae, nodular or spiny, 

sometimes smooth. Columella plaits usually well developed. Siphonal notch often deep, 

fasciole often well developed. Radula uniserial, rachidian tooth multicuspid or tricuspid. 

 

DISTRIBUTION 

Late Cretaceous - Recent. Cosmopolitan.  

 

REMARKS 

Like other subfamilies in this family, taxonomic position is based on anatomical characters 

of soft parts and fossil species are compared with shell morphology of living species whose 

taxonomic position is known.  

 

 

KEY TO GENERA FOUND AS FOSSILS IN SOUTHEASTERN AUSTRALIA: 

1. Nodulate at posterior suture, outer lip thickened.  Lyria   

2. Axial sculpture absent, inner lip callused.   Leptoscapha  

 

 

Genus LYRIA Gray, 1847 

 

1853 Lyria (Lyria) Adams & Adams, p.166. 

1855a Lyria Gray, p.16. 

1855a Lyria (Harpella) Gray, p.17 (non Schrank, 1802 (Lepidoptera)). 

1907 Lyria (Harpeola) Dall, p.350 

1954 Lyria (Sannalyria) Pilsbry & Olsson, p.23.  

1962 Lyria (Paralyria) Shuto, p.69. 

1971 ?Lyria (Cordilyria) Bayer, p.204. 

1988 Lyria Darragh, p.207. 

Refer to Darragh (1988) for full synonymy. 

 

TYPE SPECIES 

Voluta nucleus Lamarck, 1811 by original designation. Recent, Eastern Australia. 
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DIAGNOSIS 

Shell small to medium for family, solid, ovately fusiform, sometimes with channelled 

sutures. Protoconch smooth, size and shape variable. Spiral sculpture weakly developed. 

Axial sculpture of close-set costae, nodulate at posterior suture. Aperture elongate-ovate 

and narrow. Outer lip thickened externally. Columella with two strong anterior plaits. 

Siphonal notch broad and shallow, fasciole well developed. 

 

DISTRIBUTION 

Late Cretaceous - Recent. Cosmopolitan. 

 

REMARKS 

The genus shows much variation in its sculpture resulting in numerous synonyms (see 

Darragh, 1988 for discussion). Fossil species of Lyria from Australia seem to have many 

similarities to species from the Paleogene of Europe and southeastern Asia and species 

from the Neogene and Recent of the Western Indo-Pacific region (Darragh, 1988). Four 

species are found as fossils in the field area of this study. 

 

 

KEY TO SPECIES FOUND AS FOSSILS IN SOUTHEASTERN AUSTRALIA: 

1.  Shell ovate-fusiform.     Go to 2 

 Shell ovate.      Go to 3 

 

2. Elevated spire.      semiacuticostata 

 Low spire.      acuticostulata 

 

3. Spiral sculpture of weakly developed threads.  harpularia 

 Spiral sculpture of fine grooves.    gemmata 

 

Lyria semiacuticostata Pritchard, 1896 

 

1896 Lyria semiacuticostata Pritchard, p. 91, pl. 2, fig. 8. 

 

DIAGNOSIS 

Shell ovate-fusiform, narrow and well-elevated spire, channelled sutures and anteriorly 

truncate. Protoconch of 2½ small, smooth whorls. Spiral sculpture absent. Axial sculpture of 
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fairly regularly spaced, slender, transverse costae, becoming obsolete on anterior of body 

whorl. Columella with three well developed plaits. Siphonal notch and fasciole well 

developed.  

 

TYPE SPECIMENS 

HOLOTYPE: Lyria semiacuticostata, NMV, P2653.  

HYPOTYPES: Lyria semiacuticostata, NMV, P2733, P2734. 

 

DISTRIBUTION 

Janjukian – Mitchellian (Late Oligocene – Late Miocene): Tasmania, Victoria (TAS001 (TL), 

VIC086). 

 

REMARKS 

Some resemblance can be seen between this species and L. harpularia. Lyria 

semiacuticostata is principally distinguished by its smaller protoconch, more acute spire, 

acute but gradually fading costae and absence of spiral lirae. Darragh (1988) commented on 

the poor preservation of the single specimen from the Upper Maude Limestone but 

strongly indicated that it has been correctly assigned to this species.  

 

Lyria acuticostulata Darragh, 1988 

 

1988 Lyria acuticostulata Darragh, p.209, pl. 1, figs. 2-5; Fig. 2. 

 

DIAGNOSIS 

Shell thin, ovate-fusiform, low, blunt spire, tumid body whorl, impressed sutures. Spiral 

sculpture often absent or as faint striae. Axial sculpture of thin, well defined, flexuous 

costae with wide interspaces. Columella with two well developed anterior plaits. Canal 

twisted, reflexed dorsally. Siphonal notch shallow, prominent siphonal fasciole.  

 

TYPE SPECIMENS 

HOLOTYPE: Lyria acuticostulata, NMV, P31145. 

PARATYPES: Lyria acuticostulata, NMV, P31146, P31147.  

HYPOTYPE: Lyria acuticostulata, NMV, P31148. 
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DISTRIBUTION 

Janjukian – Mitchellian (Late Oligocene – Late Miocene): Victoria (VIC022 (TL), VIC013-014, 

VIC025-026, VIC028-029, VIC034, VIC038, VIC082, VIC087-088). 

 

REMARKS 

This species shows similarities to L. acuticostata but can be distinguished by the thin 

continuous, erect costae and convex spire whorls. Darragh (1988) noted that Batesfordian 

and Bairnsdalian specimens appear more flattened and more tumid than Balcombian 

specimens but that this still falls within the range of variability. 

 

Lyria harpularia Tate, 1888 

 

Plate 1, figs. 2a, b. 

 

1888 Lyria harpularia Tate, p.176, pl. 12, fig. 12 (figure only). 

 

DIAGNOSIS 

Shell ovate, low gradate spire. Spiral sculpture of weakly developed fine threads. Axial 

sculpture of thin, erect, flexuous costae separated from posterior suture by narrow 

channel. Aperture elliptical. Columella with two well developed anterior plaits. Canal 

twisted, reflexed dorsally. Siphonal notch deep, prominent siphonal fasciole.  

 

TYPE SPECIMENS 

HOLOTYPE: Lyria harpularia, SAM, T395A. 

HYPOTYPE: Lyria harpularia, NMV, P31150, P31877, P31878. 

 

DISTRIBUTION 

Janjukian – Mitchellian (Late Oligocene – Late Miocene): Victoria (VIC038 (TL), VIC013, 

VIC022, VIC028-029, VIC088-090). 

 

REMARKS 

A single specimen labelled as being found in Curlewis may be erroneous as no other 

specimens of this age have been found and the matrix suggests that Red Hill is a more likely 

locality (Darragh, 1988). 
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Lyria gemmata Tate, 1889 

 

1889 Lyria gemmata Tate, p.118, pl. 3, fig. 4. 

 

DIAGNOSIS 

Shell ovate, subconical spire, sutures weakly channelled. Spiral sculpture of fine grooves. 

Axial sculpture of closely spaced, slightly flexuous costae terminated by small nodule. 

Columella with two well developed anterior plaits. Canal reflexed dorsally. Siphonal notch 

weak, prominent siphonal fasciole.  

 

TYPE SPECIMENS 

HOLOTYPE: Lyria gemmata, SAM, T631. 

HYPOTYPE: Lyria gemmata, NMV, P31876. 

 

DISTRIBUTION 

Batesfordian – Kalimnan (Middle Miocene – Pliocene): Victoria (VIC060 (TL), VIC043). 

 

REMARKS 

The subconical spire, close set costae and anterior spiral grooves separate this species from 

the very similar L. acuticostulata.  

 

 

Genus LEPTOSCAPHA Fischer, 1883 

 

1883 Voluta (Leptoscapha) Fischer, p.608 

1899 Leptoscapha Cossmann, p.120 

 

TYPE SPECIES 

Voluta variculosa Lamarck, 1803 by original designation. Eocene, France. 

 

DIAGNOSIS 

Shell small for family, fusiform. Spiral threads numerous, close-set. Axial sculpture absent, 

except apertural varix trace. Outer lip thickened, sometimes with posterior denticle. Inner 

lip callused. Columella with three plaits anteriorly, weaker plaits at posterior and anterior. 

Shallow siphonal notch, well developed siphonal fasciole. 
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DISTRIBUTION 

Eocene - Recent: Southeastern Australia, South East Asia. 

 

REMARKS 

This genus is characterised by its small size and absence of axial sculpture. It is likely to be 

most closely related to the genus Mitreola. Specimens are rarely found and as a result the 

evolutionary history and distribution patterns of this genus are poorly understood. 

 

Leptoscapha crassilabrum (Tate, 1889) 

 

Plate 1, figs. 3a, b. 

 

1889 Voluta crassilabrum Tate, p.128, p.3, figs. 2a-c. 

1949 Ericusa crassilabrum Cotton, pl.15. 

1988 Leptoscapha crassilabrum Darragh, p.213, pl. 1, figs. 1, 8, 9, pl. 27, figs. 2, 3, 5-10. 

 

DIAGNOSIS 

Shell small, ovate, convex whorls, tapered anteriorly. Axial sculpture of weakly developed 

traces of prior apertural varices. Spiral sculpture of thin, closely spaced, undulating threads. 

Aperture elongate. Outer lip thickened. Inner lip with thick callus. Columella with three well 

developed plaits. Siphonal canal reflexed dorsally. Well developed fasciole. 

 

TYPE SPECIMENS 

HOLOTYPE: Voluta crassilabrum SAM, T622A. 

HYPOTYPES: Leptoscapha crassilabrum NMV, P32207, F53231-4. 

 

DISTRIBUTION 

Janjukian – Recent (Late Oligocene – Recent): Victoria, South Australia (SA043, VIC023, 

VIC025, VIC038 (TL)). 

 

REMARKS 

Recent specimens of this species are found in shell sands and as a result have undergone a 

certain amount of abrasion resulting in damage to sculpture. However, the similarities 

between Recent and fossil specimens are numerous and therefore they are assigned to the 

same species (Darragh, 1988). 
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Subfamily SCAPHELLINAE H. & A. Adams, 1858 

 

1858 Scaphellinae H. & A. Adams, p. 619. 

1942 Auriniinae Smith, p. 55. 

 

DIAGNOSIS 

Shell ovate-fusiform. Columella smooth or with two plaits. Siphonal canal usually short.  

 

DISTRIBUTION 

Cretaceous - Recent: Cosmopolitan. 

 

REMARKS 

This subfamily is based on anatomical characters (see Darragh, 1988). Fossil specimens are 

compared to shells of living species whose taxonomic position is known. 

 

 

Genus SCAPHELLA Swainson, 1832 

 

1832 Scaphella Swainson, p. 84. 

1953 Auriniopsis Clench, p. 378. 

1988 Scaphella Darragh, p.216. 

 

TYPE SPECIES 

Voluta junonia Shaw, 1808 by subsequent designation (Gray, 1847). Recent, Western 

Atlantic Ocean. 

 

DIAGNOSIS 

Shell medium to large, thick, ovate fusiform, short spire. Axial sculpture on initial 

teleoconch whorls. Columella with four well developed plaits. Siphonal canal short. 

Siphonal fasciole weakly developed. 

 

DISTRIBUTION 

Palaeocene – Recent. Cosmopolitan. 
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REMARKS 

Due to the cosmopolitan distribution of this species there is a relatively large amount of 

variability in shell sculpture usually associated with specific global regions (see Landau & da 

Silva, 2006 for discussion of this genus). 

 

 

Subgenus AURINIA H. & A. Adams, 1853 

 

1853  Fulguraria (Aurinia) H. & A. Adams, p.166.  

1871 Voluta (Aurinia) Crosse, p.309. 

1889 Scaphella (Aurinia) Dall, p.150.  

1890 Aurinia Koenan, p. 522. 

1946 Rehderia Clench, p.45.  

1953 Auriniopsis Clench, p. 378.  

 

TYPE SPECIES 

Voluta dubia Broderip, 1827 by monotypy. Recent, southeastern USA. 

 

DIAGNOSIS 

Shell fusiform, elongate. Whorls occasionally with weakly developed shoulder. Sculpture 

very weakly developed if present. Columella with two or three major plaits if present. 

Siphonal notch and fasciole absent.  

 

DISTRIBUTION 

Palaeocene – Recent: North America, Europe, Australia. 

 

REMARKS 

This subgenus is characterised by the absent fasciole, absence or paucity of columella plaits 

and by anatomical features (i.e. radula). Only one species of this subgenus occurs in 

Australia and it is found in the Late Eocene sediments of Victoria. 

 

Scaphella (Aurinia) johannae (Darragh, 1988) 

 

Plate 1, figs. 4a, b. 
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1988 Scaphella (Aurinia) johannae Darragh, p.216, pl. 2, figs. 9-12. Fig. 5. 

 

DIAGNOSIS 

Shell fusiform, slightly turreted spire, large blunt apex, tapered abruptly at anterior. Whorls 

convex. Sculpture absent. Columella with one well developed plait. Siphonal canal slightly 

extended. 

 

TYPE SPECIMENS 

HOLOTYPE: Scaphella (Aurinia) johannae NMV, P41757. 

PARATYPE: Scaphella (Aurinia) johannae NMV, P41758. 

 

DISTRIBUTION 

Johannian - Aldingan (Late Eocene): Victoria (VIC092 (TL)). 

 

REMARKS 

See Darragh (1988) for comparison with non-Australian species. 

 

 

Subfamily AMORIINAE Darragh, 1988 

 

1988 Amoriinae Darragh, p.224. 

 

DIAGNOSIS 

Shell glazed, multispiral protoconch. Columella with 4 strong plaits. 

 

DISTRIBUTION 

Late Oligocene – Recent. Australia. 

 

REMARKS 

This subfamily is defined by soft tissue characters (see Darragh, 1988 for details). 

 

 

KEY TO GENERA FOUND AS FOSSILS IN SOUTHEASTERN AUSTRALIA: 

1.  Axial sculpture of weak costae.    Go to 2. 

 Axial sculpture obsolete.    Amoria 
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2. Siphonal fasciole weakly developed.    Nannamoria 

 Siphonal fasciole relatively well developed.   Notovoluta 

 

 

Genus AMORIA Gray, 1855 

 

1855 Amoria Gray, p.64. 

1882 Voluta (Amoria) Tryon, p.92. 

1915  Scaphella Hedley, p. 721 (non Swainson, 1832). 

1929 Amoria (Amorena) Iredale, p.180.  

1929 Amoria (Zebramoria) Iredale, p.180.  

1929 Cymbiola (Cymbiolista) Iredale, p.181. 

1932 Amorena Cotton & Godfrey, p.47. 

1936 Relegamoria Iredale, p.314.  

1942 Amoria Smith, p.50. 

1943 Amoria (Amoria) Wenz, p.1339. 

1943 Amoria (Cymbiolista) Wenz, p.1349. 

1960 Cymbiolista McMichael, p.11. 

1962 Zebramoria Macpherson & Gabriel, p. 223. 

1970 Amoria (Regelamoria) Weaver & du Pont, p.162. 

1988 Amoria Darragh, p.225. 

 

TYPE SPECIES 

Voluta turneri Griffith & Pidgeon, 1834 by subsequent designation (Harris, 1897). Recent, 

Northern Australia. 

 

DIAGNOSIS 

Shell fusiform to ovate, subconical spire. Body whorls shouldered. Sculpture usually absent, 

sometimes as weakly developed axial costae or nodules. Columella with 4 well developed 

plaits, one or two weaker plaits. Deep siphonal notch, well developed siphonal fasciole. 

 

DISTRIBUTION 

Miocene - Recent:  Australia, Indonesia. 
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REMARKS 

Darragh (1988) grouped together the large number of synonyms of this genus based of 

shell and radular morphology.  

 

 

KEY TO SPECIES FOUND AS FOSSILS IN SOUTHEASTERN AUSTRALIA: 

1.  Subconical spire.     Go to 2 

 Conical spire.      undulata undulata 

 

2. Shell fusiform.      costellifera 

 Shell ovate-pyriform.     undulata masoni 

 

Amoria undulata undulata (Tate, 1889) 

 

1804  Voluta undulata Lamarck, p.157. pl.12, fig. 1a, b. 

1869 Voluta sclateri Cox, p. 358, pl. 26, fig. 3. 

1871 Voluta kingi Cox, p. 76, pl. 4, fig. 2. 

1897 Voluta (Amoria) undulata Harris, p. 109. 

1953 Amoria (Amorena) undulata Ludbrook, p.145, pl.17, figs. 3, 4. 

1953 Amoria (Amorena) sclateri Ludbrook, p. 147, pl. 16, fig. 7. 

1964 Amoria (Amorena) benthalis McMichael, p.271, pl. 28. 

1988 Amoria undulata undulata Darragh, p.228, pl. 6, figs. 1-3, 7. 

 

DIAGNOSIS 

Shell elongate-ovate, conical spire. Body whorl depressed posteriorly, shouldered. 

Sculpture absent. Columella with four well developed plaits. Siphonal notch deep, siphonal 

fasciole weakly developed. 

 

TYPE SPECIMENS 

HOLOTYPE: Voluta undulata MHN, No. 38.  

HYPOTYPES: Amoria undulata undulata NMV, P34267, P6593. 
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DISTRIBUTION 

Mitchellian – Recent (Late Miocene – Recent): Victoria, Tasmania, South Australia, Western 

Australia (VIC020, VIC044, VIC046, VIC048-049, VIC051, VIC095, VIC101-104, TAS035-039, 

WA031, WA032, AUS001). 

 

REMARKS 

This species is commonly found along the coasts of Queensland, New South Wales, Victoria, 

Tasmania, South Australia and Western Australia although fossil localities are limited to 

Victoria, Tasmania and Western Australia.  

 

Amoria costellifera (Tate, 1889) 

 

Plate 1, figs. 5a, b. 

 

1889 Voluta lirata Tate, p.130, pl. 2, fig. 4 (non Johnston, 1880). 

1889 Voluta costellifera Tate, p.131, pl. 2, fig. 8. 

1897 Voluta (Aulica) lirata Harris, p.103, pl. 4, fig. 12. 

1949 Nannamoria absidata Cotton, p.192, pl. 14. 

1949 Nannamoria costellifera Cotton, pl. 14. 

1988 Amoria costellifera Darragh, p. 226, pl. 6, figs. 4, 8, 10-12. Fig. 11. 

 

DIAGNOSIS 

Shell fusiform, gradate-subconical spire. Whorls slightly depressed posteriorly with well 

developed shoulder. Axial sculpture variable of broad, low costae. Spiral sculpture absent. 

Columella with four well developed plaits. Siphonal notch wide, siphonal fasciole 

prominent. 

 

TYPE SPECIMENS 

HOLOTYPE: Voluta costellifera SAM, T603. Nannamoria absidata SAM, T597B. 

HYPOTYPES: Amoria costellifera NMV, P34261, P61286. 

 

DISTRIBUTION 

Janjukian - Mitchellian (Late Oligocene – Late Miocene): Victoria, South Australia (VIC022-

023, VIC025, VIC034, VIC038 (TL), VIC041, VIC090, SA001). 
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REMARKS 

The axial sculpture of this species can vary in its development, as well as the sutures and 

the height of the spire. 

 

Amoria undulata masoni (Tate, 1889) 

 

1889 Voluta masoni Tate, p.128, pl. 3, fig. 9. 

1897 Voluta (Amoria) masoni Harris, p.110, pl. 4, fig. 14a, b. 

1899 Amoria masoni Cossmann, p.120, pl. 5, fig. 10; pl.6, fig. 7. 

1988 Amoria undulata masoni Darragh, p. 227, pl. 6, figs. 5, 6, 9.  

 

DIAGNOSIS 

Shell ovate-pyriform, subconical spire. Whorls flat, slightly depressed posteriorly on body 

whorl with well developed shoulder. Sculpture absent, smooth, glazed. Columella with four 

well developed plaits. Siphonal notch wide. 

 

TYPE SPECIMENS 

LECTOTYPE: Voluta masoni SAM, T385A.  

PARALECTOTYPE: Voluta masoni SAM T385B-H. 

HYPOTYPES: Amoria undulata masoni NMV, P34263. 

 

DISTRIBUTION 

Batesfordian - Kalimnan (MIddle Miocene – Pliocene): Victoria (VIC043, VIC060 (TL), 

VIC061). 

 

REMARKS 

This subspecies is characterised by its squat conical spire and ventricose body whorl. 

 

 

Genus NANNAMORIA Iredale, 1929 

 

1929 Nannamoria Iredale, p.181. 

1943 Amoria (Nannamoria) Wenz, p.1339. 

1960 Paramoria McMichael, p. 12.  

1988 Nannamoria Darragh, p.229. 
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TYPE SPECIES 

Nannamoria amicula Iredale, 1929 by original designation. Recent, New South Wales. 

 

DIAGNOSIS 

Shell small to medium sized, subconical-gradate spire, body whorl often concealing spire 

whorls. Spiral sculpture weakly developed. Axial sculpture of strong costae, spinose or 

nodular at shoulder. Columella with four well developed plaits, one or two weaker plaits. 

Weakly developed siphonal notch and siphonal fasciole. 

 

DISTRIBUTION 

Oligocene - Recent:  Australia. 

 

REMARKS 

This genus shares many characters (both shell and anatomy) with Notovoluta, Amoria and 

Cymbiola. For a detailed discussion see Darragh (1988). 

 

 

KEY TO SPECIES FOUND AS FOSSILS IN SOUTHEASTERN AUSTRALIA: 

1. Three columellar plaits.     Go to 2 

 Four columellar paits.     Go to 5 

 

2. Whorls shouldered.     Go to 3 

 Whorls lacking shoulder.    ralphi 

 

3. Shell ventriocse.     Go to 4 

 Shell elongate.      fasciculata 

 

4. Blunt spire.      stolida 

 Subconical spire.     weldii 

 

5. Spiral sculpture present.    Go to 6 

 Spiral sculpture absent.     Go to 7 

 

6. Sutures visible.      deplexa 

 Suture concealed by lamella extension.   limbata 
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7. Whorls shouldered.     Go to 8 

 Whorls lacking shoulder.    cinctuta 

 

8. Siphonal notch shallow.     Go to 9 

 Siphonal notch deep.     paraboloides 

 

9. Siphonal fasciole lacking ridge.    Go to 10 

 Siphonal fasciole ridged.    amplexa 

10. Gradate spire.      trionyma 

 Blunt spire.      strophodon strophodon 

 

Nannamoria ralphi (Finlay, 1930) 

 

1888 Voluta (Volutoconus) conoidea Tate, p. 176, pl. 13, fig. 9 (non Renier, 1804). 

1889 Voluta conoidea Tate, p.125. 

1899 Volutoconus conoideus Cossmann, p.131, pl. 7, fig. 3. 

1930 Volutoconus ralphi Finlay, p.44. 

1988 Nannamoria ralphi Darragh, p.235, pl. 9, figs. 1, 4, 5, 8; pl. 10, fig. 3. 

 

DIAGNOSIS 

Shell biconic-pyriform, low, blunt spire. Whorls convex. Spiral sculpture of close set threads 

on posterior whorl slope. Sometimes with nodular sculpture, often absent. Columella with 

three strong plaits. Siphonal notch and fasciole very weakly developed. 

 

TYPE SPECIMENS 

HOLOTYPE: Voluta conoidea SAM, T588A. 

HYPOTYPES: Nannamoria ralphi NMV, P33074, P33076. 

 

DISTRIBUTION 

Janjukian – Mitchellian (Late Oligocene – Late Miocene): Victoria (VIC028, VIC038 (TL), 

VIC098). 

 

REMARKS 

The reduced nodular sculpture and lack of variability in morphology define this species. 
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Nannamoria fasciculata Darragh, 1988 

 

1988 Nannamoria fasciculata Darragh, p.233, pl. 7, fig. 10; pl. 10, figs. 9, 11. 

 

DIAGNOSIS 

Shell elongate, subgradate spire, grooved sutures. Prominent shoulder on teleoconch 

whorls. Spiral sculpture absent. Axial sculpture of thin costae, nodular at shoulder. 

Columella with three well developed plaits.  

 

TYPE SPECIMENS 

HOLOTYPE: Nannamoria fasciculata NMV, P32915. 

PARATYPE: Nannamoria fasciculata NMV, P32916. 

 

DISTRIBUTION 

Longfordian (Early Miocene): Victoria (VIC021 (TL), VIC011-012). 

 

REMARKS 

This species differs from others in the genus in its numerous, irregularly spaced axial costae 

and elevated, subgradate spire.  

 

Nannamoria stolida (Johnston, 1880) 

 

1880  Voluta stolida Johnston, p.36.  

1896 Voluta strophodon var. stolida Pritchard, p. 94. 

1967 Paramoria stolida Ludbrook, p. 68, pl. 3, figs. 9, 10. 

1988 Nannamoria stolida Darragh, p.230, pl. 7, figs. 12-15; pl. 9, figs. 2, 3. 

 

DIAGNOSIS 

Shell ventricose, short, blunt spire. Whorls shouldered, concave. Axial sculpture of costae 

on later whorls, fading mid-way on body whorl. Columella with three plaits. Siphonal notch 

wide, shallow, siphonal fasciole moderately developed. 

 

TYPE SPECIMENS 

HOLOTYPE: Voluta stolida TM, Z186.  

HYPOTYPES: Nannamoria stolida NMV, P32910, P2534. 
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DISTRIBUTION 

Longfordian (Early Miocene): Tasmania (TAS001 (TL)). 

 

REMARKS 

This species is characterised by its ventricose outline and weakly developed siphonal notch 

and fasciole. It resembles species of Cymbiola and is likely to be ancestral to Nannamoria 

strophodon (McCoy). 

 

Nannamoria weldii (Tenison Woods, 1876) 

 

1876 Voluta weldii Tenison Woods, p.24, fig. 2. 

1897 Voluta (Aulica) weldi (sic) Harris, p. 102. 

1913 Voluta weldii var. angustior Pritchard, p.194, pl.20, figs. 4, 5. 

1949 Cymbiola weldii Cotton, p.189, pl. 14. 

1967 Paramoria weldii Ludbrook, p. 68, pl.3, figs. 1, 2. 

1988 Nannamoria weldii Darragh, p.232, pl. 7, figs, 5, 7; pl. 10, figs. 1, 2. 

 

DIAGNOSIS 

Shell elongate-ovate/biconic, subconical spire, ventricose. Whorls sometimes with weakly 

developed shoulder, weakly developed, elongate nodules at anterior suture, stronger on 

body whorl. Columella with three plaits. Siphonal canal slightly reflexed dorsally. Weakly 

developed siphonal notch and strong fasciole. 

 

TYPE SPECIMENS 

HOLOTYPE: Voluta weldii TM, Z191. 

HYPOTYPE: Voluta weldii MUGD, 1792. 

HOLOTYPE: Voluta weldii var. angustior MUGD, 1794. 

 

DISTRIBUTION 

Johannian - Balcombian (Late Oligocene – Middle Miocene): Tasmania, Victoria (TAS001, 

TAS002 (TL), VIC005, VIC008-009). 

 

REMARKS 

This species is distinguished by its biconic outline, narrow spire and elongate nodules. 

Variation occurs in different regions. 
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Nannamoria deplexa Darragh, 1988 

 

1988 Nannamoria deplexa Darragh, p.234, pl. 7, figs. 1, 4; pl. 10, figs. 5, 6; pl. 11, 

 figs. 5, 8. 

 

DIAGNOSIS 

Shell pyriform, low, blunt spire. Whorls convex, inflated. Body whorl gently tapered 

anteriorly. Spiral sculpture of numerous, fine, sinuous threads. Columella glazed with four 

well developed plaits. Siphonal notch and fasciole very weakly developed. 

 

TYPE SPECIMENS 

HOLOTYPE: Nannamoria deplexa NMV, P32922. 

PARATYPES: Nannamoria deplexa NMV, P32923, P32924. 

 

DISTRIBUTION 

Janjukian - MItchellian (Late Oligocene – Late Miocene): Victoria (VIC012, VIC014-015, 

VIC018, VIC087, VIC099, VIC108-110). 

 

REMARKS 

This species is ventricose with a very blunt spire which separates it from other species in 

this genus. 

 

Nannamoria limbata (Tate, 1888) 

 

Plate 1, figs. 6a, b. 

 

1888 Voluta (Volutoconus) limbata Tate, p. 176, pl. 13, fig. 8. 

1889 Voluta limbata Tate, p.125. 

1949 Volutoconus limbata Cotton, pl. 15. 

1988 Nannamoria limbata Darragh, p.235, pl. 7, figs. 8, 9, 11; pl. 9, figs. 10, 11. Fig. 12. 

 

DIAGNOSIS 

Shell biconic-subcylindrical, spire short or elevated, sometimes concealed. Sutures 

concealed by lamella extension. Body whorl convex with weak nodules weakening towards 
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aperture. Spiral sculpture of threads on posterior whorl slope. Columella with four strong 

plaits. Siphonal notch and fasciole weakly developed.  

 

TYPE SPECIMENS 

HOLOTYPE: Voluta limbata SAM, T590A. 

HYPOTYPES: Nannamoria limbata NMV, P33086, P33088. 

 

DISTRIBUTION 

Janjukian - MItchellian (Late Oligocene – Late Miocene): Victoria (VIC023, VIC025, VIC035-

036, VIC039-041, VIC111, VIC112). 

 

REMARKS 

This species shows a great deal of variation usually related to geographic location. It is 

distinguished by lamella extensions concealing the sutures. 

 

Nannamoria cinctuta Darragh, 1988 

 

1988 Nannamoria cinctuta Darragh, p.236, pl. 11, figs. 9-12. 

 

DIAGNOSIS 

Shell conical with small, pupiform spire. Spire whorls concealed by succeeding whorls. Body 

whorl convex. Spiral sculpture absent.  Axial costae weakly developed on spire, nodular on 

body whorl. Columella with four strong plaits. 

 

TYPE SPECIMENS 

HOLOTYPE: Nannamoria cinctuta NMV, P33081. 

PARATYPE: Nannamoria cinctuta NMV, P33082. 

 

DISTRIBUTION 

Kalimnan – Yatalan (Late Pliocene): Tasmania (TAS036 (TL)). 

 

REMARKS 

This species is distinguished by the small, pupiform spire. 

 

 



96 
 

Nannamoria paraboloides Darragh, 1988 

 

1988 Nannamoria paraboloides Darragh, p.234, pl. 9, figs. 6, 7; pl. 10, figs. 7, 8; pl. 11, 

 figs. 2,  3. 

 

DIAGNOSIS 

Shell ovate, low, subconical spire. Concave, shouldered whorls. Anterior spire whorl slope 

absent or reduced. Axial sculpture of low costae or nodules, weakening towards aperture. 

Columella with four strong plaits. Deep siphonal notch. 

 

TYPE SPECIMENS 

HOLOTYPE: Nannamoria paraboloides NMV, P33077. 

PARATYPES: Nannamoria paraboloides NMV, P33079, P52308. 

 

DISTRIBUTION 

Batesfordian - Yatalan (MIddle Miocene – Pliocene): Victoria, Tasmania (VIC043 (TL), 

VIC044, VIC049, VIC062, VIC107, TAS035-037). 

 

REMARKS 

The weakly developed sculpture and subconical spire are distinguishing traits of this 

species. 

 

Nannamoria amplexa Darragh, 1988 

 

1988 Nannamoria amplexa Darragh, p. 232, pl. 7, figs. 2, 3, 6; pl. 9, figs, 9, 12; pl. 10, fig. 

 12. 

 

DIAGNOSIS 

Shell biconic, low spire. Body whorls shouldered, convex at suture. Spiral sculpture absent. 

Axial sculpture of thin, weakly developed costae, nodular at shoulder. Columella with four 

well developed plaits. Siphonal notch shallow, fasciole weakly developed, ridged. 

 

TYPE SPECIMENS 

HOLOTYPE: Nannamoria amplexa NMV, P33069.  

PARATYPES: Nannamoria amplexa NMV, P33071, P33072. 
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DISTRIBUTION 

Mitchellian - Kalimnan (Pliocene): Victoria (VIC051 (TL), VIC050, VIC105-106). 

 

REMARKS 

This species is distinguished by its weakly spinose nodules and weak costae covering the 

whole shell. The fasciole is bound posteriorly by a ridge which is not as well developed in 

other species. 

 

Nannamoria trionyma Darragh, 1988 

 

1913 Voluta weldii var. intermedia Pritchard, p.194, pl. 20. Figs. 2, 3 (non Lahille, 1895: 

 304). 

1988 Nannamoria trionyma Darragh, p.233, pl. 11, figs. 1, 4, 6, 7. 

 

DIAGNOSIS 

Shell ovate-elongate, low, gradate spire. Convex, shouldered whorls. Spiral sculpture 

absent. Axial sculpture of thin costae on initial teleoconch whorl, appearing as trihedral 

nodules on later whorls, weakening towards aperture. Siphonal notch shallow, fasciole 

weakly developed.  

 

TYPE SPECIMENS 

HOLOTYPE: Nannamoria trionyma NMV, P32920. 

PARATYPE: Nannamoria trionyma NMV, P32918. 

HOLOTYPE: Voluta weldii var. intermedia MUGD, 1793. 

 

DISTRIBUTION 

Janjukian - Mitchellian (Late Oligocene - Late Miocene): Victoria, South Australia (VIC038 

(TL), VIC022, VIC028-029, SA001). 

 

REMARKS 

The numerous subspinose tubercles and squat spire distinguish this species. The ovate 

outline distinguishes this species from the more biconic N. weldii. 
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Nannamoria strophodon strophodon (McCoy, 1876) 

 

1876 Voluta strophodon McCoy, p.25, pl. 37, figs. 2, 3, 4, 4a-c. 

1897 Voluta (Aulica) strophodon Harris, p.101, pl. 4, figs. 11a, b. 

1899 Vespertilio weldi Cossmann, p. 118, pl. 4, fig. 23; pl. 6, fig. 8. 

1913 Voluta strophodon var. brevispina Pritchard, p. 194 (non Doncieaux, 1908). 

1913 Voluta strophodon var. longispira Pritchard, p. 194. 

1949 Cymbiola strophodon Cotton, pl. 15. 

1949 Notovoluta tabulata Cotton, pl.14 (non Tate, 1888). 

1958 Cymbiola (Cymbiola) tabulata Ludbrook, p. 74, pl. 6, fig. 2 (non Tate, 1888). 

1988 Nannamoria strophodon strophodon Darragh, p. 230, pl. 8, figs. 1, 4, 5, 6, 9, 11. 

 

DIAGNOSIS 

Shell ovate-biconic, low, blunt spire. Body whorl tapered anteriorly. Teleoconch whorls with 

prominent shoulder, nodular on body whorl. Columella with four well developed plaits. 

Siphonal notch shallow, fasciole present. 

 

TYPE SPECIMENS 

HOLOTYPE: Nannamoria strophodon strophodon NMV, P12154.  

PARATYPES: Nannamoria strophodon strophodon NMV, P26388, P26389, P12153. 

 

DISTRIBUTION 

Janjukian - Yatalan (Late Oligocene - Pliocene): Victoria, South Australia (VIC013 (TL), 

VIC014, VIC018, VIC022-023, VIC025, VIC027-030, VIC033-036, VIC038, VIC040-041, VIC043, 

VIC082, VIC087, VIC098, SA001-002, SA031-032, SA044-048). 

 

REMARKS 

There is a lot of variation between specimens of this subspecies from different localities, 

generally associated with elevation of the spire.  

 

Genus NOTOVOLUTA Cotton, 1946 

 

1946 Notovoluta Cotton, p.15. 

1988 Notovoluta Darragh, p.217 
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TYPE SPECIES 

Voluta kreuslerae Angas, 1865 by original designation. Recent, South Australia. 

 

DIAGNOSIS 

Shell fusiform, elongate-ovate. Spire subconical-gradate, shouldered. Domed protoconch. 

Spiral sculpture of fine threads. Axial sculpture of strong costae, tubercles or absent. Outer 

lip slightly reflexed dorsally. Columella with four strong plaits. Siphonal notch shallow, wide, 

fasciole moderately developed.  

 

DISTRIBUTION 

Eocene - Recent:  Australia. 

 

REMARKS 

This genus is characterised by the domed protoconch and fine threads on the first and 

second spire whorls. See Darragh (1988) for discussion on taxonomic position. 

 

 

KEY TO SPECIES FOUND AS FOSSILS IN SOUTHEASTERN AUSTRALIA: 

1. Spiral sculpture absent.     Go to 2 

 Spiral sculpture present.    Go to 4 

 

2. Whorls shouldered.     Go to 3 

 Whorls lacking shoulder.    saginata 

 

3. Axial sculpture nodulose.    pseudolirata 

 Axial sculpture subspinose on shoulder.   tabulata 

 

4. Columella with three plaits.    Go to 5 

 Columella with four plaits.    Go to 6 

 

5. Axial sculpture present.     Go to 6 

 Axial sculpture absent.     differta 

 

6.  Axial sculpture nodular.     cathedralis 

 Axial sculpture of thin riblets.    linigera 
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7. Siphonal notch absent.     variculifera 

 Siphonal notch shallow.     Go to 8 

 

8. Axial sculpture absent.     ellipsoidea 

 Axial sculpture present.     Go to 9 

 

9. Spire gradate.      capitonica 

 Spire elongate and narrow.    lintea 

 

Notovoluta saginata (Finlay, 1880) 

 

1880 Voluta lirata Johnston, p.37 (non Brocchi, 1814). 

1888 Voluta allporti Johnston, pl.30, fig. 10 (non Johnston, 1880). 

1896 Voluta maccoyi Pritchard, p. 95 (non Tenison Woods, 1877). 

1930 Notopeplum saginatum Finlay, p.45. 

1988 Notopeplum saginatum Darragh, p.223, pl.2, fig.2; pl.5, fig. 8. 

 

DIAGNOSIS 

Shell fusiform, elongate, conical spire. Spire whorls slightly depressed posteriorly. Axial 

sculpture of sinuous riblets on spire whorls. Body whorl ventricose, rapidly tapered 

anteriorly. Columella with four strong plaits. Shallow siphonal notch, prominent fasciole. 

 

TYPE SPECIMENS 

HOLOTYPE: Notopeplum saginatum TM, Z1072. 

HYPOTYPE: Notopeplum saginatum MUGD, 1795. 

HOLOTYPE: Voluta lirata TM, Z185. 

 

DISTRIBUTION 

Longfordian (Early Miocene): Tasmania (TAS001, TAS002). 

REMARKS 

This species is distinguished by the ventricose body whorl, elongate spire and axial riblets. 

 

Notovoluta pseudolirata (Tate, 1888) 

 

1888 Voluta pseudolirata Tate, p.176, pl. 13, fig. 6. 
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1897 Voluta (Aulica) pseudolirata Harris, p. 104. 

1949 Notovoluta pseudolirata Cotton, pl.14. 

 

DIAGNOSIS 

Shell fusiform, elongate. Whorls shouldered. Spiral sculpture absent. Axial sculpture 

variable. Thin costae on initial spire whorls, nodular on later whorls. Siphonal notch deep, 

siphonal fasciole well developed. 

 

TYPE SPECIMENS 

HOLOTYPE: Voluta pseudolirata SAM, T608C. 

HYPOTYPE: Notovoluta pseudolirata NMV, P32211. 

 

DISTRIBUTION 

Janjukian - Recent (Late Oligocene – Recent): Victoria, Western Australia (VIC022-023, 

VIC025, VIC029-030, VIC035, VIC038 (TL), VIC041, VIC088-089, VIC098, WA017, WA020, 

WA033). 

 

REMARKS 

Traces of colour can be seen in specimens from Muddy Creek (VIC038) and Fossil Beach 

(VIC022). For a full discussion on this species see Wilson (1972). 

 

Notovoluta tabulata (Tate, 1888) 

 

1888 Voluta tabulata Tate, p.176, pl. 13, fig. 3. 

1988 Notovoluta tabulata Darragh, p.220, pl. 4, figs. 1, 6, 8, 10; Fig. 7. 

 

DIAGNOSIS 

Shell fusiform, low, gradate spire, shouldered whorls. Spiral sculpture absent. Axial 

sculpture of sinuous costae, subspinose on shoulder, absent on posterior whorl slope, 

fading towards middle of anterior whorl slope. Columella with four strong plaits. Siphonal 

notch wide. 

 

TYPE SPECIMENS 

HOLOTYPE: Voluta tabulata SAM, T611A. 

HYPOTYPE: Voluta tabulate SAM, T5740a-b. 
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DISTRIBUTION 

Mitchellian (Late Miocene): New South Wales, South Australia (NSW037 (TL), SA002). 

 

REMARKS 

The low spire and subspinose costae define this species. 

 

Notovoluta differta Darragh, 1988 

 

1988 Notovoluta differta Darragh, p.223, pl. 4, figs. 11-14.  

 

DIAGNOSIS 

Shell ovate, rapidly tapered spire. Whorls depressed posteriorly, convex anteriorly. Axial 

sculpture absent. Spiral sculpture of closely spaced threads over whole spire and posterior 

of body whorl. Columella with three strong plaits. Siphonal notch shallow, fasciole present. 

 

TYPE SPECIMENS 

HOLOTYPE: Notovoluta differta NMV, P32221. 

PARATYPE: Notovoluta differta NMV, P32222. 

 

DISTRIBUTION 

Janjukian - Mitchellian (Late Oligocene – Late Miocene): Victoria (VIC013, VIC016 (TL), 

VIC087, VIC109). 

 

REMARKS 

The ovate shape and lack of elongate nodules separate this species from others in the 

genus. 

 

Notovoluta cathedralis (Tate, 1888) 

 

1888 Voluta cathedralis Tate, p.176, pl. 13, fig. 10. 

1897 Scaphella (Eopsephia) cathedralis Harris, p. 117. 

1949 Notovoluta cathedralis Cotton, pl. 15. 
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DIAGNOSIS 

Shell elongate. High, tapered spire. Spiral sculpture of fine threads on spire whorls and on 

posterior third of whorls. Axial sculpture of elongate nodules on penultimate and body 

whorls. Siphonal notch wide. 

 

TYPE SPECIMENS 

HOLOTYPE: Voluta cathedralis SAM, T596B. 

HYPOTYPE: Notovoluta cathedralis NMV, P32213. 

 

DISTRIBUTION 

Janjukian - Mitchellian (Late Oligocene – Late Miocene): Victoria, South Australia (VIC038 

(TL), VIC027, SA001). 

 

REMARKS 

This species is distinguished by the elongate nodules and the spiral threads present on the 

posterior whorl slope. 

 

Notovoluta linigera Darragh, 1988 

 

1988 Notovoluta linigera Darragh, p.223, pl. 3, figs. 3, 4, 6, 10. Fig. 10. 

 

DIAGNOSIS 

Shell ovate-biconic, squat. Spire whorls depressed posteriorly. Body whorls gently convex, 

depressed posteriorly. Axial sculpture of thin riblets. Spiral sculpture of thin threads over 

spire whorls and posterior of body whorl. Columella with three strong plaits. 

 

TYPE SPECIMENS 

HOLOTYPE: Notovoluta linigera NMV, P32216. 

PARATYPE: Notovoluta linigera NMV, P32218. 

DISTRIBUTION 

Longfordian - Balcombian (Early – Middle Miocene): Victoria (VIC021 (TL), VIC011, VIC008). 

 

REMARKS 

The prominent spiral threads and axial riblets distinguish this species from others in the 

genus. Spiral sculpture is somewhat variable. 
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Notovoluta variculifera Darragh, 1988 

 

Plate 2, figs. 1a, b. 

 

1988 Notovoluta variculifera Darragh, p.218, pl.3, figs. 7, 9, 13, 14. 

 

DIAGNOSIS 

Shell fusiform, convex whorls. Teleoconch whorls convex. Spiral sculpture of fine threads 

over whole shell. Weakly developed axial costae on first teleoconch whorl. Outer lip 

thickened. Columella with four plaits.  Siphonal notch and fasciole absent. 

 

TYPE SPECIMENS 

HOLOTYPE: Notovoluta variculifera NMV, P48599. 

PARATYPE: Notovoluta variculifera NMV, P48600. 

 

DISTRIBUTION 

Johannian – Willungan (Late Eocene – Early Oligocene): Victoria (VIC091 (TL), VIC002). 

 

REMARKS 

The narrow, small shell, presence of axial costae and the absence of the siphonal notch and 

fasciole characterise this species. 

 

Notovoluta ellipsoidea (Tate, 1888) 

 

1888 Voluta ellipsoidea Tate, p.176, pl. 13, fig. 4. 

1897 Voluta (Aulica) ellipsoidea Harris, p. 105. 

1922 Voluta (Aulica) sexuaplicata Chapman, p.15, pl. 3, fig. 24. 

1949 Ericusa ellipsoidea Cotton, pl. 15. 

1958 Ericusa (Ericusa) ellipsoidea Ludbrook, p.76. 

1988 Notovoluta ellipsoidea Darragh, p.220, pl.2, fig. 3; pl. 3, fig. 2; pl. 5, figs. 4, 5. 

 

DIAGNOSIS 

Shell fusiform, convex whorls. Whorls gently convex, slightly impressed at posterior suture. 

Axial sculpture absent. Spiral sculpture of fine threads over whole shell. Apertural notch at 
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posterior suture. Columella with four strong plaits. Siphonal notch shallow, wide, fasciole 

prominent. 

 

TYPE SPECIMENS 

HOLOTYPE: Voluta ellipsoidea SAM, T601C. 

HYPOTYPE: Voluta ellipsoidea SAM, T601A. 

HOLOTYPE: Voluta (Aulica) sexuaplicata NMV, P13250. 

 

DISTRIBUTION 

Longfordian – Yatalan (Early Miocene – Pliocene): Victoria, South Australia (VIC038 (TL), 

VIC113, SA032). 

 

REMARKS 

This species is defined by its lack of axial sculpture and the fine, numerous spiral threads 

that cover the whole shell. 

 

Notovoluta capitonica Darragh, 1988 

 

1988 Notovoluta capitonica Darragh, p.218, pl.3, figs. 8, 11, 12, 15; pl. 27, figs. 1, 4. 

 

DIAGNOSIS 

Shell elongate, gradate spire. Spire whorls shouldered. Axial costae on initial spire whorls. 

Spiral sculpture of fine threads over whole shell. Columella with four strong plaits. Siphonal 

notch unpreserved, fasciole well developed. 

 

TYPE SPECIMENS 

HOLOTYPE: Notovoluta capitonica NMV, P126803. 

PARATYPES: Notovoluta capitonica NMV, P32209, P32210. 

 

DISTRIBUTION 

Johannian - Aldingan (Late Eocene): Victoria, South Australia (VIC092 (TL), SA034). 

 

REMARKS 

This species is distinguished by the axial costae on the early spire whorls and the spiral 

sculpture which covers the whole shell. 
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Notovoluta lintea (Tate, 1889) 

 

1889 Voluta lintea Tate, p.129, pl. 3, figs, 1a, b. 

1949 Notovoluta lintea Cotton, pl. 15.  

 

DIAGNOSIS 

Shell elongate-ovate, tall, narrow spire. Later whorls depressed before posterior suture. 

Sutures grooved. Spiral sculpture of threads, weakening on body whorl. Axial sculpture of 

low, elongate nodules on later whorls. Columella with four strong plaits. Shallow siphonal 

notch. 

 

TYPE SPECIMENS 

HOLOTYPE: Voluta lintea SAM, T600. 

PARATYPE: Notovoluta lintea NMV, P32219. 

 

DISTRIBUTION 

Batesfordian (Middle Miocene): South Australia (SA001 (TL)). 

 

REMARKS 

This species is distinguished by the low, elongate nodules and slender outline. 

 

 

Subfamily ZIDONINAE H. & A. Adams, 1853 

 

1853 Zidoninae H. & A. Adams, p. 618. 

1954 Alcithoninae Pilsbry & Olsson, p.17. 

1988 Zidoninae H. & A. Adams, Darragh, p. 237. 

DIAGNOSIS 

Shell subfusiform, elevated spire. Body whorl often tumid, impressed anteriorly.  Axial 

sculpture of costae, weak or strong, often nodular or spiny at shoulder. Columella with two 

or more well developed plaits. Siphonal canal short, deep siphonal notch, well developed 

fasciole. Radular ribbon uniserial, rachidian tooth tricuspid. 

 

DISTRIBUTION 

Palaeocene - Recent. Southern Hemisphere. 
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REMARKS 

Diagnostic characters of this subfamily are based on soft tissue anatomy and radula often 

making it difficult to assign fossil species correctly. Most fossils are assigned to this 

subfamily based on similarities with living species whose taxonomic position are confidently 

known. The subfamily distribution in both Cenozoic and Recent seas is mostly circum-

Antarctic with two principal northern extensions into South America and into Australia, 

New Zealand, Indonesia and the Philippines. 

 

 

KEY TO GENERA FOUND AS FOSSILS IN SOUTHEASTERN AUSTRALIA: 

1. Shell broadly fusiform.     Go to 2 

 Shell broadly ovate.     Go to 4. 

 

2. Columella with three plaits.    Go to 3 

 Columella with four plaits.    Alcithoe 

 

3. Elongate spire.      Ericusa 

 Gradate spire.      Livonia 

 

4. Columella with three plaits.    Notopeplum 

 Columella with four to five plaits.   Cymbiola 

 

 

Genus ALCITHOE H. & A. Adams, 1853 

 

1853 Alcithoe H. & A. Adams, p.618. 

 

TYPE SPECIES 

Voluta pacifica Perry, 1810 by subsequent designation (Cossmann, 1899). New Zealand, 

Recent. 

 

DIAGNOSIS 

Shell ovate-fusiform, large protoconch. Whorls convex and shouldered. Sculpture absent or 

axially ribbed. Columella with four plaits.  
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DISTRIBUTION 

?Eocene – Recent: New Zealand, Australia, ?Indo-Pacific. 

 

REMARKS 

This genus is in desperate need of a complete revision with a clear genus description, 

distribution data and confirmation of the type species. There is very little information 

available regarding the genus itself despite extensive descriptions of species, particularly in 

New Zealand. As it is not within the scope of this study to revise the complete genus all 

species that have been assigned to it by Darragh (1988) remain so. 

 

 

KEY TO SUBGENERA FOUND AS FOSSILS IN SOUTHEASTERN AUSTRALIA: 

1.  Thickened aperture, deep siphonal notch.   Alcithoe 

2.  Elongate outline, strong axial sculpture.    Waihaoia 

 

 

Subgenus ALCITHOE H. & A. Adams, 1853 

 

1853 Scaphella (Alcithoe) H. & A. Adams, p. 164. 

1858 Scapha (Alcithoe) H. & A. Adams, p. 617. 

1871 Voluta (Alcithoe) Crosse, p. 293. 

1899 Fulguraria (Alcithoe) Cossmann, p. 132. 

1926 Alcithoe Marwick, p. 260-270. 

1926 Waihaoia (Palomelon) Finlay, p.432.  

1929 Alcithoe (Alcithoe) Thiele, p. 348. 

1937 Alcithoe (Leporemax) Iredale, p. 105.  

1937 Alcithoe (Carolluta) Iredale, p. 105.  

1937 Gilvostia Iredale, p. 105. 

1943 Alcithoe (Carolluta) Wenz, p. 1345. 

1943 Alcithoe (Gilvostia) Wenz, p. 1345.  

1988 Alcithoe (Alcithoe) Darragh, p.242. 

 

TYPE SPECIES 

Voluta pacifica Perry, 1910 by subsequent designation (Cossman, 1899) = Voluta arabica 

Gmelin, 1791. Recent, New Zealand. 
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DIAGNOSIS 

Medium to large sized shell, elongate, abruptly tapered anteriorly. Axial sculpture of costae 

of elongate nodules. Spiral sculpture absent.  Aperture wide, elongate, thickened and 

reflexed at outer lip. Columella with four or five well developed plaits. Deep siphonal notch. 

 

DISTRIBUTION 

Miocene - Recent: New Zealand, Australia. 

 

REMARKS 

Distribution of this subgenus in Australia is limited to only two species and it likely to reflect 

the outermost distribution of the subgenus extending from New Zealand where the 

subgenus is much more diverse. 

 

 

KEY TO SPECIES FOUND AS FOSSILS IN SOUTHEASTERN AUSTRALIA: 

1. Convex whorls, very weakly developed sculpture.  macrocephala 

2. Very smooth shell.      orphanata  

 

Alcithoe (Alcithoe) macrocephala (Finley, 1927) 

 

1889 Voluta capitata Tate, p.127, pl. 2, figs. 3a, b (non Perry, 1811). 

1927 Scaphella macrocephala Finlay, p.513. 

1988 Alcithoe (Alcithoe) macrocephala Darragh, p.243, pl. 13, figs. 6-8. Fig. 18. 

 

DIAGNOSIS 

Shell fusiform, abruptly tapered spire. Tumid body whorl. Sculpture absent except for weak 

spiral threads on initial teleoconch whorl. Whorls convex at anterior. Columella with four 

plaits, weakest at anterior. Wide, deep siphonal notch.  Siphonal fasciole well developed. 

 

TYPE SPECIMENS 

HOLOTYPE: Voluta capitata SAM, T389. 

HYPOTYPE: Alcithoe (Alcithoe) macrocephala SAM, P5755. 
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DISTRIBUTION 

Batesfordian – Mitchellian (Middle - Late Miocene): Victoria to New South Wales (VIC043, 

NSW037 (TL)). 

 

REMARKS 

This species is characterised by its convex whorls and paucity of sculpture over the shell. 

 

Alcithoe (Alcithoe) orphanata Darragh, 1988 

 

1988 Alcithoe (Alcithoe) orphanata Darragh, p.243, pl. 13, figs. 9-12. Fig. 20. 

 

DIAGNOSIS 

Shell fusiform, conical spire. Whorls weakly convex anteriorly. Spiral sculpture absent. Axial 

costae weakly developed on middle whorls. Aperture narrow, inner lip with thick callus. 

Columella with five plaits. Wide, deep siphonal notch.  Siphonal fasciole well developed. 

 

TYPE SPECIMENS 

HOLOTYPE: Alcithoe (Alcithoe) orphanata NMV, P37635. 

PARATYPE: Alcithoe (Alcithoe) orphanata NMV, P37636. 

 

DISTRIBUTION 

Kalimnan – Yatalan (Late Pliocene): Tasmania (TAS034 (TL), TAS035). 

 

REMARKS 

The most remarkable character of this shell is its unique smoothness that is not seen in 

other taxa.  

 

 

Subgenus WAIHAOIA Marwick, 1926 

 

1926 Waihaoia Marwick, p. 274. 

1988 Waihaoia Marwick, Darragh, p. 238. 
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TYPE SPECIES 

Waihaoia allani Marwick, 1926 by original designation. Eocene, McCulloughs Bridge, New 

Zealand. 

 

DIAGNOSIS 

Small to medium sized shell, very elongate, high spired. Well developed axial costae, 

prominent shoulder on body whorl and often spire whorls. Aperture narrow, elongate with 

slight reflex on outer lip. Very shallow siphonal notch, siphonal fasciole weakly developed 

or absent. 

 

DISTRIBUTION 

Eocene - Miocene: Australia, New Zealand. 

 

REMARKS 

This subgenus is characterised by its very elongate outline and well developed axial costae.  

 

 

KEY TO SPECIES FOUND AS FOSSILS IN SOUTHEASTERN AUSTRALIA: 

1. Siphonal fasciole weakly developed.   Go to 2 

 Siphonal fasciole strong developed.   sarissa 

 Siphonal fasciole absent.    cribrosa 

 

2. Spiral sculpture well developed.    Go to 3 

 Spiral sculpture weakly developed/absent.  pagodoides pagodoides 

 

3. Spiral sculpture over whole shell.   Go to 4 

 Spiral sculpture on spire and posterior of body whorl. Go to 5 

 

4. Median row of nodules.     pagodoides sorcula 

 Nodules absent on spire.    neglectoides 

 

5. Axial costae on body whorl only.   pueblensis 

 Axial costae on whole shell.    tateana 
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Alcithoe (Waihaoia) sarissa (Tate, 1889) 

 

1889 Voluta sarissa Tate, p.129, pl. 2, figs. 1a, b. 

1897 Scaphella (Eopsephia) sarissa Harris, p.116, pl.4, figs. 16a, b. 

1949 Notovoluta sarissa Cotton, pl. 14. 

1988 Alcithoe (Waihaoia) sarissa Darragh, p.241, pl. 13, fig. 5. Pl. 14 figs. 5, 11. Fig. 19. 

 

DIAGNOSIS 

Shell narrowly fusiform, slender, turreted spire. Initial whorls flat, becoming more convex 

medially. Axial costae over whole shell, extending suture to suture except on anterior of 

body whorl. Spiral sculpture of thin lirae over spire and posterior of body whorl. Columella 

of four to five well developed plaits, more poorly developed at anterior. Siphonal canal 

relfexed dorsally. Wide, shallow siphonal notch, siphonal fasciole strongly developed. 

 

TYPE SPECIMENS 

LECTOTYPE: Voluta sarissa SAM, T578A. 

PARALECTOTYPES: Voluta sarissa SAM, T578B-G. 

HYPOTYPES: Alcithoe (Waihaoia) pueblensis NMV, P38303, P38301. 

 

DISTRIBUTION 

Janjukian – Mitchellian (Late Oligocene – Late Miocene): Victoria, South Australia (VIC008, 

VIC011, VIC013, VIC015, VIC021-022, VIC025-028, VIC031, VIC034, VIC038 (TL), VIC041, 

VIC081, VIC094, SA001). 

 

REMARKS 

This species closely resembles A. (W.) pueblensis but is far more elongate and slender. The 

species’ well developed siphonal fasciole is very unusual for this subgenus and some 

authors may question this species’ assignment to Alcithoe (Waihaoia). However, enough of 

the shell morphology is consistent with other species in this subgenus to merit its inclusion 

in this subgenus. 

 

Alcithoe (Waihaoia) cribrosa (Tate, 1889) 

 

Plate 2, figs. 2a, b. 
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1889 Voluta cribrosa Tate, p.129, pl. 3, fig. 8. 

1988 Alcithoe (Waihaoia) cribrosa Tate, Darragh, p.238, pl. 13, figs. 1-4. 

 

DIAGNOSIS 

Shell fusiform, high spired. Weakly shouldered on body whorls. Thin spiral sculpture over 

whole shell. Axial costae low, well defined, extending from suture to suture except on body 

whorl, absent towards aperture. Columella with four plaits, weakest at anterior. Wide, 

shallow siphonal notch.  Siphonal fasciole absent. 

 

TYPE SPECIMENS 

LECTOTYPE: Voluta cribrosa SAM, T605A (crushed). 

PARALECTOTYPES Voluta cribosa SAM, T605B-D. 

HYPOTYPES: Alcithoe (Waihaoia) cribrosa NMV, P348824 (crushed), P34825. 

 

DISTRIBUTION 

Johannian - Willungan (Late Eocene – Early Oligocene): Victoria, South Australia (VIC002, 

VIC091, SA034 (TL)). 

 

REMARKS 

The specimens used by Tate (1889b) have been crushed making comparison with 

undeformed specimens more difficult. Many fossil specimens from the Blanche Point 

locality have suffered from some degree of deformation resulting in incomplete or 

flattened specimens making comparisons more difficult.  

 

Alcithoe (Waihaoia) pagodoides pagodoides (Tate, 1888) 

 

1888 Voluta pagodoides Tate, p.176, pl. 13, fig. 7. 

1897 Scaphella (Eopsephia) pagodoides Harris, p.117. 

1949 ?Notovoluta pagodoides Cotton, pl. 14. 

1988 Alcithoe (Waihaoia) pagodoides pagodoides Tate, Darragh, p.239, pl. 12, figs. 1, 4, 

7, 10, 13. Fig. 17. 

 

DIAGNOSIS 

Shell fusiform. Narrow, turreted spire with median nodules. Sculpture of median row of 

well defined nodules, appearing as thin axial costae on first teleoconch whorl. Spiral 
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sculpture absent or weakly developed on second and third spire whorls. Columella with 

four well developed and sometimes weaker fifth plaits. Siphonal canal dorsally reflexed 

with shallow siphonal notch. Siphonal fasciole as weak cord. 

 

TYPE SPECIMENS 

HOLOTYPE: Voluta pagodoides SAM, T610B. 

HYPOTYPES: Alcithoe (Waihaoia) pagodoides pagodoides NMV, P34821, P34822. 

 

DISTRIBUTION 

Johannian – Janjukian (Late Eocene – Late Oligocene): Victoria, South Australia (VIC002, 

VIC092-093, SA034 (TL), SA035-038).  

 

REMARKS 

The presence of shoulder nodules and the absence/weak development of spiral sculpture 

separate this subspecies from all others. The subspecies can vary in the elongation of the 

spire and the development of the nodules between different geographic areas but there is 

enough common morphology to assign all these variants to one subspecies (Darragh, 1988). 

 

Alcithoe (Waihaoia) pagodoides sorcula Darragh, 1988 

 

1988 Alcithoe (Waihaoia) pagodoides sorcula Darragh, p.239, pl. 12, figs. 2, 3, 6, 8. 

 

DIAGNOSIS 

Shell small, elongate-fusiform. Nodules as in A. (W.) pagodoides pagodoides. Spiral 

sculpture of closely spaced lirae over whole shell. Columella of four well developed plaits, 

occasional weaker plaits in between. Very shallow siphonal notch, siphonal fasciole very 

weakly developed. 

 

TYPE SPECIMENS 

HOLOTYPE: Alcithoe (Waihaoia) pagodoides sorcula NMV, P37630. 

PARATYPE: Alcithoe (Waihaoia) pagodoides sorcula NMV, P37631. 

 

DISTRIBUTION 

Janjukian (Late Oligocene): Victoria (VIC005 (TL), VIC007). 
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REMARKS 

This subspecies is distinguished from A. (W.) pagodoides pagodoides by its smaller size and 

the presence of strongly developed spiral lirae across the whole shell. 

 

Alcithoe (Waihaoia) neglectoides Darragh, 1988 

 

1988 Alcithoe (Waihaoia) neglectoides Darragh, p.240, pl. 12, figs. 5, 9, 11, 12. 

 

DIAGNOSIS 

Shell elongate-fusiform, narrowly-turreted spire. Axial nodules on body whorl, sometimes 

present on penultimate whorl. Spiral sculpture of closely spaced lirae over whole shell. 

Columella of four well developed plaits, fith denticle weakly developed, occasional weaker 

plaits in between. Siphonal canal dorsally reflexed with shallow siphonal notch, siphonal 

fasciole very weakly developed. 

 

TYPE SPECIMENS 

HOLOTYPE: Alcithoe (Waihaoia) neglectoides NMV, P37628. 

PARATYPE: Alcithoe (Waihaoia) neglectoides NMV, P37627. 

 

DISTRIBUTION 

Janjukian (Late Oligocene): Victoria (VIC005 (TL)). 

 

REMARKS 

This species is characterised by the flat whorls of the turreted spire and the absence of 

nodules on the spire whorls. It shares most characters with A. (W.) pagodoides pagodoides 

but enough variation exists to classify it as a separate species (see Darragh (1988) for 

discussion). 

 

Alcithoe (Waihaoia) pueblensis (Pritchard, 1898) 

 

1898 Voluta pueblensis Pritchard, p.109, pl.8, fig. 7. 

1988 Alcithoe (Waihaoia) pueblensis Darragh, p.241, pl. 14, figs. 1-3, 8-10. Fig. 15. 
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DIAGNOSIS 

Shell elongate-fusiform, tall, turreted spire, weakly developed shoulder on body whorl. 

Axial costae on body whorl, extending to approximately midpoint. Spiral sculpture of closely 

spaced lirae over spire and posterior of body whorl. Columella of four well developed plaits. 

Wide, shallow siphonal notch, siphonal fasciole very weakly developed. 

 

TYPE SPECIMENS 

HOLOTYPE: Voluta pueblensis MUGD, 1806. 

HYPOTYPES: Alcithoe (Waihaoia) pueblensis NMV, P34842, P12773. 

 

DISTRIBUTION 

Janjukian (Late Oligocene): Victoria (VIC005 (TL)). 

 

REMARKS 

The tall turreted spire distinguishes this species. On the basis of shell morphology A. (W.) 

pueblensis appears to be closely related to A. (W.) tateana and A. (W.) sarissa (which may 

succeed it in younger sediments) but differences in shoulder development and shell 

sculpture are used to define these species. 

 

Alcithoe (Waihaoia) tateana (Johnston, 1880) 

 

1880 Voluta tateana Johnston, p.37. 

1949 Notovoluta tateana Cotton, pl. 14. 

1988 Alcithoe (Waihaoia) tateana Darragh, p.242, pl. 14, figs. 4, 6, 7, 12. 

DIAGNOSIS 

Shell elongate-fusiform, high spired, strongly shouldered body whorl. Axial costae well 

developed over posterior of spire whorls and to middle of body whorl. Spiral sculpture of 

thin lirae over posterior of spire whorls and shoulder of body whorl. Columella of four 

plaits, more poorly developed at anterior. Wide siphonal notch, siphonal fasciole weakly 

developed. 

 

TYPE SPECIMENS 

HOLOTYPE: Voluta tateana TM, Z127. 

HYPOTYPES: Voluta tateana SAM, T388B; Alcithoe (Waihaoia) tateana NMV, P2587. 
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DISTRIBUTION 

Longfordian (Early Miocene): Tasmania (TAS001-002). 

 

REMARKS 

This species is distinguished by the tapered spire and large body whorl. Specimens are often 

abraided resulting in a loss of spiral sculpture (Darragh, 1988). 

 

 

Genus ERICUSA H. & A. Adams, 1858 

 

1858 Zidona (Ericusa) H. & A. Adams, p. 619. 

1915 Ericusa Hedley, p. 724. 

1929 Alcithoe (Ericusa) Theile, p. 348. 

1929  Mesericusa Iredale, p. 181.  

1943 Alcithoe (Ericusa) Wenz, p. 1345. 

1943 Alcithoe (Mesericusa) Wenz, p. 1347. 

1988 Ericusa Darragh, p.244. 

 

TYPE SPECIES 

Voluta fulgetrum G. B. Sowerby, 1825 by subsequent designation (Cotton & Godfrey, 1932) 

= Voluta arabica Gmelin, 1791. Recent, South Australia. 

 

DIAGNOSIS 

Medium to large sized shell, fusiform, elongate spire. Axial sculpture often absent, 

sometimes ribbed or nodular. Spiral sculpture weakly developed.  Aperture large, elongate, 

and thickened at outer lip. Columella with three well developed plaits. Wide siphonal 

notch, siphonal fasciole absent. 

 

DISTRIBUTION 

Eocene - Recent: Australia. 

 

REMARKS 

For discussion of generic placement and synonymies see Darragh (1988). 
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KEY TO SPECIES FOUND AS FOSSILS IN SOUTHEASTERN AUSTRALIA: 

1. Shell fusiform.      Go to 2 

 Shell ovate-fusiform.     fulgetroides 

 

2. Axial sculpture absent.     Go to 3 

 Axial sculpture present.     Go to 4 

 

3. Spiral sculpture absent.     sowerbyi sowerbyi 

 Spiral sculpture on initial teleoconch whorls.  sowerbyi pellita 

 

4. Outer lip extended.     Go to 5 

 Outer lip not extended.     Go to 6 

 

5. Axial sculpture on initial teleoconch whorls only. macroptera 

 Axial sculpture on whole spire.    atkinsoni 

 

6. Blunt spire.      ancilloides 

 Spire whorls flattened.     hamiltonensis 

 

Ericusa fulgetroides (Pritchard, 1898) 

 

1898 Voluta fulgetroides Pritchard, p.105, pl. 7, fig. 4. 

1949 Ericusa fulgetroides Cotton, p. 186. 

1988  Ericusa fulgetroides Darragh, p.249, pl. 16, figs. 6, 8; pl. 18, figs. 1, 6. 

 

DIAGNOSIS 

Shell ovate-fusiform, convex whorls, slightly grooved sutures. Spiral sculpture of thin 

threads on intial teleoconch whorls. Body whorl with growth striae. Columella with three 

plaits. Wide, deep siphonal canal. 

 

TYPE SPECIMENS 

HOLOTYPE: Voluta fulgetroides MUGD, 1804. 

HYPOTYPE: Ericusa fulgetorides NMV, P7843. 
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DISTRIBUTION 

Mitchellian - Kalimnan (Late Miocene - Pliocene): Victoria (VIC060 (TL), VIC061). 

 

REMARKS 

The evenly convex whorls and slightly grooved sutures separate this species from related 

living and fossil taxa. 

 

Ericusa sowerbyi sowerbyi (Kiener, 1839) 

 

1822 Voluta fusiformis Swainson, p.11 (non Brocchi, 1814). 

1839 Voluta sowerbyi Kiener, p.47, pl. 50, fig. 2.. 

1929 Mesericusa sowerbyi perspecta Iredale, p. 181, pl. 41, fig. 9. 

1942 Alcithoe fusiformis Smith, p. 32, pl. 20, fig. 137. 

1954  Ericusa sowerbyi porcellana Jackson, p.37. 

1960 Mesericusa sowerbyi McMichael, p.5, fig. 1B (radula). 

1961 Mesericusa stokes Cotton, (1). 

1970 Ericusa (Mesericusa) sowerbyi Weaver & du Pont, p. 53, pl. 20, figs. E-H. 

1970 Ericusa (Mesericusa) stokesi Weaver & du Pont, p. 54, pl. 20, figs. A-B. 

1988 Ericusa sowerbyi sowerbyi Darragh, p.246, pl. 16, figs. 1-3, 7; pl.17, fig. 3; pl.18, fig. 

8.  

 

DIAGNOSIS 

Shell fusiform, flatly convex whorls. Spiral and axial sculpture absent. Body whorl gently 

tapered at anterior.  Aperture wide. Columella of three plaits. Very wide siphonal canal, 

siphonal fasciole absent. 

 

TYPE SPECIMENS 

HYPOTYPES: Ericusa sowerbyi sowerbyi NMV, P 41732. Mesericusa stokes SAM, D14625. 

 

DISTRIBUTION 

Mitchellian – Recent (Late Miocene – Recent): Queensland, South Australia and Victoria and 

Tasmania (QLD021, SA009, VIC020, VIC046-049, VIC095-096, TAS033, TAS035). 
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REMARKS 

The exceptionally plain appearance of this species makes identifying diagnostic 

characteristics particularly difficult. Protoconch size and colour (on living species) are 

variable and do not provide a useful diagnostic feature. 

 

Ericusa sowerbyi pellita (Johnston, 1880) 

 

1880 Voluta pellita Johnston, p.36. 

1880 ?Voluta allporti Johnston, p.35. 

1896 Voluta halli Pritchard, p. 101, pl. 30, fig. 2. 

1967 Ericusa (Mesericusa) pellita Ludbrook, p. 67, pl. 4, figs. 9, 10.. 

1988 Ericusa sowerbyi pellita Darragh, p.244, pl. 15, figs. 7, 8; pl. 16, figs. 4, 5; pl.17, figs. 

4, 5; pl.18, figs. 4, 5. Fig. 21. 

 

DIAGNOSIS 

Shell fusiform, convex whorls. Spiral sculpture of thin lirae over first and second teleoconch 

whorls.  Majority of shell smooth, sculpture absent, gently convex whorls.  Aperture wide. 

Columella of three plaits. Wide siphonal canal. 

 

TYPE SPECIMENS 

HOLOTYPE: Voluta pellita TM, Z156. 

HOLOTYPE: Voluta halli MUGD, 1789. 

HYPOTYPES: Ericusa sowerbyi pellita NMV, P41709, P 41710. 

 

DISTRIBUTION 

Janjukian - Mitchellian (Late Oligocene – Late Miocene): Victoria, Tasmania (VIC005, 

VIC008, VIC011, VIC013, VIC016, VIC087, VIC093, TAS001 (TL), TAS002). 

 

REMARKS 

Specimens from Tasmania are far rarer than those from Victoria and there is some 

discussion to be had regarding the inclusion of V. halli as a synonym (see Darragh, 1988). 

The upper stratigraphic limit of this taxon is not well constrained due to the inclusion of 

fragmented or juvenile specimens higher in the stratigraphic column that cannot be 

assigned to this species with complete confidence. 
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Ericusa macroptera (McCoy, 1866) 

 

1866 Voluta macroptera McCoy, p.375. 

1949 Pterospira macroptera Cotton, pl. 15. 

1988 Ericusa macroptera Darragh, p.247, pl. 15, figs. 1, 2; pl.17, figs. 1, 2; pl.18, fig. 3. Fig. 

23.  

 

DIAGNOSIS 

Shell fusiform, tumid body whorl and extended outer lip. Axial sculpture of weakly 

developed costae on intial teleoconch whorls. Spiral sculpture of thin threads on spire 

whorls. Outer lip extended into wing-like structure. Siphonal notch wide, triangular. 

Siphonal fasciole absent. 

 

TYPE SPECIMENS 

LECTOTYPE: Ericusa macroptera NMV, P 12379. 

PARALECTOTYPES: Ericusa macroptera NMV, P 12378, P12381, P12380. 

HYPOTYPES: Ericusa macroptera NMV, P 48588, P61287. 

 

DISTRIBUTION 

Janjukian (Late Oligocene): Victoria (VIC004 (TL)). 

 

REMARKS 

The wing-like extension of the outer lip is the most unique feature of this species. 

 

Ericusa atkinsoni (Pritchard, 1896) 

 

1896 Voluta atkinsoni Pritchard, p.100, pl.3, fig. 1. 

1913 Voluta macroptera Pritchard, p. 199, pl. 20, fig. 6 (non McCoy, 1866) 

1988 Ericusa atkinsoni Darragh, p.247, pl. 19, figs. 3, 5; pl.20, figs. 1, 3. Fig. 22.  

 

DIAGNOSIS 

Shell fusiform, rapidly tapering spire, tumid body whorl. Axial sculpture of low, wide costae 

on spire. Spiral sculpture of thin threads on spire whorls. Columella of three well developed 

plaits. Outer lip reverted and extended posteriorly.  Siphonal fasciole absent. 
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TYPE SPECIMENS 

HOLOTYPE: Ericusa atkinsoni NMV, P2985. 

HYPOTYPE: Ericusa atkinsoni NMV, P41723. 

 

DISTRIBUTION 

Janjukian – Balcombian (Late Oligocene - Middle Miocene): Victoria, Tasmania, South 

Australia (TAS001 (TL), VIC008-009, VIC011, VIC021, VIC097, SA039). 

 

REMARKS 

This species is very similar to E. macroptera except that it lacks the wing-like extension of 

the outer lip and differs in development of shell sculpture. 

 

Ericusa ancilloides (Tate, 1889) 

 

Plate 2, figs. 3a, b. 

 

1889 Voluta ancilloides Tate, p.126, pl.3, fig. 7. 

1897 Scaphella ancilloides Harris, p. 112. 

1899 Alcithoe ancilloides Cossmann, p. 133, pl. 7, fig. 6. Fig. 21. 

1949 Ericusa ancilloides Cotton, pl.14. 

1958 Ericusa (Ericusa) ancilloides Ludbrook, p. 77, pl. 4, fig. 2. 

1988 Ericusa ancilloides Darragh, p.248, pl. 15, figs. 3-5. Fig. 25.  

 

 

DIAGNOSIS 

Shell small, fusiform, blunt spire body whorl tapered anteriorly. Sculpture of growth striae 

and fine spiral lirae, weakening on body whorl. Inner lip extended. Columella of three plaits. 

Wide, deep siphonal notch.  Siphonal fasciole absent. 

 

TYPE SPECIMENS 

LECTOTYPE: Voluta ancilloides SAM, T396D. 

PARALECTOTYPES: Voluta ancilloides SAM, T396A, C; T393. 

HYPOTYPES: Ericusa ancilloides NMV, P41730, P61288. 
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DISTRIBUTION 

Janjukian – Mitchellian (Late Oligocene - Late Miocene): Victoria, Tasmania, South Australia 

(TAS001, VIC007, VIC013, VIC016, VIC022 (TL), VIC023, VIC028-029, VIC034, VIC038, VIC041, 

VIC082, VIC087, VIC098, SA001). 

 

REMARKS 

The poorly developed sculpture and extended inner lip are characteristic of this species 

which is thought to be ancestral to the living species E. sericata. 

 

Ericusa hamiltonensis (Pritchard, 1898) 

 

1889 Voluta hamiltonensis Pritchard, p.107, pl.8, fig. 5. 

1988 Ericusa hamiltonensis Darragh, p.248, pl. 15, figs. 6, 9; pl. 18, figs. 2, 7.  

 

DIAGNOSIS 

Shell fusiform, flat spired, large globose protoconch. Deeply grooved sutures. Spiral 

sculpture of a few thin threads. Columella with 3 plaits. Wide, deep siphonal notch. 

Siphonal fasciole absent. 

 

TYPE SPECIMENS 

HOLOTYPE: Voluta hamiltonensis MUGD, 1832. 

HYPOTYPE: Ericusa hamiltonensis NMV, P12566. 

 

DISTRIBUTION 

Janjukian – Mitchellian (Late Oligocene - Late Miocene): Victoria (VIC022, VIC030, VIC038 

(TL), VIC081). 

 

REMARKS 

This species has a large protoconch and flattened whorls which distinguishes it from E. 

ancilloides. 

 

 

Genus LIVONIA Gray, 1855 

 

1855 Scapha (Livonia) Gray, p.8. 
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1871 Voluta (Mamillana) Crosse, p.308.  

1897 Voluta (Pterospira) Harris, p. 100.  

1899 Mamillana Cossmann, p. 107. 

1899 Pterospira Cossmann, p. 134. 

1915 Livonia Hedley, p. 723. 

1934 Cottonia Iredale, p. 57.  

1943 Cymbium (Mamillana) Wenz, p. 1338. 

1943 Alcithoe (Cottonia) Wenz, p. 1344. 

1988 Livonia Darragh, p. 250. 

 

TYPE SPECIES 

Voluta mamilla G. B. Sowerby I, 1844 by subsequent designation (Hedley, 1915). Recent, 

southeastern Australia. 

 

DIAGNOSIS 

Large, thick shell, ovate-fusiform, well developed shouler, gradate spire. Axial sculpture of 

strong costae, nodular at shoulder, when present. Spiral sculpture of threads on spire, often 

absent on body whorl.  Outer lip reflexed laterally, sometimes as wing-like extension. 

Columella with three well developed plaits. Shallow, wide siphonal notch. Siphonal fasciole 

absent. 

 

DISTRIBUTION 

Oligocene - Recent: Australia. 

 

REMARKS 

This genus is characterised by having the mostly strongly developed nodular sculpture on 

the shell within this family. Anatomical and geographic studies on living and fossil species of 

this genus find it to be most closely related to Ericusa (Darragh, 1988). 

 

 

KEY TO SPECIES FOUND AS FOSSILS IN SOUTHEASTERN AUSTRALIA: 

1. Outer lip extended.     Go to 2 

 Outer lip reflexed.     Go to 4 

 

2. Axial sculpture absent.     mortoni connudata 
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 Axial sculpture nodular on shoulder.   Go to 3 

 

3. Spiral sculpture absent.     mortoni mortoni 

 Spiral sculpture on spire whorls.    voluminosa 

 

4. Shell ovate-fusiform.     gatliffi 

 Shell fusiform.      Go to 5 

 

5. Spiral threads on spire only.    Go to 6 

 Spiral threads on spire and body whorl.   Go to 7 

6. Axial costae strongest towards aperture.  stephensi 

 Axial costae strongest on anterior of body whorl. spenceri 

 

7. Axial costae coarse and prominent.   heptagonalis 

 Axial sculpture weakly developed/absent.  hannafordi 

 

Livonia mortoni connudata Darragh, 1988 

 

1889 Voluta mortoni Tate, p.124, pl. 9, fig. 2. 

1899 Pterospira mortoni Cossmann, p. 134, pl. 6, fig. 4. 

1988  Livonia mortoni connudata Darragh, p.253, pl. 22, figs. 6-7.  

 

DIAGNOSIS 

Shell ovate, regularly convex whorls. Spire with very weakly developed spiral threads. Body 

whorl somewhat depressed at posterior suture. Axial sculpture absent. Columella with 3 

plaits. Outer lip laterally extended into small wing. Siphonal notch wide, shallow. 

 

TYPE SPECIMENS 

HOLOTYPE: Livonia mortoni connudata NMV, P41558. 

PARATYPE: Voluta mortoni SAM, T384. 

 

DISTRIBUTION 

Janjukian – Mitchellian (Late Oligocene - Late Miocene): Victoria (VIC038 (TL), VIC027). 
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REMARKS 

This subspecies is differentiated from L. mortoni mortoni by its well developed columella 

plaits, regularly convex whorls and lack of axial nodules. 

 

Livonia mortoni mortoni (Tate, 1889) 

 

1889 Voluta mortoni Tate, p.124, pl. 9, fig. 1. 

1967 Pterospira mortoni Ludbrook, p. 67, pl. 3, figs. 6, 8. 

1988  Livonia mortoni mortoni Darragh, p.252, pl. 22, figs. 1-4. Fig. 28. 

 

DIAGNOSIS 

Shell small, smooth, outer lip slightly extended into wing-like expansion. Body whorl with 

well developed shoulder. Spiral sculpture absent. Axial sculptures of nodules on shoulder 

where present.  Columella with two well developed plaits, one weaker denticle. Wide 

siphonal notch. 

 

TYPE SPECIMENS 

LECTOTYPE: Voluta mortoni TM, Z208. 

HYPOTYPES: Livonia mortoni mortoni NMV, P2571, P61289. 

 

DISTRIBUTION 

Longfordian (Early Miocene): Tasmania, (TAS001 (TL), TAS002). 

 

REMARKS 

This subspecies is characterised by its smooth appearance, small shell size and angular 

whorls.  

 

Livonia voluminosa Darragh, 1988 

 

1896 Voluta alticostata Pritchard, p.103 (non Tate, 1889). 

1913 Voluta stephensi Pritchard, p. 195, pl. 21, figs.3- 4 (non Johnston, 1880). 

1988  Livonia voluminosa Darragh, p.253, pl. 19, figs. 1, 2, 4, 6.  

 

 

 



127 
 

DIAGNOSIS 

Shell fusiform, gradate spire, tumid body whorl. Initial teleoconch whorl convex, others 

with prominent shoulder. Spiral threads on spire whorls. Axial sculpture of large, well 

defined costae on anterior slope of whorls, appearing nodular at shoulder. Outer lip slightly 

extended into short wing.  

 

TYPE SPECIMENS 

HOLOTYPE: Livonia voluminosa NMV, P41368. 

PARATYPES: Livonia voluminosa NMV, P2986; MUGD, 1796. 

 

DISTRIBUTION 

Longfordian (Early Miocene): Tasmania (TAS001 (TL), TAS002). 

 

REMARKS 

This species closely resembles L. heptagonalis but has more numerous nodules along the 

shoulder of the whorls and is more abruptly tapered anteriorly.  

 

Livonia gatliffi (Pritchard, 1898) 

 

1898 Voluta gatliffi Pritchard, p.108, pl. 8, fig. 6. 

1988  Livonia gatliffi Darragh, p.255, pl. 20, figs. 2, 4; pl. 21, figs. 1, 3. Fig. 27.  

 

DIAGNOSIS 

Shell small for genus, ovate-fusiform, gradate spire. Well developed shoulders with well 

developed axial costae on anterior whorl slope, nodular at shoulder. Spiral sculpture of fine 

threads on spire whorl shoulder. Outer lip slightly reflexed. Wide siphonal notch. 

 

TYPE SPECIMENS 

HOLOTYPE: Voluta gatliffi MUGD, 1805 

HYPOTYPE: Livonia gatliffi NMV, P41472. 

 

DISTRIBUTION 

Balcombian - Bairnsdalian (Middle Miocene): Victoria (VIC038 (TL)). 
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REMARKS 

This species most closely resembles L. hannafordi but is far smaller with narrower axial 

costae. 

 

Livonia stephensi (Johnston, 1880) 

 

1896 Voluta stephensi Johnston, p.35. 

1913 Voluta wynyardensis Pritchard, p.200, pl. 21, figs. 1, 2. 

1967 Alcithoe (Cottonia) stephensi Ludbrook, p. 67, pl. 3, figs. 3, 4. 

1988  Livonia stephensi Darragh, p.251, pl. 23, figs. 1, 3-6; pl. 30, figs. 8, 9. Fig. 26. 

 

DIAGNOSIS 

Shell fusiform, gradate spire, body whorl with well developed shoulder. Spiral threads on 

spire, obsolete on body whorl. Axial costae becoming more developed towards aperture, 

nodulate at shoulder. Columella with three plaits. Outer lip slightly reflexed. 

 

TYPE SPECIMENS 

HOLOTYPE: Voluta stephensi MUGD, Z183. 

HOLOTYPE: Voluta wynyardensis AIM, TM839. 

HYPOTYPES: Livonia stephensi NMV, P41366, P41367, P61290. 

 

DISTRIBUTION 

Janjukian (Late Oligocene): Tasmania, Victoria (TAS001 (TL), VIC005). 

 

REMARKS 

The lack of a prominent outer lip extension separates this species from others within the 

genus. The overall shell morphology places this species in Livonia despite a protoconch 

more like those seen in the genus Ericusa. The type specimen for this species has been 

subject to weathering and abrasion resulting in some taxonomic confusion in the past. 

 

Livonia spenceri (Pritchard, 1896) 

 

1896 Voluta spenceri Pritchard, p.98, pl. 4, figs. 1, 2. 

1988  Livonia spenceri Darragh, p.251, pl. 23, fig. 2; pl. 24, fig. 5. 
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DIAGNOSIS 

Shell fusiform, gradate spire, body whorl with well developed shoulder. Spiral threads on 

spire whorls. Nodular at shoulder, extending anteriorly on body whorl into broad, low 

costae. Outer lip reflexed. 

 

TYPE SPECIMENS 

HOLOTYPE: Livonia spenceri NMW, P2990. 

PARATYPE: Livonia spenceri MUGD, 1813. 

 

DISTRIBUTION 

Janjukian - Mitchellian (Late Oligocene – Late Miocene): Tasmania, Victoria (TAS001 (TL), 

VIC008, VIC013, ?VIC022, VIC087, VIC099). 

 

REMARKS 

This species if rarely found and as a result the amount of variation is difficult to calculate. 

However, the specimens from Fossil Beach (VIC022) are narrower, more elongate and more 

nodular (Darragh, 1988) than specimens found in other areas and may therefore be 

another species or subspecies. More specimens would be required in order to examine this 

fully. 

 

Livonia heptagonalis (Tate, 1889) 

 

Plate 2, figs. 4a, b. 

 

1896 Voluta heptagonalis Tate, p.121, pl.4, figs. 1, 7. 

1949 Cottonia heptagonalis Cotton, pl. 14. 

1988  Livonia heptagonalis Darragh, p.254, pl. 21, figs. 2, 5; pl. 24, figs. 1, 2.  

 

DIAGNOSIS 

Shell fusiform, gradate spire, gently tapering towards anterior. Whorls with well developed 

shoulder, flat shoulder slope. Spiral threads on spire, weakly developed on body whorl. 

Axial costae well developed from shoulder to anterior suture, prominently nodular at 

shoulder. Columella callus thickened. Outer lip slightly reflexed. 
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TYPE SPECIMENS 

LECTOTYPE: Voluta heptagonalis SAM, T397A. 

PARALECTOTYPE: Voluta heptagonalis SAM, T397C. 

HYPOTYPE: Livonia heptagonalis NMV, P13895. 

 

DISTRIBUTION 

Batesfordian (Middle Miocene): South Australia (SA001 (TL)). 

 

REMARKS 

This species is distinguished by the very prominent nodules at the shoulder and the gently 

tapering body whorl. 

 

Livonia hannafordi (McCoy, 1866) 

 

1866 Voluta hannafordi McCoy, p.376. 

1889 Voluta alticostata Tate, p.122, pl. 5, fig. 7. 

1897 Voluta (Pterospira) hannafordi Harris, p. 100, pl. 4, figs, 10a, b. 

1899 Pterospira hannafordi Cossmann, p.134, pl. 6, fig. 6. 

1903 Voluta validicostata Dennant & Kitson, p. 100, nom. non. For V. alticostata Tate. 

1949 Cottonia alticostata Cotton, pl. 14. 

1988  Livonia hannafordi Darragh, p.254, pl. 20, figs. 5, 6; pl. 21, figs. 4, 6; pl. 22, fig. 5.  

 

DIAGNOSIS 

Shell fusiform, gradate spire. Whorls convex, well developed shoulder. Spiral sculpture of 

fine threads and lirae on posterior of spire whorls and shoulder of body whorl. Axial 

sculpture variable, nodular at shoulder. Columella with three plaits. Wide siphonal notch. 

Weakly developed siphonal fasciole. 

 

TYPE SPECIMENS 

HOLOTYPE: Voluta alticostata SAM, T392 

LECTOTYPE: Voluta hannafordi NMV, P12155. 

PARALECTOTYPE: Livonia hannafordi NMV, P6646. 

HYPOTYPE: Livonia hannafordi NMV, P12972. 
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DISTRIBUTION 

Janjukian – Mitchellian (Late Oligocene – Late Miocene): Victoria (VIC022, VIC023 (TL), 

VIC025, VIC027, VIC029-031, VIC034, VIC038, VIC041, VIC082, VIC088-089, VIC098). 

 

REMARKS 

This species is extremely variable in its sculpture but due to the gradual changes between 

specimens they are all included in this one species. Some specimens have an outer lip 

extended into a wing. 

 

 

Genus NOTOPEPLUM Finlay, 1927 

 

1927 Notopeplum Finlay, p. 514. 

1988 Notopeplum Darragh, p.256. 

 

TYPE SPECIES 

Scaphella victoriensis Cossmann, 1899 by original designation = Voluta polita Tate, 1887. 

Miocene, Victoria. 

 

DIAGNOSIS 

Small shell, ovate-elongate, smooth, glazed. Teleoconch whorls smooth except for growth 

striae.  Aperture lens-shaped, elongate, thickened and reflexed at outer lip. Columella with 

three well developed plaits. Wide, shallow siphonal notch. Siphonal fasciole weakly 

developed. 

 

DISTRIBUTION 

Eocene - Recent: Australia. 

 

REMARKS 

This genus is characterised by its smooth, glazed shell, callused, blunt protoconch and 

lenticular aperture. The taxonomic position of this genus is somewhat debated (see 

Darragh (1988) for discussion). 
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KEY TO SPECIES FOUND AS FOSSILS IN SOUTHEASTERN AUSTRALIA: 

1. Whorls convex.      Go to 2 

 Whorls tumid.      Got to 3 

 Whorls flattened.     mccoyi mccoyi 

 

2. Whorls depressed at posterior suture.   mccoyi translucidum 

 Relatively deep suture.     primarugatum 

 

3. Axial costae strongly developed.   protorhysum 

 Axial sculpture of growth lines only.   politum 

 

Notopeplum mccoyi mccoyi (Tenison-Woods, 1877) 

 

1877 Voluta m’coyi Tenison-Woods, p.95. 

1888 Voluta agnewi Johnston, pl. 30, fig. 9 (non Johnston, 1880) 

1913 Voluta maccoyii Pritchard, p. 196 (partim.). 

1988  Notopeplum mccoyi mccoyi Darragh, p.257, pl. 26, figs. 1, 6, 11, 12.   

 

DIAGNOSIS 

Shell ovate, elongate, grooved sutures, tapered anteriorly. Sculpture of growth striae. 

Columella with two well developed plaits. Wide deep siphonal notch. 

 

TYPE SPECIMENS 

HYPOTYPES: Notopeplum mccoyi mccoyi NMV, P31161, P31162. 

 

DISTRIBUTION 

Longfordian (Early Miocene): Tasmania (TAS001 (TL), TAS002). 

 

REMARKS 

Holotype for this subspecies is presumed missing. The flattened whorls and lack of 

sculpture are characteristic of this species. 

 

Notopeplum mccoyi translucidum (Verco, 1896) 

 

1896 Voluta translucida Verco, p. 217 pl. 6, figs. 4a, b. 
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1898 Voluta maccoyii Tate, p.126, pl. 2, fig. 2 (non Tenison-Woods, 1877). 

1897 Scaphella maccoyi Harris, p. 111. 

1930 Notopeplum balcombensis Finlay, p.46. 

1932 Notopeplum translucidum Cotton & Godfrey, p.47, pl. 2, fig. 10. 

1988  Notopeplum mccoyi translucidum Darragh, p.258, pl. 26, figs. 2-5, 7-9, 13.   

 

DIAGNOSIS 

Shell ovate, elongate, convex whorls, slightly turreted spire. Whorls slightly depressed at 

posterior suture. Shell glazed with growth striae, zigzag axial lines in living species. Deep 

wide siphonal canal. 

 

TYPE SPECIMENS 

HOLOTYPE: Voluta translucida SAM, D13614. 

HYPOTYPES: Voluta translucida SAM, D15013, T382B. 

HOLOTYPE: Notopeplum balcombensis TM, 1071. 

HYPOTYPE: Notopeplum balcombensis NMV, P31163. 

 

DISTRIBUTION 

Janjukian - Recent (Late Oligocene – Recent): Victoria, South Australia, Western Australia 

(VIC012-013, VIC015-016, VIC018, VIC022-023, VIC025, VIC034, VIC038, VIC041, VIC087, 

VIC089, VIC099-100, SA001, SA040 (TL), SA041-042, WA030). 

 

REMARKS 

Of all the species in this genus this is the most widely distributed subspecies both spatially 

and temporally. Shell shape can be variable and shell length rarely exceeds 50mm. 

 

Notopeplum primarugatum Darragh, 1988 

 

1988  Notopeplum primarugatum Darragh, p.257, pl. 25, figs. 1-4, 6. Fig. 30.  

 

DIAGNOSIS 

Shell ovate, elongate, convex whorls, fairly deep suture. Axial sculpture of thin costae on 

second and third teleoconch whorls. Growth striae present on penultimate and body whorl. 

Thickened outer lip.  
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TYPE SPECIMENS 

HOLOTYPE: Notopeplum primarugatum NMV, P31158. 

PARATYPES: Notopeplum primarugatum NMV, P31159, P31160, P61291. 

 

DISTRIBUTION 

Aldingan - Willungan (Late Eocene - Early Oligocene): Victoria (VIC002 (TL)). 

 

REMARKS 

It is suggested this species is the predecessor to N. protorhysum. They differ in that N. 

Primarugatum has more numerous and more closely spaced costae on the intial spire 

whorls and lacks a well developed shoulder. 

 

Notopeplum protorhysum (Tate, 1889) 

 

Plate 2, figs. 5a, b. 

 

1889 Voluta protorhysa Tate, p.126, pl. 2, figs. 6a, b. 

1927 Notopeplum protorhysum Finlay, p.514 

1988  Notopeplum protorhysum Darragh, p.256, pl. 25, figs. 7, 10-11. Fig. 31.  

 

DIAGNOSIS 

Shell ovate, elongate, well developed shoulder on whorls. Axial sculpture of thin, well 

developed costae on initial teleoconch whorls. Growth striae present. 

 

TYPE SPECIMENS 

LECTOTYPE: Voluta protorhysa SAM, T589A. 

PARALECTOTYPES: Voluta protorhysa SAM, T589B-D (juveniles). 

HYPOTYPES: Notopeplum protorhysum NMV, P31155, P31156. 

 

DISTRIBUTION 

Johannian - Aldingan (Late Eocene): Victoria, South Australia (SA034 (TL), SA036, VIC091-

092). 
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REMARKS 

The variation in this species is mostly in shell shape. Elongation of the shell varies between 

species from South Australia (less elongate) and Victoria (more elongate). The 

distinguishing feature of this species is the numerous, well defined costae. 

 

Notopeplum politum (Tate, 1889) 

 

1889 Voluta polita Tate, p. 127 pl. 2, fig. 7. 

1897 Scaphella polita Harris, p. 112, pl.4, figs. 15a, b (protoconch). 

1899 Scaphella victoriensis Cossmann, p.127, nom. nov. For Voluta polita Tate non 

Conrad (invalid name change). 

1927 Notopeplum victoriensis Finlay, p.513. 

1972 Notopeplum politum Wilson, p.357, fig. C (protoconch of holotype). 

1988  Notopeplum politum Darragh, p.258, pl. 25, figs. 8, 9, 12. Fig. 29.   

 

DIAGNOSIS 

Shell ovate, tumid whorls, blunt, domed spire. Suture slightly impressed. Sculpture of 

growth striae. Columella with three well developed plaits. Deep wide siphonal canal. 

 

TYPE SPECIMENS 

LECTOTYPE: Voluta polita SAM, T602A. 

PARALECTOTYPES: Voluta polita SAM, T602B-F. 

HYPOTYPES: Voluta translucida SAM, D15013, T382B. 

HYPOTYPE: Notopeplum politum NMV, P31164. 

 

DISTRIBUTION 

Balcombian - Bairnsdalian (Middle Miocene): Victoria (VIC038 (TL)). 

 

REMARKS 

This species is distinguished by its regularly convex whorls, impressed sutures and blunt, 

domed spire.  
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Genus CYMBIOLA Swainson, 1831 

 

1831 Cymbiola Swainson, p.83. 

1847 Aulica Gray, p.141.  

1847 Scapha Gray, p. 141.  

1852 Vespertilio Morch, p. 123.  

1853 Melo (Ausoba) H. & A. Adams, p. 160.  

1882 Voluta (Vespertilio) Tryon, p. 86. 

1882 Voluta (Aulica) Tryon, p.87. 

1883 Voluta (Cymbiola) Fischer, p.607. 

1899 Voluta (Aulicina) Roverato, p. 103. (Nom. nov. pro Vespertilio).  

1899 Voluta (Eteroaulica) Roverato, p. 103. (Footnote, nom. nov. Pro Aulica Gray. Invalid 

 replacement). 

1929 Aulica (Aulica) Thiele, p.348. 

1929 Aulica (Ausoba) Thiele, p. 348 

1929 Aulica (Aulicina) Thiele, p. 349. 

1929 Cymbiolena Iredale, p.181. 

1929 Cymbiola (Cymbiolacca) Iredale, p.181.  

1943 Cymbiola (Cymbiola) Wenz, p. 1335. 

1943 Cymbiola (Aulicina) Wenz, p. 1335. 

1943 Cymbiola (Aulica) Wenz, p. 1335. 

1943 Adelomelon (Cymbiolena) Wenz, p. 1349. 

1954 Volutocorona Pilsbry & Olsson, p.25.  

1961 Pseudocymbiola McMichael, p.54.  

1970 Cymbiola (Cymbiolena) Weaver & du Pont, p. 90. 

1970 Cymbiolacca Weaver & du Pont, p.92. 

1988 Cymbiola Darragh, p.259. 

 

TYPE SPECIES 

Voluta cymbiola Gmelin, 1791 by tautonomy. Recent, Moluccas. 

 

DIAGNOSIS 

Shell ovate, gradate to subconical spire. Spiral sculpture absent. Axial sculpture spinose or 

nodular on shoulder but sometimes as costae or absent. Columella with four to five well 
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developed plaits. Siphonal notch narrow, deep. Siphonal fasciole prominent, sometimes 

bound at posterior by ridge.  

 

DISTRIBUTION 

Oligocene - Recent: Asia, Australia. 

 

REMARKS 

For a full discussion on the synonyms of this genus see Darragh (1988). 

 

Cymbiola macdonaldi (Tate, 1888) 

 

Plate 2, figs. 6a, b. 

 

1888 Voluta macdonaldi Tate, p. 176 pl. 12, fig. 11. 

1897 Voluta (Aulica) macdonaldi Harris, p. 106. 

1949 Cymbiola macdonaldi Cotton, pl.14. 

1988  Cymbiola macdonaldi Darragh, p.261, pl. 24, figs. 3, 6.   

 

DIAGNOSIS 

Shell ovate, gradate spire. Body whorl ventricose. Axial costae paired, merging at 

prominent shoulder, nodular at suture on body whorl. Columella with four strong plaits. 

Deep siphonal notch, prominent siphonal fasciole, bound by sharp ridge.  

 

TYPE SPECIMENS 

HOLOTYPE: Voluta macdonaldi SAM, T381D. 

HYPOTYPE: Voluta macdonaldi SAM, T381A. 

 

DISTRIBUTION 

Janjukian - Mitchellian (Late Oligocene - Late Miocene): Victoria (VIC022 (TL), ?VIC012, 

VIC030, VIC038, VIC081). 

 

REMARKS 

The most distinguishing feature of this species is the merging of the paired costae. Adult 

specimens of this species are rare and its relationship with other species is poorly 

understood. 
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PLATE 1 – VOLUTIDAE 

 

Figure 1 Athleta (Ternivoluta) antiscalaris antiscalaris, P314096, non-type, Fishing Point 

 Marl of Lake Craven, VIC: 

 a) Shell (length = 49mm) 

 b) Protoconch  

Figure 2 Lyria harpularia, P121540, non-type, Muddy Creek Marl of Muddy Creek, VIC: 

 a) Shell (length = 34mm) 

 b) Protoconch  

Figure 3 Leptoscapha crassilabrum, P33084, non-type, Fyansford Formation of Manyung 

 Rocks, VIC: 

 a) Shell (length = 11mm) 

 b) Protoconch  

Figure 4 Scaphella (Aurinia) joahnnae, P121524, non-type, Browns Creek Clay of Johanna, 

 VIC: 

 a) Shell (length = 42mm) 

 b) Protoconch  

Figure 5 Amoria costellifera, T603, holotype, Muddy Creek Marl of Muddy Creek, VIC: 

 a) Shell (length = 61mm) 

 b) Protoconch  

Figure 6 Nannamoria limbata, T590A, holotype, Fyansford Formation of Grices Creek, VIC: 

 a) Shell (length = 33mm) 

 b) Protoconch  
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PLATE 1 – VOLUTIDAE 
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PLATE 2 – VOLUTIDAE 

 

Figure 1 Notovoluta variculifera, P121663, non-type, Browns Creek Clay of Johanna, VIC: 

 a) Shell (length = 35mm) 

 b) Protoconch  

Figure 2 Alcithoe (Waihaoia) cribrosa, T605A, lectotype, Blanche Point Marl of Blanche 

 Point, SA: 

 a) Shell (length = 34mm) 

 b) Protoconch  

Figure 3 Ericusa ancilloides, T396A, paralectotype, Muddy Creek Marl of Muddy Creek, VIC: 

 a) Shell (length = 76mm) 

 b) Protoconch  

Figure 4 Livonia heptagonalis, T397C, paralectotype, Cadell Formation of the River Murray 

 Cliffs, SA: 

 a) Shell (length = 41mm) 

 b) Protoconch  

Figure 5 Notopeplum protorhysym, T589A, lectotype, Dry Creek Sand of the Adelaide Bore, 

 SA: 

 a) Shell (length = 40mm) 

 b) Protoconch  

Figure 6 Cymbiola macdonaldi, T381A, holotype, Muddy Creek Marl of Muddy Creek, VIC: 

 a) Shell (length = 119mm) 

 b) Protoconch  
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PLATE 2 – VOLUTIDAE 
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3.2 FAMILY NASSARIIDAE 

 

The gastropod family Nassariidae is assigned to the superfamily Buccinoidea within the 

Neogastropoda. Cernohorsky (1984) provided the only full revision of this diverse family, 

taking into account both fossil and living species, although numerous publications deal with 

the nassarids in more detail for particular geographical regions (e.g. Mari, 1934; Marche-

Marchad, 1955; Tomlin, 1928; Cernohorsky, 1972a; Keen, 1971; Kaicher, 1982). There are 

approximately 900 species within the Nassariidae (600 of which are thought to be extinct) 

and these species are organised into 12 genera and 31 subgenera (Cernohorsky, 1984; 

Haasl, 2000). Subfamilial division varies between publications. Li et al (2010) and Haasl 

(2000) followed Cernohorsky (1984) in recognising three subfamilies; the Dorsaninae, the 

Cylleninae and the Nassariinae whilst Bouchet & Rocroi (2005) and Allmon (1990) 

recognised a fourth subfamily, the Bulliinae. 

 

Taxonomy of the Nassariidae has a long history, spanning approximately 225 years. 

Numerous similar classification schemes have been proposed with differences mainly 

concentrated on taxon membership and rank (Haasl, 2000). Until 1799, when Lamarck 

erected the genus Nassa, all early workers assigned Nassariidae species to the genus 

Buccinum. The genus Nassa was replaced with Nassarius by Duméril in 1806 and the family 

name Nassariidae was proposed by Iredale in 1916. Cossman (1901) established the 

foundations of the most commonly used classification of 3 subfamilies (Dorsaninae, 

Cylleninae and Nassariinae). Cenorhorsky (1984) noted that throughout the taxonomic 

history of the Nassariidae 2,442 species names have been proposed of which 1,323 belong 

to living species and 1,119 belong to fossil species. However, these figures are grossly 

inflated due to a huge number of synonyms and it is likely that only 319 are valid species 

names for living nassarids and 584 valid species names for fossil nassarids. 

 

Living nassariids have a global distribution in tropical and temperate marine settings, with 

the majority inhabiting marine or estuarine intertidal mud or sand flats. Others inhabit the 

muddy-sandy substrate of deeper waters (Yang & Zhang, 2011). Nassariids are active 

scavengers, mostly feeding on other molluscs, fish and polychaetes (Yang & Zhang, 2011). 

Cernohorsky (1981) provided the only taxonomic revision of the family Nassariidae in 

Australia and New Zealand including both fossil and living species. He recognised 25 species 

of Nassariidae in the region. This represents 7-8% of all living nassarid species. The 
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subfamily Dorsaninae is not represented in the Austral-Zelanic region and there are only 

three living species of the subfamily Cylleninae confined to temperate Australian waters. 

The remaining 22 species all belong in the subfamily Nassariinae and are represented by 

eight subgenera: Nassarius (Alectrion); Nassarius (Plicarcularia); Nassarius (Niotha); 

Nassarius (Zeuxis); Nassarius (Gussonea); Nassarius (Hima); Nassarius (Cryptonassarius). 

Twelve of these 22 species are found as fossils or have a fossil record and only seven are 

found in southeastern Australia. 

 

 

3.2.1 SYSTEMATIC PALAEONTOLOGY 

 

Only seven species of nassarid with a fossil record are found within the field area. 

Examination of type material and comparison with other Australian species (both living and 

fossil) described in the literature have been used to assign species to genera. The following 

taxonomic revision closely follows Cernohorsky (1981) which provided the most recent 

comprehensive taxonomy of this family.  

 

 

CLASS GASTROPODA 

ORDER NEOGASTROPODA 

SUPERFAMILY BUCCINACEA Rafinesque, 1815 

Family NASSARIIDAE Iredale, 1916 

 

1840 Nassinae Swainson, pp.63, 69, 299. 

1859 Cyclopsidae Chenu, p.164. 

1871 Cyclonassainae Gill, p.5. 

1882 Cylleninae Bellardi, p.159. 

1901 Dorsaninae Cossman, pp.195, 197. 

1908 Alectrionidae Dall, p.306. 

1915 Arculariidae Iredale, p.345. 

1916 Nassariidae, Iredale, p.182. 
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DIAGNOSIS 

Shell generally ovate. Fairly high, conical spire. Large body whorl. Sculpture of axial ribbing, 

nodules/granules, spiral lirae, grooves, striae or spines but occasionally smooth. Sutures 

distinct or obsolete and occasionally canaliculate. Aperture small. Outer lip often thickened 

and variced, denticulate or smooth and labrum occasionally with short or long lirae. 

Columella smooth, or denticulate to varying degrees, with occasional sculpture. Siphonal 

canal short or long with deep siphonal notch and siphonal fasciole with at least one cord.  

 

DISTRIBUTION 

Palaeocene - Recent. Cosmopolitan. 

 

REMARKS 

The close relationship between the Nassariidae and Buccinidae makes separation on a 

familial basis a controversial issue as many morphological and anatomical features overlap. 

The suite of characters normally used include radular dentition, foot anatomy, operculum 

morphology and shell sculpture, of which only the latter is useful in fossil specimens. The 

literature generally supports the taxonomic division of the Nassariidae and Buccinidae at 

family level despite a large number of similarities (e.g. Bouchet and Rocroi, 2005). It is 

worth noting that protoconch morphology is not a useful taxonomic character in the case of 

the Nassariidae due to the highly variable larval development of the family. 

 

 

Subfamily NASSARIINAE Iredale, 1916 

 

1916 Nassariinae Iredale, p. 82. 

 

DIAGNOSIS 

As for Nassariidae, but with shells less inflated and more solid in structure than those of 

subfamily Dorsaninae and without the sutural groove of subfamily Cylleninae. In recent 

species visual organs usually present and metapodial tentacles usually found on posterior 

of foot. 

 

DISTRIBUTION 

Miocene - Recent. Cosmopolitan. 
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REMARKS 

This subfamily encompasses approximately 80% of all known nassarid species. The 

subfamilial taxonomy of the nassarids is in real need of attention with subfamilies currently 

poorly defined and the diagnostic characters therefore difficult to pin-point. In particular 

the Nassariinae is usually defined by comparison with other subfamilies but no detailed 

description or diagnosis for the subfamily itself can be found. Due to the very high species 

diversity of this subfamily it has not been possible to examine enough species to provide a 

conclusive definition as part of this study. 

 

 

Genus NASSARIUS Duméril, 1806 

 

1799 Nassa Lamarck, p.71.  

1806 Nassarius Duméril, p.166.  

1807 Arcularia Link, p.126.  

1828 Nasa Fleming, p.340 (invalid emendation). 

1888 Arcularia Jousseaume, p.184 (invalid emendation – cited twice and included 

 arcularia and deshayesianus). 

 

TYPE SPECIES 

Buccinum arcularia Linnaeus, 1758 by subsequent monotypy (Froriep, 1806). Recent, Indo-

Pacific. 

 

DIAGNOSIS 

Shell size large for family, ovate, often bucciniform, spire moderately high. Whorls convex, 

often angulate. Sculpture of axial costae, occasionally spiral lirae, nodes along the body 

whorl suture. Columella callus present, moderately or greatly expanded laterally, 

denticulate at anterior. Outer lip internally denticulate. Aperture oval, strongly plicate. 

Siphonal canal very prominent, deeply notched, anteriorly truncated.  

 

DISTRIBUTION 

Miocene - Recent. Cosmopolitan. 
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REMARKS 

Cernorhorsky (1984) retained only three species in the genus Nassarius, all others being 

assigned to alternative genera or subgenera.  

 

 

KEY TO SUBGENERA FOUND AS FOSSILS IN SOUTHEASTERN AUSTRALIA: 

1. Spiral sculpture granulose.     Niotha 

 Spiral sculpture simple.      Go to 2. 

 

2. Aperture small.       Go to 3. 

 Aperture wide.       Zeuxis 

 

3. Columellar callus considerably extended.   Plicarcularia 

 Columella plicate or denticulate.    Hima 

 

 

Subgenus NIOTHA H. & A. Adams, 1853 

 

1853 Niotha H. & A. Adams, p.117.  

1877 Niothia Brazier, p.178 (invalid emend). 

1936 Tavaniotha Iredale, pp.321, 337.  

 

TYPE SPECIES 

Nassa cumingii A. Adams, 1852 by subsequent designation (Cossman, 1901) = Buccinum 

conoidale Deshayes in Bélanger, 1832. Recent, Indo-Pacific. 

 

DIAGNOSIS 

Shell small for family. Sculpture including axial costae, spiral lirae, granules or spinose 

nodules. Sutures simple or canaliculate. Aperture oval, interior smooth or lirate. Columellar 

callus frequently thickened, extended to varying degrees laterally across body whorl. Often 

anteriorly denticulate, can be smooth or denticulate along entire length. Outer lip 

denticulate to lirate. Short siphonal canal, fasciole distinct .  

 

DISTRIBUTION 

Miocene - Recent. Tropical and temperate Indo-Pacific. 
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REMARKS 

Cernohorsky (1984) suggested that the definition of this subgenus is not well constrained 

and most of the characters place it between Nassarius s.str. and the subgenus Zeuxis. 

Where a species shows overlapping characters, it may be easily placed in Zeuxis as an 

alternative.  Although Cernohorsky (1984) suggested a distinction between Niotha and 

Zeuxis based on denticulation of the columellar callus, the degree of denticulation is 

variable in both subgenera, ranging from smooth through anteriorly denticulate to 

denticulate along the entire length. However, the columellar callus in species of Niotha 

does appear to be wider than in species of Zeuxis and narrower than in species of Nassarius 

s. str. and this  therefore may be a reasonable character on which to base a distinction 

between the different subgenera. The presence of a granular or nodular texture is also 

more prevalent in species of Niotha than in species of Zeuxis. Only two species of the 

subgenus Niotha are found in the Cenozoic sediments of southeastern Australia. 

 

 

KEY TO SPECIES FOUND AS FOSSILS IN SOUTHEASTERN AUSTRALIA: 

1.  Columellar callus with up to five strong denticles.  sublirellus  

2.  Columellar callus bordered and smooth.    crassigranosus 

 

Nassarius (Niotha) sublirellus (Tate, 1888) 

 

1888 Nasa (sic) sublirella Tate, p.171. 

1889 Nassa sublirella Tate, p.118, pl. 4, fig. 2. 

1981 Nassarius (Niotha) sublirellus Cernohorsky, p.161, fig. 40. 

 

DIAGNOSIS 

Shell generally ovate. Sutures distinct, nodular, separated from main sculpture by a slight 

concave trough. Axial costae present, spiral sculpture in the form of row of nodules. 

Siphonal fasciole with a strong oblique cord. Aperture ovate. Outer lip denticulate. 

Columellar callus narrowly extended onto body whorl and strongly denticulate at anterior.  

 

TYPE SPECIMENS 

SYNTYPES: Nassarius sublirellus, SAM, T-580.  
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DISTRIBUTION 

Mitchellian - Kalimnan (Late Miocene - Pliocene): Victoria (VIC060 (TL), VIC061). 

 

REMARKS 

Cernohorsky (1981) proposed that N. (N.) nigellus is the forerunner to the recent species N. 

(N.) sublirellus. The distinction is based on the more elongate shell and less rounded 

aperture outline of N. (N.) nigellus and the more clearly bordered columellar callus and 

more prominent denticulation along the columella in N (N.) sublirellus.  

 

Nassarius (Niotha) crassigranosus (Tate, 1888) 

 

Plate 3, figs. 1a, b. 

 

1888 Nassa crassigranosa Tate, p.170, pl. 12, figs. 6a, b. 

1928 Nassarius crassigranosus Chapman, p.164. 

1970 Tavaniotha crassigranosa  Darragh, p.164. 

1981 Nassarius (Niotha) crassigranosus  Cernohorsky, p.162, figs. 42-44. 

 

DIAGNOSIS 

Shell ovate. Sutures threadlike leading onto concave and distinctive ramp marked with 

nodules. Sculpture nodular where axial and spiral sculpture intersect. Outer lip smooth or 

weakly denticulate. Columellar callus fairly narrow, bordered, smooth. Siphonal fasciole 

with oblique cords. Broad varix on body whorl in some specimens. 

 

TYPE SPECIMENS 

SYNTYPES: Nassarius (Niotha) crassigranosus SAM, T586.  

 

DISTRIBUTION 

Mitchellian - Kalimnan (Late Miocene - Pliocene): Victoria (VIC060 (TL), VIC061-063). 

 

REMARKS 

This species is easily distinguished from other species of Niotha due to the angular and 

shallowly sloping sutural shoulder creating a more stepped shell outline. 
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Subgenus ZEUXIS H. & A. Adams, 1853 

 

1853 Zeuxis H. & A. Adams, p.119.  

1881 Venassa v. Martens, p.109.  

1969 Glabrinassa Shuto, p.145.  

1976 Bathynassa Ladd, p.131.  

 

TYPE SPECIES 

Buccinum taenia Gmelin, 1791 by subsequent designation (Cossman, 1901) = Buccinum 

olivaceum Bruguiere, 1789. Recent, Indo-Pacific. 

 

DIAGNOSIS 

Shell moderate sized for family, whorls convex. Shell sculpture of axial costae, spiral striae, 

grooves. Aperture generally wide. Columellar callus narrow, denticulation variable. Outer 

lip slightly thickened, less variced than species of Niotha, can be denticulate or lirate 

interiorly. Siphonal canal short. 

 

DISTRIBUTION 

Miocene - Recent. Tropical Indo-Pacific. 

 

REMARKS 

Cernohorsky (1984) suggested that, like the subgenus Niotha, the definition of this 

subgenus is not well constrained and some species may be easily placed in either 

subgenera. See remarks section of Niotha for discussion. Three species of the subgenus 

Zeuxis are found in the Cenozoic sediments of southeastern Australia. 

 

 

KEY TO SPECIES FOUND AS FOSSILS IN SOUTHEASTERN AUSTRALIA: 

1.  Sculpture intersection nodulate.    Go to 2. 

 Sculpture lacking nodulose appearance.    spiraliscabrus 

 

2. Outer lip denticulate along margin.    pyrrhus 

 Outer lip lirate interiorly.     subcopiosus 

 

 



150 
 

Nassarius (Zeuxis) spiraliscabrus (Chapman & Gabriel, 1914) 

 

Plate 3, figs. 2a, b. 

 

1914 Nassa spiraliscabra Chapman & Gabriel, p.325, pl. 28, fig. 34. 

1928 Nassarius spiraliscabrus  Chapman, p.164. 

1958 Hinia (Reticunassa) spiraliscabra Ludbrook, p.65, pl.3, fig. 2. 

1970 Reticunassa spiraliscabra Darragh, p.195. 

1981 Nassarius (Zeuxis) spiraliscabrus Cernohorsky, p.172, figs. 61, 62. 

 

DIAGNOSIS 

Shell small, elongate-ovate. Sculpture of irregularly spaced, slender axial costae and spiral 

grooves, weak or strong. Siphonal fasciole with oblique cords. Outer lip variced, interiorly 

lirate or denticulate. Columellar callus well defined. Distinct siphonal notch. 

 

TYPE SPECIMENS 

HOLOTYPE: Nassarius (Zeuxis) spiraliscabrus, NMV, P12491. 

 

DISTRIBUTION 

Kalimnan – Yatalan (Pliocene – Early Pleistocene): Victoria, Western Australia (VIC063, 

VIC078 (TL), SA031, SA032, WA027).  

 

REMARKS 

The weaker spiral sculpture in this species separates it from the very similar N. (Z.) 

subcopiosus. 

  

Nassarius (Zeuxis) pyrrhus (Menke, 1843) 

 

1822 Buccinum fasciatum Lamarck, p.211. 

1834 Buccinum jacksonianum Kiener, p.64, pl. 19, fig. 73 (non Quoy & Gaimard, 1833). 

1843 Buccinum pyrrhum Menke, p.21 (nom. subst. pro Buccinum fasciatum Lamarck, 

 1822). 

1853 Nassa (Tritia) dealbata A. Adams, p.112. 

1853 Nassa fasciata Reeve, pl.6, fig. 40. 

1913 Alectrion fasciata Suter, p.397, pl.45, fig. 16. 
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1915 Alectrion victorianus Iredale, p.467 (nom. subst. pro Buccinum fasciatum Lamarck, 

 1822). 

1916 Arcularia victoriana Iredale, Hedley, p.61 

1921 Nassarius victorianus Iredale, May, p.82 

1936 Nassarius pyrrhus Gabriel, p.12, textfig. 

1938 Niotha pyrrhus Cotton & Godfrey, p.24. 

1972 Nassarius (Zeuxis) pyrrhus Cernohorsky, p.171, fig. 121, 142. 

Refer to Cernohorsky (1981) for full synonymy. 

 

DIAGNOSIS 

Shell elongate-ovate. Coarse spiral threads intersect moderately fine, angulate, axial costae 

creating a nodular sculpture. Columellar callus narrow and well defined, irregularly 

denticulate along entire length, frequently doubled. Outer lip denticulate along margin. 

Aperture ovate, smooth interiorly.  

 

TYPE SPECIMENS 

HOLOTYPE: Nassarius dealbatus (worn specimen), BMNH, 197331. 

SYNTYPES: ?Buccinum fasciatum, Nassarius pyrrhus and Alectrion victorianus MHNG, 

1296/7. 

 

DISTRIBUTION 

Mitchellian – Recent (Pliocene – Recent): Victoria, South Australia Western Australia, 

Tasmania (VIC056, VIC062, VIC064-077, TAS008-033, SA003, SA007-029, WA007, WA010-

025).  

 

REMARKS 

Cernohorsky (1972) noted that N. (Z.) pyrrhus is often assigned to the subgenus Niotha but 

the narrow and clearly defined columellar callus is more similar to other species of the 

subgenus Zeuxis. 

 

Nassarius (Zeuxis) subcopiosus (Ludbrook, 1958) 

 

1958 Hinia (Reticunassa) subcopiosa Ludbrook, p.64, pl. 3., fig. 1. 

1970 Reticunassa subcopiosa  Darragh, p.197. 

1978 Nassarius (Reticunassa) subcopiosa Ludbrook p.150, pl. 17, figs. 1, 2. 
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1981 Nassarius (Zeuxis) subcopiosus Cernohorsky, p.170, figs. 59, 60. 

 

DIAGNOSIS 

Shell elongate-ovate. Sculpture of fairly fine axial costae intersecting with spiral cords to 

create a nodular appearance. Outer lip interiorly lirate, weakly variced on margin. 

Columellar callus narrow, well defined, denticulate. Parietal denticle present. 

 

TYPE SPECIMENS 

HOLOTYPE: Nassarius subcopiosus, SAM, F15403. 

 

DISTRIBUTION 

Kalimnan – Yatalan (Late Pliocene): South Australia, Western Australia (SA030 (TL), WA026).  

 

REMARKS 

This species shows a resemblance to N. (Z.) pyrrhus but differs in its less numerous mature 

whorls and more numerous protoconch whorls, the smaller sized adult shell and the 

thickening of the columellar callus above the parietal wall. N. (Z.) subcopiosus is also similar 

to N. (Z.) spiraliscabrus except for a more nodulose sculpture on the spire. Sculpture in both 

species shows variation. 

 

 

Subgenus PLICARCULARIA Thiele, 1929 

 

1826 Eione Risso, p.171.  

1929 Nassarius (Plicarcularia) Thiele, p.324.  

1936 Parcanassa Iredale, p.322.  

1956 Austronassaria C. & J. Laseron, p.71 (non S. V. Wood, 1872) = Buccinum jonasii 

 Dunker, 1846.  

1969 Retiarcularia Shuto, p.23 (nomen nudum) 

1969 Chelenassa Shuto, p.142.  

 

TYPE SPECIES 

Nassa (Plicarcularia) thersites (Bruguiére, 1789) by monotypy = Buccinum pullus Linnaeus, 

1758. Recent, Indo-Pacific. 
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DIAGNOSIS 

Shell small for family, more elongate than Nassarius sensu stricto, mainly ovate in shape. 

Columellar callus longitudinally extended, often considerably. Aperture small, generally 

narrow, denticulate or plicate. Shell sculpture of axial costae, spiral threads. Short siphonal 

canal.  

 

DISTRIBUTION 

Pliocene - Recent. Tropical and temperate Indo-Pacific. 

 

REMARKS 

The columellar callus is more extended than in other subgenera, often overlapping a large 

proportion of the body whorl. Only two species of this subgenus are found in Australia, of 

which only one is found as a fossil in the Cenozoic sediments of southeastern Australia.  

 

Nassarius (Plicarcularia) burchardi (Dunker in Philippi, 1849) 

 

Plate 3, figs. 3a, b. 

 

1849 Buccinum burchardi Dunker in Philippi, p.69, pl.2, fig.14. 

1852 Nassa labecula A. Adams, p.98. 

1868 Nassa (Arcularia) labecula Cox, p.5. 

1901 Nassa burchardi Tate & May, p.358. 

1918 Nassarius burchardi Hedley, M88.  

1936 Parcanassa ellana Iredale, p.322.  

1955 Parcanassa burchardi Cotton, p.2, fig. 6.  

1961 Nassarius (Parcanassa) ellana Rippingale & McMichael, p. 105, pl. 13, fig.  18. 

1972 Nassarius (Plicarcularia) burchardi Cernohorsky, p.139, figs. 31,  32, fig. 56. 

Refer to Cernohorsky (1981) for full synonymy. 

 

DIAGNOSIS 

Shell elongate-ovate. Axial costae on body whorl slender, often swollen, corrugated, 

nodular at suture and usually very weak at outer lip. Spiral threads present, interstices 

often smooth. Columellar callus greatly extended and reaching suture on body whorl, 

denticles on anterior. Outer lip smooth or denticulate on margin. Aperture ovate, smooth.  
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TYPE SPECIMENS 

HOLOTYPE: Nassarius (Plicarcularia) burchardi , ZHMU (no specimen number available). 

SYNTYPES: Nassarius labecula, BMNH, 197344; Nassarius ellana, AMS, C-12999. 

 

DISTRIBUTION 

Mitchellian – Recent (Pliocene – Recent): Queensland to Western Australia and Tasmania 

(QLD001-020, NSW001-036, VIC052-059, SA003 (TL), SA004-009, TAS003-007, WA001-009).  

 

REMARKS 

The presence of an extended columellar callus makes this species easily recognisable as 

belonging to the subgenus Plicarcularia. 

 

 

Subgenus HIMA Leach in Gray, 1852 

 

1852 Hima Leach in Gray, p.123.  

1852 Tritonella A. Adams, p.111 (non Swainson, 1839). 

1931 Mirua Marwick, p.115.  

1936 Reticunassa Iredale, p.322.  

 

TYPE SPECIES 

Buccinum minutum Pennent, 1777 by subsequent designation (Marwick, 1931) = Buccinum 

incrassatum Ström, 1768. Recent, Mediterranean. 

 

DIAGNOSIS 

Shell small for family, ovate or elongate-ovate. Sutures distinct, often canaliculate. Whorls 

convex. Sculpture of axial costae, prominent spiral striae. Aperture small, roundly ovate. 

Columella callused, plicate or irregularly denticulate. Outer lip often denticulate, variced. 

Siphonal canal short. 

 

DISTRIBUTION 

Miocene - Recent. Cosmopolitan. 
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REMARKS 

Cernohorsky (1972, 1984) dicussed in some detail the homonymy and type desginations of 

the subgenus Hima, in particular the confusion between the use of Tritonella A. Adams and 

Hima Leach in Gray. Only one species of the subgenera Hima is found in the Cenozoic 

sediments of southeastern Australia. 

 

Nassarius (Hima) tatei tatei (Tenison-Woods, 1879) 

 

Plate 3, figs. 4a, b. 

 

1879 Nassa tatei Tenison-Woods, p.230, pl.21, fig. 13.  

1928 Nassarius tatei Tension-Woods, Chapman, p.164. 

1970 Reticunassa tatei Darragh, p.200. 

1981 Nassarius (Hima) tatei tatei Cernohorsky, p.175, figs. 68-70. 

 

DIAGNOSIS 

Shell small, ovate or elongate-ovate. Sutures somewhat impressed or canaliculate. 

Sculpture of intersecting axial costae and spiral threads creating nodular appearance. Outer 

lip variced, denticulate. Columellar callus well defined, narrow. Parietal denticle often 

present. Siphonal canal oblique cords. 

 

TYPE SPECIMENS  

SYNTYPES: Nassarius tatei, AMS, F-1771. 

 

DISTRIBUTION 

Janjukian – Yatalan (Late Oligocene – Pleistocene): Victoria, South Australia, Western 

Australia (VIC022-023, VIC061, VIC079-085, SA001 (TL), SA033, WA028-029).  

 

REMARKS 

This species is diverse in form with a high degree of variability in shape and sculpture. 

Harris (1897) examined a large number of specimens concluding that despite the diversity 

in form all belong to the one species due to the gradual changes in shape and sculpture.   
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PLATE 3 – NASSARIIDAE 

 

Figure 1 Nassarius (Niotha) crassigranosus, T586, syntype, Muddy Creek Marl of Muddy 

 Creek, VIC: 

 a) Shell (length = 14mm) 

 b) Protoconch  

Figure 2 Nassarius (Zeuxis) spiraliscabrus, P12491, holotype, unknown formation of Mallee 

 Bore No. 8, VIC: 

 a) Shell (length = 10.3mm) 

 b) Protoconch  

Figure 3 Nassarius (Plicarcularia) burchardi, no specimen number, non-type, Jemmys Point 

 Formation of Jemmys Point, VIC: 

 a) Shell (length = 9mm) 

 b) Protoconch  

Figure 4 Nassarius (Hima) tatei tatei, P316706, non-type, Muddy Creek Marl of Muddy 

 Creek, VIC: 

 a) Shell (length = 7.5mm) 

 b) Protoconch  
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PLATE 3 – NASSARIIDAE 
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3.3 FAMILY RAPHITOMIDAE 

 

The gastropod family Raphitomidae is assigned to the superfamily Conoidea within the 

Neogastropoda. Until recently the Raphitomidae has been classified as a subfamily of the 

Turridae, based on shell morphology and radula form (e.g. Powell, 1966; Rosenberg, 2009). 

A revised classification of the Conoidea based on shell morphology, radula and foregut 

anatomy (Taylor et al., 1993) resulted in a significant rearrangement of taxa but was met 

with resistance (e.g. Rosenberg, 1998) and was generally not adopted. Following this, 

advances in molecular phylogenetics of living “turrids” placed most turrid species in the 

family Conidae (Puillandre et al., 2008) significantly reducing the number of true turrid 

species. Again, this new classification was not well recieved with some researchers 

suggesting that the phylogeny was not robust enough to move away from the traditional 

classification of turrid species. The most recent classification of the Conoidea is based on a 

combination of phylogeny (Puillandre et al., 2008), anatomy, radula and shell morphology 

(Bouchet et al., 2011) at genus level. This study resulted in the reclassification of the 

originally polyphyletic Turridae family into thirteen monophyletic families of which the 

family Raphitomidae is one. However, this new classification only takes into account living 

taxa and as a result many fossil “turrids” do not perfectly fit owing to the lack of genetic, 

anatomical and radula data.  

 

The family Raphitomidae is considered to be the largest and most variable of all Conoidea 

families in terms of species as well as having the greatest vertical range in terms of water 

depth, from intertidal to trench zones (Bouchet et al., 2011). According to the most recent 

classification of living species (Bouchet et al., 2011), the family is comprised of 63 genera of 

which six are only tentatively assigned to the family due to an ambiguous morphological fit. 

There is currently no revised taxonomy for this family as a whole in Australia for either 

living or fossil species. 

 

 

3.3.1 SYSTEMATIC PALAEONTOLOGY 

 

Only two species of raphitomid fossil are in included in this taxonomy which is unlikely to 

reflect the true diversity in Cenozoic southeastern Australia. There are almost certainly a 

great deal more species but due to the difficulty in assigning fossil genera to the newly 

erected Raphitomidae family on shell morphology alone, only two can be assigned to the 
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family confidently. Generic assignment follows Bouchet et al. (2011). Species have been 

assigned to genera based on examination of type material and other Australian species. 

 

 

CLASS GASTROPODA 

ORDER NEOGASTROPODA 

SUPERFAMILY CONOIDEA Fleming, 1822 

Family RAPHITOMIDAE A. Bellardi, 1875 

 

1875 Raphitomidae A. Bellardi, p. 20. 

 

DIAGNOSIS 

Shell size and shape variable. Protoconch typically multispiral, striated initially, then 

cancellate, spiral striations when paucispiral. Sculpture development variable, smooth to 

strong axial and spiral sculpture. Traces of anal sinus growth. Inner lip often smooth. 

Siphonal canal short to long.  

 

DISTRIBUTION 

Palaeocene – Recent. Cosmopolitan. 

 

REMARKS 

Despite being the largest and most diverse family within the superfamily Conoidea, very 

few fossil species from this family are found in the field area. The genera Daphnella and 

Teleochilus were originally assigned to the family Turridae in older literature but have here 

been assigned to the family Raphitomidae following Bouchet et al. (2011). 

 

 

KEY TO GENERA FOUND AS FOSSILS IN SOUTHEASTERN AUSTRALIA: 

1.  Multispiral protoconch, cancellate sculpture.    Daphnella 

2.  Spiral lirae on paucispiral protoconch, dominant spiral sculpture. Teleochilus
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Genus DAPHNELLA Hinds, 1844 

 

1844 Daphnella Hinds, p. 25. 

1844 Daphnella (Daphnella) Hinds, p. 25. 

1918 Hemidaphne Hedley, p. 79. 

1933 Eudaphnella Bartsch, p.76. 

1954 Paradaphne Laseron, p. 208. 

 

TYPE SPECIES 

Pleurotoma lymnaeformis Kiener by subsequent designation (Herrmannsen, 1947). Recent, 

Indian Ocean. 

 

DIAGNOSIS 

Shell elongate-ovate to ovate-fusiform. Multispiral, pointed, cancellate sinusigerid 

protoconch. Whorls convex. Sculpture usually cancellate. Reduced canal. 

 

DISTRIBUTION 

?Palaeocene – Recent. Cosmopolitan. 

 

REMARKS 

Whilst it is not within the scope of this study, this genus needs to be reviewed in the future 

due to the difficulty in finding distribution data and a clear description outlining the 

diagnostic characteristics. Only one species of this genus is found in the study area although 

many others are found in other global regions. It is placed in the family Raphitomidae based 

on molecular phylogenetic analysis in Bouchet et al. (2011). 

 

Daphnella cuspidatus (Chapple, 1934) 

 

Plate 4, figs. 1a, b. 

 

1934 Guraleus cuspidatus Chapple, p. 164. 

1944 Daphnella cuspidatus Powell, p. 59. 
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DIAGNOSIS 

Shell elongate-fusiform, whorls medially convex, turreted spire. Whorls shouldered 

posteriorly. Axial sculpture of oblique costae, obsolete anteriorly. Spiral sculpture of closely 

spaced fine threads, coarsest on spire whorls. Outer lip smooth, Siphonal canal wide, short. 

 

TYPE SPECIMENS 

HOLOTYPE: Daphnella cuspidatus NMV, P13691. 

 

DISTRIBUTION 

Janjukian – Mitchellian (Late Oligocene – Late Miocene): Victoria (VIC022 (TL), VIC028). 

 

REMARKS 

Some features of this species are atypical of the genus but as the majority of characters are 

consistent with the genus Daphnella it remains in this genus (see Powell, 1944 for 

discussion). Chapple (1934) remarked on its similarity to the living species Guraleus cuspis 

(Sowerby). 

 

 

Genus TELEOCHILUS Harris, 1897 

 

1897 Teleochilus Harris, p. 64. 

 

TYPE SPECIES 

Daphnella gracillima Tenison-Woods by original designation. Early Miocene, Tasmania. 

 

DIAGNOSIS 

Shell elongate-fusiform. Paucispiral protoconch with spiral lirae. Whorls slightly convex. 

Axial sculpture of weak costae, growth lines faint. Spiral sculpture of prominent spiral cords 

and threads. Columella plaited. Aperture callused.  

 

DISTRIBUTION 

Miocene – Recent. Southeastern Australia. 
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REMARKS 

This genus is exclusively found in southeastern Australia and is characterised by the spiral 

lirae present on the paucispiral protoconch and dominance of spiral sculpture rather than 

axial elements. 

 

Teleochilus gracillima (Tenison-Woods, 1877) 

 

Plate 4, figs. 2a, b. 

 

1877 Daphnella gracillima Tenison-Woods, p. 106. 

1944 Teleochilus gracillimus Powell, p. 64. 

 

DIAGNOSIS 

Shell fusiform, glazed, whorls convex. Axial sculpture of strong, broad costae. Spiral 

sculpture of few, distantly spaced, flat cords, one broad cord at suture. Outer lip thin. 

Siphonal canal short, wide.  

 

TYPE SPECIMENS 

HOLOTYPE: Daphnella gracillima TM, Z207. 

 

DISTRIBUTION 

Longfordian (Early Miocene): Tasmania (?TAS001, ?TAS002). 

 

REMARKS 

This species is easily distinguished by its distinct broad costae and wide spiral interspaces.  
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PLATE 4 – RAPHITOMIDAE 

 

Figure 1 Daphnella cuspidatus, P13691, holotype, Fyansford Formation of Fossil Beach, VIC: 

 a) Shell (length = 14mm) 

 b) Protoconch  

Figure 2 Teleochilus gracillima, no specimen number, non-type, Fossil Bluff Sandstone of 

 Table Cape, TAS: 

 a) Shell (length = 15mm) 

 b) Protoconch  
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PLATE 4 – RAPHITOMIDAE 
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3.4 FAMILY BORSONIIDAE 

 

The gastropod family Borsoniidae is assigned to the superfamily Conoidea within the 

Neogastropoda. Traditionally, the Borsoniidae has been assigned as a subfamily to the 

family Turridae based on shell and radula characters (e.g. Powell, 1966; McLean, 1971). The 

generally unadopted classification of Taylor et al. (1993) included borsoniid gastropods in 

the subfamily Clathurellinae. Molecular phylogenetic analysis of living conoidean 

gastropods (Puillandre et al., 2008) also placed the borsoniids in the subfamily 

Clathurellinae which in turn was assigned to the family Conoidae. As outlined previously 

neither of these taxonomic revisions were well receieved and as a result until very recently 

Borsoniinae has remained a subfamily of the Turridae. Combined examination of molecular 

data, anatomy, radula and shell morphology has resulted in the promotion of Borsoniinae 

to family status as one of thirteen monophyletic families within the superfamily Conoidea 

(Bouchet et al., 2011). However, this newest classification does not include fossil species 

due to the lack of anatomical and molecular data and as a result the family Borsoniidae still 

needs to be revised in terms of assignment of fossil taxa.  

 

The literature procides little insight into the ecology of the Borsoniidae itself, but as 

borsoniid species were originally assigned to the family Turridae it is suggested that they 

are carnivorous organisms found at a variety of water depths (Roy, 2002). The Borsoniidae 

is considered to be one of the more heterogeneous groupings within the Conoidea 

comprising a number of conchologically variable clades (Bouchet et al., 2011). Some of the 

most ancient conoideans (e.g. Tomopleura, Bathytoma, Zemacies) are included in this 

family, with first occurrences as far back as the earliest Palaeogene in Australia. The family 

comprises thirty genera of which four are considered tentative. There is currently no 

revised taxonomy for this family as a whole in Australia on either living or fossil species. 

 

 

3.4.1 SYSTEMATIC PALAEONTOLOGY 

 

The taxonomy that follows comprises fourteen species assigned to six genera. Difficulty in 

assigning fossil taxa due to conchological variability makes it unlikely that the taxa here 

account for all fossil borsoniids in Cenozoic southeastern Australia. Generic assignment 
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follows Bouchet et al. (2011). Species have been assigned to genera based on examination 

of type material and other Australian species. 

 

 

CLASS GASTROPODA 

ORDER NEOGASTROPODA 

SUPERFAMILY CONOIDEA Fleming, 1822 

Family BORSONIIDAE, A. Bellardi, 1875 

 

1875 Borsoninae, A. Bellardi, p.20. 

2003 Zemaciinae, Sysoev, p. 86. 

2011 Borsoniidae, Bouchet et al., p. 276. 

 

DIAGNOSIS 

Shell small to large, fusiform to biconic. Protoconch paucispiral or multispiral, sometimes 

with axial costae. Sculpture of coarse axial costae, sometimes obsolete or absent and spiral 

threads and cords often well developed. Columellar plaits strong to obsolete. Aperture 

elliptical to oval. Short to moderately long siphonal canal. Siphonal notch deep. 

 

DISTRIBUTION 

Palaeocene – Recent. Cosmopolitan. 

 

REMARKS 

This rather heterogeneous group is yet to be fully resolved and is still in need of attention 

despite the efforts of Bouchet et al. (2011). Conchological variability may be the result of 

the inclusion of some of the most ancient conoideans (e.g. Zemacies, Borsonia, 

Tomopleura) from the Palaeocene (see Bouchet et al., 2011 for discussion). 

 

 

KEY TO GENERA FOUND AS FOSSILS IN SOUTHEASTERN AUSTRALIA: 

1.  Shell elongate-fusiform.     Go to 2. 

 Shell ovate-fusiform to biconic.     Go to 4. 

 Shell claviform.       Tomopleura. 

 

2. Shell whorls shouldered.     Go to 3. 
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 Shell whorls angulated.      Cryptocordieria. 

 

3. Siphonal notch absent.      Borsonia. 

 Siphonal canal long.      Zemacies. 

 

4. Axial sculpture of growth lines only.    Microdrillia. 

 Axial sculpture of costae or nodules.    Bathytoma. 

 

 

Genus TOMOPLEURA Casey, 1904 

 

1904 Tomopleura Casey, p. 138. 

 

TYPE SPECIES 

Pleurotoma nivea Philippi, 1851 by original designation. Recent, Formosa. 

 

DIAGNOSIS 

Shell claviform, slender, elongate. Multispiralled protoconch. Axial sculpture of coarsely 

incised growth lines. Spiral sculpture of two large, conspicuous principal carinae, one below 

suture, one medial, smaller carinae present. Small, deep anal sinus between two principal 

carinae.  Columella with one to two plaits. 

 

DISTRIBUTION 

?Upper Cretaceous – Recent. Asia, Australasia, Africa, Indo-Pacific. 

 

REMARKS 

Finding the distribution data for this genus is extremely difficult as it is often not clearly 

outlined in the literature and so a review of the genus may confirm temporal and spatial 

occurrences to be more extensive than suggested here. The genus is characterised by the 

spiral keel and by the multispiral protoconch.  

 

Tomopleura dilectoides (Chapman & Gabriel, 1914) 

 

Plate 5, figs. 1a, b. 
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1914 Pleurotoma (Drillia) dilectoides Chapman & Gabriel, p. 327. 

1944 Tomopleura dilectoides Powell, p. 38. 

 

DIAGNOSIS 

Shell fusiform, acute apex, sloping shoulder. Whorls contracted at base. Axial sculpture of 

growth lines. Spiral sculpture of spire bicarinate, increasing in number on body whorl, 

weakest at anterior, interspaces with sigmoidal, closely spaced threads.  

 

TYPE SPECIMENS 

HOLOTYPE: Tomopleura dilectoides NMV, P12494. 

 

DISTRIBUTION 

Mitchellian - Kalimnan (Pliocene): Victoria (VIC059 (TL), VIC078, VIC117). 

 

REMARKS 

This species is one of only two fossil species of this genus to occur in Australia. The other, T. 

ludbrookae, is not included in this taxonomy due to specimens being unavailable for 

examination. 

 

 

Genus CRYPTOCORDIERIA Long, 1981 

 

1981 Cryptocordieria Long, p. 36. 

 

TYPE SPECIES 

Cryptocordieria variabilis Long, 1981 by original designation. Eocene, Australia. 

 

DIAGNOSIS 

Shell elongate-fusiform, whorls angulated. Paucispiral protoconch. Axial sculpture of slightly 

sigmoidal costae extending suture to suture, more spaced and weakening towards body 

whorl. Spiral sculpture of numerous threads, sometimes obsolete. Outer lip sharp. Posterior 

sinus shallow, on shoulder slope. 

 

DISTRIBUTION 

?Eocene. ?Australasia. 
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REMARKS 

Only one species from this genus appears in the fossil record of southeastern Australia. It 

has been placed in this family due to its thick shell, shallow posterior sinus and twisted, 

slightly thickened columella. 

 

Cryptocordieria variabilis Long, 1981 

 

Plate 5, figs. 2a, b. 

 

1981 Cryptocordieria variabilis Long, p. 36. 

 

DIAGNOSIS 

Shell elongate-fusiform, tall spire, whorls medially inflated, shallow, concave shoulder. Axial 

sculpture of sigmoidal costae extending from suture to suture, anteriorly obsolete on body 

whorl, nodulate on and around periphery. Spiral sculpture of numerous fine threads, 

strongest anteriorly, of variable strength, sometimes reticulate where intersecting with 

growth lines. Short, wide siphonal canal.  

 

TYPE SPECIMENS 

HOLOTYPE: Cryptocordieria variabilis NMV, P33395. 

PARATYPES: Cryptocordieria variabilis NMV, P42857, P33394. 

 

DISTRIBUTION 

Johannian - Aldingan (Late Eocene): Victoria (VIC091, VIC092, VIC114 (TL)). 

 

REMARKS 

Axial and spiral sculpture is variable in this species but still falls within the expected range 

of variability for a single species (see Long, 1981 for discussion).  

 

 

Genus BORSONIA Bellardi, 1839 

 

1839 Borsonia Bellardi, p.30. 
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TYPE SPECIES 

Borsonia prima Bellardi, 1839 by monotypy. Miocene, Italy. 

 

DIAGNOSIS 

Shell elongate-fusiform, whorls often shouldered. Protoconch small, paucispiral. Columella 

with one, sometimes two medial plaits. Aperture narrowly pyriform, slightly flexed anterior 

canal. Outer lip sharp. Posterior sinus rounded, relatively deep, covering whole shoulder 

slope. Siphonal notch absent. 

 

DISTRIBUTION 

Palaeocene – Recent. Cosmopolitan (except Antarctica). 

 

REMARKS 

This genus is slightly unusual for the family in that the siphonal notch is absent. Relatively 

little literature defines this genus and, like the family as a whole, some work is needed in 

order to constrain the characters that define this genus. 

 

 

KEY TO SPECIES FOUND AS FOSSILS IN SOUTHEASTERN AUSTRALIA: 

1.  Siphonal canal short.      Go to 2 

 Siphonal canal long.      Go to 3 

 

2. Axial sculpture of rounded, spinose costae.  balteata 

 Axial sculpture of faint growth lines.   torquayensis 

 

3. Spiral sculpture of closely spaced threads.   Go to 4 

 Spiral sculpture of relatively strong cords.  tatei 

 

4. Whorls shouldered.     Go to 5 

 Whorls without shoulder.    protensa 

 

5. Aperture narrow.     otwayensis 

 Aperture wide.      polycesta 
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Borsonia balteata Tate, 1897 

 

Plate 5, figs. 3a, b. 

 

1897 Borsonia balteata Tate, p.395, pl. 19, fig. 10. 

 

DIAGNOSIS 

Shell fusiform, whorls carinated medially, narrow convex rib at anterior suture. Axial 

sculpture of rounded, spinose costae becoming obsolete posteriorly. Faint growth lines. 

Spiral sculpture of closely spaced cords and threads. Nodulate at intersection of axial and 

spiral sculpture. Aperture elongate-pyriform. Columella with two strong plaits. Siphonal 

canal short. 

 

TYPE SPECIMENS 

HOLOTYPE: Borsonia balteata SAM, T326. 

 

DISTRIBUTION 

Janjukian – Mitchellian (Late Oligocene – Late Miocene): Victoria (VIC014 (TL), VIC005). 

 

REMARKS 

This species is distinguished by the nodulate appearance of the intersection of axial and 

spiral sculpture. 

 

Borsonia torquayensis Powell, 1944 

 

1944 Borsonia torquayensis Powell, p. 42, pl. 1, fig. 11. 

 

DIAGNOSIS 

Shell fusiform-biconic, medially carinated, body whorl tumid. Axial sculpture of faint growth 

lines. Spiral sculpture of distinct, strong spiral cords. Spiral cords strongest anteriorly below 

carinae. Columella with two strong plaits. Siphonal canal short, wide. 

 

TYPE SPECIMENS 

HOLOTYPE: Borsonia torquayensis AIM, 70943. 
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DISTRIBUTION 

Janjukian (Late Oligocene): Victoria (VIC005 (TL)). 

 

REMARKS 

This species is similar to B. balteata but differs in its reduced axial sculpture and weaker 

subsutural margining (Powell, 1944). 

 

Borsonia tatei Powell, 1944 

 

1944 Borsonia tatei Powell, p.42, pl. 3, fig. 8. 

1981 Borsonia tatei eocenica Long, p.35, pl. 5, fig.18. 

 

DIAGNOSIS 

Shell elongate-fusiform, slender, whorls shouldered medially. Axial sculpture of sub-spinose 

costae, nodular at periphery, obsolete posteriorly. Spiral sculpture of fine threads and 

relatively well-developed cords, strongest anteriorly. Inner lip glazed. Columella with one 

plait. Siphonal canal long. 

 

TYPE SPECIMENS 

HOLOTYPE: Borsonia tatei AIM, 70942. 

 

DISTRIBUTION 

Johannian – Longfordian (Late Eocene – Early Miocene): Victoria (VIC115 (TL), VIC092, 

?VIC113). 

 

REMARKS 

This species is characterised by the strong medial shoulder, well developed costae and 

presence of spiral cords. Long (1981) erected the subspecies Borsonia tatei eocenica due to 

variation in sculpture between species found in Browns Creek and those found in Spring 

Creek. However, the variability is not considerable and as a result this subspecies has been 

included under the species name Borsonia tatei. 

 

Borsonia protensa Tate, 1897 

 

1897 Borsonia protensa Tate, p.394, pl. 19, fig. 6. 
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DIAGNOSIS 

Shell elongate-fusiform, slender, whorls rounded. Axial sculpture of poorly developed 

costae on spire whorls, absent on body whorl. Spiral sculpture of closely spaced faint 

threads. Columella with two strong plaits. Siphonal canal long and reflexed slightly. 

 

TYPE SPECIMENS 

HOLOTYPE: Borsonia protensa SAM, T340D. 

SYNTYPES: Borsonia protensa SAM, T340A-C. 

 

DISTRIBUTION 

Aldingan - Willungan (Late Eocene – Early Oligocene): Victoria (VIC002 (TL)). 

 

REMARKS 

Long (1981) considered B. protensa, B. polycesta and B. otwayensis to all be variations of a 

single species (Cordieria protensa). However, B. protensa lacks the angulated shoulder and 

strongly developed sculpture seen in the other two species and this is probably outside of 

the spectrum of variability expected within a single species. As a result B. protensa is 

treated as a species in its own right. 

 

Borsonia otwayensis Tate, 1897 

 

1896 Borsonia otwayensis Cossmann, p.98 (figure of protoconch only. Specific name not 

 valid). 

1897 Borsonia otwayensis Tate, p.394, pl. 19, fig. 4. 

 

DIAGNOSIS 

Shell fusiform, body whorl tumid, spire whorls shouldered post-medially. Axial sculpture of 

broad costae on anterior of spire whorls, obsolete on body whorl, faint growth lines. Spiral 

sculpture of closely spaced threads. Aperture elongate-narrow. Inner lip glazed. Columella 

with two strong plaits. Siphonal canal long, wide. 

 

TYPE SPECIMENS 

HOLOTYPE: Borsonia otwayensis SAM, T320D. 

SYNTYPES: Borsonia otwayensis SAM, T320A-C, E-G. 
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DISTRIBUTION 

Aldingan - Willungan (Late Eocene – Early Oligocene): Victoria (VIC002 (TL)). 

 

REMARKS 

This species closely resembles B. polycesta except that this species is less nodulate, spire 

whorls are less convex and the aperture is narrower. As already noted, Long (1981) 

considered B. protensa, B. polycesta and B. otwayensis to all be variations of a single 

species. From examination of type material this species is considered to be distinct. 

 

Borsonia polycesta Tate, 1897 

 

1897 Borsonia polycesta Tate, p.395, pl. 19, fig. 2. 

 

DIAGNOSIS 

Shell fusiform, body whorl tumid, spire whorls shouldered. Spire whorls convex. Axial 

sculpture of costae on spire whorls, nodulate at shoulder, obsolete on body whorl. Spiral 

sculpture of closely spaced threads. Inner lip glazed. Columella with two strong plaits. 

Siphonal canal wide, moderately long. 

 

TYPE SPECIMENS 

HOLOTYPE: Borsonia polycesta SAM, T327C. 

SYNTYPES: Borsonia polycesta SAM, T327A, B, D-H, J. 

 

DISTRIBUTION 

Aldingan - Willungan (Late Eocene – Early Oligocene): Victoria (VIC002 (TL)). 

 

REMARKS 

This species closely resembles B. otwayensis except that this species is more nodulate, spire 

whorls are convex and the aperture is far wider. As already noted, Long (1981) considered 

B. protensa, B. polycesta and B. otwayensis to all be variations of a single species. From 

examination of type material this species is considered to be separate. 
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Genus ZEMACIES Finlay, 1926 

 

1926 Zemacies Finlay, p. 252. 

 

TYPE SPECIES 

Zemacies elatior Finlay, 1926 by original designation. Miocene, New Zealand. 

 

DIAGNOSIS 

Shell large, slender. Protoconch multispiral, axial costae at juncture with teleoconch. Very 

deep anal sinus on shoulder. Outer lip extended past origin at suture. 

 

DISTRIBUTION 

Palaeocene to Recent. Australasia. 

 

REMARKS 

The original description of this species is based on comparison with other genera. If a 

review of the Borsoniidae was to be undertaken then a clearer definition of this genus and 

its distribution would be necessary. Darragh (1997) noted that there are many similarities 

to the genus Apiotoma and suggests that they may comprise the same genus. However, 

Bouchet et al. (2011) treated them as separate genera and molecular phylogenetic analysis 

finds them to be assigned to different families. As a result, Zemacies is here left as its own 

genera. 

 

Zemacies procerior Darragh, 1997 

 

Plate 5, figs. 4a, b. 

 

1997 Zemacies procerior Darragh, p. 81, figs. 5 O-P, U. 

 

DIAGNOSIS 

Shell elongate-fusiform, tall spire. Whorls with blunt shoulder, concave ramp. Axial 

sculpture of low, broad opisthocline costae on shoulder, becoming weaker/obsolete on 

later whorls. Spiral sculpture of closely spaced fine threads over whole shell. Outer lip with 

deep notch. Columella callused. Siphonal canal long. 
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TYPE SPECIMENS 

FIGURED: Zemacies procerior NMV, P98421, P98419. 

 

DISTRIBUTION 

Wangerripian (Late Palaeocene): Victoria (VIC118 (TL)). 

 

REMARKS 

Only one complete mature specimen is found in museum collections of Z. procerior, other 

specimens are of juveniles or are weathered. 

 

 

Genus MICRODRILLIA Casey, 1903 

 

1903 Microdrillia Casey, p. 252. 

 

TYPE SPECIES 

Pleurotoma cossmanni Meyer, 1887 by subsequent designation (Cossmann, 1906). Upper 

Eocene, Jackson, Mississippi, USA. 

 

DIAGNOSIS 

Shell small, slender, truncated anteriorly. Protoconch multispiralled, axially ribbed. Axial 

sculpture of growth lines. Spiral sculpture of strong cords. Sinus on shoulder between 

subsutural keel and posterior keel. Columella smooth or plicate. 

 

DISTRIBUTION 

Eocene – Recent. Cosmopolitan. 

 

REMARKS 

This genus is distinguished by its deep sinus, multispiralled protoconch and axially ribbed 

protoconch whorls. 

 

Microdrillia steiroides (Chapman, 1928) 

 

Plate 5, figs. 5a, b. 
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1928 Filodrillia steiroides Chapman, p. 121, pl. 9, fig. 57. 

1944 Microdrillia steiroides Powell, p. 30. 

 

DIAGNOSIS 

Shell biconical, apex acute, whorls convex, angulate, shoulder carinate. Suture canaliculate. 

Axial sculpture of closely spaced costae on spire whorls. Spiral sculpture of one strong cord 

above shoulder, intermediate fine threads. Inner lip callused.  

 

TYPE SPECIMENS 

HOLOTYPE: Microdrillia steiroides NMV, P14469. 

 

DISTRIBUTION 

Janjukian – Mitchellian (Late Oligocene - Late Miocene): Victoria (VIC022 (TL), VIC119, 

VIC038, VIC023). 

 

REMARKS 

 This species is distinguished by its acute spire, sharp apex and ribbed spire whorls. 

 

 

Genus BATHYTOMA Harris & Burrows, 1891 

 

1891 Bathytoma Harris & Burrows, p. 113. 

1936 Micantapex Iredale, p.319. 

1951 Riuguhdrillia Oyama, p.80. 

1961 Parabathytoma Shuto, p.87. 

 

TYPE SPECIES 

Bathytoma cataphractus Brocchi, 1814 by original designation. Pliocene, Europe. 

 

DIAGNOSIS 

Shell oval-fusiform to biconic, whorls angular, concave posteriorly. Sculpture of spiral cords 

and costae, nodular, sometimes smooth. Protoconch blunt, smooth, paucispiral. Columella 

with one strong plait. Aperture narrowly subpyriform, slightly curved anterior canal. Outer 

lip sometimes crenulated. Siphonal fasciole distinct. 
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DISTRIBUTION 

Eocene – Recent. Europe, Asia, Australasia, North America, Indo-Pacific. 

 

REMARKS 

A formal description of this genus is hard to find in the literature and as a result a critical 

review of the diagnostic characters is necessary. The genus is distinguished by the dense 

beaded lirations occurring on the shoulder of the whorls. 

 

KEY TO SPECIES FOUND AS FOSSILS IN SOUTHEASTERN AUSTRALIA: 

1. Siphonal canal short.      Got to 2. 

 Siphonal canal relatively long.     rhomboidalis. 

 

2. Spiral sculpture strongest anteriorly.    Go to 3. 

 Spiral sculpture strongest posteriorly.   fontinalis. 

 

3. Spiral threads coarse and beaded.   decomposita. 

 Spiral threads beaded only at intersection on shoulder. pritchardi. 

 

Bathytoma rhomboidalis (Tenison-Woods, 1880) 

 

1880 Pleurotoma rhomboidalis Tenison-Woods, p. 10, pl. 2, fig. 9. 

1894 Genotia angustifrons Tate, p. 175, pl. 10, fig. 7. 

1897 Bathytoma angustifrons Harris, p. 49. 

1914 Bathytoma rhomboidalis Chapman, p. 19. 

 

DIAGNOSIS 

Shell elongate - fusiform, tall spired, whorls keeled at posterior suture. Axial sculpture of 

sinuous growth lines. Spiral sculpture of strong cords and threads, cords strongest 

anteriorly on body whorl. Subsutural fold bearing two beaded threads. Inner lip glazed. 

Outer lip sharp. Siphonal canal moderately long, narrow. 

 

TYPE SPECIMENS 

SYNTYPES: Bathytoma angustifrons SAM, T 1525A-K. 
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DISTRIBUTION 

Janjukian – Mitchellian (Late Oligocene - Late Miocene): Victoria and South Australia 

(VIC038 (TL), VIC022, VIC023, SA001). 

 

REMARKS 

This species is distinguished by its elongate-fusiform outline and the subsutural beaded 

threads. 

 

Bathytoma fontinalis (Tate, 1894) 

 

1893 Dolichotoma fontinalis Tate & Dennant (nomen nudum), p. 221. 

1894 Genotia fontinalis Tate, p. 175, pl. 10, fig. 4. 

1896 Bathytoma fontinalis Cossmann, p. 103. 

 

DIAGNOSIS 

Shell fusiform, whorls medially concave. Whorls inflated at anterior suture, nodular-

beaded. Axial sculpture of growth lines. Spiral sculpture of spiral threads, strongest 

posteriorly, sometimes granulose on body whorl. Inner lip callused. Outer lip sharp. 

Siphonal canal short, relatively wide. 

 

TYPE SPECIMENS 

SYNTYPES: Genotia fontinalis SAM, T1520A-F. 

 

DISTRIBUTION 

Janjukian – Bairnsdalian (Late Oligocene – Middle Miocene): Victoria (VIC005, VIC038, 

VIC115). 

 

REMARKS 

This species is distinguished by the beading along the anterior suture and the granulose 

spiral threads on the body whorl. 

 

Bathytoma decomposita (Tate, 1894) 

 

1893 Dolichotoma decomposita Tate & Dennant (nomen nudum), p. 221. 

1894 Genotia decomposita Tate, p. 175, pl. 10, fig. 8. 
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1896 Bathytoma gellibrandi Cossmann, p. 103. 

1897 Bathytoma decomposita Harris, p. 50. 

 

DIAGNOSIS 

Shell fusiform-biconic, whorls medially concave.  Whorls inflated at anterior suture. Axial 

sculpture of strong growth lines. Spiral sculpture of coarse beaded threads, most prominent 

on anterior of body whorl. Inner lip callused. Outer lip sharp. Siphonal canal short, slightly 

closed. 

 

TYPE SPECIMENS 

SYNTYPES: Genotia decomposita SAM, T1509A-M. 

 

DISTRIBUTION 

Janjukian – Mitchellian (Late Oligocene - Late Miocene): Victoria (VIC005, VIC022-023, 

VIC033, VIC081 (TL), VIC116). 

 

REMARKS 

This species is distinguished by its rounded sutural inflation and its coarse beaded spiral 

threads. Specimens from eastern Victoria are tall-spired with straight outlines compared to 

the wider specimens found in western Victoria (Powell, 1944). 

 

Bathytoma pritchardi (Tate, 1894) 

 

Plate 5, figs. 6a, b. 

 

1894 Genotia pritchardi Tate, p. 175, pl. 10, fig. 9. 

1944 Bathytoma pritchardi Powell, p. 14. 

 

DIAGNOSIS 

Shell fusiform, whorls medially concave, shouldered. Axial sculpture of coarse growth lines. 

Spiral sculpture of strong cords, strongest anteriorly. Nodulate-beaded at intersection on 

shoulder. Inner lip callused. Outer lip sharp. Siphonal canal short. 

 

TYPE SPECIMENS 

SYNTYPES: Bathytoma pritchardi SAM, T1522 A-C. 
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DISTRIBUTION 

Mitchellian - Kalimnan (Pliocene): Victoria (VIC059). 

 

REMARKS 

This species is characterised by its fusiform outline and strong posterior spiral cords. 
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PLATE 5 – BORSONIIDAE 

 

Figure 1 Tomopleura dilectoides, P12494, holotype, unknown formation ofMallee Bore No. 

 8, VIC: 

 a) Shell (length = 12mm) 

 b) Protoconch  

Figure 2 Cryptocordieria variabilis, P33395, holotype, Browns Creek Clay of Johanna, VIC: 

 a) Shell (length = 23.2mm) 

 b) Protoconch  

Figure 3 Borsonia balteata, T326, holotype, Fyansford Formationn of the Belmont Shaft, 

 VIC: 

 a) Shell (length = 9.8mm) 

 b) Protoconch  

Figure 4 Zemacies procerior, P98421, figured specimen, Pebble Point Formation of Dilwyn 

 Cove, VIC: 

 a) Shell (length = 31mm) 

 b) Protoconch  

Figure 5 Microdrillia steiroides, P14469, holotype, Fyansford Formation of Fossil Beach, VIC: 

 a) Shell (length = 15mm) 

 b) Protoconch  

Figure 6 Bathytoma pritchardi, T1522, syntype, Pliocene of Gippsland, VIC: 

 a) Shell (length = 32mm) 

 b) Protoconch  
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PLATE 5 – BORSONIIDAE 
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3.5 FAMILY MANGELIIDAE 

 

The gastropod family Mangeliidae is assigned to the superfamily Conoidea within the 

Neogastropoda. This family is traditionally accepted as a subfamily of the family Turridae 

(e.g. Powell, 1966; McLean, 1971) based on both shell morphology and radula. The addition 

of anatomical characters to radulae did not alter this family’s classification in any way 

(Taylor et al., 1993). Molecular phylogenetic analysis assigned the subfamily Mangeliinae to 

the family Conoidae (Puillandre et al., 2008) but this new classification was not generally 

supported and the subfamily remained under the Turridae umbrella. The most recent 

attempts to reclassify the Conoidea based on the combination of molecular data, shell 

morphology, radula and anatomy assigns the Mangeliinae to family level. It is now 

considered to be one of the thirteen monophyletic families comprising the Conoidea 

(Bouchet et al., 2011). Unfortunately, this newest classification system only takes into 

account Recent taxa which can lead to difficulties in assigning fossil taxa to this family.  

 

The family comprises fifty-seven genera (of which eight are tentatively placed within this 

family by Bouchet et al., (2011)) making it one of the more diverse conoidean families. 

There is currently no revised taxonomy for this family as a whole in Australia for either 

living or fossil species. 

 

 

3.5.1 SYSTEMATIC PALAEONTOLOGY 

 

The following taxonomy includes six species from three genera found within the field area. 

It is likely that many more fossil species from this family exist within the field area but it has 

not been possible to confidently assign more than these six species based on the 

information available. Generic assignment follows Bouchet et al. (2011). Species have been 

assigned to genera based on examination of type material. 
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CLASS GASTROPODA 

ORDER NEOGASTROPODA 

SUPERFAMILY CONOIDEA Fleming, 1822 

Family MANGELIIDAE P. Fischer, 1883 

 

1883 Mangeliinae P. Fischer, p. 587. 

1929 Cytharinae Thiele, p. 365. 

1987 Oenopotinae Bogdanov, p. 35. 

2011 Mangeliidae, Bouchet et al., p. 281. 

 

DIAGNOSIS 

Shell ovate – fusiform, low spired, whorls often shouldered/angulate. Axial sculpture of 

costae dominate. Spiral sculpture well developed, variable. Deep sinus with thick callus on 

shoulder slope of outer lip. Outer lip reinforced. Aperture narrow, ovate-elongate, rarely 

denticulate. Short, truncated siphonal canal.  

 

DISTRIBUTION 

Palaeocene – Recent. Cosmopolitan. 

 

REMARKS 

Bouchet et al. (2011) combined the subfamilies Mangeliinae, Oenopotinae and Cytharinae 

and promote them to the new rank of family (Mangeliidae) following the molecular 

phylogeny of Puillandre et al. (2011). Morphologically the family is characterised by the 

reinforced outer lip. 

 

 

KEY TO GENERA FOUND AS FOSSILS IN SOUTHEASTERN AUSTRALIA: 

1. Outer lip thin.      Got to 2. 

 Outer lip variced.     Antiguraleus 

 

2. Spiral sculpture weakly developed.   Guraleus 

 Spiral sculpture of fine threads over whole shell.  Macteola 
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Genus ANTIGURALEUS Powell, 1942 

 

1942 Antiguraleus Powell, p. 146. 

 

TYPE SPECIES 

Antiguraleus otagoensis Powell, 1942 by original designation. Recent, New Zealand. 

 

DIAGNOSIS 

Shell claviform-fusiform, blunt apex, relatively wide aperture. Whorls flattened below 

suture. Protoconch paucispiral, usually smooth. Axial sculpture of costae, often crenulating 

suture. Spiral sculpture of threads overprinting axial sculpture. Outer lip with strong to 

weak varix. Inner lip smooth. Siphonal canal shallow. 

 

DISTRIBUTION 

?Miocene – Recent. Australasia, Africa, Asia, Indo-Pacific. 

 

REMARKS 

The spatial and temporal distribution of this genus may be greater than outlined here. This 

is the result of a paucity of distribution data in the literature. 

 

Antiguraleus incisus (Powell, 1944) 

 

Plate 6, figs. 1a, b. 

 

1944 Guraleus (Paraguraleus) incisus Powell, p.51, pl. 5, fig. 15. 

1970 Antiguraleus incisus Darragh, p. 175. 

 

DIAGNOSIS 

Shell elongate-fusiform, whorls gently convex, whorls very slightly shouldered posteriorly. . 

Axial sculpture of sinuous costae, thirteen per whorl extending suture to suture, obsolete 

on anterior of body whorl. Spiral sculpture of incised grooves, intersecting axial sculpture. 

Outer lip with recurve, lightly varixed externally. Posterior sinus rounded, covering 

shoulder. 
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TYPE SPECIMENS 

HOLOTYPE: Guraleus (Paraguraleus) incisus AIM, 71000. 

 

DSITRIBUTION 

Kalimnan - Yatalan (Pliocene): South Australia (SA032 (TL)). 

 

REMARKS 

This species has distinctive curved costae and the outer lip is supported by a thick external 

varix. As a result it has been placed in the genus Antiguraleus following Darragh (1970). 

 

 

Genus GURALEUS Hedley, 1918 

 

1918 Guraleus Hedley, p. 79. 

1947 Euguraleus Cotton, p. 15. 

 

TYPE SPECIES 

Mangilia picta Adams & Angas, 1864 by original designation. Recent, New South Wales. 

 

DIAGNOSIS 

Shell elongate-fusiform tall, turreted spired. Protoconch multispiral, conical, smooth, 

sometimes with distinct tip and brephic axials. Body whorl narrow. Axial sculpture of 

dominant costae. Spiral sculpture of weakly developed cords and threads. Aperture narrow, 

outer lip thin. Posterior sinus broad, shallow, covering majority of shoulder slope. 

 

DISTRIBUTION 

Eocene – Recent. Australasia, Africa, Asia, Indo-Pacific. 

 

REMARKS 

The spatial distribution of this genus may be greater than outlined here. Due to a paucity of 

distribution data in the literature this information provides the best estimate. 

 

 

KEY TO SPECIES FOUND AS FOSSILS IN SOUTHEASTERN AUSTRALIA: 

1. Periphery subangulate.     Go to 2. 
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 Periphery angulate.     eocenicus 

 Periphery carinate.     adelaidensis 

 

2. Six costae per whorl.     volutiformis 

 One costae per whorl.     subnitidus  

 

Guraleus eocenicus Long, 1981 

 

Plate 6, figs. 2a, b. 

 

1981 Guraleus eocenicus Long, p. 43, pl. 7, fig. 2. 

 

DIAGNOSIS 

Shell buccinoid-fusiform, whorls angulated, shoulder slope gently concave. Axial sculpture 

of narrow costae, wide interspaces, extending suture to suture, weakest on shoulder. Spiral 

sculpture of threads and fine cords overprinting axial sculpture. Outer lip sharp, inner lip 

smooth. Siphonal canal short, open. 

 

TYPE SPECIMENS 

HOLOTYPE: Guraleus eocenicus NMV, P42871. 

PARATYPES: Guraleus eocenicus NMV, P42872, P42873. 

 

DISTRIBUTION 

Johannian - Willungan (Late Eocene – Early Oligocene): Victoria, South Australia (VIC091 

(TL), VIC002, SA034, SA049). 

 

REMARKS 

There is a degree of variability between specimens from different localities but this appears 

to fall within the range expected from a single species and so no attempts to split the taxon 

have been made. 

 

Guraleus adelaidensis Powell, 1944 

 

1944 Guraleus adelaidensis Powell, p. 49, pl. 6, fig. 13. 
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DIAGNOSIS 

Shell fusiform, periphery carinate. Axial sculpture of costae, ten per whorl, extending from 

periphery to suture. Spiral sculpture of three broad, flat cords and grooves per whorl, 

intersecting axial sculpture. 

 

TYPE SPECIMENS 

HOLOTYPE: Guraleus adelaidensis AIM, 70991. 

 

DISTRIBUTION 

Kalimnan - Yatalan (Pliocene): South Australia (SA032 (TL)). 

 

REMARKS 

This species is distinguished by having ten axial costae per whorl. 

 

Guraleus volutiformis Chapman & Crespin, 1928 

 

1928 Guraleus volutiformis Chapman & Crespin, p. 123, pl. 9, fig. 62. 

 

DIAGNOSIS 

Shell biconic-fusiform, whorls angulated posteriorly, anteriorly tapered. Axial sculpture of 

six strongly developed costae, weakest posteriorly, interspaces wide. Spiral sculpture of 

relatively strong spiral cords and threads, strongest on penultimate and body whorl. Outer 

lip thin, shouldered, inner lip narrowly callused.  

 

TYPE SPECIMENS 

HOLOTYPE: Guraleus volutiformis NMV, P14479. 

 

DISTRIBUTION 

Balcombian - Bairnsdalian (Middle Micoene): Victoria (VIC119 (TL), VIC038). 

 

REMARKS 

This species is distinguished by having six axial costae per whorl. 
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Guraleus subnitidus Ludbrook, 1941 

 

1941 Guraleus subnitidus Ludbrook, p. 99, pl. 5, fig. 22. 

1947 Euguraleus subnitidus Cotton, p.15. 

1958 Guraleus (Euguraleus) subnitidus Ludbrook, p. 90. 

1970 Euguraleus subnitidus Darragh, p. 197. 

 

DIAGNOSIS 

Shell fusiform, whorls subangulate. Axial sculpture of costae, one per whorl, extending from 

angulation to suture. Spiral sculpture of broad, flat cords and grooves, intersecting axial 

sculpture. 

 

TYPE SPECIMENS 

HOLOTYPE: Guraleus subnitidus SAM, T1664. 

 

DISTRIBUTION 

Kalimnan - Yatalan (Pliocene): South Australia (SA032 (TL), SA031). 

 

REMARKS 

This species is distinguished by the single axial rib per whorl. 

 

 

Genus MACTEOLA Hedley, 1918 

 

1918 Macteola Hedley, p. 146. 

 

TYPE SPECIES 

Purpura (Cronia) anomala Angas, 1877 by original designation. Recent, New South Wales. 

 

DIAGNOSIS 

Shell biconic. Protoconch paucispiral, smooth, blunt. Axial sculpture of broad costae, 

obsolete on shoulder slope, fading anteriorly. Spiral sculpture of fine threads over whole 

shell, intersecting axial sculpture. Aperture subovate. Outer lip thin. Weakly developed 

posterior sinus covering shoulder slope. Siphonal canal short, unnotched.  
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DISTRIBUTION 

?Eocene – Recent. Australasia, ?North America, Asia, Indo-Pacific. 

 

REMARKS 

The temporal and spatial distribution of this genus may be more extensive than outlined 

here. A review of the genus as a whole may shed light on its true distribution. 

 

Macetola eocenica Long, 1981 

 

Plate 6, figs. 3a, b. 

 

1981 Macteola eocenica Long, p. 44, pl. 7, fig. 6. 

 

DIAGNOSIS 

Shell fusiform, whorls turretted, whorls shouldered and angulate. Axial sculpture of spaced, 

narrow costae, aligned whorl to whorl, obsolete on anterior of body whorl, carinate at 

periphery, faint growth lines. Spiral sculpture of incised grooves on spire, cords on body 

whorl. Outer lip sharp, nearly straight. Posterior sinus on peripheral angulation. 

 

TYPE SPECIMENS 

HOLOTYPE: Macteola eocenica NMV, P42874. 

PARATYPES: Macteola eocenica NMV, P42875, P42876. 

 

DSITRIBUTION 

Johannian - Aldingan (Late Eocene): Victoria (VIC091 (TL), VIC092). 

 

REMARKS 

This is the only species of Macteola recorded from southeastern Australia. Long (1981) 

discusses the generic placement of the species. 
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PLATE 6 – MANGELIIDAE 

 

Figure 1 Antiguraleus incisus, no specimen number, non-type, Hallett Cove Sandstone of 

 Hallett Cove, SA: 

 a) Shell (length = 15.9mm) 

 b) Protoconch  

Figure 2 Guraleus eocenicus, P42871, holotype, Browns Creek Clay of Johanna, VIC: 

 a) Shell (length = 6.2mm) 

 b) Protoconch  

Figure 3 Macteola eocenica, P42874, holotype, Browns Creek Clay of Johanna, VIC: 

 a) Shell (length = 4.5mm) 

 b) Protoconch  
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PLATE 6 – MANGELIIDAE 
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3.6 FAMILY TURRIDAE 

 

The gastropod family Turridae is assigned to the superfamily Conoidea within the 

Neogastropoda. The family Turridae has long been considered one of the most complex and 

taxonomically confusing groups of gastropod and as result most authors have dealt either 

with specific subfamilies or particular geographic regions (e.g. Hedley, 1922; Powell, 1942, 

1944, 1964, 1966, 1969; McLean, 1971; Hickman, 1976; Long, 1981; Kilburn, 1983, 1985, 

1986, 1988, 1989, 1991; Chang 1995, 2001; Figueira & Absalão, 2010). Genera were 

assigned to eight subfamilies by Powell (1944, 1966): Turrinae, Turriculinae, Cochlespirinae, 

Conorbinae, Clavinae, Borsoniinae, Mangeliinae and Daphnellinae. This subfamilial division 

was generally used in published literature (e.g. Long, 1981) until Bouchet & Rocroi (2005) 

established a more concise classification of five subfamilies (Turrinae, Cochlespirinae, 

Crassispirinae, Zemacinae and Zonulispirinae). Reclassification of the Superfamily 

Toxoglossa based on shell morphology and radula corroborated this classification scheme 

(Tucker & Tenorio, 2009) which was further supported by molecular phylogenetic analysis 

(Puillandre et al., 2008). However, despite these attempts to reduce the complexity of 

turrid taxonomy confusion still existed due to the great variability in shell morphology. The 

most recent classification uses molecular data, shell morphology, anatomy and radula to try 

and resolve taxonomy within the Conoidea (Bouchet et al., 2011). The study resolved 

thirteen monophyletic families from the originally polyphyletic family Turridae greatly 

reducing the number of “turrid” taxa. Bouchet et al. (2011) included fourteen genera within 

the family Turridae, but it should be noted that fossil taxa have not been taken into 

account.  

 

As there is no recent publication examining the whole family Turridae (living or fossil) 

within southeastern Australia it is difficult to estimate the number of species assigned to 

the family.  Some older studies have attempted to undertake this task using previous 

classification schemes (e.g. Powell, 1944, 1966; Long, 1981). The family Turridae is still in 

great need of attention. However, it is not within the scope of this thesis to undertake a 

task of this enormity.  
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3.6.1 SYSTEMATIC PALAEONTOLOGY 

 

Six species from three genera included in this revision. This does not reflect the true 

diversity of this family in this region in any way. Due to difficulties in assigning genera and 

species based on the newest classification system only those species that can be 

confidently assigned to the family Turridae have been included. Examination of type 

material and comparison with other Australian species has been used to assign species to 

genera. Generic assignment is based on Bouchet et al. (2011). 

 

 

CLASS GASTROPODA 

ORDER NEOGASTROPODA 

SUPERFAMILY CONOIDEA Fleming, 1822 

Family TURRIDAE H. & A. Adams, 1853 

 

1853 Turridae, H. & A. Adams, p.87. 

 

DIAGNOSIS 

Shell fusiform, high spired, typically with long siphonal canal. Protoconch often multispiral 

with riblets or paucispiral and smooth. Axial sculpture weak or absent. Spiral sculpture 

variable. Posterior sinus on periphery of whorl, “V” shaped. Columella smooth. 

  

DISTRIBUTION 

Palaeocene – Recent. Cosmopolitan. 

 

REMARKS 

The family Turridae as it was defined in Bouchet & Rocroi (2005) is considered to be one of 

the most complex families to classify due to the numerous supra-specific taxa and high 

diversity. The most recent classification outlined by Bouchet et al. (2011) has attempted to 

remedy the taxonomic complications of this family using anatomical data and molecular 

phylogenies of living taxa (from Puillandre et al., 2008) resulting in the previously 

polyphyletic family Turridae being reclassified as 13 monophyletic families (including 

Raphitomidae, Mangeliidae, Borsoniidae and Turridae). This taxonomy follows these latest 

advances in classifying the “turrids”. 
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KEY TO GENERA FOUND AS FOSSILS IN SOUTHEASTERN AUSTRALIA: 

1. Peripheral keel with gemmules    Gemmula 

 Peripheral keel without gemmules   Go to 2 

 

2. Posterior sinus “V” shaped    Lophiotoma 

 Posterior sinus “U” shaped    Go to 3 

 

3. Sulcation in front of suture    Turris 

 Posterior sinus above peripheral keel   Optoturris 

  

 

Genus GEMMULA Weinkauff, 1875 

 

1875 Gemmula Weinkauff, p. 285. 

1931 Eugemmula Iredale, p.226. 

 

TYPE SPECIES 

Pleurotoma gemmata Reeve, 1843 by subsequent designation (Cossmann, 1906) = 

Gemmula hindsiana Berry, 1958. Recent, Indo-Pacific. 

 

DIAGNOSIS 

Shell elongate-fusiform, tall spire, long siphonal canal, siphonal notch absent. Protoconch 

multispiral, costate. Spiral sculpture of keels and cords, with gemmulate peripheral keel. 

Posterior sinus deep, narrow, peripheral. 

 

DISTRIBUTION 

?Cretaceous – Recent. Cosmopolitan. 

 

REMARKS 

This genus has a wide distribution, mostly in warm seas, and a long fossil record.  The genus 

is distinguished by the gemmulate keel and narrow, conical, multispiral protoconch. 

 

Gemmula gellibrandensis Chapple (1934) 

 

Plate 7, figs. 1a, b. 
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1934 Gemmula gellibrandensis Chapple, p. 163, pl. 19, figs. 3, 3a. 

 

DIAGNOSIS 

Shell narrow-fusiform, tall spired, whorls shouldered.  Axial sculpture of close set growth 

lines. Spiral sculpture of closely spaced, coarse, granulose cords on keel, rounded on 

whorls, threads in interspaces. Outer lip lirate. Posterior sinus wide, deep. Siphonal canal 

relatively short. 

 

TYPE SPECIMENS 

HOLOTYPE: Gemmula gellibrandensis NMV, P13688. 

PARATYPE: Gemmula gellibrandensis NMV, P13689. 

 

DSITRIBUTION 

Longfordian (Early Miocene): Victoria (VIC081). 

 

REMARKS 

This species is distinguished by the granulose keel. 

 

 

Subgenus CLAVOGEMMULA Long, 1981 

 

1981 Clavogemmula Long, p. 31. 

 

TYPE SPECIES 

Gemmula (Clavogemmula) prima Long, 1981 by monotypy. Eocene, Australia. 

 

DAIGNOSIS 

Shell fusiform, tall spire, short siphonal canal. Spiral sculpture of threads and cords 

dominant. Peripheral cord gemmulate, weakening on later whorls. Posterior sinus deep, 

“V” shaped, narrowing at periphery. 

 

DISTRIBUTION 

Eocene.  Australia. 
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REMARKS 

Long (1981) erected this subgenera by distinguishing it from Gemmula s.s. by its smooth 

protoconch, short twisted siphonal canal and weakly developed axial gemmules. 

 

Gemmula (Clavogemmula) prima Long, 1981 

 

Plate 7, figs. 2a, b. 

 

1981 Gemmula (Clavogemmula) prima Long, p. 32, pl. 5, figs. 9, 10. 

 

DIAGNOSIS 

Shell fusiform, tall spire, median angulation, concave shoulder. Axial sculpture of strong, 

elongate gemmulations centred on the periphery and faint growth lines. Spiral sculpture of 

narrow threads and a simple or double threaded peripheral keel. Siphonal canal short, 

straight, twisted left. 

 

TYPE SPECIMENS 

HOLOTYPE: Gemmula (Clavogemmula) prima NMV, P33350. 

PARATYPES: Gemmula (Clavogemmula) prima NMV, P42852, P42851. 

 

DSITRIBUTION 

Johannian - Aldingan (Late Eocene): Victoria (VIC092 (TL)). 

 

REMARKS 

The spiral sculpture of this species is somewhat variable. The diagnostic characters of this 

species are as in the subgenus description. 

 

 

Genus LOPHIOTOMA Casey, 1904 

 

1904 Lophiotoma Casey, p. 130. 

1964 Lophioturris Powell, p. 407. 
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TYPE SPECIES 

Pleurotoma tigrina Lamarck, 1822 by subsequent designation (Woodring, 1928). Recent, 

Indo-Pacific. 

 

DIAGNOSIS 

Shell elongate-fusiform, attenuated spire, siphonal canal long, straight. Protoconch 

paucispiral to mulitspiral, conical or papillate followed by half whorl with brephic axials. 

Axial sculpture of obsolete growth lines. Spiral sculpture of elevated, close-set threads. 

Aperture ovate. Columella smooth. Posterior sinus “V” shaped on the flat or concave 

peripheral carina.  

 

DISTRIBUTION 

Miocene – Recent. ?Cosmopolitan. 

 

REMARKS 

This genus is characterised by the position of the posterior sinus. It is restricted to the 

peripheral keel or the most prominent spiral. 

 

 

KEY TO SPECIES FOUND AS FOSSILS IN SOUTHEASTERN AUSTRALIA: 

1. Slender outline, strong peripheral keel    murrayana 

2. Granulose sculpture near sinus, weak peripheral keel  murndaliana 

 

Lophiotoma murrayana (Pritchard, 1904) 

 

Plate 7, figs. 3a, b. 

 

1904 Pleurotoma murrayana Pritchard, p. 335, pl. 19, fig. 10. 

 

DIAGNOSIS 

Shell elongate-fusiform, apex blunt, slender, elongate spire. Spire whorls flat to slightly 

convex. Suture channelled. Axial sculpture of weak growth lines and undulating striae. 

Spiral sculpture of strong cords and threads, median nodulose keel. Columella smooth, 

straight. Posterior sinus on peripheral keel. 
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TYPE SPECIMENS 

HOLOTYPE: Lophiotoma murrayana NMV, P127950. 

 

DISTRIBUTION 

Batesfodian (Middle Miocene): South Australia (SA001 (TL)). 

 

REMARKS 

This species closely resembles L. murndaliana but differs in its more slender outline, 

stronger peripheral keel and weaker subsidiary keels. 

 

Lophiotoma murndaliana (Tenison-Woods, 1879) 

 

1879 Pleurotoma murndaliana Tenison-Woods, p. 226, pl. 20, fig. 5. 

1896 Hemipleurotoma murndaliana Cossmann, p. 79. 

1944 Lophiotoma murndaliana Powell, p. 9. 

 

TYPE SPECIMENS 

HOLOTYPE: Pleurotoma murndaliana AMS, F1700 

 

DIAGNOSIS 

Shell elongate-fusiform, whorls convex. Protoconch multispiral, initially slightly globose. 

Axial sculpture of growth lines. Spiral sculpture of coarse, irregular cords and threads, 

granulose near sinus. Canal long, narrow, twisted. Posterior sinus large, situated away from 

suture. 

 

DISTRIBUTION 

Janjukian – Mitchellian (Late Oligocene – Late Miocene): Victoria (VIC038 (TL), VIC083). 

 

REMARKS 

Powell (1944) noted that the recording of this species from Limestone Creek, Glenelg River 

by Dennant & Kitson (1903) is erroneous and is therefore excluded from the geographic 

range of the species.  
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Genus TURRIS Batsch, 1789 

 

1799 Pleurotoma Lamarck, p. 73. 

1966 Annulaturris Powell, p. 51. 

 

TYPE SPECIES 

Murex babylonius Linnaeus, 1758 by subsequent designation (Dall, 1909). Recent, Indo-

Pacific. 

 

DIAGNOSIS 

Shell elongate-fusiform, attenuated spire, siphonal canal long, straight, open. Protoconch 

multispiral, smooth, papillate. Sculpture variable. Aperture ovate. Columella smooth. 

Posterior sinus “U” shaped, deep, on a rounded costae above the peripheral keel.  

 

DISTRIBUTION 

?Palaeocene – Recent. ?Cosmopolitan. 

 

REMARKS 

Australian turris species from the Middle Cenozoic differ slightly to the conventional turris 

description in that they have a short, twisted siphonal canal. Powell (1944) discussed this is 

more detail. 

 

Turris septemliratus (Harris, 1897) 

 

Plate 7, figs. 4a, b. 

 

1897 Pleurotoma septemlirata Harris, p. 39, pl. 2, figs. 10a-d. 

1900 Pleurotoma perarata Cossmann & Pissarro, p. 24. 

1944 Turris septemliratus Powell, p. 8. 

 

DIAGNOSIS 

Shell fusiform, siphonal canal very short, wide. Suture canaliculate. Axial sculpture of 

growth lines. Spiral sculpture of cords and threads, increasing in number on later whorls. 

Aperture large, ovate. Columella smooth. Posterior sinus broad, deep, situated away from 

suture. Deep, broad sulcation in front of suture. 
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TYPE SPECIMENS: 

SYNTYPES: Pleurotoma septemlirata BMNH, G4231, G4233, G5501, G5499. 

 

DISTRIBUTION 

Janjukian – Mitchellian (Late Oligocene – Late Miocene): Victoria (VIC038 (TL), VIC028, 

VIC034). 

 

REMARKS 

Harris (1897) separated this species from Lophiotoma murndaliana, which he saw as very 

similar, based on the larger, more tumid shell, the shorter siphonal canal and the 

characteristic deep, broad sulcation in front of the suture.  

 

 

Genus OPTOTURRIS Powell, 1944 

 

1944 Optoturris Powell, p.12. 

 

TYPE SPECIES 

Pleurotoma optata Harris, 1897 by original designation. Middle Miocene, Australia. 

 

DIAGNOSIS 

Shell fusiform, blunt spire, siphonal canal short, straight. Protoconch multispiral, small, 

asymmetric, no definite brephic stages. Posterior sinus  “U” shaped, shallow, extended over 

shoulder, situated at the weak peripheral keel.  

 

DISTRBUTION 

Miocene. Australia. 

 

REMARKS 

Powell’s (1944) description is somewhat vague with the emphasis heavily placed on the 

posterior sinus.  

 

Optoturris optatus (Harris, 1897) 

 

Plate 7, figs. 5a, b. 
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1897  Pleurotoma optata Harris, p. 44, pl.3, figs. 4a-b. 

1944 Optoturris optatus Powell, p. 12. 

 

DIAGNOSIS 

Shell fusiform, whorls slightly convex. Axial sculpture of growth lines and costae in early 

whorls. Spiral sculpture of closely-spaced threads. Suture bound anteriorly and posterior by 

keels, anterior keel dominant. Aperture elongate- pyriform. Outer lip thin. Posterior sinus 

shallow, wide. Siphonal canal long, recurved.  

 

TYPE SPECIMENS 

HOLOTYPE: Pleurotoma optata BMNH, 48052. 

 

DISTRIBUTION 

Janjukian – Mitchellian (Late Oligocene – Late Miocene): Victoria (VIC022 (TL), VIC038). 

 

REMARKS 

The dominant anterior keel characterises this species. 
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PLATE 7 – TURRIDAE 

 

Figure 1 Gemmula gellibrandensis, P13688, holotype, Gellibrand Marl of Gellibrand, VIC: 

 a) Shell (length = 18mm) 

 b) Protoconch  

Figure 2 Gemmula (Clavogemmula) prima, P33350, holotype, Browns Creek Clay of 

 Johanna, VIC: 

 a) Shell (length = 13.4mm) 

 b) Protoconch  

Figure 3 Lophiotoma murrayana, P127950, holotype, Cadell Formation of the River Murray, 

 SA: 

 a) Shell (length = 28mm) 

 b) Protoconch  

Figure 4 Turris septemliratus, no specimen number, non-type, Muddy Creek Marl of Muddy 

 Creek, VIC: 

 a) Shell (length = 45mm) 

 b) Protoconch  

Figure 5 Optoturris optatus, P6832, non-type, Fyansford Formation of Fossil Beach, VIC: 

 a) Shell (length = 16.5mm) 

 b) Protoconch  
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PLATE 7 – TURRIDAE 
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CHAPTER 4  

 

PHYLOGENETIC ANALYSES OF CENOZOIC GASTROPODS FROM 

SOUTHEASTERN AUSTRALIA 

 

In this chapter the evolutionary relationships of the gastropod taxa included in this thesis 

are considered. Phylogenetic analyses are used to establish the relationships between taxa 

and this will be later used to determine the plesiomorphic larval strategy and the order and 

timing of switches in developmental mode (Chapter 5). 

 

Within the literature, concerns have been raised about the difficulties of inferring reliable 

phylogenies from fossil gastropods (e.g. Harasewych, 1984; Emberton, 1995; Frýda, 1999; 

Wagner, 2001). Many specimens can only offer teleoconch (adult) characters due to loss of 

anatomical and genetic material. There is a general assumption that gastropod shells are 

simple structures offering few informative characters and characters states (e.g. Schopf et 

al., 1975; Smith, 1994).  

 

The potential problems in morphologically based phylogenetic analyses are dealt with in 

some detail by Wagner (2001). The number of teleoconch characters may depend on which 

taxonomic level studies are carried out at (e.g. Wagner, 1999; 2001). It is noted that 

teleoconch characters are often highly homoplastic and as a result do not reveal true 

phylogenetic signals (Wagner, 2001). However, the same study also suggests that 

phylogenetic patterns do influence the distribution of teleoconch characters. As more 

sophisticated methods are developed and our understanding of characters and characters 

states improve, robust phylogenetic trees may yet be resolved from fossil gastropods 

(Bieler, 1992; Wagner, 2001).  

 

A number of studies have combined morphological and anatomical data of extant taxa to 

expand the number of available characters for particular groups of gastropods (e.g. Reid, 

1989; Allmon, 1990; Ponder, 1997; Haasl, 2000; Collin, 2003). Recent studies focusing 

entirely on shell morphology have sought to find innovative approaches to character 

selection and coding such as separating juvenile and adult characters (Papadopoulos et al., 
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2004) or examining the geometric morphometrics of gastropod shells (Smith & Hendricks, 

2013). 

 

Many studies examining the evolutionary relationships of gastropods concentrate on 

molecular phylogenies. These studies generally exclude “unreliable” morphological 

characters, instead concentrating on DNA sequences (and sometimes radula) to resolve 

phylogenies, with varying levels of success. The neogastropods have been one area of focus 

(e.g. Haarasewych et al., 1997; Cunha et al., 2009), whilst other researchers have 

concentrated on examining the complex relationships within the Conoidea, in particular the 

“turrids” (e.g. Puillandre et al., 2008, 2011; Fedosov et al., 2011). 

 

Of the families included in this thesis the “turrids” (= Raphitomidae, Borsoniidae, 

Mangeliidae and Turridae) are the most well resolved in terms of phylogenetic analysis (e.g. 

Puillandre et al., 2008, 2011; Bouchet et al., 2011), although most of this work has 

concentrated purely on molecular data from living species at higher taxonomic levels and 

fossil species are yet to be fully examined. The nassariids have received scant attention, 

although Haasl (2000) has attempted to resolve phylogenetic relationships at generic level 

based on conchological and anatomical data. Of all the families in this thesis, it is the 

volutes that are most in need of attention. A single paper examines the evolutionary 

relationships between different genera (Bondarev, 1995), but the taxonomic division of the 

subfamilies has since been re-evaluated (e.g. Darragh, 1988) suggesting that this group 

needs to undergo further phylogenetic analyses to resolve subfamilial and generic 

relationships.  
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4.1 METHODS 

 

The phylogenetic relationships of Cenozoic gastropods from southeastern Australia are 

resolved through cladistic analyses using morphological characters for all taxa examined as 

part of the taxonomic revision (see Chapter 3).  

 

 
 

Species Genus Subfamily 

Volutidae 
√  

(Athletinae & 
Volutinae) 

√ 
(Amoriinae & 

Zidoninae) 
√ 

Nassariidae - √ - 
Rapitomidae - - - 
Borsoniidae - √ - 
Mangeliidae - √ - 

Turridae - √ - 

 

Table 4.1 Table showing taxonomic level of analysis carried out for each family. Ticks indicate the taxonomic 
level that analysis has been carried out at for each family. Subfamily level analysis is only carried out for the 

Volutidae as no other families include subfamilies. 

 

Species level analysis is carried out for genera with more than one developmental mode 

(Volutidae: Athletinae & Volutinae). Genus level analysis is performed for all families or 

subfamilies except the Raphitomidae, which has too few taxa to be analysed. Genus level 

analysis is based on the type species of each genus to avoid complications associated with 

intragreneric variability, even if the type species is not present in the Cenozoic of 

southeastern Australia. Families or subfamilies with only one or two genera are analysed as 

part of larger composite trees. Subfamilial analysis is performed only for the family 

Volutidae because others families either have no representatives from Cenozoic 

southeastern Australia from other subfamilies or have not been assigned subfamilies.  A 

summary of analyses carried out on the taxa included in this study is presented in Table 4.1.  

 

Due to the small number of available characters, larger trees are created as composites of 

genus and species level trees using representatives from each subfamily or family. A 

composite tree of all genera included in this thesis is based on analysis by Cunha et al. 

(2009) which is one of the most recent articles examining the molecular phylogeny of 

neogastropod families. 
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Characters used in the analyses come from examination of specimens during the taxonomic 

revision of the species used in this research (see Chapter 3, Fig. 3.1 for main morphological 

characters examined). Wherever possible characters are based on structural differences in 

shell morphology and “soft characters”, such as overall size, are avoided. Where size-based 

characters are used, they are presented as ratios to avoid the issue of large features being 

due to overall body size. Where a character has only two character states (e.g. absent and 

present), they are coded as 0 and 1. Where a character is given more than two states, they 

are assigned 0, 1, 2, 3 etc., from simple to complex or small to large. Metric characters have 

been measured with electronic callipers to the nearest 0.1mm and character states for 

metric characters are established using gap analysis. Metric characters with more than two 

states have been ordered. Within the data matrix, missing or unknown characters are 

coded as question marks. Characters are assigned equal weighting. Where character 

information for the type genus is not known, characters are based on the species used 

within this study. Characters relating to the protoconch are not included to avoid circularity 

when examining switches in larval mode (Chapter 5). 

 

Phylogenetic analysis is carried out using the Macintosh application PAUP v. 4.0b10 

(Swofford, 2002). Due to the small size of the datasets used in this research it is possible to 

use the most comprehensive search possible, an exhaustive search, which will find the most 

parsimonious tree or trees (MPT), unlike other methods such as heuristic and branch and 

bound searches which cannot definitely find the MPT. Where an exhaustive search 

produces more than one tree, common components of these trees are analysed using a 

majority rule consensus. Where more than four trees are produced by an exhaustive 

search, characters are rescaled to the Rescaled Consistency Index (RCI). This method gives 

the maximum weight to characters showing no homoplasy and down-weights 

homoplaseous characters based on the numbers of times they have evolved.  

 

The consistency index (CI) and retention index (RI) are reported as a measure of robustness. 

Tree support is measured using two statistical methods. The Bootstrap method randomly 

chooses characters from the data matrix to create a dataset of the same size as the original 

before determining the most parsimonious solution of this new dataset. This process is 

repeated (usually ~1000 times) and the results are compared with the original MPT. The 

higher the bootstrap percentage, the stronger the phylogenetic signal. Bootstrap values less 

than 50% are not presented. Bremer support is a method commonly used for small, 

morphologically-based datasets and is therefore the most useful method for assessing tree 
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strength when only fossil taxa are considered.  The method examines the number of extra 

steps required for the MPT to collapse. The greater the number of steps required for the 

tree to collapse, the more robust the tree. 

 

 

4.2 FAMILY VOLUTIDAE 

 

Analysis of the family Volutidae is initially split into subfamilies, and generic or species level 

analysis is carried out. A composite tree is based on subfamilial level phylogenetic analysis. 

Species level analysis is carried out on the subfamilies Athletinae and Volutinae. Generic 

level analysis is carried out on the subfamilies Amoriinae and Zidoninae. The subfamily 

Scaphellinae is only included in the composite tree. 

 

4.2.1 SUBFAMILY ATHLETINAE 

 

All nine species assigned to the subfamily Athletinae as part of the taxonomic revision 

(Chapter 3) belong to the genus Athleta (Ternivoluta). Of the nine species one is 

planktotrophic and eight are direct developers. As a result phylogenetic analysis is carried 

out at species level. The species Mitra (Mitra) mitra (the type species of the genus Mitra) is 

selected as the outgroup for this analysis due to its close relationship with the family 

Volutidae. 

 

The 24 characters and their states are shown in Table 4.2 and the data matrix is shown in 

Table 4.3. 

 

An exhaustive search produced a single MPT with a tree length of 67 steps, CI = 0.6269, RI = 

0.5192 (Figure 4.1).  Bootstrap values for this tree are extremely low suggesting the tree is 

poorly supported. Bremer support also suggests this tree is not strongly supported with all 

nodes collapsing after a single step increase (68 steps). The tree supports the close 

relationship between the subspecies of Athleta (Ternivoluta) antiscalaris, particularly the 

closely related A. (t.) antiscalaris antiscalaris and A. (T.) antiscalaris levior, but the non-

monophyletic relationship between subspecies of A. (T.) anticingulata seems to need more 

attention based on this analysis, either to re-evaluate the taxonomic position of these 

subspecies or to examine the evolution of the subspecies in more detail. In the taxonomic 
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revision of this subfamily, assignment of Athleta (Athleta) wangerrip was revised and the 

decision was made to move the species into the subgenus Athleta (Ternivoluta). Based on 

the phylogenetic analysis this decision would seem to be appropriate. 

 

 

 

Characters and states 

1. 
2.* 
 
3.* 
4.* 
5. 
6. 
7. 
8. 
9. 
 
10. 
11. 
 
12. 
13. 
14. 
 
15. 
16. 
17. 
18. 
 
19. 
 
20. 
21. 
22. 
23. 
24. 

Shell height to width ratio: Up to 2.5 (0); 2.5 or more (1). 
Body whorl height to spire height ratio: Up to 3.0 (0); 3.0 – 3.9 (1); 4.0 – 4.9 (2); 5.0 or more 
(3). 
Aperture height to width ratio: Up to 4.0 (0); 4.0 – 5.0 (1); 5.0 or more (2). 
Body whorl height to aperture height ratio: 1.0 or less (0); 1.1 – 1.5 (1); 1.6 or more (2). 
Shell shape: Elongate fusiform (0); fusiform (1); narrowly fusiform (2); pyriform (3). 
Spire form: Subconical (0); gradate (1); high gradate (2). 
Axial sculpture development: Weakly developed (0); strongly developed (1). 
Axial sculpture on early teleoconch whorls: Absent (0); present (1). 
Axial sculpture on late teleoconch whorls: Absent (0); wide, strong costae (1); narrow, strong 
costae (2). 
Axial costae interspaces: Absent (0); wide (1); narrow (2). 
Axial sculpture extension: Absent (0); confined to posterior third of body whorl (1); extending 
over half of body whorl (2). 
Number of costae present on body whorl: Absent (0); 1-19 (1); 20 or more (2). 
Axial costae form: Absent (0); sigmoidal (1); non-sigmoidal (2). 
Axial costae form at shoulder: Absent (0); rounded (1); subspinose (2); spinose (3); nodulose 
(4). 
Spiral sculpture development: Weakly developed (0); strongly developed (1). 
Spiral sculpture on early teleoconch whorls: Absent (0); present (1). 
Spiral sculpture on body whorl: Weakly developed (0); strongly developed (1). 
Extension of spiral sculpture on body whorl: Restricted to anterior (0); covering whole body 
whorl (1). 
Suture type: Simple, flush with shell (0); whorls concave at suture, ledged (1); canaliculate, 
distinct groove (2). 
Subsutural nodules: Absent (0); subspinose (1); spinose (2). 
Whorl shouldered/angulate: Angulate (0); shouldered (1). 
Whorl shoulder slope: Absent (0); convex (1); concave (2). 
Columella major plaits: Less than 3 (0); 3 or more (1). 
Columella minor plaits: Less than 2 (0); 2 or more (1). 

 

Table 4.2 Characters and states used in species level phylogenetic analysis of the subfamily Athletinae. * = 
ordered characters. 
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Character matrix 

Mitra (Mitra) mitra * 
Athleta (Ternivoluta) wangerrip 
Athleta (Ternivoluta) curvicostata 
Athleta (Ternivoluta) anticingulata anticingulata 
Athleta (Ternivoluta) anticingulata craticula 
Athleta (Ternivoluta) subcrenulifera 
Athleta (Ternivoluta) antiscalaris antiscalaris 
Athleta (Ternivoluta) antiscalaris levior 
Athleta (Ternivoluta) antiscalaris antispinosa 
Athleta (Ternivoluta) bungae 

10120 00000 00000 00000 001? 
01101 01111 21230 01012 1100 
00112 11122 22110 01021 1100 
01011 11121 21110 01011 1111 
00211 11122 22241 11111 1111 
10110 21122 12221 11122 1101 
01011 11111 11131 11112 1201 
02111 11111 11131 01012 1211 
03113 01111 21230 00012 1211 
03213 01112 02240 01020 0011 

 
Table 4.3 Data matrix for nine Athleta species plus the outgroup Mitra (Mitra) mitra (*). 

 

 

 

 

Figure 4.1 Cladogram for Cenozoic species of the subgenus Athleta (Ternivoluta) plus the outgroup Mitra 
(Mitra) mitra*. Bootstrap support values based on 1000 replicates are indicated for each branch. 
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4.2.2 SUBFAMILY VOLUTINAE 

 

In this thesis the subfamily Volutinae includes five species from two genera (Lyria and 

Leptoscapha) of which one is planktotrophic, two are lecithotrophic and two are direct 

developers. Phylogenetic analysis is carried out at species level. The species Mitra (Mitra) 

mitra is selected as the outgroup. The 21 characters and their states are shown in Table 4.4 

and the data matrix is shown in Table 4.5. 

 

Characters and states 

1.* 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
 
9. 
10. 
 
11. 
12. 
13. 
14. 
15. 
 
16. 
 
17. 
18. 
19. 
20. 
21. 

Shell height to width ratio: Less than 2.0 (0); 2.0 – 2.9 (1); 3.0 or more (2). 
Body whorl height to spire height ratio: Less than 2.5 (0); 2.5 or more (1). 
Aperture height to width ratio: Less than 3.0 (0); 3.0 or more (1). 
Body whorl height to aperture height ratio: Less than 1.5 (0); 1.5 or more (1). 
Shell shape: Elongate-fusiform (0); elongate-ovate (1); ovate (2). 
Axial sculpture development: Weakly developed (0); strongly developed (1). 
Axial sculpture on early teleoconch whorls: Absent (0); present (1). 
Axial sculpture on late teleoconch whorls: Absent (0); weakly developed (1) strongly developed 
(2). 
Axial costae interspaces: Absent (0); narrow (1); wide (2). 
Extension of axial costae on body whorl: Absent (0); obsolete anteriorly (1); covering whole 
whorl (2). 
Number of costae present on body whorl: Absent (0); less than 20 (1); more than 20 (2). 
Spiral sculpture development: Absent (0); present (1). 
Spiral sculpture on early teleoconch whorls: Absent (0); present (1). 
Spiral sculpture on body whorl: Absent (0); present (1). 
Extension of spiral sculpture on body whorl: Absent (0); restricted to anterior (1); covering 
whole whorl (2). 
Suture type: Simple, flush with shell (0); ledged, whorls concave at suture (1); canaliculate, 
distinct groove (2). 
Columella plaits: Two (0); three (1); more than three (2). 
Posterior denticle: Absent (0); present (1). 
Siphonal notch: Absent (0); shallow (1); deep (2). 
Spire form: Subconical (0); acute (1); squat (2); gradate (3). 
Outer lip: Sharp (0); thickened (1). 

 
Table 4.4 Characters and states used in phylogenetic analysis of the subfamily Volutinae. * = ordered character. 

 

Character matrix 

Mitra (Mitra) mitra* 
Lyria semiacuticostata 

Lyria acuticostulata 
Lyria harpularia 
Lyria gemmata 

Leptoscapha crassilabrum 

20110 00000 01011 02120 1 
11111 11211 20000 21121 0 
11012 11222 21112 20012 0 
01002 11222 21111 20023 0 
10102 11211 21011 20110 1 
10102 00100 11112 11100 1 

 
Table 4.5 Data matrix for five Volutinae species plus the outgroup Mitra (Mitra) mitra (*). 
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An exhaustive search produced a single MPT with a tree length of 39 steps, CI = 0.8462, RI = 

0.6667 (Figure 4.2). Bootstrap values are moderately high and Bremer support shows that 

all nodes collapse after an additional 4 steps (43 steps) indicating that the tree is 

moderately well supported. The close relationship between L.  acuticostulata and L. 

harpularia is the most strongly supported. However, the tree does not strongly support the 

suggestion in the taxonomic revision that L. semiacuticostata and L. gemmata are the most 

similar of these taxa. The tree supports the monophyletic genus Lyria. 

 

 

Figure 4.2 Cladogram for Cenozoic species of the subfamily Volutinae plus Mitra (Mitra) mitra*. Bootstrap 
support % based on 1000 replicates indicated for each branch (in black). Bremer support values indicated at 

each node (in red). 
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4.2.3 SUBFAMILY AMORIINAE 

 

The taxonomic revision of this family includes 24 direct developing species assigned to 

three genera: Amoria, Nannamoria and Notovoluta. Phylogenetic analysis is carried out at 

genus level using the type species for each genus. The genus Mitra is selected as the 

outgroup. 

 

The 18 characters and their states used in this phylogenetic analysis are shown in Table 4.6 

and the data matrix is shown below in Table 4.7. 

 

Characters and states 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 

Shell height to width ratio: 2.5 or less (0); more than 2.5 (1). 
Body whorl height to spire height ratio: 2.5 or less (0); more than 2.5 (1). 
Aperture height to width ratio: Less than 5.0 (0), 5.0 or more (1). 
Body whorl height to aperture height ratio: Less than 1.5 (0); 1.5 or more (1). 
Shell shape: Ovate (0); fusiform (1); elongate-fusiform (2). 
 Axial sculpture development: Weakly developed (0); strongly developed (1). 
Axial sculpture on early teleoconch whorls: Absent (0); present (1). 
Axial sculpture on late teleoconch whorls: Absent (0); present (1). 
Spiral sculpture: Absent (0); present (1). 
Suture type: Flush (0); ledged (1). 
Whorl form: Angulate (0); shouldered (1). 
Columella major plaits: 4(0); 5 (1). 
Columella minor plaits: 1 (0); 2 (1). 
Aperture form: Elongate (0); narrowly-elliptical (1). 
Siphonal canal dorsally reflexed: Absent (0); present (1). 
Siphonal notch development: Weakly developed (0); strongly developed (1). 
Siphonal fasciole development: Weakly developed (0); strongly developed (1). 
Outer lip thickening: Absent (0); present (1). 

 
Table 4.6 Characters and states used in generic level phylogenetic analysis of the subfamily Amoriinae. * = 

ordered characters. 

 

Character matrix 

Mitra* 
Amoria 

Nannamoria 
Notovoluta 

10012 00010 01?00 1?0 
01101 00001 00010 101 
00100 01111 00000 001 
10001 11111 10111 110 

 
Table 4.7 Data matrix for the subfamily Amoriinae plus the outgroup Mitra (*). 
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Figure 4.3 Cladogram for Cenozoic Amoriinae genera plus Mitra*. Bootstrap support % based on 1000 replicates 
indicated for each branch (in black). Bremer support values indicated at each node (in red). 

 

An exhaustive search produced a single MPT with a tree length of 22 steps, CI = 0.8636, RI = 

0.5000 (Figure 4.3). Bootstrap and Bremer support values indicate that the tree is not very 

well supported. However, the analysis does support the taxonomy laid out in the previous 

chapter in identifying Amoria and Nannamoria as sister taxa.  
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4.2.4 SUBFAMILY ZIDONINAE 

 

Phylogenetic analysis is carried out at generic level for the subfamily Zidoninae and includes 

30 species assigned to six genera (Alcithoe (Alcithoe), Alcithoe (Waihaoia), Ericusa, Livonia, 

Notopeplum, Cymbiola). Of these 30 species, 29 are direct developers and one is 

planktotrophic. The genus Mitra is selected as the outgroup. 

 

The 19 characters and their states used in this phylogenetic analysis are shown in Table 4.8 

and the data matrix is shown below in Table 4.9. 

 

Characters and states 

1.* 
2. 
3.* 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
 

Shell height to width ratio: Less than 2.0 (0); 2.0 – 2.9 (1); 3.0 or more (2). 
Body whorl height to spire height ratio: Less than 5.0 (0); 5.0 or more (1). 
Aperture height to width ratio: Less than 3.0 (0); 3.1 – 4.0 (1); 4.1 – 5.0 (2); 5.0 or more (3). 
Body whorl height to aperture height ratio: Less than 1.5 (0); 1.5 or more (1). 
Shell shape: Broadly fusiform (0); ovate-fusiform (1); ovate (2). 
Axial sculpture development: Weakly developed (0); strongly developed (1). 
Axial sculpture on early teleoconch whorls: Absent (0); present (1). 
Axial sculpture on late teleoconch whorls: Absent (0); present (1). 
Costae form at shoulder: Absent (0); rounded (1); nodulate (2); spinose (3). 
Whorl shoulder/angulate: Angulate (0); shouldered (1). 
Spiral sculpture: Absent (0); present (1). 
Suture form: Flush (0); ledged (1). 
Spire form: Subconical (0); elongate (1); gradate (2); rapidly tapered (3). 
Columella plaits: Less than 4 (0); 4 or more (1). 
Outer lip reflexed: Absent (0); present (1). 
Outer lip wing-like extension: Absent (0); present (1).  
Aperture form: Elongate (0); ovate (1); lenticular (2). 
Siphonal notch: Shallow (0); deep (1). 
Siphonal fasciole: Absent (0); weakly developed (1); strongly developed (2). 
 

 
Table 4.8 Characters and states used in generic level phylogenetic analysis of the subfamily Zidoninae. * = 

ordered characters. 

 

Character matrix 

Mitra * 
Alcithoe (Alcithoe) 

Alcithoe (Waihaoia) 
Ericusa 
Livonia 

Notopeplum 
Cymbiola 

20210 00000 10011 001? 
10100 11120 01111 1012 
10110 11110 11111 0101 
10001 00000 11100 1200 
01002 00000 11201 1200 
11312 00000 01300 0201 
11202 11131 01210 0012 

 
Table 4.9 Data matrix for the six genera of the subfamily Zidoninae plus the outgroup Mitra (*). 
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Figure 4.4 Cladogram for Cenozoic genera from the subfamily Zidoninae plus Mitra*. Bootstrap support % based 

on 1000 replicates indicated for each branch (in black). Bremer support values indicated at each node (in red). 

 

An exhaustive search produced a single MPT with a tree length of 41 steps, CI = 0.7073, RI = 

0.6000 (Figure 4.4). Bootstrap values suggest that the tree is moderately well supported. 

Bremer support values indicate that all nodes on the tree collapse after an additional 3 

steps (44 steps).  The tree indicates that there are two major clades within the subfamily 

Zidoninae. Bootstrap values suggest the Ericusa + Livonia + Notopeplum clade is more 

strongly supported than the Alcithoe (Alcithoe) + Cymbiola + Alcithoe (Waihaoia) clade. 

Surprisingly, the tree does not place Alcithoe (Alcithoe) and Alcithoe (Waihaoia) as sister 

taxa suggesting either a review of the taxonomy of this genus is needed or that attempts to 

resolve this relationship using anatomical or molecular phylogenies are necessary.  
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4.2.5 FAMILY VOLUTIDAE COMPOSITE TREE 

 

Taxa from the family Volutidae include all three larval strategies considered as part of this 

thesis: planktotrophy, lecithotrophy and direct development. Subfamilial level phylogenetic 

analysis is carried out on five subfamilies (Athletinae, Volutinae, Scaphellinae, Amoriinae 

and Zidoninae) using a representative genus from each (Athleta (Ternivoluta), Lyria, 

Scaphella (Aurinia), Amoria and Livonia, respectively). The family Scaphellinae has not been 

dealt with in previous analyses in this chapter due to the fact that only a single species from 

this family is included in this thesis. The genus Notovoluta is also included due to some 

controversy regarding its placement in the subfamily Amoriinae (Darragh, 1988 for 

discussion). The genus Mitra from the family Mitridae is selected as the outgroup, as has 

been the case for generic level analyses for individual subfamilies. Anatomical data for the 

genera used in this analysis is extremely limited and is therefore excluded from this 

analysis. The 22 characters and their states used in this phylogenetic analysis are shown in 

Table 4.10 and the data matrix is shown in Table 4.11. 

 

Characters and states 

1. 
2.* 
3.* 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 

Shell height to width ratio: Less than 2.5 (0); 2.5 or more (1). 
Body whorl height to spire height ratio: Less than 2.5 (0); 2.5 – 5.0 (1); 5.0 or more (2). 
Aperture height to width ratio: Less than 3.0 (0); 3.0 – 5.0 (1); 5.0 or more (2). 
Body whorl height to aperture height ratio: Less than 1.5 (0); 1.5 or more (1). 
Shell shape: Elongate-fusiform (0); fusiform (1); ovate-fusiform (2); ovate (3). 
Spire form: Subconical (0); gradate (1); elongate conical (2). 
Aperture form: Elongate (0); elliptical (1); lenticular (2). 
Whorl shouldered/angulate: Angulate (0); shouldered (1). 
Suture form: Flush (0); ledged (1); canaliculate (2). 
Axial sculpture development: Weakly developed (0); strongly developed (1). 
Axial sculpture on early teleoconch whorls: Absent (0); present (1). 
Axial sculpture on late teleoconch whorls: Absent (0); present (1). 
Spiral development: Absent (0); present (1). 
Spiral sculpture on early teleoconch whorls: Absent (0); present (1). 
Spiral sculpture on late teleoconch whorls: Absent (0); present (1). 
Extension of spiral sculpture: Absent (0); spire whorls (1); anterior of body whorl (2).  
Major columella plaits: Less than 3 (0); more than 3 (1). 
Minor columella plaits: 2 or less (0); more than 2 (1). 
Outer lip form: Sharp (0); lirate (1); thickened (2); wing-like (3). 
Siphonal canal reflexed: Absent (0); present (1). 
Siphonal notch development: Absent (0); shallow (1); deep (2). 
Siphonal fasciole development: Absent (0); weakly developed (1); strongly developed (2). 

 
Table 4.10 Characters and states used in subfamilial level phylogenetic analysis of volutes. * = ordered 

characters. 
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Character matrix 

Mitridae (Mitra)* 
Athletinae (Athleta (Ternivoluta)) 

Volutinae (Lyria) 
Scaphellinae (Scaphella (Aurinia)) 

Amoriinae (Amoria) 
Amoriinae (Notovoluta) 

Zidoninae (Livonia) 

10110 00000 00100 21?20 2? 
02101 10121 10100 21110 00 
01102 10021 11100 20000 12 
11111 01020 10000 10020 00 
12201 01010 00100 01020 21 
10101 01111 11111 11001 22 
02003 12010 00111 10030 10 

 
Table 4.11 Data matrix for the five volute subfamilies plus the outgroup Mitra*. 

 

An initial exhaustive search produced 18 MPTs (CI = 0.6600, RI = 0.3929) with a tree length 

of 50 steps. Analysis was repeated following a character reweighting according to RCI 

producing a single MPT (CI = 0.7309, RI = 0.5366) with a tree length of 35 steps (Figure 4.5). 

Bootstrap values for this tree are extremely low and Bremer support values indicate that all 

nodes of the tree collapse after an additional two steps (37 steps).  

 

 

Figure 4.5 Cladogram of Cenozoic volute subfamilies plus Mitridae. Bootstrap support % based on 1000 
replicates indicated for each branch (in black). Bremer support values indicated at each node (in red). 

 

The tree indicates that the clade Athletinae + Volutinae is well supported but that the rest 

of the tree lacks support. The cladogram suggests that the genus Notovoluta may be better 

placed in the subfamily Zidoninae than in the Amoriinae. The difficulty in placing 
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Notovoluta in a subfamily has been discussed in the Chapter 3. As there is no recent 

publication that deals with subfamilial phylogenies of this family it is not possible to 

compare this tree with others that use different methods or characters. As the majority of 

volute species used in this thesis are fossils, it is only possible to base phylogenetic analyses 

on morphological characters, which are somewhat limited. A composite tree is presented 

comprised of individual subfamily trees (Figures 4.1, 4.2, 4.3, 4.4) and the family level tree 

(Figure 4.6). This composite tree is shown in Figure 4.6. The genus Notovoluta is retained in 

the subfamily Amoriinae. 

 
Figure 4.6 Composite cladogram of the family Volutidae showing the relationships between the subfamilies 

Athletinae, Volutinae, Scaphellinae, Amoriinae and Zidoninae. The genus Notovoluta is retained in the subfamily 
Amoriinae. Species level analysis was not carried out on the subfamilies Amoriinae and Zidoninae but black 

boxes indicate the number of species in each genera included in this thesis. 
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There is a severe lack of phylogenetic analyses of the family Volutidae in the literature. Only 

one publication deals with the relationships between genera of this family using radula and 

shell morphology from volute species from Australia (Bondarev, 1995). The author 

examined the relationships of genera within the subfamilies Cymbiolinae (= Amoriinae) and 

Zidoninae separately (Figure 4.7). The analysis of Bondarev (1995) supports the analysis of 

the subfamily Zidoninae carried out in this thesis in establishing Ericusa and Livonia as sister 

taxa and Notopeplum as the sister taxa to Ericusa + Livonia within the subfamily Amoriinae. 

Similarly, both analyses suggest that Amoria is the sister genus to Nannamoria and that 

Notovoluta is the sister genus to Amoria + Nannamoria within the subfamily Zidoninae. The 

genus Cymbiola is included in the subfamily Zidoninae in this thesis but in the subfamily 

Cymbiolinae in Bondarev (1995) making a comparison on its placement difficult.  

 

 

Figure 4.7 Cladograms redrawn from Bondarev (1995) for the subfamilies Cymbiolinae and Zidoninae. 
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4.3 FAMILY NASSARIIDAE 

 

All species in the family Nassariidae included in this thesis are planktotrophic and, 

therefore, only generic level analysis is carried out. Four subgenera are included in this 

analysis: Niotha, Zeuxis, Plicarcularia and Hima. The genus Buccinum is selected as the 

outgroup for this analysis due to its close relationship with the nassariids. The characters 

and states used here are based upon Haasl (2000) but with some novel characters added.  

 

The 32 characters and their states used in this phylogenetic analysis are shown in Table 

4.12 and the data matrix is shown below in Table 4.13. 

 

Characters and states 

1.* 
2. 
3. 
4. 
5. 
 
6. 
 
7. 
8. 
9. 
 
10.* 
 
11. 
12.* 
13. 
14.* 
 
15. 
16. 
 
17.* 
 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 
28. 

Shell height to width ratio: 1.0 or less (0); 1.1to 1.6 (1); 1.7 or more (2). 
Body whorl height to spire height ratio: Less than 2.0 (0); 2.0 or more (1). 
Axial sculpture development: Weakly developed (0); strongly developed (1). 
Axial sculpture on early teleoconch whorls: Absent (0); present (1). 
Axial sculpture on late teleoconch whorls: Weakly developed costae or cords (0); strongly 
developed costae (1). 
 Axial sculpture extension: Axial costae extended over whole body whorl (0); axial costae 
becoming obsolete before base of body whorl (1). 
Spiral sculpture development: Weakly developed (0); strongly  developed (1). 
Spiral sculpture on early teleoconch whorls: Absent (0); present (1). 
Spiral sculpture on late teleoconch whorls: Strong cords (0); restricted to anterior of body 
whorl (1). 
Suture type: Simple, flush with shell (0); whorls concave at suture, ledged (1); canaliculate, 
distinct groove (2). 
Subsutural nodule development: Absent (0); “beaded” just under suture (1). 
Aperture sculpture form: Absent (0); lirate (1); denticulate (2). 
Terminal columellar fold: Absent (0); present (1). 
Columellar sculpture: Absent (0); denticulate anteriorly (1); Denticulate over whole columella 
(2).  
Columellar spur: Absent (0); present (1). 
Columellar callus thickness: Thin glaze, shell sculpture visible (0); thick enamel, shell sculpture 
concealed (1). 
Extension of columellar callus: Restricted to columella (0); relatively extensive, confined to 
body whorl (1); considerably extended (2). 
Columellar callus type: Flush with shell (0); separated from shell surface (1). 
Parietal rib: Absent (0); present (1). 
Parietal notch: Absent (0); present (1). 
Outer lip thickened/variced: Absent (0); present (1). 
Outer lip spines: Absent (0); present (1). 
Labral tooth: Absent (0); present (1). 
Siphonal canal form: Shortened, prominent (0); abbreviated (1).  
Siphonal canal constriction: Unconstricted, broad (0); constricted, narrow (1). 
Eyes: Absent (0); present, base of cephalic tentacles (1). 
Foot: Unenlarged (0); enlarged (1). 
Metapodia: Zero (0); two (1). 
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29. 
30. 
31. 
32. 

Gastric shield: Absent (0); present (1). 
Rachidian tooth: Paucicuspate, less than 6 (0); multicuspate, 6 or more (1). 
Lateral teeth: Bicuspate (0); multicuspate (1). 
Accessory lateral plates: Absent (0); present (1). 

 
Table 4.12 Characters and states used in generic level phylogenetic analysis of nassariids. * = ordered 

characters. 

 

Character matrix 

Buccinum* 
Hima 

Plicarcularia 
Niotha 
Zeuxis 

01111 11100 01000 10000 00000 10000 10 
20110 01100 02120 01011 10011 10111 01 
10111 00010 02110 12011 10011 10111 01 
10111 01101 02111 01111 11111 10111 00 
20011 10012 11121 00111 11111 10111 01 

 
Table 4.13 Data matrix for the five nassariid subgenera plus the outgroup Buccinum (*). 

 

 

An exhaustive search produced a single MPT with a tree length of 42 steps, CI = 0.7857, RI = 

0.3571 (Figure 4.8). The tree supports the suggestion laid out in Chapter 3 that the 

subgenera Niotha and Zeuxis are very closely related. Bootstrap values are low and Bremer 

support shows that by 44 steps all nodes have collapsed indicating the tree is not strongly 

supported. 

 

Figure 4.8 Cladogram for Cenozoic nassariid genera plus Buccinum*. Bootstrap support % based on 1000 
replicates indicated for each branch (in black). Bremer support values indicated at each node (in red). 
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Analysis of the combined dataset (extant + fossil) from Haasl (2000) suggests that Niotha is 

not as closely related to Zeuxis as is predicted by examination of fossil material (Figure 4.9). 

However, the author notes that the tree is not robust, maybe a result of highly homoplastic 

data. 

 

 
 

Figure 4.9 Majority rule consensus tree of 1845 MPTs modified from Haasl (2000). Tree length =  145, CI = 0.359, 
RI = 0.628. Numbers indicate percentage of MPTs that contained each node. Taxa highlighted in red = fossil. 

Open circles indicate outgroup taxa. DOR = Dorsaninae, PH = Photinae. 

 

 

 

 

 

 

 



227 
 

4.4 FAMILY RAPHITOMIDAE 

 

Two species from two genera (one planktotroph and one direct developer) are included in 

the taxonomy of the family Raphitomidae as part of this thesis (Figure 4.10). As a result it is 

not possible to carry out a phylogenetic analysis on only two taxa. These taxa are included 

in the summary tree at the end of this chapter. 

 

 

Figure 4.10 Cladogram of taxa included in the family Raphitomidae as part of this thesis. 
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4.5 FAMILY BORSONIIDAE 

 

Species assigned to the family Borsoniidae in Chapter 3 include three planktotrophic and 11 

nonplanktotrophic taxa although there is no intrageneric variation. As a result only a 

generic level analysis is carried out for this family. Six genera are included in this analysis: 

Tomopleura, Cryptocordieria, Borsonia, Zemacies, Microdrillia and Bathytoma. The genus 

Conus is selected as the outgroup due to its close relationship with this family. 

 

The 23 characters and their states used in this phylogenetic analysis are shown in Table 

4.14 and the data matrix is shown below in Table 4.15. 

 

Characters and states 

1.* 
2.* 
3. 
4. 
5. 
6. 
 
7. 
 
8. 
9. 
10. 
11. 
12. 
13.* 
 
14. 
15. 
16. 
17. 
18.* 
19. 
20. 
21. 
22. 
23. 

Shell height to width ratio: Less than 2.0 (0); 2.0-2.9 (1); 3.0 – 3.9 (2); 4.0 or more (3). 
Body whorl height to spire height ratio: Less than 1.4 (0); 1.5 – 2.0 (1); More than 2.0 (2). 
Shell shape: Conical (0); claviform (1); fusiform (2); elongate-fusiform (3). 
Axial sculpture development: Weakly developed (0); strongly developed (1). 
Axial sculpture on early teleoconch whorls: Absent (0); present (1). 
Axial sculpture on late teleoconch whorls: Weakly developed costae or cords (0); strongly 
developed costae (1). 
Axial sculpture extension: Axial costae extended over whole body whorl (0); axial costae 
becoming obsolete before base of body whorl (1). 
Growth lines: Weakly developed (0); strongly developed (1). 
Spiral sculpture development: Weakly developed (0); strongly developed (1). 
Spiral sculpture on early teleoconch whorls: Absent (0); present (1). 
Spiral sculpture on late teleoconch whorls: Weak threads only (0); threads and cords (1). 
Extension of spiral sculpture: Strongest anteriorly (0); covering whole body whorl (1). 
Suture type: Simple, flush with shell (0); whorls concave at suture, ledged (1); canaliculated, 
distinct groove (2). 
Whorl shape: Straight-sided (0); convex (1). 
Whorl shoulder slope: Flat (0); convex (1); concave (2). 
Whorl shouldered/angulate: Angulate (0); shouldered (1). 
Outer lip thickened: Absent (0); present (1). 
Siphonal canal form: Abbreviated (0); short, prominent (1); long (2). 
Siphonal canal constriction: Unconstricted, broad (0); constricted, narrow (1). 
Sinus depth: Shallow (0); deep (1). 
Position of posterior sinus: Between two principle keels (0); covering shoulder slope (1). 
Aperture shape: Ovate (0); pyriform (1); elongate (2). 
Columella plaits: Smooth (0); plicate (1). 

 
Table 4.14 Characters and states used in generic level phylogenetic analysis of borsoniids. * = ordered 

characters. 
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Character matrix 

Conus* 
Tomopleura 

Cryptocordieria 
Borsonia 
Zemacies 

Microdrillia 
Bathytoma 

02000 01000 00000 1000? ?2? 
20100 01011 11111 00101 001 
10311 11111 11212 10100 110 
20211 11111 11112 00111 111 
31311 01100 00212 11211 120 
11211 10111 11111 01111 010 
10211 10111 11112 10111 011 

 
Table 4.15 Data matrix for the six borsoniid genera plus the outgroup Conus*. 

 

An initial exhaustive search produced seven MPTs (CI = 0.6957, RI = 0.4815) with a tree 

length of 46 steps. The analysis was repeated with the characters reweighted according to 

the Rescaled Consistency Index (RCI) and three MPTs were produced with a tree length of 

26 steps (CI = 0.8150, RI = 0.7056). The 50% majority rule consensus of these trees is shown 

in Figure 4.11. Bootstrap values are low higher up the tree but the lower part of the tree is 

more strongly supported. Bremer support showed that all nodes of the tree collapsed after 

five extra steps (tree length = 31 steps) although the more distal nodes collapsed after only 

one extra step. 

 

Figure 4.11 Cladogram for Cenozoic borsoniid genera plus Conus*. Bootstrap support % based on 1000 
replicates indicated for each branch (in black). Bremer support values indicated at each node (in red). 
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4.6 FAMILY MANGELIIDAE 

 

Taxa assigned to the family Mangeliidae in this thesis include four planktotrophic and two 

lecithotrophic larvae but there is no variation in larval strategy within a single genus. 

Subsequently only a generic level phylogenetic analysis is carried out for this family. Three 

genera are included in this analysis: Antiguraleus, Guraleus and Macteola. The genus Conus 

is selected as the outgroup.  

 

The 21 characters and their states are shown in Table 4.16 and the data matrix is shown in 

Table 4.17. 

 

 
Characters and States 

 

1. 
2. 
3. 
4. 
5. 
6. 
 
7. 
 
8. 
9. 
10. 
11. 
 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20.* 
21. 

Shell height to width ratio: Less than 2.0 (0); 2.0 or more (1). 
Body whorl height to spire height ratio: Less than 2.0 (0); 2.0 or more (1). 
Shell shape: Cone-shaped (0); fusiform (1). 
Axial sculpture development: Weakly developed (0); strongly developed (1). 
Axial sculpture on early teleoconch whorls: Absent (0); present (1). 
Axial sculpture of late teleoconch whorls: Absent (0); weakly developed costae (1); strongly 
developed costae (2). 
Axial costae width and interspaces: Absent (0); costae narrow with wide interspaces (1); 
costae wide with narrow interspaces (2). 
Spiral sculpture development: Weakly developed (0); strongly developed (1). 
Spiral sculpture on early teleoconch whorls: Absent (0); present (1). 
Spiral sculpture on late teleoconch whorls: Weak threads only (0); threads and cords (1).  
Extension of spiral sculpture: Strongest anteriorly (0); strongest posteriorly (1); covering 
whole body whorl (2). 
Whorl shape: Straight-sided (0); convex (1). 
Whorl shoulder slope: Flat (0); convex (1); concave (2). 
Suture type: Simple, flush with shell (0); whorls concave at suture (1). 
Outer lip thickened: Absent (0); present (1).  
Siphonal canal form: Short, prominent (0); abbreviated (1). 
Siphonal canal constriction: Unconstricted, broad (0); constricted, narrow (1). 
Position of posterior sinus: Covering shoulder slope (0); covering peripheral keel (1). 
Whorl shouldered or angulate: Angulate (0); shouldered (1). 
Number of costae per whorl: Absent (0); less than 10 (1); 10 or more (2). 
Periphery form: Subangulate (0); angulate (1); carinate (2). 

 
Table 4.16 Characters and states used in generic level phylogenetic analysis of mangeliids.  * = ordered 

characters.  
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Character matrix 

Conus* 
Antiguraleus 

Guraleus 
Macteola 

01000 00000 00000 10010 2 
10111 11111 21211 00012 0 
10111 22000 11100 0000? 1 
10111 22010 21200 01111 2 

 
Table 4.17 Data matrix for the three mangeliid genera plus the outgroup Conus (*). 

 

An exhaustive search produced a single MPT with a tree length of 30 steps, CI = 0.9000, RI = 

0.5000 (Figure 4.12). Bootstrap values are fairly low and Bremer support showed that the 

nodes collapse after only one extra step (31 steps). The tree suggests that Antiguraleus and 

Macteola are more closely related than either is to Guraleus which is not necessarily 

supported by the taxonomic revision in the previous chapter. 

 

 

Figure 4.12 Cladogram for Cenozoic mangeliid genera plus Conus*. Bootstrap support % based on 1000 
replicates indicated for each branch (in black). Bremer support values indicated at each node (in red). 
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4.7 FAMILY TURRIDAE 

 

Of the six species assigned to the family Turridae in Chapter 3 one is planktotrophic and five 

are lecithotrophic but there is no intrageneric variation in larval mode. Consequently, 

generic level phylogenetic analysis is carried out for this family. Five genera are included in 

this analysis: Gemmula, Gemmula (Clavogemmula), Lophiotoma, Turris and Optoturris. The 

genus Conus was selected as the outgroup. The 21 characters and their states are shown in 

Table 4.18 and the data matrix is shown in Table 4.19. 

 

Characters and states 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
 
11. 
12.* 
13. 
14. 
15.* 
16. 
17.* 
18. 
19. 
20. 
21. 
22. 

Shell height to width ratio: Less than 2.0 (0); 2.0 or more (1). 
Body whorl height to spire height ratio: Less than 2.0 (0); 2.0 or more (1). 
Shell shape: Cone-shaped (0); fusiform (1); elongate-fusiform (2). 
Axial sculpture development: Weakly developed (0); strongly developed (1). 
Axial sculpture on early teleoconch whorls: Absent (0); present (1). 
Axial sculpture of late teleoconch whorls: Absent (0); present (1). 
Spiral sculpture development: Weakly developed (0); strongly developed (1). 
Spiral sculpture on early teleoconch whorls: Absent (0); present (1). 
Spiral sculpture on late teleoconch whorls: Weak threads only (0); Threads and cords (1).  
Extension of spiral sculpture: Strongest anteriorly (0); strongest posteriorly (1); covering whole 
body whorl (2). 
Peripheral keel: Absent (0); present (1). 
Peripheral keel form: Absent (0); non-gemmulate (1); gemmulate (2). 
Whorl shape: Straight-sided (0); convex (1). 
Whorl shoulder slope: Flat (0); concave (1). 
Suture type: Simple, flush with shell (0); whorls concave at suture (1); canaliculate (2). 
Outer lip thickened: Absent (0); present (1).  
Siphonal canal form: Abbreviated (0); short, prominent (1); long (2). 
Siphonal canal constriction: Unconstricted, broad (0); constricted, narrow (1). 
Posterior sinus form: “V-shaped” (0); “U-shaped” (1). 
Position of posterior sinus: Covering shoulder slope (0); covering peripheral keel (1). 
Outer lip lirations: Absent (0); present (1). 
Aperture height to width ratio: 2.0 or less (0); more than 2.0 (1). 

 
Table 4.18 Characters and states used in generic level phylogenetic analysis of turrids. * = ordered characters. 

 

Character matrix 

Conus* 
Gemmula 

Gemmula (Clavogemmula) 
Lophiotoma 

Turris 
Optoturris 

01000 00000 00000 000?0 01 
10200 11110 12112 01111 10 
10111 11010 12112 01011 ?0 
10200 11112 11112 02001 00 
10200 01112 11112 01110 11 
10200 00101 11111 11011 01 

 
Table 4.19 Data matrix for the five turrid genera plus the outgroup Conus*. 
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An exhaustive search produced a single MPT with a tree length of 34 steps, CI = 0.7941 and 

RI = 0.5625 (Figure 4.13). Bootstrap values are low, perhaps a result of the small dataset, 

and Bremer support shows that all nodes of the tree collapse at 36 steps. As would be 

expected from the taxonomic review of this family, Gemmula and Gemmula 

(Clavogemmula) are most closely related to each other than either is to another taxa, 

although this is only moderately well supported on this tree. 

 

Figure 4.13 Cladogram for Cenozoic turrid genera plus Conus*. Bootstrap support % based on 1000 replicates 
indicated for each branch (in black). Bremer support values indicated at each node (in red). 
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4.8 SUPERFAMILY CONOIDEA 

 

Families assigned to the superfamily Conoidea include planktotrophic, lecithotrophic and 

direct developing taxa with variation confined to generic level. Family level phylogenetic 

analysis is carried out on four families (Raphitomidae, Borsoniidae, Mangeliidae and 

Turridae) using one genus from each as representatives for each family. The genus Conus is 

selected as the outgroup, as has been the case for generic level analyses. Anatomical data 

for the genera used in this analysis is extremely limited and is therefore excluded from this 

analysis. The 24 characters and their states used in this phylogenetic analysis are shown in 

Table 4.20 and the data matrix is shown in Table 4.21. 

 

Characters and states 

1.* 
2.* 
3.* 
4. 
5. 
6. 
7. 
 
8. 
9. 
10. 
11. 
12. 
13. 
 
14. 
15. 
16. 
17.* 
 
18. 
19. 
20. 
21.* 
22. 
23. 
24. 

Shell height to width ratio: Less than 2.0 (0); 2.1-3.0 (1); More than 3.0(2). 
Body whorl height to spire height ratio: 1.0 or less (0); 1.1 to 2.0 (1); More than 2.0 (2). 
Aperture height to width ratio: Up to 2.5 (0); 2.5 to 5.0 (1); More than 5.0 (2). 
Shell shape: Cone-shaped (0); ovate (1); fusiform (2); elongate-fusiform (3). 
Axial sculpture development: Weakly developed (0); strongly developed (1). 
Axial sculpture on early teleoconch whorls: Absent (0); present (1). 
Axial sculpture on late teleoconch whorls: Absent (0); weakly developed (1); strongly 
developed (2). 
Axial sculpture extension: Over whole body whorl (0); obsolete before base of body whorl (1). 
Growth lines: Weakly developed (0); strongly developed (1). 
Spiral sculpture development: Weakly developed (0); strongly developed (1). 
Spiral sculpture on early teleoconch whorls: Absent (0); present (1). 
Spiral sculpture on late teleoconch whorls: Weak threads only (0); threads and cords (1). 
Spiral sculpture extension: Strongest anteriorly (0); strongest posteriorly (1); covering whole 
body whorl (2). 
Whorl shape: Straight-sided (0); convex (1). 
Whorl angulate/shouldered: Angulate (0); shouldered (1). 
Whorl shoulder slope form: Absent (0); flat (1); concave (2). 
Suture form: Simple, flush with shell (0); whorls concave at suture, ledged (1); canaliculate, 
distinct groove (2). 
Aperture shape: Ovate (0); pyriform (1); elongate (2). 
Outer lip thickened: Absent (0); present (1). 
Outer lip lirations: Absent (0); present (1). 
Siphonal canal form: Abbreviated (0); short, prominent (1). 
Siphonal canal constriction: Unconstricted, broad (0); constricted, narrow (1). 
Posterior sinus depth: Shallow (0); deep (1). 
Position of posterior sinus: Covering shoulder slope (0); covering peripheral keel (1). 

 
Table 4.20 Characters and states used in generic level phylogenetic analysis of conoideans. * = ordered 

characters. 
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Character matrix 

Conidae (Conus*) 
Raphitomidae (Daphnella) 
Borsoniidae (Bathytoma) 

Mangeliidae (Antiguraleus) 
Turridae (Turris) 

02200 00100 00001 10200 00?? 
11111 11101 11210 01000 1000 
10121 11011 11211 21100 1111 
11031 11111 11211 21210 1010 
21030 02101 11211 22001 1110 

 
Table 4.21 Data matrix for the four conoidean families plus the outgroup Conus*. 

 

 

An exhaustive search produced a single MPT (CI = 0.9167, RI = 0.5000) with a tree length of 

36 steps. Bootstrap values are moderately low as indicated on Figure 4.14 and Bremer 

support showed that all nodes of the tree collapsed after only one extra step. 

 

 

Figure 4.14 Cladogram of Cenozoic conoidean gastropod families plus Conidae. Bootstrap support % based on 
1000 replicates indicated for each branch (in black). Bremer support values indicated at each node (in red). 

 

The molecular phylogeny of the Superfamily Conoidea has been the focus of several 

publications in recent years (Puillandre et al., 2008, 2011, based on three mitochondrial 

genes: COI, 12S, 16S) and has resulted in new a classification of this complex superfamily 

with a number of new families being established (Bouchet et al., 2011). The families 

Raphitomidae, Borsoniidae, Mangeliidae and Turridae are included in the superfamily 

Conoidea and their relationship to each other and other conoidean families has been 

assessed in these studies (Figure 4.15). By pruning the tree of families not included in this 

thesis, the families Raphitomidae and Mangeliidae are found to be most closely related and 
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are the sister group to the family Borsoniidae whilst the family Turridae is the sister group 

to Raphitomidae + Mangeliidae + Borsoniidae (Puillandre et al., 2011).  

 

The tree produced as part this study indicates that the families Borsoniidae and 

Mangeliidae are most closely related with the family Raphitomidae as the sister group. This 

differs from the tree produced by Puillandre et al. (2011) although the family Turridae is 

here shown to be the sister group to Borsoniidae + Mangeliidae + Raphitomidae, in 

agreement with Puillandre et al. (2011). The dataset used in the literature is considerably 

larger than the one in this thesis, is based on molecular data and is analysed using 

maximum likelihood which may account for the differences between the trees.  
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Figure 4.15 Best MLA tree obtained from molecular phylogenetic analysis for the superfamily Conoidea 

(modified from Puillandre et al., 2011). Bootstrap values (>50%) and posterior probabilities (>0.8) are indicated 
for each node. Grey boxes indicate families defined in the most recent classification of the Conoidea (Bouchet et 
al., 2011). Yellow boxes indicate families included in this thesis with genera in bold indicating those used in this 

chapter. 
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As the majority of conoidean species used in this thesis are fossils, phylogenetic analyses 

are limited to morphological characters. As a result it is not possible to analyse all these 

species in the way Puillandre et al. (2008, 2011) have done and instead a composite tree is 

presented comprised of individual family trees (Figures 4.10, 4.11, 4.12, 4.13) and the 

family level tree (Figure 4.14). This composite tree is shown in Figure 4.16. 

 

 

Figure 4.16 Composite cladogram of the superfamily Conoidea showing the relationships between the families 
Raphitomidae, Borsoniidae, Mangeliidae and Turridae. 
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4.9 NEOGASTROPOD COMPOSITE TREE 

 

The paucity of informative characters available from fossil gastropods makes creating a 

large dataset on which to base family level analysis implausible. Examination of anatomical 

and molecular characters is not within the scope of this thesis and as a result a composite 

tree for all genera/species included in this study is based on molecular phylogenies by 

Cunha et al. (2009) which use complete mitochondrial genomes. The study by Cunha et al. 

(2009) suggests that the Nassariidae and “Turridae” (=Raphitomidae, Borsoniidae, 

Mangeliidae and Turridae) are sister groups and the family Volutidae is the sister family to 

Nassariidae + “Turridae” (Figure 4.17). 

 

 

Figure 4.17 Phylogenetic relationships within Gastropoda modified from Cunha et al. (2009). A) Maximum 
Likelihood phylogram based on all combined data set. B) ML phylogram based on partial combined dataset. 

Numbers in nodes correspond to ML bootstrap proportions (above) and BI posterior possibilities (below). Only 
values >70% represented. Families highlighted in grey boxes and bold are included in this thesis. The inset 

shows a ML topology based on fragments of mitochondrial and nuclear data (adapted from Colgan et al., 2007). 
Families highlighted in grey are included in this thesis. 
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The length of the branches in Figure 4.17 are extremely short suggesting that the taxa are 

difficult to distinguish from one another. This highlights the difficulties faced in trying to 

resolve the evolutionary relationships of neogastropods, even where molecular data is 

available. 

 

A composite tree of the families Nassariidae and Volutidae and the superfamily Conoidea 

used in this thesis is based on Figure 4.17 where the Nassariidae and Conoidea are 

presented as more closely related to one another than either is to the Volutidae. This 

composite tree (Figure 4.18) will provide the means for mapping switches in larval strategy 

through geological time and determining the plesiomorphic larval condition in the following 

chapter. 
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Figure 4.18 Composite cladogram for the families Volutidae, Nassariidae, Raphitomidae, Borsoniidae, 
Mangeliidae and Turridae based on arrangement by Cunha et al. (2009). Black boxes indicate the number of 

species assigned to genera where species level analysis has not been carried out. 
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CHAPTER 5  

 

ORDER AND TIMING OF SWITCHES IN LARVAL MODE 

 

Research into the evolutionary history of developmental mode in fossil gastropods has 

received very little attention in the published literature. Direct observations of fossilised 

larvae are hindered by their extremely poor fossil record and problems in attributing larvae 

to particular adult taxa. In addition, difficulties in constructing well-resolved phylogenies 

severely hamper our understanding of the evolution of larval strategies of gastropods 

through geological time. As a result the plesiomorphic developmental mode and the timing 

and order of switches in larval strategy are yet to be fully investigated. 

 

In this chapter, the larval strategies of the 104 species of fossil gastropods described in 

Chapter 3 are presented. These developmental modes are then mapped onto the cladograms 

produced in Chapter 4. This approach allows plesiomorphic larval strategies to be explored 

and the order and timing of switches in developmental mode in gastropods throughout the 

Cenozoic of southeastern Australia to be investigated. By examining the time intervals at 

which switches in larval strategies occur, it is possible to assess whether they are clustered 

to a particular time period, an approach which has allowed researchers to explore possible 

external influencing factors (e.g. Jeffery, 1997). 

 

A few researchers have examined the evolutionary patterns of gastropod larval strategies 

using both phylogenetic and non-phylogenetic techniques (e.g. Hansen, 1982; Reid, 1989; 

Lieberman et al., 1993). Most studies indicate that whilst planktotrophic species often give 

rise to nonplanktotrophic species, the reverse is extremely rare. This is often attributed to 

the presumed difficulty in reacquiring the specialised feeding and swimming structures 

required for planktotrophic development once they are abandoned (e.g. Strathmann, 1974; 

1978).   

 

Planktotrophy has been determined as the primitive larval strategy in a number of gastropod 

groups using phylogenetic methods, such as the neogastropods (Hansen, 1982), the family 

Turritellidae (Lieberman et al., 1993), the genus Conus (Duda & Palumbi, 1999) and the 

conoidean genera Kermia and Pseudodaphnella (Fedosov & Puillandre, 2012). In each of 

these groups nonplanktotrophic development has been independently gained at least twice 
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and there is no evidence of a reversal to planktotrophy once nonplanktotrophy has been 

acquired (although Lieberman et al. (1993) do not rule out the possibility). An exception to 

this general trend is seen in the subfamily Lacuninae of the family Littorinidae (Reid 1989), 

where a recent reversal from nonplanktotrophy to planktotrophy is inferred. There is some 

evidence that gastropods can retain the specialised larval structures required for feeding and 

swimming (e.g. opposed-band ciliary mechanism) in nonplanktotrophic taxa, making a 

transition from nonfeeding back to feeding development possible (Collin, 2004; Collin et al., 

2007) although these intermediary larval forms are yet to be fully understood. 

 

A much overlooked aspect of developmental mode evolution in gastropods is the issue of 

coordinated switches of larval strategy. If switches in larval mode are concentrated at 

particular time periods then it may be possible to determine external factors which drive 

such shifts. Although this topic has been somewhat neglected in studies on gastropods, some 

light has been shed on coordinated shifts in larval strategies in echinoids (e.g. Jeffery 1997). 

Near-synchronous shifts to nonplanktotrophic development in nine independent clades 

during the latest Cretaceous over a wide latitudinal range are thought to have been driven 

by increased seasonality (Jeffery, 1997). Similarly, shifts to nonplanktotrophy in spatangoid 

echinoids during the Campanian and Maastrichtian have been attributed to environmental 

change occurring at this time (Cunningham & Jeffery Abt, 2009). Similar studies on 

gastropods are yet to be undertaken/published. This study aims to shed light on the possible 

factors driving switches in larval mode in gastropods from the Cenozoic of southeastern 

Australia, if such coordinated shifts exist. 

 

 

5.1 INFERRING LARVAL MODE FROM FOSSIL GASTROPODS 

 

Gastropods, as well as a small number of other marine invertebrates including echinoids and 

bivalves, can be used to infer larval mode from fossil specimens. This is because the different 

larval strategies are reflected in the size and shape of the protoconch (larval shell) which is 

often preserved at the tip of the adult shell. The protoconch, or apex, of the gastropod shell 

forms prior to metamorphosis to the adult body plan and thus is often referred to as the 

“larval shell” (Figure 5.1a). In this thesis, the “protoconch” refers to the entire shell formed 

prior to metamorphosis, as in Robertson (1971), Shuto (1974) and Hansen (1978, 1980, 1982, 

1983). The protoconch is comprised of two parts, each representing different phases of early 

development (Figure 5.1b). The Protoconch I, or embryonic shell, is the first part to form prior 
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to hatching and is thought to be secreted by the shell gland (e.g. Iwata, 1980). The 

Protoconch I always comprises fewer than two volutions and is generally unornamented with 

a grainy appearance (Robertson, 1971; Jablonski & Lutz, 1983). The Protoconch II represents 

the second stage of larval shell growth and is produced by deposition of aragonite at the 

mantle edge (Carriker & Palmer, 1979). The Protoconch II comprises 1.5 to 8 volutions and 

can be smooth or ornamented (Jablonski & Lutz, 1983). The boundary between these two 

parts of the protoconch is often difficult to identify due to recrystallisation of the shell, except 

under the scanning electron microscope. The protoconch is always composed of aragonite, 

even if the teleoconch is calcitic (Carriker & Palmer, 1979). Often there is little resemblance 

between the protoconch and teleoconch (adult shell), with distinct differences in 

ornamentation as well as cases of heterostrophy, where the coiling axes of the protoconch 

and teleoconch differ in orientation (e.g. Frýda & Ferrová, 2011). These differences often 

make identification of the protoconch a simple process, even without the aid of a scanning 

electron microscope. 

 

 

Figure 5.1 Diagrams of the gastropod protoconch. a) Location of the protoconch at the apex of the shell, b) 
diagram of the protoconch showing the Protoconch I/II boundary and the protoconch/teleoconch boundary 

(Scale = 100microns) (modified from Vendetti, 2007). 
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Inference of larval mode in fossil gastropods is only possible in specimens that have not lost 

or damaged their protoconch and have therefore retained evidence of their early 

development.  

Modern methods of inferring gastropod larval strategies are commonly based on Thorson’s 

“apex theory” which states that “as a general rule, a clumsy, large apex points to a nonpelagic 

development, while a narrowly twisted apex, often with delicate sculpture, points to a 

pelagic development” (Thorson, 1950). This general rule suggests that large, paucispiral 

protoconchs indicate that the larvae have spent little or no time in the plankton 

(nonplanktotrophic) having hatched from large, yolk-rich eggs while narrow, multispiral 

protoconchs indicate a prolonged planktic period (planktotrophic). Whilst this provides a 

good basis for inference of larval mode, many researchers have sought to develop more 

precise criteria, aided by advances in microscopy.  

 

Most authors follow or modify the method outlined by Shuto (1974), which is based on 

prosobranch gastropods, using living taxa whose larval mode is known to test the method. 

Maximum diameter (D) and number of volutions of the protoconch (V), are combined with 

qualitative characters such as shape and sculpture to infer larval mode of fossil species. 

Definitions of volutions and maximum diameter are shown in Figure 5.2. 

 

 

Figure 5.2 Definitions of maximum diameter (D), volutions (V) and embryonic whorl (EW) of the gastropod 
protoconch and teleoconch (T). Modified from Hansen (1980). 
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The method outlines the metric and morphological criteria of planktotrophic, lecithotrophic 

and, to a lesser extent, direct developing taxa. Species inferred as planktotrophic have a 

maximum protoconch diameter to number of volutions ratio (D/Vol) of less than 0.3, more 

than 3 volutions, the presence of a sinusigera riblet (a rib that defines the boundary between 

the protoconch and teleoconch), possible sculpture of brephic axials and a narrow, high apex. 

By contrast, lecithotrophic species can be inferred by a D/Vol of 0.3 to 1.0, less than 2.25 

volutions, lack of sculpture and a blunt, low apex. Direct developing taxa are defined as 

having a D/Vol of more than 1.0. Where D/Vol = 0.3 – 1.0 and Vol = <3.0, both planktrotophy 

and lecithotrophy are possible and morphological criteria must be used to infer larval mode. 

This method and some others used in the literature are summarised in Table 5.1. 
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Table 5.1 Table summarising methods in published literature and method used in this research for inferring 
larval mode from gastropod protoconchs. D = maximum diameter of protoconch, Vol = number of protoconch 

volutions, EW = embryonic whorl.
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For this research, larval mode is inferred using the method developed by Shuto (1974) 

because it seems to be the most robust approach in the published literature, using both 

metric and morphological characters to infer larval strategies in fossil specimens (Table 5.1). 

In addition, the research presented in this thesis will be easy to compare to other studies as 

many authors use or modify Shuto’s (1974) method. A graphical representation of the 

protoconch measurements used to infer larval mode is shown in Figure 5.3. 

 

A total of 104 Cenozoic species from the neogastropod families Volutidae, Nassariidae, 

Raphitomidae, Borsoniidae, Mangeliidae and Turridae of southeastern Australia are 

examined and larval mode inferred. Although many additional species were examined, only 

those with an intact protoconch and whose taxonomic position could be confidently assigned 

were included. Analysed specimens include both museum material and material collected in 

the field. Wherever possible at least one type specimen from each species was analysed to 

avoid complications relating to misidentification of species. Material collected from the field 

and examined as part of this research is deposited in the Department of Earth Sciences and 

Liverpool University in the UK. 

 

Measurements of the protoconch were taken using electronic callipers, accurate to 0.01mm, 

and in cases of very small specimens, light microscopy was used to identify the boundary 

between the protoconch and teleoconch. Morphological data such as general shape and size, 

sculpture and spiral development was recorded from examination of specimens using light 

microscopy. 

 

Protoconch measurements of all species included in this study are presented graphically in 

Figures 5.4 and 5.5. Morphological observations and, where necessary, comparison to closely 

related living species whose larval mode is known are used to confidently determine the 

larval strategy of each of the species included in the dataset. The number of species with 

each larval strategy in each taxonomic family is presented in Table 5.2. Figure 5.6 shows the 

distribution of larval strategies on the cladograms produced in Chapter 4. 
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Figure 5.3 Graphical presentation of metric criteria for inferring larval mode in fossil gastropods based on the 
method developed by Shuto (1974). Modified from Vendetti (2007). 

 

 

 
 

P 
 

L DD TOTAL 

Volutidae 3 2 64 69 
Nassariidae 7 0 0 7 

Raphitomidae 1 0 1 2 
Borsoniidae 3 11 0 14 
Mangeliidae 4 2 0 6 

Turridae 1 5 0 6 

 
TOTAL 

 
19 20 65 104 

 

Table 5.2 Table showing the number of species with different larval strategies in each family used in this study. 
P = Planktotrophic, L = Lecithotrophic, DD = Direct developer. 
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Figure 5.4 Plot of protoconch measurements for the families Nassariidae, Raphitomidae, Borsoniidae, 
Mangeliidae and Turridae. Blue box = planktotrophy, orange box = lecithotrophy, green box = direct 

development, purple box = planktotrophy or lecithotrophy. 
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Figure 5.5 Plot of protoconch measurements for the subfamilies Athletinae, Volutinae, Scaphellinae, Amoriinae 
and Zidoninae of the family Volutidae. Blue box = planktotrophy, orange box = lecithotrophy, green box = direct 

development, purple box = planktotrophy or lecithotropy. 

 

 



253 
 

 

 

 

Figure 5.6 Cladograms of taxa used in this research with larval strategies mapped onto terminal taxa: a) 
Raphitomidae, b) Borsoniidae, c) Mangeliidae, d) Turridae, e) Nassariidae and f) Volutidae. 
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5.2 RECONSTRUCTION OF ANCESTRAL DEVELOPMENTAL MODE 

 

Having established the distribution of larval strategies in terminal taxa on the phylogenetic 

trees produced in Chapter 4 (Figure 5.6), a number of methods can be used to reconstruct 

the ancestral mode of development. The methods used in this thesis are maximum 

parsimony and maximum-likelihood analysis. The family Nassariidae are excluded from these 

analyses due to the lack of variation in developmental mode. Since all nassariids in this study 

have planktotrophic larvae, the ancestral mode of development can be unambiguously 

determined as planktotrophy. 

 

5.2.1 MAXIMUM PARSIMONY ANALYSIS 

 

To reconstruct ancestral developmental mode using maximum parsimony analysis, larval 

strategies are mapped onto the phylogenetic trees of each family using MacClade 4.08 

(Maddison & Maddison, 2005). Outgroups included in these analyses follow those in Chapter 

4: Conus for the conoidean families Raphitomidae, Borsoniidae, Mangeliidae and Turridae 

and Mitra for the family Volutidae. The type species for both Conus and Mitra are 

planktotrophs. Planktotrophy is assigned a character state of 0, lecithotrophy a character 

state of 1 and direct development a character state of 2. This allows the theoretical prediction 

that planktotrophy is plesiomorphic and that there is an ordered transformation through 

lecithotrophy to direct development to be explored. Transitions between the different larval 

strategies are treated in three ways: unordered, ordered and irreversible. Unordered 

transitions allow transitions to any larval strategy in any order and direction. Ordered 

transitions allow changes in larval strategy to occur in any direction but ordered from 

planktotrophy through lecithotrophy to direct development. Irreversible transitions only 

allow ordered changes in larval strategy in a forward direction only i.e. from planktotrophy 

to lecithotrophy to direct development. Where developmental traits are treated as 

irreversible, planktotrophy will always be considered to be the ancestral developmental 

mode.  Transitions between character states are equally weighted. Maximum parsimony 

trees for unordered, ordered and irreversible transitions for the families Raphitomidae, 

Borsoniidae, Mangeliidae and Turridae are presented in Figures 5.7 and 5.8. Maximum 

parsimony trees for unordered, ordered and irreversible transitions in the family Volutidae 

are presented in figures 5.9, 5.10 and 5.11. 
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Figure 5.7 Maximum parsimony reconstruction of ancestral larval strategies of Cenozoic gastropods from the 
families Raphitomidae and Borsoniidae of southeastern Australia: a) unordered, b) ordered and c) irreversible 
transitions for the family Raphitomidae; d) unordered, e) ordered and f) irreversible transitions for the family 

Borsoniidae. 
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Figure 5.8 Maximum parsimony reconstruction of ancestral larval strategies of Cenozoic gastropods from the 
families Mangeliidae and Turridae of southeastern Australia: a) unordered, b) ordered and c) irreversible 

transitions for the family Mangeliidae; d) unordered, e) ordered and f) irreversible transitions for the family 
Turridae. 
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Figure 5.9 Maximum parsimony reconstruction of ancestral larval strategies of Cenozoic gastropods from the 
family Volutidae of southeastern Australia where transitions are treated as unordered. 
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Figure 5.10 Maximum parsimony reconstruction of ancestral larval strategies of Cenozoic gastropods from the 
family Volutidae of southeastern Australia where transitions are treated as ordered. 
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Figure 5.11 Maximum parsimony reconstruction of ancestral larval strategies of Cenozoic gastropods from the 
family Volutidae of southeastern Australia where transitions are treated as irreversible. 
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For each of the conoidean families (Raphitomidae, Borsoniidae, Mangeliidae and Turridae) 

there are only two larval modes. Consequently, the results will be the same regardless of 

whether developmental traits are treated as unordered or ordered, although both analyses 

are presented for completeness. The trees of these families do not represent all species 

found in southeastern Australia, but due to uncertain taxonomic placement no other taxa 

can be included in this study (see Chapter 3 for discussion). The tree of the family Volutidae 

includes all species/genera found in Cenozoic strata of southeastern Australia. The possible 

ancestral larval strategies for each family are summarised in Table 5.3. Where the trees 

cannot unequivocally determine the ancestral larval mode, planktotrophy is always possible 

according to this analysis. For conoidean families this is because there are only two possible 

larval strategies. Maximum parsimony analysis indicates that lecithotrophy is the most 

unlikely ancestral larval strategy in the family Volutidae. 

 

 
Unordered Ordered Irreversible 

 

Raphitomidae 

 

P 

 

P 

 

P 

Borsoniidae P P P 

Mangeliidae E (P or L) E (P or L) P 

Turridae E (P or L) E (P or L) P 

Volutidae E (P or DD) E (P or DD) P 

 

Table 5.3 Table showing the possible ancestral larval modes for each family included in this study based on 
maximum parsimony analysis where characters are treated as unordered, ordered and irreversible. Larval 
strategies in brackets are the most likely ancestral modes based on the number of steps of each tree. E = 

Equivocal, P = Planktotrophy, L = Lecithotrophy, DD = Direct Development. 
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5.2.2 MAXIMUM-LIKELIHOOD ANALYSIS 

 

Reconstruction of ancestral modes of development using maximum-likelihood analysis is 

carried out using Mesquite 2.75 (Maddison & Maddison, 2011). The Mk1 model (“Markov k-

state 1 parameter model”) is used to assess the proportional support for each larval strategy 

at all internal nodes by maximising the likelihood with each node fixed in turn to each of the 

three possible larval strategies (local estimator model of Pagel, 1999). Significant support for 

a particular character state was established by a likelihood ratio of 7.4:1 or more (Maddison 

& Maddison, 2011). Outgroups were used to root the trees and are the same as those used 

in Chapter 4: Conus for the conoidean families Raphitomidae, Borsoniidae, Mangeliidae and 

Turridae and Mitra for the family Volutidae. The type species for both Conus and Mitra are 

planktotrophs. As for maximum parsimony analysis, planktotrophy, lecithotrophy and direct 

development were assigned the character states 0, 1 and 2 respectively. Analyses were 

carried out using equal branch lengths for all trees.  

 

Proportional support of each larval strategy at the basal node of each tree indicates the likely 

ancestral developmental mode. Maximum-likelihood trees for the families Raphitomidae, 

Borsoniidae, Mangeliidae and Turridae are presented in Figure 5.12. The maximum-

likelihood tree for the family Volutidae is presented in Figure 5.13. The possible ancestral 

larval strategies and the proportions of support for each at the basal node for each family are 

summarised in Table 5.4. 
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Figure 5.12 Maximum-likelihood reconstruction of ancestral larval strategies of Cenozoic gastropods from the 
families Raphitomidae, Borsoniidae, Mangeliidae and Turridae of southeastern Australia. Pie charts indicate 

relative support for each character state at each node. Ratios of 7.4:1 are considered significant and indicated 
by an asterisk. 
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Figure 5.13 Maximum-likelihood reconstruction of ancestral larval strategies of Cenozoic gastropods from the 
family Volutidae of southeastern Australia. Pie charts indicate relative support for each character state at each 

node. Ratios of 7.4:1 are considered significant and indicated by an asterisk. 
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P L DD 

 

Raphitomidae 

 

0.5 

 

- 

 

0.5 

Borsoniidae 0.71 0.29 - 

Mangeliidae 0.5 0.5 - 

Turridae 0.5 0.5 - 

Volutidae 0.51* 0.05 0.44* 

 

Table 5.4 Table showing the possible ancestral larval modes for each family included in this study based on 
maximum-likelihood analysis. Numerical values indicate the proportional support for each character state at the 

basal node of each tree. Ratios of 7.4:1 are considered significant and indicated by an asterisk. P = 
Planktotrophy, L = Lecithotrophy, DD = Direct Development. 

 

Maximum-likelihood analysis shows equal support for planktotrophy and lecithtrophy as the 

ancestral larval mode in the families Mangeliidae (Figure 5.12c) and Turridae (Figure 5.12d). 

Similarly, planktotrophy and direct development are equally likely ancestral larval strategies 

in the family Raphitomidae (Figure 5.12a). Analysis of the family Borsoniidae (Figure 5.12b) 

indicates that planktotrophy is the best supported ancestral character state although this is 

not considered to be significant (ratio less than 7.4:1). The small datasets for each of the 

conoidean families is likely to contribute to the equal support of ancestral character states. 

By including more taxa in these analyses, it may be possible to find the more likely ancestral 

larval strategy. Both planktotrophy and direct development are indicated as possible 

ancestral developmental modes in the family Volutidae (Figure 5.13), both with significant 

support (ratio 7.4:1 or more). Lecithotrophy is considered to be the least likely ancestral 

mode of development in the Volutidae of southeastern Australia.  

 

The results from both maximum parsimony and maximum-likelihood analysis are almost 

identical, although the latter indicates the level of uncertainty for each character state. 

Planktotrophy is always a possible ancestral developmental mode regardless of the method 

used to reconstruct ancestral larval strategies. A comparison of the results of the two 

methods is presented in Table 5.5 (using equal weight unordered maximum parsimony). 
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 Maximum Parsimony 

 
Maximum-likelihood 

 

 

Raphitomidae 

 

P 

 

P or D 

Borsoniidae P P or L 

Mangeliidae P or L P or L 

Turridae P or L P or L 

Volutidae P or DD P or DD 

 

Table 5.5 Comparison of results of ancestral developmental mode reconstruction using maximum parsimony 
and maximum-likelihood methods. 

 

 

5.3 NUMBER AND ORDER OF CHANGES IN DEVELOPMENTAL MODE 

 

Three approaches are used in this thesis to examine the number and order of switches in 

larval mode of Cenozoic gastropods from southeastern Australia: maximum parsimony, 

maximum parsimony sensitivity analysis and maximum-likelihood. The Nassariidae are 

excluded from these analyses as there is no variation in larval strategy within this family. 

 

5.3.1 MAXIMUM PARSIMONY ANALYSIS 

 

For each of the families included in this study, larval strategies are not concentrated to 

particular clades but are scattered randomly across the trees. Using maximum parsimony 

analysis (Figures 5.7, 5.8, 5.9, 5.10 and 5.11), the number and order of shifts in larval strategy 

can be examined when developmental traits are treated as unordered, ordered or 

irreversible. The number and order of changes in larval strategy for each family when 

planktotrophy is considered the ancestral larval mode (which is possible for all families) are 

summarised in Table 5.6. Outgroup taxa used in these phylogenies are not included in the 

number of changes in developmental mode but just to polarise the tree. If the outgroup is 

altered (perhaps to something more closely related to the ingroup taxa) then this may alter 

the number of changes seen on the tree. 
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Unordered Ordered Irreversible 

 
Raphitomidae 

 
P → DD (1) 

 
P → DD (1) 

 
P → DD (1) 

Borsoniidae 
 

P → L (1) 
L → P (1) 

 
P → L (1) 
L → P (1) 

P → L (3) 

Mangeliidae 
 

P → L (2) P → L (2) P → L (2) 

Turridae 
 

P → L (1) 
L → P (1) 

P → L (1) 
L → P (1) 

P → L (4) 

 
Volutidae 

 
P → DD (1) 
DD → L (2) 
DD → P (3) 

 

P → DD (4) 
P → L (2) 

DD → P (2) 

P → DD (13) 
P → L (2) 

 

 

Table 5.6 Table showing the order and number (in brackets) of changes in larval mode for each family when 
planktotrophy is considered to be the ancestral developmental mode. P = planktotrophy, L = lecithotrophy, DD = 

direct development.  

 

The results summarised in Table 5.6 suggest that switches from planktotrophy to 

nonplanktotrophy are possible, as theory predicts. However, the analyses also suggest that 

reversals from nonplanktotrophy to planktotrophy are also possible when transitions 

between character states are equally weighted. This is considered theoretically far less likely 

due to the presumed difficulty in reacquiring the specialised structures required for feeding 

and mobility in the plankton (e.g. Strathmann, 1978). 

 

Within the family Volutidae, there are no instances of planktotrophic lineages giving rise to 

lecithotrophic lineages which in turn give rise to direct development. This suggests that 

ordered transformations are unlikely in this family. It is not possible to assess ordered 

transformations in any other family included in this study as they do not possess more than 

two developmental modes.  

 

Maximum parsimony analysis of ancestral larval modes has indicated that lecithotrophy is a 

possible plesiomorphic developmental mode in the families Mangeliidae and Turridae. The 

number and order of changes in larval strategy for these families, when lecithotrophy is 

considered to be the ancestral larval mode, are summarised in Table 5.7. These results 

suggest only one transition from lecithotrophy to planktotrophy. 
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Unordered Ordered 

Mangeliidae L → P (1) 
 

L → P (1) 

Turridae 
 

L → P (1) 
 

L → P (1) 

 

Table 5.7 Table showing the order and number (in brackets) of changes in larval mode for the families 
Mangeliidae and Turridae when lecithotrophy is considered to be the ancestral developmental mode. P = 

planktotrophy, L = lecithotrophy, DD = direct development.  

 

Maximum parsimony analysis of ancestral larval modes has indicated that direct 

development is as likely to be the plesiomorphic developmental mode as planktotrophy in 

the family Volutidae. The number and order of changes in larval strategy for this family, when 

direct development is considered to be the ancestral larval mode, are summarised in Table 

5.8. The results indicate that a maximum of three shifts from direct development to 

planktotrophy, and two from direct development to lecithotrophy occur in the volutes of 

southeastern Australia. 

 

 
 

Unordered Ordered 

Volutidae 

 
DD → P (3) 
DD → L (2) 

 

 
DD → P (3) 
DD → L (2) 

 

 

Table 5.8 Table showing the order and number (in brackets) of changes in larval mode for the family Volutidae 
when direct development is considered to be the ancestral developmental mode. P = planktotrophy, L = 

lecithotrophy, DD = direct development.  

 

Equally weighted maximum parsimony reconstructions indicate that up to three independent 

gains of planktotrophy from nonplanktotrophy have occurred in the family Volutidae 

contradicting the theory of irreversible losses of planktotrophy (Strathmann, 1978). 

Reconstruction of ancestral larval modes in the star fish family Asterinidae (Hart et al., 1997) 

also indicated that planktotrophy could be lost and then regained. Two possible theories 

have been put forward to explain these reversals (Cunningham, 1999). Firstly, these 

reconstructions may indeed reflect true evolutionary patterns and therefore the prediction 

of irreversibility is incorrect. Secondly, irreversible losses of planktotrophic larvae may be so 
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frequent that it is possible that parsimony incorrectly reconstructs losses and gains of feeding 

larvae. However, Cunningham (1999) also noted that rapid evolution does not necessarily 

suggest that larval feeding cannot be regained once lost. 

 

5.3.2 MAXIMUM PARSIMONY SENSITIVITY ANALYSIS 

 

Although maximum parsimony analysis is the most widely used method for reconstructing 

ancestral character states, it has been noted that acceptance of these reconstructions is 

dependent on assumptions regarding evolutionary processes (e.g. Sober, 1988; Maddison, 

1994; Ree & Donoghue, 1998). These evolutionary assumptions are quantified by a matrix of 

costs, e.g. the loss or gain of a particular character state (Ree & Donoghue, 1998), referred 

to as a step matrix (Maddison & Maddison, 1992). Step matrices determine the extent to 

which transitions in one direction are favoured over transitions in the opposite direction (Ree 

& Donoghue, 1998). Although the most common approach is to assign equal costs to all 

character state transitions, Swofford & Maddison (1992) note that this is in itself an 

assumption about character state evolution. To assess assumptions regarding the 

directionality of evolutionary change, a quantitative approach referred to as sensitivity 

analysis is used (Ree & Donoghue, 1998).  

 

Sensitivity analysis uses a graphical approach to assess the sensitivity of character state 

transitions to cost assumptions. The number of independent losses or gains of a particular 

character state are inferred from a maximum parsimony tree. The cost of gaining the 

character state (CG) is compared to the cost of losing the character state (CL). The initial 

assumption is that the costs of gains or losses are equal. Sensitivity analysis examines how 

large the ratio of CG:CL has to be before a node becomes equivocal or more parsimoniously 

assigned to the alternative character state. Over a whole tree, where CG < CL more gains are 

inferred and where CG > CL more losses are inferred.  

 

For this analysis, lecithotrophy and direct development are combined as nonplanktotrophy. 

The loss and gain of nonplanktotrophy is recorded. The cost of change in one direction is 

changed by increments of 1.0 whilst the cost of change in the opposite direction is 

maintained at 1.0. The number of changes is displayed as a continuous line to help visualise 

this step function. The point at which the lines cross on the x-axis (inflection point) of the 

cost-change graph indicates the ratio at which the relative frequency of gains versus losses 

is reversed. Cost-change graphs for the families Volutidae, Borsoniidae, Mangeliidae and 
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Turridae are presented in Figure 5.14. The families Raphitomidae and Nassariidae are 

excluded due to limited number of taxa and lack of variation in larval mode respectively. 

 

 

Figure 5.14 Cost-change graphs for the families Volutidae, Borsoniidae, Mangeliidae and Turridae. Cg = cost of 
gaining nonplanktotrophy, Cl = cost of losing nonplanktotrophy. 

 

The cost-change graph for the family Volutidae indicates that when CG = CL there are more 

inferred losses (4) than gains (0). The inflection point occurs where the ratio of CG/CL = 1/6 at 

which point no switches to planktotrophy (losses) are observed, but instead multiple 

transitions to nonplanktotrophy (gains) occur. This implies that if a switch from 

nonplanktotrophy to planktotrophy were six times more difficult than the opposite 

transition, the pattern of multiple shifts from planktotrophy to nonplanktotrophy (as 

predicted by Strathmann (1978), Wray (1995) etc) would be observed. A similar pattern is 

seen in the Turridae where the inflection point occurs where the ratio of CG/CL = 1/2. The 

inflection point on the cost-change graphs for the families Borsoniidae and Mangeliidae 

occur where CG = CL. 
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5.3.3 MAXIMUM-LIKELIHOOD ANALYSIS 

 

Maximum likelihood analysis (Figures 5.12 and 5.13) concurs with maximum parsimony 

analysis in establishing the number and order of changes in larval mode but provides extra 

information regarding the likelihood of a particular larval strategy occurring at any particular 

node. This provides little extra information for the conoidean families but does suggest that 

the number and order of changes in larval strategy within the Volutidae is less certain, 

particularly for the Volutinae clade but also for the Athletinae and Zidoninae clades. The level 

of uncertainty is not great enough to offer a possibility different to that established by 

maximum parsimony analysis. 

 

 

5.4 CONGRUENCE OF PHYLOGENY AND STRATIGRAPHY 

 

Three methods are used to test the congruence of phylogeny and stratigraphy and analyse 

the quality of the fossil record of the gastropods from the Cenozoic of southeastern Australia 

used in this study: the Stratigraphic Consistency Index (SCI), the Relative Completeness Index 

(RCI) and the Gap Excess Ratio (GER). The stratigraphic range of the taxa used in this chapter 

are shown in Figure 5.15. The stratigraphic range and phylogenies of each of these taxa are 

shown in Figure 5.16. These figures provide the basis for establishing the SCI, RCI and GER for 

each family. Although these three methods provide a good measure for establishing the 

congruence of stratigraphy and phylogeny and for assessing the quality of the fossil record, 

there has been some criticism regarding the SCI and RCI (Siddall, 1996, 1997, 1998; Wills, 

1999). Siddall (1996) suggests that the SCI value is biased by the number of nodes of a tree, 

i.e., larger trees with more clades will have lower SCI values than smaller trees with fewer 

nodes. Similarly, Wills (1999) suggests that tree topology significantly biases SCI values. 

Siddall (1998) finds the presumption of the RCI value that all taxa have simultaneous origins 

“a most disturbing proposition”. Despite these criticisms, these are the most commonly used 

methods for assessing congruence and the quality of the fossil record, and so are included in 

this study. 

 

The Stratigraphic Consistency Index examines how well the stratigraphy fits a cladogram 

using a node-by-node approach (Huelsenbeck, 1994). The method assesses how well each 

node fits the stratigraphy, starting at the most distal node and comparing it with the node 
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immediately below. The node is considered to be consistent where the stratigraphic ages of 

the taxa above it are younger than, or equal to it in age (Hitchin & Benton, 1997). The 

consistency of the root node cannot be calculated and is excluded. The SCI is defined as: 

 

SCI =
C

N
 

 

where C = number of stratigraphically consistent nodes and N = number of internal nodes 

(excluding the root).  The closer the SCI is to 1, the more consistent the nodes are considered 

to be.  

 

The SCI was calculated for each family used in this thesis based on generic level phylogenies. 

The SCI was also calculated for the subfamilies Volutinae and Athletinae of the family 

Volutidae based on a species level phylogeny. The results of this analysis are presented in 

Table 5.9. The results suggest that for most families the nodes are completely or two-thirds 

consistent with the stratigraphy. With the smaller trees, this may be the result of limited 

number of taxa and by including all known taxa from the region (which is not possible as part 

of this study) the result may not be so good. The result for the family Turridae indicates that 

there is no congruence between the stratigraphy and the phylogeny due to the fact that the 

oldest genus (Gemmula (Clavogemmula) is also one of most distal nodes on the tree (Figure 

5.16). 

 

Family 
 

SCI 
 

Raphitomidae 1.0 

Borsoniidae 1.0 

Mangeliidae 1.0 

Turridae 0 

Nassariidae 0.66 

Volutidae 1.0 

Athletinae + Volutinae 0.66 

 

Table 5.9 SCI values for each family based on genus level phylogenies and the combinations of the volute 
subfamilies Athletinae and Volutinae based on species level phylogenies. 
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Figure 5.15 Stratigraphic distribution of Cenozoic gastropods from the families Volutidae, Nassariidae, 
Raphitomidae, Borsoniidae, Mangeliidae and Turridae from southeastern Australia. 
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Figure 5.16 Stratigraphic distribution and phylogenies of Cenozoic gastropods from the families Volutidae, 
Nassariidae, Raphitomidae, Borsoniidae, Mangeliidae and Turridae from southeastern Australia. 
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The Relative Completeness Index (RCI) assesses the quality of the fossil record by establishing 

the relative completeness of the stratigraphic ranges of taxa using ghost ranges (Benton & 

Hitchin, 1996; Hitchin & Benton, 1997). The stratigraphic range of each taxon is 

hypothetically extended to the stratigraphic range of its sister taxon. This unseen range is 

referred to as the Minimum Implied Gap (MIG). The RCI of a tree is calculated as: 

 

RCI = (1 −
Σ(MIG)

Σ(SLR)
) × 100% 

 

where MIG = the Minimum Implied Gap and SLR = the Simple Range Length for each taxon. 

Standard time scales are used to establish stratigraphic ranges and no estimate of 

uncertainty is calculated. Values range from infinitely negative, where the sum of SLR exceeds 

the expected gap, to 100%, where there are no gaps and the fossil record is considered 

complete. RCI values are considered to be a maximum and lower values can be achieved by 

establishing ancestor-descendant relationships (Hitchin & Benton, 1997). 

 

RCI values were calculated for each tree at generic level and for the subfamilies Volutinae 

and Athletinae at species levels. The results of this analysis are presented in Table 5.10. 

 

Family 
 

RCI 
 

Raphitomidae 0 

Borsoniidae 29% 

Mangeliidae 16% 

Turridae 7% 

Nassariidae -18% 

Volutidae 71% 

Athletinae + Volutinae -34% 

 

Table 5.10 RCI values for each family based on genus level phylogenies and the combinations of the volute 
subfamilies Athletinae and Volutinae based on species level phylogenies. 

 

RCI values suggest that the fossil record of the families Borsoniidae, Mangeliidae, Turridae 

and Volutidae at genus level are relatively complete. However, when the fossil record of the 

volute subfamilies Volutinae and Athletinae is examined, it is found to be relatively 
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incomplete suggesting that results are somewhat dependent on the taxonomic level used. 

The fossil record of the families Raphitomidae and Nassariidae are also found to be relatively 

incomplete. To increase the completeness of the fossil record for these families, more taxa 

need to be included, either from other regions (e.g. Gulf of the USA, Mediterranean) or based 

on better taxonomy of these families in southeastern Australia (particularly for conoidean 

families). The RCI values presented here suggest that there is a strong preservation bias in 

the fossil record of Cenozoic gastropods from southeastern Australia. 

 

The Gap Excess Ratio is a modification of the RCI that compares the actual ghost ranges (or 

gaps) of a tree with the minimum and maximum gaps when the topology of the tree is altered 

to maximise and minimise ghost ranges (Wills, 1999). The absolute ages of first occurrences 

of taxa are used to measure the fit of observed ages to the order of branching events implied 

by a cladogram (Finarelli & Clyde, 2002). The GER is defined as: 

 

GER = 1 −
(MIG − Gmin)

(Gmax − Gmin)
 

 

where MIG = minimum implied gap, Gmin = sum of minimum possible ghost ranges, Gmax = 

sum of maximum possible ghost ranges. Values range from 0 to 1 where 0 is MIG = Gmax, the 

worst possible fit and 1 is MIG = Gmin, the best possible fit (Wills, 1999). 

 

GER values were calculated for each tree at generic level and for the subfamilies Volutinae 

and Athletinae at species levels. The results of this analysis are presented in Table 5.11. 

 

Family 
 

GER 
 

Raphitomidae 0 

Borsoniidae 1.0 

Mangeliidae N/C 

Turridae 0 

Nassariidae 0.49 

Volutidae 0.79 

Athletinae + Volutinae 0.47 

 

Table 5.11 GER values for each family based on genus level phylogenies and the combinations of the volute 
subfamilies Athletinae and Volutinae based on species level phylogenies. N/C = Not calculable. 
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GER values for the family Borsoniidae indicate the best possible fit whilst values for the 

families Raphitomidae and Turridae indicate the worst possible fit. GER was not calculable 

for the family Mangeliidae due to the fact that MIG, Gmin and Gmax are all equal. Increasing 

the number of taxa included in the Mangeliidae cladogram may resolve this issue. Values for 

the families Volutidae and Nassariidae indicate a relatively good fit, although when the 

subfamilies Volutinae and Athletinae are looked at separately, based on a species level tree, 

the fit is poorer than that for the Volutidae at genus level. 

 

Contrasting results between these analyses are not unexpected. RCI analyses at species or 

genus level indicate a less complete fossil record than analyses at higher taxonomic levels 

due to short species durations (Benton et al., 2000; Jeffery & Emlet, 2003). If gaps are 

randomly distributed then it is possible that the correct pattern of species durations is 

presented even where there are significant gaps in the fossil record (Foote, 1997). If the fossil 

record is calculated to be incomplete but clades are shown to occur in the correct order then 

it is likely that there is a significant preservation bias (Jeffery & Emlet, 2003). The data 

presented here suggests that there is a preservation bias in the fossil record of gastropods 

from Cenozoic southeastern Australia that may limit our understanding of the spatial and 

temporal distribution of larval strategies. 

 

 

5.5 TIMING OF CHANGES IN DEVELOPMENTAL MODE 

 

The timing of changes in developmental mode of gastropods is a research area yet to be fully 

explored. This is probably due to the relatively few studies examining larval strategies in fossil 

taxa and the difficulties in resolving robust phylogenies on which to map switches in larval 

mode through geological time.  

 

Studies on echinoids from the latest Cretaceous have shown that there are coordinated shifts 

to nonplanktotrophy over a relatively short period of time (Jeffery, 1997; Cunningham & 

Jeffery Abt, 2009). These near-synchronous changes in developmental mode are suggested 

to have been influenced by instability in nutrient availability at this time. If nutrient supply 

becomes unstable it is reasonable to suggest that non-feeding larval strategies are more 

advantageous and therefore coordinated shifts to nonplanktotrophy might be likely. 

Evidence from recent echinoderms living in areas of unstable nutrient supply (e.g. Pearse & 



277 
 

Cameron, 1991) are shown to either synchronise their reproductive cycles to coincide with 

nutrient blooms, or acquire nonplanktotrophic development in order to be independent of 

nutrient supply.  These studies indicate that external factors relating to the ability to feed is 

a likely factor influencing shifts in larval mode. 

 

Similar studies on fossil gastropods are yet to be undertaken. In order to examine the timing 

of switches in developmental mode in Cenozoic gastropods from southeastern Australia, 

cladograms are mapped onto the stratigraphic ranges of the taxa used in this study. Having 

established the relationship between taxa through geological time it is possible to indicate 

changes in larval strategy on branches of the cladograms (Figure 5.16). It should be noted 

that the nodes on these trees are not calibrated and therefore do not correlate to a specific 

point in time. As a result, although switches are marked on Figure 5.17 at particular points, 

it is possible that they occurred higher or lower on the tree but still along the same branch. 

 

This analysis indicates that switches in larval strategies are not confined to a particular period 

of time and are not coordinated. For most of these families switches may have occurred at 

any point between the Palaeocene and Late Oligocene. For the family Mangeliidae this is 

extended to the Early Pliocene. Because it is not possible to constrain switches to a particular 

point in time, it is impossible to examine whether nutrient supply, or other external factors, 

influenced changes in developmental mode. 

 

Having examined the quality of the fossil record and the congruence of stratigraphy and 

phylogenies it is likely that a preservation bias has resulted in large gaps in the fossil record 

of Cenozoic gastropods from southeastern Australia. Gaps in the fossil record could be due 

to a collection bias (i.e. not every specimen has been discovered) or could be the result of 

loss of specimens within the strata. This would result in inaccurate stratigraphic ranges and 

the possibility of large numbers of missing taxa from each family which makes determining 

the exact point at which switches occurred extremely difficult.  Interestingly, less 

preservation bias is seen in echinoids from the same time and region and from observations 

in the field it would appear that there is also less of a preservation bias in bivalves from the 

Cenozoic strata of southeastern Australia  
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Figure 5.17 Stratigraphic ranges and phylogenies for each family with switches in larval mode indicated by 
coloured boxes. The boxes indicate the initial larval strategy (bottom colour) and the larval strategy the switch 

has been made to (top colour). Blue = planktotrophy, orange = lecithotrophy, green = direct development. 
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CHAPTER 6 

 

MACROEVOLUTIONARY CONSEQUENCES OF LARVAL STRATEGIES 

 

Theory predicts that different larval strategies have different macroevolutionary 

consequences, and this prediction is the focus of a number of published studies (see Chapter 

1 for review of the literature). The gastropod adult body plan severely hampers mobility, 

often resulting in narrow environmental tolerances during this life stage. As a result, the 

larval stage, which often includes a planktic phase, provides the optimum opportunity for 

dispersal. Dispersal potential is arguably the major factor influencing geographic distribution, 

stratigraphic range and speciation rates. As different larval strategies have different potential 

for dispersal, it is logical that they will also exhibit different geographic and stratigraphic 

distributions and speciation rates. This chapter examines the link between larval strategy and 

these three macroevolutionary factors using non-phylogenetic methods and examines 

speciation events using phylogenetic methods.  

 

Species with planktotrophic larvae are predicted to have greater dispersal abilities than 

lecithotrophic species due to their longer pelagic phase, resulting in wider geographic 

distributions (e.g. Shuto, 1974; Scheltema, 1977, 1978, 1979; Ó Foighil, 1989; Emlet, 1995). 

Species with direct developing larvae do not undergo a pelagic phase and as a result are 

predicted to have the narrowest geographic distributions. Geographic range is likely to be 

linked to species longevity because widely distributed species are less vulnerable to local 

catastrophes. If this prediction holds true then it is also logical to assume that planktotrophic 

species will exhibit lower speciation rates than lecithotrophic and direct developing taxa due 

to their reduced vulnerability to localised extinction events.  Despite these predictions this 

topic remains relatively untested when examining changes through geological time. The 

predicted macroevolutionary consequences of different larval strategies is summarised in 

Table 6.1. 

 

 Geographic 
distribution 

Species 
longevity 

Speciation 
rate 

Planktotrophic Wide Long Low 
Lecithotrophy Narrow Short High 

Direct development Very narrow Very short Very high 

 

Table 6.1 Predicted macroevolutionary consequences for species with planktotrophic, lecithotrophic and direct 
developing larvae. 
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Studies on living gastropods from the Indo-Pacific region have shown that species with 

planktotrophic larvae have greater dispersal abilities and as a result wider geographic 

distributions than nonplanktotrophic species (Shuto, 1974). Similar patterns are seen in 

species of the slipper limpet Crepidula in the waters of the Atlantic and Gulf Coast of USA 

(Collin, 2001) and in gastropod families in Polynesia and the Western Pacific (Scheltema and 

Williams, 1983). Prosobranch gastropods with direct developing larvae from southeastern 

Australia are shown to inhabit relatively closed local populations which evolve independently 

from one another (Hoskin, 1997). Planktic species of the family Volutidae from the Neogene 

of the Gulf Coast of USA have wide geographic distributions even during periods of regression 

when delta building is taking place, indicating that oceanic barriers of this type do not affect 

the dispersal patterns of planktic larvae (Hansen, 1980). It is worth noting that Hansen (1980) 

uses geographic units of ~75km to calculate geographic distributions rather than exact 

ranges, which may result in overestimations of geographic range. Late Cretaceous gastropods 

from the Atlantic Coast Plain show a statistically significant difference in geographic range 

between planktotrophs and nonplanktotrophs (Jablonski, 1986; Jablonski and Hunt, 2006). 

These studies support the hypothesis that geographic range is greater in species with a long 

planktic period than those with a short or absent planktic period. However, a small number 

of studies on gastropods contradict these results. Poor correlation between planktonic 

period and geographic range is seen in species from the family Cypraeidae but this is thought 

to be the result of estimation error, intraspecific variation and inappropriate taxonomic scale 

which can obscure macroecological patterns (Paulay and Meyer, 2006). Similarly, the 

brooding species Littorina saxtilis is more widespread than the closely related planktonic 

species Littorina littorea in the northern Atlantic but observations are scattered and more 

data are required to corroborate these results (Johannesson, 1988). 

 

Species longevity of planktotrophic species is shown to be longer than that seen in 

nonplanktotrophic species in a number of studies (e.g. Hansen, 1978, 1980; Jablonski, 1982, 

1986; Gili & Martinell, 1994) providing support for theoretical models that greater ability to 

disperse will increase geographical and stratigraphical ranges by reducing vulnerability to 

local catastrophes (e.g. Shuto, 1974; Scheltema, 1977; Jablonski & Lutz, 1983). Data on 

species longevity are somewhat lacking in the literature, perhaps as a result of gaps in the 

fossil record. Nassarid fossils from Neogene sediments of the Mediterranean and North East 

Atlantic coasts show a strong correlation between larval mode and species longevity (Gili and 

Martinell, 1994). Studies on Tertiary neogastropods from the Gulf Coast of the USA show 

comparable results (Hansen, 1978, 1980). Cretaceous fossil prosobranch and shelled 
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opisthobranch species from the Gulf Coast and Atlantic Coast Plain of North America 

indicated that species with planktotrophic larvae show significant frequencies of overlapping 

stratigraphic range whilst species with nonplanktotrophic larvae have significant frequencies 

of abutting species durations (Jablonski, 1986). These results strongly support the hypothesis 

that planktotrophic species with greater dispersal abilities show greater species stratigraphic 

durations. By contrast, Cenozoic gastropod species from the families Architectonicidae, 

Cymatiidae, Tonnidae and Volutidae in Polynesia and the western Pacific islands do not 

strongly support the argument that temporal longevity is related to mode of development 

(Scheltema and Williams, 1983). 

 

Examination of speciation rates has received very little attention within the Gastropoda and 

is an area requiring attention. Nonplanktotrophic species are predicted to be less able to 

maintain gene flow between geographically isolated populations resulting in increased 

speciation events (Shuto, 1974). Electrophoretic and biochemical studies on living 

populations of marine invertebrates support the prediction that planktotrophic species 

exhibit low levels of genetic differentiation compared to nonplanktotrophic species 

suggesting that speciation rates are higher in the latter (e.g. Wium-Andersen, 1970; Gooch 

et al., 1972; Berger, 1973; Snyder and Gooch, 1973; Gooch, 1975; Campbell, 1978; Crisp, 

1978; Grassle & Grassle, 1978; Siebnaller, 1978; Wilkins et al., 1978; Black & Johnson, 1979; 

Buroker et al., 1979a, b; Ward & Warwick, 1980). Significant genetic differentiation seen 

within living populations of nonplanktotrophic Crepidula gastropods compared with limited 

variation in planktotrophic populations of the same genus along the Gulf and Atlantic Coasts 

of North America corroborates this prediction (Collin, 2001). By contrast, Cretaceous 

gastropods from the Gulf Coast and Atlantic Coastal Plain show a significant inverse 

relationship between geographic range and speciation rate but show only a weak inverse 

relation between geographic range and total number of species originating within a genus 

(Jablonski & Roy, 2003). Neither the total number of species produced through time nor the 

number of species within a single time interval is found to be a positively correlated with the 

geographic range of species in a clade (Jablonski & Roy, 2003).  

 

The link between larval strategies and macroevolutionary trends is yet to be explored in 

Cenozoic gastropods from southeastern Australia, but one study has used fossil 

temnopleurid echinoids from this region to test predictions. The study indicates that 

geographic and stratigraphic distributions were greater in planktotrophic taxa than 
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nonplanktotrophic taxa but that this difference was not statistically significant (Jeffery & 

Emlet, 2003). Analysis of speciation rates revealed significantly higher rates in 

nonplanktotrophic taxa than planktotrophic taxa, as hypothesised. 

 

 

6.1 MATERIALS AND METHODS 

 

The dataset comprises the 104 species examined in Chapter 3, whose larval strategies have 

been unambiguously determined. Although, for at least four of these families, more species 

are present in the Cenozoic deposits of southeastern Australia, only those that can be 

confidently assigned to particular families are included. The species included in these 

analyses, their larval strategies and geographic and stratigraphic distributions are presented 

in Appendix 3. The dataset is initially treated as a whole, although the dataset for each family 

is also considered. 

 

6.1.1 GEOGRAPHIC DISTRIBUTION 

 

Geographic range for each species was determined by calculating the straight-line distance 

between the two most distant localities at which the species was found. Locality data for 

each species was established from field observations, data in published literature and data 

from museum specimens. The greatest distance between localities for each species was 

calculated using the spherical geometry (Haversine formula, Robusto, 1957) and was based 

on the Earth’s radius equalling 6371km. Data for each locality used in this study are presented 

in Appendix 1 and localities associated with each species are outlined under the species 

descriptions in Chapter 3. As localities used in this study are situated in a restricted area along 

a passive margin, it is concluded that positions are relatively unchanged since time of 

deposition and therefore palaeogeographic reconstructions of the southeastern Australian 

coastline are not required. Due to large gaps in the fossil record in this region it is not possible 

to limit geographic range to age-equivalent strata. Issues relating to geographically migrating 

populations are discussed in the results section of this chapter. As it was not possible to visit 

every locality from which specimens were recovered, the longitude and latitude of each 

locality were ascertained using online mapping tools (e.g. Google Maps) to avoid 

inconsistencies in the locality data.  
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6.1.2 SPECIES LONGEVITY 

 

The stratigraphic range of each species was collated from field observations, museum 

specimens and unambiguous records in the literature. Stratigraphic ranges for each species 

are available in Chapter 3 under each species’ description. Species longevity is calculated as 

the difference between the first and last occurrence of each species. The age of the first 

occurrence corresponds to the date of the lower boundary of the first formation in which the 

species occurs. The age of the last occurrence corresponds to the date of the upper boundary 

of the last formation in which the species occurs. These ranges may include periods of time 

in which no gastropods were recovered from the sediments of southeastern Australia (i.e. 

ghost ranges). The temporal resolution of the formations included in this study is discussed 

in Chapter 2. Errors in stratigraphic ranges occur due to the inability to date specific 

gastropod-bearing horizons within formations and therefore ranges may be overestimated.  

 

6.1.3 SPECIATION RATES 

 

Analysis of speciation rates based on only the species included in this study is clearly flawed 

due to the large numbers of missing taxa (particularly in the conoidean families). Speciation 

rates are estimated for generic lineages using occurrence data of each species included 

within each genus. Speciation rates are calculated by the number of species divided by the 

sum of species duration. This calculation provides per species per million year speciation 

rates. Overestimations or underestimations of species durations may lead to erroneous 

results. Until more accurate dates can be established for each species (e.g. higher resolution 

dating of horizons within formations), this method is considered to provide a good estimate 

of speciation rates for the families considered in this research. 

 

6.1.4 SPECIATION EVENTS 

 

Speciation events are calculated for each family using phylogenies produced in Chapter 4. 

The ancestral mode of development at each internal node of the trees is determined and the 

numbers of speciation events involving ancestors of each developmental mode are 

tabulated. Separate calculations are made for reversible and irreversible transitions between 

different larval modes. Speciation events are calculated at species level, inferring the extra 

speciation events from genus level trees (i.e. speciation events are extrapolated from genus 

level phylogenetic analyses). This approach assumes the topology of the tree does not change 
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when more taxa are included and therefore the distribution of larval strategies does not 

change. If a robust species level tree could be produced it would be useful to check these 

analyses. 

 

6.1.5 COMPARATIVE ANALYSIS 

 

To assess the relationship between larval mode and various species level traits, Mann 

Whitney U-tests were carried out. This test examines the statistical significance of differences 

between two datasets. This test assumes that species level traits evolved independently from 

one another (i.e not inheritable) and is a non-phylogenetic approach. Mann Whitney U-tests 

were only carried out when all taxa were combined in a single analysis as the sample sizes of 

individual families are too small to provide reliable results. Three larval modes are considered 

in this chapter (planktotrophy, lecithotrophy and direct development) and therefore Mann 

Whitney U-tests were carried out in four ways for geographic range, species longevity and 

speciation rates. Initially, lecithotrophy and direct development are combined so that 

planktotrophy can be tested against nonplanktotrophy. Three further analyses test 

planktotrophy against lecithotrophy, planktotrophy against direct development and 

lecithotrophy against direct development. Analysis is carried out as a 1-tailed test and results 

are considered significant at 5% or less. 

 

Comparative analysis by independent contrasts was not performed due to the fact that 

phylogenies include both genera and species and the approach requires species level 

phylogenies. If robust species level phylogenies could be produced then it would be possible 

to conduct comparative analysis by independent contrasts (as in Jeffery & Emlet, 2003). 
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6.2 RESULTS 

 

Results for each analysis are shown for all taxa and for each individual family except in the 

case of speciation events where the dataset is not considered as a whole due to the lack of a 

robust tree which includes all taxa.  

 

6.2.1 GEOGRAPHIC DISTRIBUTION 

 

The distribution of geographic range according to larval mode is presented graphically for all 

taxa in Figure 6.1. When all taxa are considered together the median values of planktotrophy, 

lecithotrophy and direct development are 277km, 10km and 256km respectively. As 

expected, there is a significant difference between the median values of geographic range of 

planktotrophs and lecithotrophs. However, direct developers appear to have much wider 

geographic distributions than theory predicts. The difference in geographic range between 

planktotrophs and lecithotrophs (P = 0.01) and lecithotrophs and direct developers (P = 0.02) 

is considered to be statistically significant as determined by Mann Whitney U-tests (Table 

6.2). The difference in geographic range between planktotrophs and direct developers is not 

found to be statistically significant (P = 0.19). When lecithotrophy and direct development 

are combined the difference is also not considered statistically significant (P = 0.09). 

 

The significant difference between the geographic ranges of planktotrophs and lecithotrophs 

supports the theory that larvae with a longer planktic period will have wider distributions. 

The non-significant difference between planktotrophy and direct development suggests that 

this may not always be the case. The majority of direct developing taxa included in this study 

have geographic ranges of less than 200km indicating that those species with wide 

geographic distributions may be exceptions rather than the rule. In addition, it is possible 

that direct developers with very wide geographic ranges may include taxa with wide 

morphological variation that could be interpreted as several species. If this is the case then 

the geographic distribution of these species could be overestimated. However, the taxonomy 

of each family has been carefully examined and the comprehensive taxonomic revision in 

Chapter 3 indicates that this is very unlikely. 
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Figure 6.1 Distribution of geographic ranges of all taxa included in this study according to larval mode. 

 

 
Larval strategies 

 
N1 N2 U-statistic P-value 

 

P:NP 

 

19 

 

85 

 

967.0 

 

0.09 

P:L 19 20 268.0 0.01 

P:DD 19 65 699.0 0.19 

L:DD 20 65 840.0 0.02 

 

Table 6.2 Statistical results of comparison of larval mode and geographic range conducted with the Mann 
Whitney U-test. 

 

When each family is considered individually results are variable. The distribution of 

geographic range according to larval mode for each family is presented in Figure 6.2. Median 

values for the family Volutidae indicate that there is no correlation between larval mode and 

geographic range. Lecithotrophic taxa have the highest median value in this family. As the 

family Nassariidae only includes planktotrophic taxa no comparison can be made within this 
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family. However, the median geographic range of the nassariids is 1735km, which is 

significantly higher than that seen in any other family. Median values for the family 

Raphitomidae could not be calculated due to there being too few taxa but both 

planktotrophic and direct developing taxa in this family have relatively narrow geographic 

distributions not exceeding 50km. Both the Mangeliidae and Borsoniidae have median 

geographic range values that support the suggestion that planktotrophic taxa have wider 

distributions than lecithotrophic taxa, although the relatively small sample size of these 

families must be taken into consideration. Geographic ranges of taxa in the family Turridae 

contradict predictions with lecithotrophs having much wider distributions than 

planktotrophs. However, this dataset only includes one planktotroph and therefore is 

unlikely to be a true reflection of distributions in this family.  

 

Two issues need to be considered when examining the geographic range of Cenozoic 

gastropods from southeastern Australia. The first is the issue of a preservation bias within 

the gastropod fossil record of this region. The distribution of accessible fossil gastropod-

bearing outcrops in southeastern Australia will influence the quality of the data collected. 

Gastropod fossils from Cenozoic deposits of this region are generally concentrated at thin 

horizons and there is evidence of major gaps in the fossil record which could be due to the 

exclusion of whole species or the exclusion of particular instances of each species. As a result, 

the data are unlikely to include all taxa from each family, even those considered complete, 

such as the Volutidae and the Nassariidae. The second issue is the possibility of geographic 

migration of taxa through time. The data presented here encompasses the geographic 

distributions of taxa throughout the Cenozoic and is not specific to age-equivalent strata. It 

is therefore possible that wider distributions may be the result of migration. Unfortunately it 

is not possible to accurately calculate geographic range for taxa within age-equivalent strata 

due to preservation biases, since most of these fossil-rich horizons are also geographically 

restricted. 
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Figure 6.2 Distribution of geographic ranges of each family included in this study according to larval mode. a) 
Volutidae, b) Nassariidae, c) Raphitomidae, d) Borsoniidae, e) Mangeliidae and f) Turridae. 
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6.2.2 SPECIES LONGEVITY 

 

The distribution of species longevity according to larval mode is presented graphically for all 

taxa in Figure 6.3. When all taxa are considered together the median values of planktotrophy, 

lecithotrophy and direct development are 5 million years, 10 million years, and 7 million years 

respectively. The difference between these values is small and does not support the 

hypothesis that planktotrophic taxa have longer species durations than nonplanktotrophic 

taxa. A Mann Whitney U-test (Table 6.3) indicates that the difference between 

planktotrophic and nonplanktotrophic species durations is not significant (P = 0.16).  

 

 
Larval strategies 

 
N1 N2 U-statistic P-value 

 

P:NP 

 

19 

 

85 

 

928.0 

 

0.16 

P:L 19 20 222.0 0.19 

P:DD 19 65 706.0 0.18 

L:DD 20 65 693.5 0.33 

 

Table 6.3 Statistical results of comparison of larval mode and species longevity conducted with the Mann 
Whitney U-test. 

 

The difference in species longevity between planktotrophs and lecithotrophs (P = 0.19) and 

lecithotrophs and direct developers (P = 0.18) is not considered to be statistically significant 

based on Mann Whitney U-tests. The difference in species longevity between planktotrophs 

and direct developers is also not found to be statistically significant (P = 0.33). Overall, these 

results indicate that there is no significant difference in species longevity of different larval 

modes in Cenozoic gastropods from southeastern Australia. 

 

When each family is considered individually results are similar. The distribution of geographic 

range according to larval mode for each family is presented in Figure 6.4. Within the family 

Volutidae, lecithotrophs have the highest median value of species duration and direct 

development the shortest. Comparison between the family Nassariidae and other families 

indicate that nassariid planktotrophic taxa have short species durations compared to 

planktotrophs in other families. Median values of species longevity indicate that there is no 

correlation between larval mode and species longevity in the families Mangeliidae and 

Borsoniidae. Species longevity appears to be longer for planktotrophs than nonplanktotrophs 
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in the Raphitomidae but there is a severe paucity of data on which to base this conclusion. 

The family Turridae indicates lecithotrophic taxa have longer species durations than 

planktotrophs but again, the small sample size may skew results. 

 

 

 

Figure 6.3 Distribution of species durations of all taxa included in this study according to larval mode. 

 

Due to the preservation biases previously discussed, it is likely that the data presented in this 

study do not reflect true patterns of species longevity in Cenozoic gastropods from 

southeastern Australia. The gaps in the fossil record highlighted previously may have a 

significant impact on the observed first and last occurrences of species which will ultimately 

cause underestimates of species durations. On the other hand, the fossil gastropods in this 

study are often concentrated to thin horizons within formations which cannot be accurately 

dated. Consequently, the duration of the whole formation is used which will result in 

overestimates of species durations. 
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Figure 6.4 Distribution of species duration of each family included in this study according to larval mode. a) 
Volutidae, b) Nassariidae, c) Raphitomidae, d) Borsoniidae, e) Mangeliidae and f) Turridae. 
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6.2.3 SPECIATION RATES 

 

The distribution of speciation rates according to larval mode is presented graphically for all 

taxa in Figure 6.5. When all taxa are considered together, the median values of speciation 

rates for planktotrophy, lecithotrophy and direct development are 0.18, 0.11 and 0.11 

species per million years respectively. Interestingly, the highest speciation rates are seen in 

planktotrophic genera and the lowest in direct developing genera which contradicts the 

predicted result. A Mann Whitney U-test (Table 6.4) indicates that there is no significant 

difference in speciation rates between planktotrophic and nonplanktotrophic taxa (P = 0.35). 

The difference between speciation rates of planktotrophs and lecithotrophs is also found to 

be insignificant (P = 0.32). Similarly, where the difference should be the greatest, between 

planktotrophs and direct developers, the difference is the most statistically insignificant (P = 

0.41). A Mann Whitney U-test also found the difference between speciation rates of 

lecithotrophs and direct developers to be statistically insignificant (P = 0.26). The data for all 

taxa included in this study do not support the hypothesis that planktotrophic species with a 

prolonged planktic period will have lower speciation rates than nonplanktotrophic species 

with a reduced or absent planktic period due to decresed vulnerability to local catastrophes. 

The data suggest that for most generic lineages speciation rate is not significantly correlated 

to larval strategy.   

 

Similar results are seen when each family is examined individually. Speciation rates according 

to larval mode for each family are presented in Figures 6.6 and 6.7. In the family Volutidae 

the highest median speciation rates are seen in direct developers and the lowest in 

lecithotrophs (although there is little difference between lecithotrophs and planktotrophs). 

Whilst the difference is not particularly significant, the result does somewhat support the 

hypothesis that higher speciation rates will occur in nonplanktotrophic lineages. Similarly, 

the highest median value in the family Mangeliidae is seen in the lecithotrophs. On the other 

hand, both the turrids and borsoniids indicate that planktotrophy has the highest median 

speciation rate when compared to the lecithotrophs. When the Nassariidae planktotrophic 

taxa are compared to planktotrophic taxa from other families, it seems this family has fairly 

high speciation rates. As in other analyses, the Raphitomidae cannot really be considered due 

to the fact that it only contains one planktotroph and one direct developer. As speciation 

rates are calculated using stratigraphic ranges and number of species it is likely that these 

values do not reflect true patterns in the fossil record since missing taxa and inaccurate 
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stratigraphic ranges may have skewed the data needed to calculate speciation rates 

accurately. 

 

Figure 6.5 Distribution of speciation rates of all genera included in this study according to larval mode. 

 

 
Larval strategies 

 
N1 N2 U-statistic P-value 

 

P:NP 

 

13 

 

23 

 

162.0 

 

0.35 

P:L 13 11 79.5 0.32 

P:DD 13 12 82.5 0.41 

L:DD 11 12 76.5 0.26 

 

Table 6.4 Statistical results of comparison of larval mode and speciation rates conducted with the Mann 
Whitney U-test. 
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Figure 6.6 Distribution of speciation rates of the families a) Volutidae, b) Turridae and c) Raphitomidae included 
in this study according to larval mode. 
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Figure 6.7 Distribution of speciation rates of the families a) Borsoniidae, b) Mangeliidae and c) Nassariidae 
included in this study according to larval mode. 
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6.2.4 SPECIATION EVENTS 

 

The number of speciation events associated with planktotrophic, lecithotrophic and direct 

developing ancestors is shown for each family based on irreversible and reversible 

transformations in Figures 6.8, 6.9, 6.10 and 6.11.  

 

The phylogenetic tree of the Volutidae includes a mix of both genera and species. In order to 

calculate speciation events the number of taxa assigned to each genus was included in 

calculations based on the assumption that by including these species the topology of the tree 

would not be altered. There are 69 species of volute included in this analysis and thus 68 

speciation events each represented by an internal node of the tree. Of these 68 speciation 

events 16 occurred in planktotrophic ancestral taxa, one in a lecithotrophic taxon and 51 in 

direct developing taxa when transitions are treated as irreversible (Figure 6.8). By 

comparison, when transitions are treated as reversible all 68 speciation events occurred in 

direct developing ancestral taxa (Figure 6.9). These results indicate that more speciation 

events have occurred in direct developing ancestors than lecithotrophic or planktotrophic 

ancestors, regardless of whether transitions are reversible or irreversible.  

 

The phylogenetic tree of the Nassariidae is based on genus level analysis. In order to calculate 

speciation events the number of species assigned to each genus was included in calculations. 

All seven taxa included in this family are planktotrophic and therefore regardless of whether 

transitions are irreversible or reversible all six possible speciation events occurred in 

planktotrophic taxa (Figure 6.10, 6.11). Similarly, the small dataset of the family 

Raphitomidae reveals that the single speciation event must occur in a planktotrophic 

ancestral taxon (Figure 6.9, 6.11). 

 

The phylogenetic tree of the family Borsoniidae is based on genus level analysis. In order to 

calculate speciation events the number of species assigned to each genus was included in 

calculations based on the assumption that by including these species the topology of the tree 

would not be altered. There are 14 species of borsoniid included in this analysis and thus 13 

speciation events each represented by an internal node of the tree. Of these 13 speciation 

events five occurred in planktotrophic ancestral taxa and eight in lecithotrophic taxa when 

transitions are treated as irreversible (Figure 6.10). By comparison, when transitions are 

treated as reversible two speciation events occurred in planktotrophic ancestral taxa and 11 

in lecithotrophic ancestral taxa (Figure 6.11). These results indicate that more speciation 
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events have occurred in lecithotrophic ancestors than planktotrophic ancestors, regardless 

of whether transitions are reversible or irreversible.  

 

The phylogenetic tree of the Mangeliidae is based on genus level analysis. Calculation of 

speciation events includes all species assigned to each genus based on the assumption that 

by including these species the topology of the tree would not be altered. There are six species 

included in this analysis and therefore five speciation events each represented by an internal 

node of the tree. All five speciation events occurred in planktotrophic ancestral taxa when 

transitions are treated as irreversible (Figure 6.10). By treating transitions as reversible two 

outcomes are possible depending on whether the ancestral larval mode of the whole tree is 

considered planktotrophic or lecithotrophic. If the basal node of the tree is considered to be 

planktotrophic then the result is the same as that revealed by irreversible transitions (Figure 

6.11). If the basal node of the tree is lecithotrophic then two speciation events occur in 

planktotrophic ancestral taxa and three in lecithotrophic ancestral taxa (Figure 6.11). 

 

 
Family Planktotrophic Lecithotrophic 

Direct 
development 

IR
R

EV
ER

SI
B

LE
 Volutidae 16 1 51 

Nassariidae 6 0 0 

Raphitomidae 1 0 0 

Borsoniidae 5 8 0 

Mangeliidae 5 0 0 

Turridae 4 1 0 

R
EV

ER
SI

B
LE

 

Volutidae 0 0 68 

Nassariidae 6 0 0 

Raphitomidae 1 0 0 

Borsoniidae 2 11 0 

Mangeliidae 2 or 5 3 or 0 0 

Turridae 0 5 0 

 

Table 6.5 Number of speciation events occurring in ancestral taxa of each larval strategy for each family. 

 

The phylogenetic tree of the Turridae is based on genus level analysis. In order to calculate 

speciation events the number of species assigned to each genus was included in calculations 

based on the assumption that by including these species the topology of the tree would not 

be altered. There are six species of turrid included in this analysis and as a result five 

speciation events each represented by an internal node of the tree. When transitions are 

treated as irreversible, four speciation events are found to have occurred in planktotrophic 



298 
 

ancestral taxa and one in a lecithotrophic taxon (Figure 6.10). If transitions are treated as 

reversible, all five speciation events occurred in lecithotrophic ancestral taxa (Figure 6.11).  

 

The number of speciation events occurring in ancestral taxa of each larval strategy for each 

family is summarised in Table 6.5. The results do not suggest that more speciation events 

occur in a particular larval strategy than any other. However, most speciation events occur 

in direct developers in the family Volutidae, in lecithotrophs in the family Borsoniidae and in 

planktotrophs in the family Nassariidae and Raphitomidae regardless of whether transitions 

are considered reversible or irreversible. In the families Mangeliidae and Turridae, the results 

differ when transitions are treated as reversible or irreversible. 
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Figure 6.8 Speciation events in the family Volutidae for planktotrophs, lecithotrophs and direct developers 
based on irreversible transitions. 
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Figure 6.9 Speciation events in the family Volutidae for planktotrophs, lecithotrophs and direct developers 
based on reversible transitions. 
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Figure 6.10 Speciation events in the families Nassariidae, Raphitomidae, Borsoniidae, Mangeliidae and Turridae 
for planktotrophs, lecithotrophs and direct developers based on irreversible transitions. 
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Figure 6.11 Speciation events in the families Nassariidae, Raphitomidae, Borsoniidae, Mangeliidae and Turridae 
for planktotrophs, lecithotrophs and direct developers based on reversible transitions. 
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6.3 SUMMARY 

 

Theory predicts that planktotrophy is associated with wide geographic distributions, long 

species durations and low speciation rates and nonplanktotrophy with narrow geographic 

distributions, short species durations and high speciation rates. The analysis carried out in 

this chapter suggests that these macroevolutionary consequences are not exhibited in 

Cenozoic gastropods from southeastern Australia, as they are for temnopleurid echinoids 

from the same time and region (Jeffery & Emlet, 2003) and similar families along the Gulf 

Coast of the USA during the Cenozoic (Hansen, 1980). If the results of this research reflect 

true patterns in the gastropod fossil record then it can be surmised that there is no link 

between larval strategy and macroevolution in gastropods from southeastern Australia. 

Whilst it is possible that these results reflect true patterns for these taxa in this region, it 

seems more likely that preservation biases have greatly affected the temporal and spatial 

distribution of these taxa. Geographic distribution data may also be affected by the possibility 

of migrating populations through time. The only way to resolve these problems is to increase 

the regional dataset by finding taxa in localities not already visited. However, the collection 

of gastropods from this region has been a point of interest for many collectors for over a 

hundred years suggesting that the likelihood of finding new localities and more specimens is 

very unlikely. Therefore, it might be more sensible to expand the datasets over larger regions 

or to compile a global dataset for each family. Whilst this is not within the scope of this study 

it is certainly an area that would benefit from attention in the future. To overcome the 

problem relating to migrating populations, geographic distribution would need to be 

collected for specific time intervals. Again, the problem lies in the major gaps occurring in the 

fossil record and the only possible resolution is to expand the datasets to larger regions or to 

compile a global dataset for each family. Interestingly, these major gaps in the fossil record 

are not as apparent in echinoids (Jeffery & Emlet, 2003) or bivalves (from observations in the 

field) from the Cenozoic strata of southeastern Australia.  
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CHAPTER 7 

 

CONCLUSIONS AND FUTURE WORK 

 

The aim of this research was to examine the evolution of larval strategies in gastropods 

from the Cenozoic sediments of southeastern Australia. In order to do this a taxonomic 

revision of six families was undertaken and phylogenetic analysis used to determine the 

relationships between taxa. Phylogenetic methods were used to map changes in larval 

strategies through geological time and to determine the ancestral mode of development. 

Non-phylogenetic methods were used to examine the macroevolutionary consequences of 

different modes of larval development and test widely held assumptions. This chapter 

discusses the results of the analyses carried out in this study and examines the difficulties 

encountered, with suggestions for improvements and future studies. 

 

As discussed in detail in Chapter 1, the published literature on larval strategies and their 

evolutionary trends suggests a number of general “rules”. Theory predicts that 

planktotrophic larvae will exhibit wider geographic distributions, longer species durations 

and lower speciation rates than nonplanktotrophic species as a result of greater dispersal 

ability. However, acceptance of these predictions is based on limited data. This research 

sought to examine the macroevolutionary consequences of larval strategies in fossil marine 

invertebrates using Cenozoic gastropods from southeastern Australia as an example 

(Chapter 6). Equally, very little in known about the evolution of larval strategies through 

geological time. Although planktotrophy is considered to the likeliest primitive condition, 

there is relatively little published literature examining this in detail. This research has 

examined the order and timing of switches in larval strategy in fossil gastropods from 

southeastern Australia, with the aim of increasing our understanding of the evolution of 

developmental mode (Chapter 5).  

 

 

7.1 TAXONOMY 

 

A taxonomic revision of 104 species belonging to six families was carried out to establish 

distinct species and correctly assign them to genera and families. The taxonomic revision of 

the family Volutidae included 69 species assigned to 13 genera and closely follows the 
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taxonomic revisions by Darragh (1971, 1988). The taxonomic revision of the family 

Nassariidae included seven species assigned to four subgenera of the genus Nassarius and 

closely follows the taxonomic revision of Cernohorsky (1981). The four remaining families 

(Raphitomidae, Borsoniidae, Mangeliidae and Turridae) have traditionally been considered 

as subfamilies of the family Turridae. Recent advances in the classification of conoideans by 

Bouchet et al. (2011) have promoted these subfamilies to family status based on molecular 

phylogenies by Puillandre et al. (2011), and anatomical and morphological data. This study 

has followed the generic assignment of Bouchet et al. (2011). Two species belonging to two 

genera were assigned to the family Raphitomidae. The Borsoniidae includes 14 species 

belonging to six genera. Six species in three genera were assigned to the family Mangeliidae 

and the Turridae included six species from five genera. 

 

The taxonomic revision of the families Volutidae and Nassariidae are considered to be 

complete and include all known species from the Cenozoic strata of southeastern Australia. 

However, the taxonomic revision of the other four families presented in this thesis is 

considered to be incomplete. The classification set out by Bouchet et al. (2011) is based on 

living taxa only and problems arose in trying to assign fossil genera to families due to the 

lack of anatomical characters. This was mostly due to the conchological variability in family 

descriptions outlined by Bouchet et al. (2011). Although data for more “turrids” was 

collected, they were not included in this research because they could not be confidently 

assigned to families.  

 

There is a great deal of scope for taxonomic studies of Cenozoic gastropods from 

southeastern Australia that were not included as part of this thesis. For the families 

Raphitomidae, Borsoniidae, Mangeliidae and Turridae, a comprehensive regional 

taxonomic revision is desperately needed. The classification framework adopted in this 

study is relatively new and as a result is yet to be used in regional studies.  As molecular and 

anatomical data are not available in fossil specimens, a taxonomic revision would require 

more definitive conchological characters for each family. There is also the opportunity to 

examine the taxonomy of families not included in this study, such as cowries, mitrids and 

turritellids, which are found in abundance in southeastern Australian strata. Whilst this 

study has sought to resolve the regional taxonomy of gastropods as best as possible, the 

global taxonomy stills requires a great deal of attention. Of the families examined here only 

the Nassariidae has been examined on a global scale (Cernohorsky, 1984). If the global 
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taxonomy of each of these families can be established then there is scope to examine 

global trends in the evolution of larval modes. 

 

A final point regarding taxonomy concerns the occurrence of moulds in the strata of 

southeastern Australia. Whilst the majority of gastropod specimens from this region are 

exceptionally well preserved, they are confined to specific horizons. Outside of these 

horizons, only moulds could be found and unfortunately if they cannot be successfully 

identified then they cannot be used for research of this kind. As methods advance it is 

hoped that gaps in the fossil record of southeastern Australia can be closed by 

identification of moulds.  

 

 

7.2 PHYLOGENETIC ANALYSES 

 

Phylogenetic analysis was carried out for all six families included in this research. The 

decision to use genus or species level analysis was based on variation in larval mode. Where 

more than one larval mode presented itself within a single genus, species level analysis was 

carried out. All other analyses were carried out at genus level. Subfamily level analysis was 

carried out for the Volutidae (the only family with subfamilial divisions). Characters were 

based on shell morphology only (except for the Nassariidae) due to the lack of anatomical 

data for fossil taxa. Composite trees were created to show the relationships between 

subfamilies and families.  

 

Most of the cladograms produced by these analyses were not very robust with low 

bootstrap and Bremer support values which is commonly the case in species level 

phylogenetic analyses. Phylogenetic analysis of gastropod fossils is often viewed as 

problematic (e.g. Harasewych, 1984; Emberton, 1995; Frýda, 1999; Wagner, 2001). The 

major problem encountered in this study concerned characters and character states. It 

proved very difficult to establish distinct characters with distinct character states and as a 

result the number of available characters was quite limited. Problems also arose, due to 

large numbers of uninformative characters limiting the number of taxa that could be 

analysed at any one time (hence the creation of composite trees). Missing taxa, either as a 

result of preservation biases or due to exclusion (see section 7.1), may also have resulted in 

less robust trees. Whilst little can be done to eliminate problems with gaps in the fossil 
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record, it might still be possible to use taxa that are yet to be successfully identified through 

taxonomic revisions. Traditionally, phylogenetic analysis follows taxonomic revision. 

However, there is still scope to produce phylogenetic trees in cases of taxonomic dispute, if 

each taxon is considered a distinct taxonomic unit allowing for taxonomy to follow 

phylogenetic analysis.  

 

Ideally, robust species level analyses would be carried out in order to examine evolutionary 

trends at high resolution. This is clearly not possible in gastropods at this time. However, 

there are some potential solutions relating to missing taxa and character definition. To 

reduce the number of missing taxa, analyses of global datasets could be carried out. Whilst 

this would produce results at a lower resolution it would perhaps provide a better 

indication of relationships between taxa at higher taxonomic levels. Similarly, if the regional 

taxonomy of conoidean families can be improved then this would significantly reduce the 

number of taxa which were lost to this study. In truth, the best way to improve 

phylogenetic analyses of gastropods is to increase the quality and number of characters 

that can be used. The need for innovative approaches to character definition is being 

investigated by a few researchers. The use of geometric morphometric data has been 

explored in Conus taxa (Smith & Hendricks, 2013) whilst the separation of juvenile and 

adult characters has also been investigated (Papadopoulos et al., 2004). 

 

 

7.3 ORDER AND TIMING OF CHANGES IN LARVAL MODE 

 

In order to examine the evolution of larval mode, a large dataset of developmental mode 

data was produced. Developmental mode was inferred from the protoconchs of the 

gastropod specimens used in the taxonomic revision. Phylogenetic analyses were used in 

this research to reconstruct ancestral modes of development and provide insight into the 

order and timing of switches in larval strategies. Reconstructions of ancestral 

developmental modes were carried out using maximum parsimony and maximum-

likelihood methods. Planktotrophy is considered to be the most likely ancestral larval mode 

in gastropods by many researchers (e.g. Hansen, 1982; Lieberman et al., 1993; Duda & 

Palumbi, 1999; Fedosov & Puillandre, 2012). The analyses carried out in this study reveal 

that the ancestral mode of development cannot be unequivocally determined. This may in 

part be due to the small datasets of some of the families (i.e. conoidean families) but may 
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also be a result of poorly resolved trees. Examination of switches in larval mode using 

maximum parsimony and maximum-likelihood analyses indicated that transitions may not 

be irreversible as predicted (Strathmann, 1978). Many researchers suggest regaining 

specialised structures associated with planktotrophy is too difficult to achieve and 

therefore reversals are extremely unlikely. However, sensitivity analysis carried out as part 

of this study indicates that reversals may not be as difficult as previously thought. The 

results suggested that in the family Volutidae switches from nonplanktotrophy to 

planktotrophy is only six times harder than switches in the other direction. The timing of 

switches in larval mode was mapped onto cladograms correlated to the stratigraphy of the 

region but revealed no coordinated shifts at precise points in time. As a result it is not 

possible to investigate the possible external factors driving switches, as has been done for 

echinoids (e.g. Jeffery, 1997).  

Much of the work on the order and timing of switches requires congruence between 

phylogenies and stratigraphy and limited gaps in the fossil record. Three methods were 

used to assess these issues: the Stratigraphic Consistency Index, the Relative Completeness 

Index and the Gap Excess Ratio. Whilst most of the trees were stratigraphically congruent 

suggesting that the branching order was broadly correct, large gaps in the fossil record 

were revealed. However, these large gaps in the fossil record were not unexpected due to 

preservation in specific horizons. The issue of missing taxa, either from preservation biases 

or excluded taxa, suggests that evolutionary patterns seen in this research may not entirely 

reflect true patterns through geological time. In particular, missing taxa and missing 

occurrences of taxa results in inaccurate data for the temporal and spatial distribution of 

species. 

 

In order to improve our understanding of larval mode evolution, a number of further 

studies could be carried out. Taxa excluded due to uncertain taxonomic placement could be 

included and the analyses repeated in the hope that more data will provide more robust 

results and reduce issues relating to gaps in the fossil record. The same analyses could also 

be carried out for global datasets of individual families, similar to work undertaken on 

echinoids (e.g. Jeffery & Emlet, 2003). Our understanding of larval mode evolution may also 

be improved by looking into different groups, such as bivalves where fossil larval mode can 

be inferred, or in other regions of the world, such as the Gulf Coast of the USA and the Paris 

Basin where a range of developmental modes have been recorded in a number of 

taxonomic groups. Work of this kind has been carried out for temnopleurid echinoids in 
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southeastern Australia (Jeffery & Emlet, 2003) but more studies are needed in a variety of 

groups to build the bigger picture.  

 

A final suggestion for further work involves expanding this type of research beyond the 

Cenozoic and into the Mesozoic and Palaeozoic, not just in gastropods but also in other 

groups of marine invertebrate. The evolution of larval strategies in spatangoid echinoids 

during the Late Cretaceous has already been examined (Cunningham & Jeffery Abt, 2009) 

and provides a comparable dataset for future research. This may offer interesting insights 

into the ancestral larval mode as well as extending our understanding of evolutionary 

trends further back in geological time.  

 

 

7.4 MACROEVOLUTIONARY CONSEQUENCES OF LARVAL STRATEGIES 

 

The penultimate chapter of this thesis explored the macroevolutionary consequences of 

larval strategies and compared these results with those predicted in the literature. The 

analyses indicated that gastropods in southeastern Australia exhibit very little difference in 

geographic and stratigraphic range between different larval strategies. Therefore, the 

prediction that planktotrophic taxa will exhibit wider geographic ranges and longer species 

duration is not supported by this study. Speciation rates are predicted to be higher in 

nonplanktotrophs than planktotrophs but again, the analyses carried out in this research do 

not find any difference between different larval modes. Similar studies on gastropods from 

the Gulf Coast of the USA have shown more support for predicted results (Hansen, 1980). 

 

It is likely that two main factors have affected the results of the analysis in this study. 

Firstly, the exclusion of taxa that could not be assigned to particular families has reduced 

the size of the dataset. Secondly, preservation biases, as indicated by SCI, RCI and GER 

values, are likely to have affected our interpretation of spatial and temporal distributions of 

taxa.  

 

There are a number of further studies that could be carried out to advance our 

understanding of the links between macroevolution and larval mode in gastropods. The 

analysis could be repeated including taxa previously excluded due to uncertain taxonomic 

placement. If all the taxa are analysed together then their taxonomic placement is not 
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necessarily an issue, only that their larval mode has been correctly inferred. The second 

proposal is to examine these patterns on global datasets of individual families, which would 

require well established taxonomies. This may reduce issues relating to preservation biases 

but there may be problems in correlating the stratigraphy for different global regions. 

Other potential studies include carrying out the analyses on bivalves from southeastern 

Australia and comparing the results to those patterns seen in gastropods and echinoids of 

this area. Similarly, analyses could be carried out on echinoids from the Gulf Coast of the 

USA and compared to studies on gastropods and bivalves already carried out in that region. 

 

In conclusion, whilst the results of this study do not necessarily support hypotheses laid out 

in the literature nor do they absolutely contradict theory either.  It is clear that preservation 

biases influenced the results of analyses carried out in this research. However, there is still 

a great deal of scope for further studies to be carried out both in southeastern Australia 

and elsewhere in the world, using gastropods and other groups.  
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APPENDIX 1 – LOCALITY DATA 

LOCALITY 
NUMBER 

LOCALITY DESCIPTION LATITUDE, 
LONGITUDE 

FORMATION 
NAME 

FORMATION 
AGE 

REFERENCE 

      

VIC001  G.S.V locality "Aw7", 
Rivernook, black silt 
beneath an outcrop of 
indurated siltstone, 1 mile 
southeast of Point Ronald, 
Princetown, Victoria 

-38.71597°, 
+143.16847°  

Dilwyn 
Formation 

Johannian (E. 
Eocene) 53.5-

46.5Ma 

Darragh, 
1971 

VIC002  G.S.V. locality "Aw1", 
northwest outcrop, 0.6 
miles north of Point 
Flinders, Victoria 

-38.84403°, 
+143.49347° 

Glen Aire Clay Aldingan - 
Willunhgan (L. 

Eocene - E. 
Oligocene) 
35-31.5Ma 

Darragh, 
1971 

VIC003  G.S.V. locality "Aw4", Aire 
coast, 1.1 miles northwest 
of the mouth of the Aire 
River, Victoria 

-38.79557°, 
+143.444538° 

Glen Aire Clay Aldingan - 
Willunhgan (L. 

Eocene - E. 
Oligocene) 
35-31.5Ma 

Darragh, 
1971 

VIC004  G.S.V. locality "Ad22", Bird 
Rock cliffs, strata 
approximately 17-37ft 
below cap of Bird Rock, 
Victoria 

-38.34681°, 
+144.31097° 

Jan Juc Marl Janjukian (L. 
Oligocene) 
25-23Ma 

Darragh, 
1971 

VIC005  Bird Rock Cliffs, Torquay, 
Victoria 

-38.34681°, 
+144.31097° 

Jan Juc Marl Janjukian (L. 
Oligocene) 
25-23Ma 

Darragh, 
1971 

VIC006  Bed "B100", clay 
immediately beneath the 
Point Addis Limestone, 
southwest side of Bells 
Headland, Victoria 

-38.37042°, 
+144.28152° 

Jan Juc Marl Janjukian (L. 
Oligocene) 
25-23Ma 

Darragh, 
1971 

VIC007 Left bank of Barwon River, 
3.5 miles south of 
Birregurra, Victoria  

-38.387326°, 
+143.770823° 

Jan Juc Marl Janjukian (L. 
Oligocene) 
25-23Ma 

Darragh, 
1971 
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VIC008 Cliff section at southwest 
end of Jan Juc Beach, 
approximately 100 yards 
northeast of Bird Rock, 
Torquay, Victoria 

-38.35103°, 
+144.300785° 

Puebla 
Formation 

Longfordian - 
Balcombian 

(E. - M. 
Miocene) 23-

14Ma 

Darragh, 
1971 

VIC009 Left bank, Barwon River, 
Birregurra, Victoria 

 -38.341858°, 
+143.790264° 

Gellibrand 
Marl 

Longfordian 
(E. Miocene) 
23-16.5Ma 

Darragh, 
1971 

VIC010 70ft in well at J. Keyte’s 
farm, 3 miles east of 
Mount Arapiles, Victoria 

 -36.755141°, 
+141.790441° 

Unknown - Darragh, 
1971 

VIC011 Slip on south bank of Lake 
Costin, 0.3 miles west of 
Horden Vale-Red Hill 
Road, Horden Vale, 
Victoria 

-38.780099°, 
+143.484771° 

Fishing Point 
Marl 

Longfordian 
(E. Miocene) 
23-16.5Ma 

Darragh, 
1971 

VIC012 Cliff 100ft above Lake 
Craven, Aire River, 0.25 
miles northwest of Red 
Hill, Horden Vale, Victoria 

-38.788345°, 
+143.481617° 

Fishing Point 
Marl 

Longfordian 
(E. Miocene) 

23-17Ma 

Darragh, 
1971 

VIC013 G.S.V. locality “Ad14”, 
Section 24, Block 1, Parish 
of Moolap, 1.5 miles north 
of Curlewis Railway 
crossing, Victoria 

 -38.161691°, 
+144.515877° 

Fyansford 
Formation 

Janjukian - 
Mitchellian (L. 
Oligocene - L 
Miocene) 25-

8Ma 

Darragh, 
1971, 1988 

VIC014 Belmont Shaft, Victoria -38.18003°, 
+144.34282° 

Fyansford 
Formation 

Janjukian - 
Mitchellian (L. 
Oligocene - L 
Miocene) 25-

8Ma 

Darragh, 
1971, 1988 

VIC015 “Bed 7”, G.S.V. “Fc 20”, 
60ft up section, 
Amphitheatre, Leigh River, 
Victoria 

-38.097078°, 
+144.05827° 

Fyansford 
Formation 

Janjukian - 
Mitchellian (L. 
Oligocene - L 
Miocene) 25-

8Ma 

Darragh, 
1971 
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VIC016 Cutting, Cobden-Lavers 
Hill Road, 0.8 miles south 
of Kennedys Creek, 
Victoria 

 -38.546152°, 
+143.249531° 

Gellibrand 
Marl 

Longfordian 
(E. Miocene) 
23-16.5Ma 

Darragh, 
1971 

VIC017 “Chapple’s locality”, 
landslips on Latrobe Creek, 
0.75 miles northwest of 
Princetown, Victoria 

 -38.68216°, 
+143.151169° 

Gellibrand 
Marl 

Longfordian 
(E. Miocene) 
23-16.5Ma 

Darragh, 
1971 

VIC018 Cutting on Princetown-
Simpson Road, 1.7 miles 
south of Melrose Road, 
Victoria 

 -38.642484°, 
+143.133659° 

Gellibrand 
Marl 

Longfordian 
(E. Miocene) 
23-16.5Ma 

Darragh, 
1971 

VIC019 Cutting on Bornung Road, 
at top of hill, 1.3 miles 
north of Coriemungle, 
Victoria 

 -38.519564°, 
+143.079243° 

Gellibrand 
Marl 

Longfordian 
(E. Miocene) 
23-16.5Ma 

Darragh, 
1971 

VIC020 Limestone Creek, Glenelg 
River, Victoria 

 -37.76653°, 
+141.20569° 

Whalers Bluff 
Formation  

Mitchellian - 
Yatalan (L. 
Miocene - 

Pliocene) 6-
3Ma 

Darragh, 
1971 

VIC021 20-30ft above Lake 
Craven, southeast side of 
Fischers Point, Horden 
Vale, Victoria 

 -38.791724°, 
+143.479986° 

Fishing Point 
Marl 

Longfordian 
(E. Miocene) 

23-17Ma 

Darragh, 
1971 

VIC022 Fossil Beach, Balcombe 
Bay, 1.5 miles south of 
Mornington, Victoria† 

 -38.24208°, 
+145.02763° 

Fyansford 
Formation 

Janjukian - 
Mitchellian (L. 
Oligocene - L 
Miocene) 25-

8Ma 

Darragh, 
1971 

VIC023 200 yards south of Grices 
Creek, Victoria 

 -38.18736°, 
+145.09903° 

Fyansford 
Formation 

Janjukian - 
Mitchellian (L. 
Oligocene - L 
Miocene) 25-

8Ma 

Darragh, 
1971 
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VIC024 Dennant Creek, 
approximately 50 yards 
from older volcanics, 
Victoria 

 -38.186995°, 
+145.084258° 

Fyansford 
Formation 

Janjukian - 
Mitchellian (L. 
Oligocene - L 
Miocene) 25-

8Ma 

Darragh, 
1971 

VIC025 Cliff section to south of 
Manyung Rocks and north 
of sewer pipe and jetty, 
“bed 10Ba”, Victoria 

-38.19374°, 
+145.067854° 

Fyansford 
Formation 

Janjukian - 
Mitchellian (L. 
Oligocene - L 
Miocene) 25-

8Ma 

Darragh, 
1971 

VIC026 Downstream section, 
Grices Creek, beds “8 Ba-
g”, Victoria 

 -38.164998°, 
+145.099912° 

Fyansford 
Formation 

Janjukian - 
Mitchellian (L. 
Oligocene - L 
Miocene) 25-

8Ma 

Darragh, 
1971 

VIC027 Southeastern trunk sewer 
between Braeside shaft 
and shaft at corner of 
Boundary and Centre 
Dandenong Roads, 
Dingley, Victoria 

 -37.9826°, 
+145.116477° 

Fyansford 
Formation 

Janjukian - 
Mitchellian (L. 
Oligocene - L 
Miocene) 25-

8Ma 

Darragh, 
1971 

VIC028 Altona Bay Coal Shaft, 
Victoria 

 -37.89014°, 
+144.84042° 

Fyansford 
Formation 

Janjukian - 
Mitchellian (L. 
Oligocene - L 
Miocene) 25-

8Ma 

Darragh, 
1971 

VIC029 Red Hill, Shelford-
Inverleigh Road, Victoria 

-38.05179°, 
+143.98928° 

Fyansford 
Formation 

Janjukian - 
Mitchellian (L. 
Oligocene - L 
Miocene) 25-

8Ma 

Darragh, 
1971, 1988 

VIC030 Left bank, Native Hut 
Creek, southwest of 
Glenleigh, Victoria 

 -38.03514°, 
+144.05347° 

 Fyansford 
Formation 

Janjukian - 
Mitchellian (L. 
Oligocene - L 
Miocene) 25-

8Ma 

Darragh, 
1971 

VIC031 Right bank, Native Hut 
Creek, 100 yards south of 
Hamilton Highway, 
Victoria 

  -38.095153°, 
+144.103332° 

Fyansford 
Formation 

Janjukian - 
Mitchellian (L. 
Oligocene - L 
Miocene) 25-

8Ma 

Darragh, 
1971 
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VIC032 Junction of Native Hut 
Creek and Barwon River, 
Victoria 

38.110519°, 
+144.139595° 

Fyansford 
Formation 

Janjukian - 
Mitchellian (L. 
Oligocene - L 
Miocene) 25-

8Ma 

Darragh, 
1971 

VIC033 Left bank, Barwon River, 
Section 2B, Parish of 
Murgheboluc, Victoria 

38.110519°, 
+144.139595 

Fyansford 
Formation 

Janjukian - 
Mitchellian (L. 
Oligocene - L 
Miocene) 25-

8Ma 

Darragh, 
1971 

VIC034 Left bank, Barwon River, 
near junction with Bruces 
Creek, Section 4A, Parish 
of Murgheboluc, Victoria 

38.02486°, 
+144.14514° 

Fyansford 
Formation 

Janjukian - 
Mitchellian (L. 
Oligocene - L 
Miocene) 25-

8Ma 

Darragh, 
1971 

VIC035 Cliff at north west end of 
Gibson Beach, Princetown, 
Victoria 

-38.66875°, 
+143.11041° 

Gellibrand 
Marl 

Longfordian 
(E. Miocene) 
23-16.5Ma 

Darragh, 
1971 

VIC036 Cliff immediately beneath 
limestone on track to 
V.A.L. quarry, Curdies, 
Victoria 

38.44468°, 
+142.94374° 

Gellibrand 
Marl 

Longfordian 
(E. Miocene) 
23-16.5Ma 

Darragh, 
1971 

VIC037 Cutting, Timboon-Port 
Campbell Road, 100yards 
from Timboon shops, 
Victoria 

38.485005°, 
+142.981653° 

Gellibrand 
Marl 

Longfordian 
(E. Miocene) 
23-16.5Ma 

Darragh, 
1971 

VIC038 Clifton Bank, Muddy 
Creek, Yulecart, Hamilton, 
Victoria 

-37.74160°, 
+141.93473° 

 Muddy Creek 
Marl 

Balcombian - 
Bairnsdalian 

(M. Miocene) 
15-11Ma 

Darragh, 
1971 

VIC039 Grange Burn, 0.75 mile 
above Henty’s House, 
Hamilton, Victoria 

-37.72776°, 
+141.93871° 

Muddy Creek 
Marl 

Balcombian - 
Bairnsdalian 

(M. Miocene) 
15-11Ma 

Darragh, 
1971 
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VIC040 G.S.V. locality Aw10, cliff 
at Rutledge Beach, 
Princetown, Victoria  

-38.63070°, 
+143.06013° 

Port Campbell 
Limestone 

Batesfordian - 
Mitchellian 

(M.- L. 
Miocene) 16-

6Ma 

Darragh, 
1971 

VIC041 North west shore of Lake 
Bullen Merri, 
Camperdown, Victoria 

-38.242259°, 
+143.092203° 

Gellibrand 
Marl 

Longfordian 
(E. Miocene) 
23-16.5Ma 

Darragh, 
1971 

VIC042 Well at Wiridgil, 
Camperdown, Victoria 

-38.23333°, 
+143.21667° 

Gellibrand 
Marl 

Longfordian 
(E. Miocene) 
23-16.5Ma 

Darragh, 
1971 

VIC043 Bed of Spring Creek, 0.5 
mile north east of Spring 
Creek Homestead, 
Minhamite, Victoria 

-38.01667°, 
+142.41667° 

Port Campbell 
Limestone 

Batesfordian - 
Mitchellian 

(M.- L. 
Miocene) 16-

6Ma 

Darragh, 
1971 

VIC044 Rose Hill, near Bairnsdale, 
Victoria 

-37.813581°, 
+147.594109° 

Tambo River 
Formation 

Mitchellian (L. 
Miocene) 10-

5.5Ma 

Darragh, 
1971 

VIC045 Sample 1, 66-120ft, Bore 
12, Parish of Stradbroke, 
Victoria 

-38.278821°, 
+147.0401° 

Jemmys Point 
Formation 

Mitchellian -
Kalimnan 

(Pliocene) 5.5-
4Ma 

Darragh, 
1971 

VIC046 Cutting on Princes 
Highway, left bank, Bunga 
Creek, Lakes Entrance, 
Victoria 

-37.853068°, 
+148.036351° 

Jemmys Point 
Formation 

Mitchellian -
Kalimnan 

(Pliocene) 5.5-
4Ma 

Darragh, 
1971 

VIC047 Ritchies cutting, Scrivenor 
Road, right bank, 
Mississippi Creek, G.S.V. 
locality Fl., Victoria 

-37.838462°, 
+147.951293° 

Jemmys Point 
Formation 

Mitchellian -
Kalimnan 

(Pliocene) 5.5-
4Ma 

Darragh, 
1971 
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VIC048 Lake Bunga crossing, 
Victoria 

-37.864995°, 
+148.04384° 

Jemmys Point 
Formation 

Mitchellian -
Kalimnan 

(Pliocene) 5.5-
4Ma 

Darragh, 
1971 

VIC049 Lowest shell bed, cutting 
on Nyerimalang Road, 
approximately 12ft above 
and Meringa Creek, 
Victoria 

-37.87134°, 
+147.92695° 

Jemmys Point 
Formation 

Mitchellian -
Kalimnan 

(Pliocene) 5.5-
4Ma 

Darragh, 
1971 

VIC050 Bluff on west side of North 
Arm, south of Hunter 
Gully, Lakes Entrance, 
Victoria 

-37.873092°, 
+147.978716° 

Jemmys Point 
Formation 

Mitchellian -
Kalimnan 

(Pliocene) 5.5-
4Ma 

Darragh, 
1971 

VIC051 Just below high tide level 
on east side of North Arm, 
on point at end of 
Ferndale Parade, Lakes 
Entrance, Victoria 

-37.87465°, 
+147.988093° 

Jemmys Point 
Formation 

Mitchellian -
Kalimnan 

(Pliocene) 5.5-
4Ma 

Darragh, 
1971 

VIC052 Mallacoota Inlet, Victoria -37.56125°, 
+149.76598° 

Recent - Cernohorsky, 
1981 

VIC053 Port Melbourne, Victoria  -37.82896°, 
+144.91061° 

Recent - Cernohorsky, 
1981 

VIC054 Altona, Victoria -37.869471°, 
+144.830246° 

Recent - Cernohorsky, 
1981 

VIC055 North Arm, Lakes 
Entrance, Victoria 

-37.86625°, 
+147.98125° 

Recent - Cernohorsky, 
1981 
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VIC056 Port Phillip, Victoria -38.10736°, 
+144.89125° 

Recent - Cernohorsky, 
1981 

VIC057 Off Rhyll, Westport, 
Victoria 

-38.47779°, 
+145.27985° 

Recent - Cernohorsky, 
1981 

VIC058 Hobson’s Bay, Victoria -37.85486°, 
+144.93597° 

Recent - Cernohorsky, 
1981 

VIC059 Gippsland, Victoria -38.13430°, 
+147.46902° 

Formation 
unknown 

Pliocene Reath, 1925; 
Cernohorsky, 

1981 

VIC060 Muddy Creek, near 
Hamilton, Victoria 

-37.74160°, 
+141.93473° 

Grange Burn 
Formation  

Mitchellian - 
Kalimnan (L. 

Miocene - 
Pliocene) 6-

4Ma 

Cernohorsky, 
1981 

VIC061 Grange Burn, near 
Hamilton Victoria 

-37.72776°, 
+141.93871° 

Grange Burn 
Formation  

Mitchellian - 
Kalimnan (L. 

Miocene - 
Pliocene) 6-

4Ma 

Cernohorsky, 
1981 

VIC062 South west side of Bunga 
Creek, Upper Jemmy’s 
Point, East of Lakes 
Entrance, Victoria 

-37.848541°, 
+148.031182° 

Jemmys Point 
Formation 

Mitchellian - 
Kalimnan 

(Pliocene) 5.5-
4Ma 

Cernohorsky, 
1981 

VIC063 Sorrento Bore, 
Mornington Peninsula, 
Victoria 

-38.34376°, 
+144.74300° 

Formation 
unknown  

Pliocene Cernohorsky, 
1981 
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VIC064 Point Welshpool, Victoria -38.6899°, 
+146.48676° 

Recent - Cernohorsky, 
1981 

VIC065 Wilson’s Promontory, 
Victoria 

-38.97073°, 
+146.3687° 

Recent - Cernohorsky, 
1981 

VIC066 Newhaven, Victoria -38.51688°, 
+145.33388° 

Recent - Cernohorsky, 
1981 

VIC067 Western Port, Victoria -38.32042°, 
+145.25098° 

Recent - Cernohorsky, 
1981 

VIC068 Cowes, Victoria -38.46955°, 
+145.23848° 

Recent - Cernohorsky, 
1981 

VIC069 Phillip Island, Victoria -38.47319°, 
+145.22792° 

Recent - Cernohorsky, 
1981 

VIC070 Point Leo, Victoria -38.42403°, 
+145.07903° 

Recent - Cernohorsky, 
1981 

VIC071 Sandringham, Victoria -37.95249°, 
+145.01231° 

Recent - Cernohorsky, 
1981 
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VIC072 Melbourne, Victoria -38.37111°, 
+144.91533° 

Recent - Cernohorsky, 
1981 

VIC073 Rosebud, Victoria -37.8243°, 
+144.97398° 

Recent - Cernohorsky, 
1981 

VIC074 Sorrento, Victoria -38.34376°, 
+144.74300° 

Recent - Cernohorsky, 
1981 

VIC075 Port Fairy, Victoria -38.3308°, 
+142.17635° 

Recent - Cernohorsky, 
1981 

VIC076 Portland Bay, Victoria -38.32903°, 
+141.63625° 

Recent - Cernohorsky, 
1981 

VIC077 Moine River mouth, 
Victoria 

-38.23764°, 
+142.23541° 

Formation 
unknown 

Pleistocene Cernohorsky, 
1981 

VIC078 Mallee Bore No. 8, Victoria -34.326103°, 
+142.371983 ° 

Formation 
unknown  

Pleistocene Cernohorsky, 
1981 

VIC079 Fyansford, Victoria -38.12399°, 
+144.28987 ° 

Fyansford 
Formation  

Janjukian - 
Mitchellian (L. 
Oligocene - L 
Miocene) 25-

8Ma 

Cernohorsky, 
1981 
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VIC080 Schnapper Point, Port 
Phillip Bay, Victoria 

-38.21236°, 
+145.03209° 

Fyansford 
Formation  

Janjukian - 
Mitchellian (L. 
Oligocene - L 
Miocene) 25-

8Ma 

Cernohorsky, 
1981 

VIC081 Gellibrand, Victoria -38.52819°, 
+143.54529° 

Gellibrand 
Marl 

Longfordian 
(E. Miocene) 
23-16.5Ma 

Cernohorsky, 
1981 

VIC082 South east end of Gibson 
Beach, Princetown, 
Victoria 

-38.67172°, 
+143.11482° 

Gellibrand 
Marl 

Longfordian 
(E. Miocene) 
23-16.5Ma 

Cernohorsky, 
1981 

VIC083 Altona, Victoria  -37.869471°, 
+144.830246° 

Fyansford 
Formation  

Janjukian - 
Mitchellian (L. 
Oligocene - L 
Miocene) 25-

8Ma 

Cernohorsky, 
1981 

VIC084 Mount Eliza, Victoria -38.19379°, 
+145.09488° 

Fyansford 
Formation  

Janjukian - 
Mitchellian (L. 
Oligocene - L 
Miocene) 25-

8Ma 

Cernohorsky, 
1981 

VIC085 Mornington, Victoria -38.22779°, 
+145.06226° 

Fyansford 
Formation  

Janjukian - 
Mitchellian (L. 
Oligocene - L 
Miocene) 25-

8Ma 

Cernohorsky, 
1981 

VIC086 Moorabool River near 
Lethbridge, Victora.  

-37.959358°, 
+144.159765° 

Fyansford 
Formation  

Janjukian - 
Mitchellian (L. 
Oligocene - L 
Miocene) 25-

8Ma 

Darragh, 
1988 

VIC087 Cutting on Steens Road, 
2.1km north of 
Cooriemungle Road, 
Cooriemungle, Victoria  

38.510968°, 
+143.080101° 

Gellibrand 
Marl 

Longfordian 
(E. Miocene) 
23-16.5Ma 

Darragh, 
1988 
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VIC088 Clay overburden, just 
above limestone, 
Australian Cement Quarry, 
right bank of Moorabool 
River, Batesford, Victoria  

-38.112139°, 
+144.29615° 

Fyansford 
Formation  

Janjukian - 
Mitchellian (L. 
Oligocene - L 
Miocene) 25-

8Ma 

Darragh, 
1988 

VIC089 Cliff on left bank of Leigh 
River at “Farrells”, 
Allotment 44, Parish of 
Carrah, Victoria 

-38.103375°, 
+144.06301° 

Fyansford 
Formation  

Janjukian - 
Mitchellian (L. 
Oligocene - L 
Miocene) 25-

8Ma 

Darragh, 
1988 

VIC090 0-2m above water on right 
bank, Moorabool River, 
NNW of Farm, Victoria  

38.129155°, 
+144.288769° 

Fyansford 
Formation  

Janjukian - 
Mitchellian (L. 
Oligocene - L 
Miocene) 25-

8Ma 

Darragh, 
1988 

VIC091 BCIII, dark gritty clay, in 
washout 2, forked gully 
nearest mouth of Johanna 
River, Johanna, Victoria  

. -38.765712°, 
+143.389456° 

Browns Creek 
Clay 

Johannian - 
Aldingan (L. 

Eocene) 38.5-
35.5Ma 

Darragh, 
1988 

VIC092 BCI, 9.6m dark clay with 
Turritella below green 
sand in washout 1 nearest 
mouth of Browns Creek, 
Johanna, Victoria 

-38.757863°, 
+143.377343° 

Browns Creek 
Clay 

Johannian - 
Aldingan (L. 

Eocene) 38.5-
35.5Ma 

Darragh, 
1988 

VIC093 Cliff section Addiscot 
Beach, beds B109-107, SW 
of small gully, clay 
overlying Demons Bluff 
Formation, Torquay, 
Victoria 

-38.390446°, 
+144.252462° 

Jan Juc Marl Janjukian (L. 
Oligocene) 
25-23Ma 

Darragh, 
1988 

VIC094 Bed of Warrambine Creek, 
immediately downstream 
from Winchelsea-
Inverleigh Road bridge, 
Victoria  

-38.151078°, 
+144.006107° 

Fyansford 
Formation  

Janjukian - 
Mitchellian (L. 
Oligocene - L 
Miocene) 25-

8Ma 

Darragh, 
1988 

VIC095 0-4m above high water 
mark in cliff east of 
Kalimna Jetty, Kalimna, 
Victoria  

-37.882568°, 
+147.965262° 

Jemmys Point 
Formation  

Mirchellian - 
Kalimnan 

(Pliocene) 5.5-
4Ma 

Darragh, 
1988 
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VIC096 Loose shells in Glenelg 
River derived from slips at 
Roscoes Cliff, Victoria 

 -38.052387°, 
+140.997026° 

Whalers Bluff 
Formation 

Mitchellian - 
Yatalan (L. 
Miocene - 

Pliocene) 6-
3Ma 

Darragh, 
1988 

VIC097 19m, sheft at Wurdiboluc, 
Victoria 

-38.301582°, 
+144.042639° 

Jan Juc Marl Janjukian (L. 
Oligocene) 
25-23Ma 

Darragh, 
1988 

VIC098 Approximately G.S.V. 
locality Ad28, Orphanage 
Hill, Fyansford, Victoria  

 -38.141716°, 
+144.310166° 

Fyansford 
Formation 

Janjukian - 
Mitchellian (L. 
Oligocene - L 
Miocene) 25-

8Ma 

Darragh, 
1988 

VIC099 Williams Road cutting, 
Cowleys Creek, Victoria  

-38.482496°, 
+143.060189° 

Formation 
unknown  

- Darragh, 
1988 

VIC100 Dam on Lot 393 (A. Smith) 
in 2nd gully north east of 
house, tributary of 
Tomahawk Creek, Victoria  

-38.450635°, 
+143.416431° 

Gellibrand 
Marl 

Longfordian 
(E. Miocene) 
23-16.5Ma 

Darragh, 
1988 

VIC101 55m in bore on R. Hardy’s 
property, Dalmore, 
Victoria  

-38.199424°, 
+145.418128° 

Formation 
unknown  

- Darragh, 
1988 

VIC102 G.S.V. loc. F2, floor and 
sides of tramway cutting 
north of Scrivenors Road, 
Mississippi Creek, Victoria 

-37.837971°, 
+147.950885° 

Jemmys Point 
Formation  

Mitchellian - 
Kalimnan 

(Pliocene) 5.5-
4Ma 

Darragh, 
1988 

VIC103 Sands exposed in sewer 
tunnel, 12.2m below 
wright Street, Bentleigh, 
between Centre Road and 
Beech Street, Victoria 

-37.915391°, 
+145.030003° 

Black Rock 
Sandstone 

Mitchellian - 
Cheltenhamia
n (L. Miocene 
- M. Pliocene) 

6-4Ma 

Darragh, 
1988 
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VIC104 Shelly clay at base of cliff 
at high tide mark opposite 
Dogtooth Beacon between 
Deauville Street and 
Hutchinson Avenue, 
Beaumaris, Victoria  

-37.988942°, 
+145.047297° 

Black Rock 
Sandstone 

Mitchellian - 
Cheltenhamia
n (L. Miocene 
- M. Pliocene) 

6-4Ma 

Darragh, 
1988 

VIC105 Upper quarry, Bellevue, 
left bank, Mitchell River, 
Victoria  

-37.64966°, 
+147.338348° 

Formation 
unknown  

- Darragh, 
1988 

VIC106 Outcrop in road ditch, 20m 
west of Lakes Entrance 
Development No. 1 oil 
bore, right bank of Bunga 
Creek, Victoria  

-37.848541°, 
+148.031182° 

Jemmys Point 
Formation  

Mitchellian - 
Kalimnan 

(Pliocene) 5.5-
4Ma 

Darragh, 
1988 

VIC107 Cutting on Princes 
Highway, north east side 
of Bunga Creek, bed 6g, 
uppermost shell bed, 
Victoria  

-37.852729°, 
+148.036737°  

Jemmys Point 
Formation  

Mitchellian - 
Kalimnan 

(Pliocene) 5.5-
4Ma 

Darragh, 
1988 

VIC108 G.S.V. locality Ad12, shore 
platform, north east 
corner section 23, block 1, 
Parish of Moolap, Victoria  

-38.130962°, 
+144.428909° 

Fyansford 
Formation  

Janjukian - 
Mitchellian (L. 
Oligocene - L 
Miocene) 25-

8Ma 

Darragh, 
1988 

VIC109 Left bank of Leigh River, 
about 30m above river, 
prominent limestone 
bands, south of small 
gully, Victoria 

-38.108054°, 
+144.063785° 

Fyansford 
Formation  

Janjukian - 
Mitchellian (L. 
Oligocene - L 
Miocene) 25-

8Ma 

Darragh, 
1988 

VIC110 Left bank of Glenelg River, 
just above water level at 
south end of Devils Den, 
Myaring, Victoria  

-37.77292°, 
+141.236115° 

Port Campbell 
Limestone 

Batesfordian - 
Mitchellian 

(M.- L. 
Miocene) 16-

6Ma 

Darragh, 
1988 

VIC111 1-3m above river in cliff, 
left bank of Leigh River, 
due north of Inverleigh, 
Victoria  

-38.09696°, 
+144.057283° 

Fyansford 
Formation  

Janjukian - 
Mitchellian (L. 
Oligocene - L 
Miocene) 25-

8Ma 

Darragh, 
1988 
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VIC112 Leigh River at Inverleigh 
Bridge, Victoria  

-38.099983°, 
+144.062583° 

Fyansford 
Formation  

Janjukian - 
Mitchellian (L. 
Oligocene - L 
Miocene) 25-

8Ma 

Darragh, 
1988 

VIC113 Cliff 5km north west of 
Point Ronald, Princetown, 
Victoria  

-38.678542°, 
+143.12027° 

Gellibrand 
Marl 

Longfordian 
(E. Miocene) 
23-16.5Ma 

Darragh, 
1988 

VIC114 BCIII, dark gritty clay, 16m 
above greensand in 
washout 1 nearest mouth 
of Browns Creek, Johanna, 
Victoria 

-38.757863°, 
+143.377343° 

Browns Creek 
Clay 

Johannian - 
Aldingan (L. 

Eocene) 38.5-
35.5Ma 

Darragh, 
1988 

VIC115 Upper beds, Spring Creek, 
Victoria  

-38.342114°, 
+144.317513° 

Formation 
unknown 

- Powell, 1944 

VIC116 Clifton Beach, Princetown, 
Victoria  

+38.6779°, -
143.124° 

Gellibrand 
Marl 

Longfordian 
(E. Miocene) 
23-16.5Ma 

Powell, 1944 

VIC117 Mallee Bore No. 6, Victoria  -34.326103°, 
+142.371983° 

Formation 
unknown 

Pliocene Powell, 1944 

VIC118 Southeast side of Dilwyn 
Cove, north side of Bell 
Point, 6km southeast of 
Princetown, from boulders 
on beach derived from 
0.5m grey (weathered) 
sandstone about 15m 
above beach, Victoria  

-38.739222°, 
+143.191338° 

Pebble Point 
Formation 

Wangerripian 
(L. 

Palaeocene) 
61-56Ma 

Darragh, 
1997 

VIC119 Sorrento Bore, 
Mornington Peninsula, 
Victoria 

-38.34376°, 
+144.74300° 

Formation 
unknown  

Miocene Powell, 1944 
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TAS001 Lowermost part of cliff 
section between Fossil 
Bluff and Table Cape, 
north of Wynyard, 
Tasmania  

-40.950344°, 
+145.730209° 

Freestone 
Cove 

Sandstone 

Longfordian 
(E. Miocene) 
23.9-23Ma 

Darragh, 
1971, 1988 

TAS002 Upper part of cliff section 
between Fossil Bluff and 
Table Cape, north of 
Wynyard, Tasmania  

-40.950344°, 
+145.730209° 

Fossil Bluff 
Sandstone 

Longfordian 
(E. Miocene) 

2.9-23Ma 

Darragh, 
1971 

TAS003 Swan Point, Tasmania  -41.25°, 
+146.97° 

Recent - Cernohorsky, 
1981 

TAS004 Tamar River, Tasmania  41.24772°, 
+146.95766° 

Recent - Cernohorsky, 
1981 

TAS005 Taroona, Tasmania  -42.94°, 
+147.34° 

Recent - Cernohorsky, 
1981 

TAS006 Margate, Tasmania  -43.02814°, 
+147.26256° 

Recent - Cernohorsky, 
1981 

TAS007 Tinderbox, Tasmania -43.05°, 
+147.33° 

Recent - Cernohorsky, 
1981 

TAS008 Fisher Island, Bass Strait, 
Tasmania 

-40.218°, +148-
238° 

Recent - Cernohorsky, 
1981 
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TAS009 Thunder and Lightning 
Bay, Barren Island, 
Tasmania 

-42.816°, 
+147.531° 

Recent - Cernohorsky, 
1981 

TAS010 Circular Head, Tasmania -40.768°, 
+145.307° 

Recent - Cernohorsky, 
1981 

TAS011 West side of Cape 
Portland, Tasmania 

-40.741°, 
+147.937° 

Recent - Cernohorsky, 
1981 

TAS012 Stanley, Tasmania -40.763°, 
+145.291° 

Recent - Cernohorsky, 
1981 

TAS013 Green’s Beach, Tasmania  -41.084°, 
+146.751° 

Recent - Cernohorsky, 
1981 

TAS014 Near mouth of River Inglis, 
Wynyard, Tasmania 

-41.064°, 
+145.609° 

Recent - Cernohorsky, 
1981 

TAS015 Samphire Island, Near 
Flinders Island, Tasmania 

-47.771°, 
+147.459° 

Recent - Cernohorsky, 
1981 

TAS016 Long Point, Flinders Island, 
Tasmania  

-40.100°, 
+147.952° 

Recent - Cernohorsky, 
1981 
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TAS017 Coles Bay, Tasmania -42.134°, 
+148.292° 

Recent - Cernohorsky, 
1981 

TAS018 Oyster Bay, Maria Island, 
Tasmania  

-42.685°, 
+148.021° 

Recent - Cernohorsky, 
1981 

TAS019 Marion Bay. Tasmania  -42.807°, 
1470894° 

Recent - Cernohorsky, 
1981 

TAS020 Bream Creek, Tasmania,  -42.748°, 
+147.843° 

Recent - Cernohorsky, 
1981 

TAS021 Hobart, Tasmania  -42.882°, 
+147.323° 

Recent - Cernohorsky, 
1981 

TAS022 Pittwater, Tasmania  -42.815°, 
+147.514° 

Recent - Cernohorsky, 
1981 

TAS023 Sandy Bay, Tasmania -42.908°, 
+147.344° 

Recent - Cernohorsky, 
1981 

TAS024 Eaglehawk Neck, Tasmania -43.017°, 
+147.925° 

Recent - Cernohorsky, 
1981 
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TAS025 Rockeby, Tasmania -42.900°, 
+147.442° 

Recent - Cernohorsky, 
1981 

TAS026 Pirate’s Bay, Tasmania -43.023°, 
+147.934° 

Recent - Cernohorsky, 
1981 

TAS027 Simmonds Bay in Barnes 
Bay, Tasmania  

-43.130°, 
+147.358° 

Recent - Cernohorsky, 
1981 

TAS028 Bruny Island, Tasmania  -43.297°, 
+147.285° 

Recent - Cernohorsky, 
1981 

TAS029 Bridport, south of Bruny 
Island, Tasmania  

-40.995°, 
+147.388° 

Recent - Cernohorsky, 
1981 

TAS030 Bay of Islands, south Bruny 
Island, Tasmania 

-43.414°, 
+147.360° 

Recent - Cernohorsky, 
1981 

TAS031 Cooks Beach, Tasmania  -42.225°, 
+147.270° 

Recent - Cernohorsky, 
1981 

TAS032 White Beach, Tasmania  -43.120°, 
+147.735° 

Recent - Cernohorsky, 
1981 
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TAS033 West Ulverstone, 
Tasmania  

-41.147°, 
146.160° 

Recent  Cernohorsky, 
1981 

TAS034 Dam on Block 22 (Lees), 
Furneaux Estate Section A, 
11km ENE of junction of 
No. 4 and No. 3 Roads, 
Flinders Island, Tasmania 

-40.102235°, 
+148.289337° 

Cameron Inlet 
Formation 

Kalimnan - 
Yatalan (L. 

Pliocene) 3.5-
2.5Ma 

Darragh, 
1988 

TAS035 North Patriarch Drain, 
Block 6, 1.1km east of Link 
Road, Memana, Flinders 
Island, Tasmania  

-39.999856°, 
+148.111204° 

Cameron Inlet 
Formation  

Kalimnan - 
Yatalan (L. 

Pliocene) 3.5-
2.5Ma 

Darragh, 
1988 

TAS036 Dam (64) on block 22 
Furneaux Estate Section A, 
4.3km east-north-east of 
junction of No. 4 and No. 3 
Roads, Flinders Island, 
Tasmania 

-39.999856°, 
+148.111204° 

Cameron Inlet 
Formation 

Kalimnan - 
Yatalan (L. 

Pliocene) 3.5-
2.5Ma 

Darragh, 
1988 

TAS037 TAS037 Dam (58) on lot 
47, Furneaux Estate 
Section B, 1.3km due east 
of junction of No. 3 and 
No. 7 Roads, Flinders 
Island, Tasmania  

-39.999856°, 
+148.111204° 

Cameron Inlet 
Formation 

Kalimnan - 
Yatalan (L. 

Pliocene) 3.5-
2.5Ma 

Darragh, 
1988 

TAS038 Dam (5) on lot 82, 
Furneaux Estate Section D, 
2.6km north-north-east of 
junction of No. 11 and No. 
2A Roads, Flinders Island, 
Tasmania  

-39.999856°, 
+148.111204° 

Memana 
Formation  

Yatalan - 
Werrikooian 

(E. 
Pleistocene) 
2.5-1.5Ma 

Darragh, 
1988 

TAS039 Dam (6) on lot 88, 
Furneaux Estate Section D, 
2.4km east-north-east of 
junction of No. 11 and No. 
2A Roads, Flinders Island, 
Tasmania  

-39.999856°, 
+148.111204° 

Memana 
Formation  

Yatalan - 
Werrikooian 

(E. 
Pleistocene) 
2.5-1.5Ma 

Darragh, 
1988 

SA001  Left bank, Murray River, 
gully, 3 miles south of 
Morgan – Cadell Road, 
South Australia  

-34.081686°, 
+139.68996° 

Cadell 
Formation 

Batesfordian 
(M. Miocene) 

15.5-15Ma 

Darragh, 
1971 
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SA002 Well sinking, Murray 
Desert, Mindarie, South 
Australia  

-34.81404°, 
+140.21797° 

Bookpurnong 
Formation 

Mitchellian 
(L> Miocene) 

7.2-6.5Ma 

Darragh, 
1971 

SA003 Adelaide, South Australia -34.92866°, 
+138.59863° 

Recent - Cernohorsky, 
1981 

SA004 Arno Bay, South Australia  -33.91407°, 
+136.58919° 

Recent - Cernohorsky, 
1981 

SA005 Larg's North Beach circa 
19km north of Adelaide, 
South Australia  

-34.81471°, + 
138.48988° 

Recent - Cernohorsky, 
1981 

SA006 Port Adelaide River, South 
Australia  

.  -34.76178°, 
+138.51012° 

Recent - Cernohorsky, 
1981 

SA007 Larg's Bay, St. Vincent 
Gulf, South Australia  

-34.81041°, 
+138.48351 

Recent - Cernohorsky, 
1981 

SA008 Outer Harbour, Adelaide, 
South Australia 

-34.77319°, 
+138.49873° 

Recent - Cernohorsky, 
1981 

SA009 Beachport, South Australia -37.480593°, 
+140.012501° 

Recent - Cernohorsky, 
1981 
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SA010 Glenelg, South Australia  -34.982°, 
+138.516° 

Recent - Cernohorsky, 
1981 

SA011 Holdfast Bay, South 
Australia  

-34.971°, 
+138.507° 

Recent - Cernohorsky, 
1981 

SA012 Aldinga, South Australia  -35.326°, 
+138.423° 

Recent - Cernohorsky, 
1981 

SA013 Port Milacowie, South 
Australia  

-34.831°, 
+137.421° 

Recent - Cernohorsky, 
1981 

SA014 Henley Beach, South 
Australia 

-34.916°, 
+138.500° 

Recent - Cernohorsky, 
1981 

SA015 Approximately 3km south 
of Normanville, south of 
Adelaide. 

-35.443°, 
+138.321° 

Recent - Cernohorsky, 
1981 

SA016 Rocky Point, Kangaroo 
Island, South Australia 

. -35.798°, 
+137.834° 

Recent - Cernohorsky, 
1981 

SA017 Point Collinson, Gascoyne 
Beach, South Australia 

-32.541°, 
+133.894° 

Recent - Cernohorsky, 
1981 
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SA018 Penneshaw, north east 
Kangaroo Island, South 
Australia 

-35.720°, 
+137.941 

Recent - Cernohorsky, 
1981 

SA019 Port Vincent, South 
Australia 

-34.778°, 
+137.858° 

Recent - Cernohorsky, 
1981 

SA020 Port Augusta, South 
Australia  

-32.503°, 
+137.764° 

Recent - Cernohorsky, 
1981 

SA021 Tickera, via Kadina, South 
Australia  

-33.787°, 
+137.710° 

Recent - Cernohorsky, 
1981 

SA022 North of Stansbury, 
Yorke’s Peninsula, South 
Australia 

-34.910°, 
+137.797° 

Recent - Cernohorsky, 
1981 

SA023 Pondalowie Bay, Yorke’s 
Peninsula, South Australia 

-35.227°, 
+136.841° 

Recent - Cernohorsky, 
1981 

SA024 Tumby Bay, South 
Australia  

-34.371°, 
+136.135° 

Recent - Cernohorsky, 
1981 

SA025 Port Lincoln, South 
Australia  

-34.739°, 
+135.930° 

Recent - Cernohorsky, 
1981 
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SA026 Near Striking Creek, Port 
Lincoln, South Australia 

-34.739°, 
+135.930° 

Recent - Cernohorsky, 
1981 

SA027 Point Brown, Smoky Bay, 
South Australia  

-32.542°, 
+133.851° 

Recent - Cernohorsky, 
1981 

SA028 St. Peters Island, south of 
Ceduna, South Australia 

-32.286°, 
+133.578° 

Recent - Cernohorsky, 
1981 

SA029 Semaphore, South 
Australia 

-34.837°, 
+133.485° 

Recent - Cernohorsky, 
1981 

SA030 Hindmarsh Bore, South 
Australia  

-34.904778°, 
+138.570701° 

Recent - Cernohorsky, 
1981 

SA031 Weymouth Bore, Adelaide, 
South Australia  

-34.8°, +138.7° Dry Creek 
Sands 

Kalimnan - 
Yatalan 

(Pliocene) 4.4-
2.59Ma 

Ludbrook, 
1958; 

Cernohorsky, 
1981 

SA032 Abbatoir’s Bore, Adelaide, 
South Australia  

-34.83333°, 
+138.60972° 

Dry Creek 
Sands 

Kalimnan - 
Yatalan 

(Pliocene) 4.4-
2.59Ma 

Ludbrook, 
1958; 

Cernohorsky, 
1982 

SA033 Hallett’s Cove, South 
Australia 

-35.084377°, 
+138.492622° 

Hallett Cove 
Sandstone 

Cheltanhamia
n - Yatalan 
(Pliocene - 

Pleistocene) 
5.0-2.4Ma 

Cernohorsky, 
1981 
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SA034 Lower 6.5m of cliff on 
south side of Blanche 
Point, Port Willunga, South 
Australia  

-35.246951°, 
+138.461766° 

Blanche Point 
Marl 

Johannian - 
Aldingan (L. 

Eocene) 37.8-
34Ma 

Darragh, 
1988 

SA035 Adelaide Bore, Kent Town 
Waterworks, Adelaide, 
South Australia  

-34.928621°, 
+138.599959° 

Blanche Point 
Marl 

Johannian - 
Aldingan (L. 

Eocene) 37.8-
34Ma 

Darragh, 
1988 

SA036 25m, bore 240 (G. 
Heading), Section 261, Hd 
of Yatala, Klemzig, South 
Australia  

-34.882376°, 
+138.636591° 

Blanche Point 
Marl 

Johannian - 
Aldingan (L. 

Eocene) 37.8-
34Ma 

Darragh, 
1988 

SA037 Ardrossan, South Australia  -34.42307° 
+137.917428° 

Blanche Point 
Marl 

Johannian - 
Aldingan (L. 

Eocene) 37.8-
34Ma 

Darragh, 
1988 

SA038 15m coal bore, Moorlands, 
South Australia 

-35.295784°, 
+139.641168° 

Buccleuch 
Group 

Johannian - 
Janjukian (L. 
Eocene - M. 
Oligocene) 
38-28Ma 

Darragh, 
1988 

SA039 73m, Mundys Well, 
Canegrass Station, via 
Kooringa, South Australia  

-33.595959°, 
+140.025696° 

Formation 
unknown 

- Darragh, 
1988 

SA040 Newland Head, off 
Backstairs Passage, South 
Australia  

-35.692995°, 
+138.508759° 

Recent  - Darragh, 
1988 

SA041 Yatala Shoal, South 
Australia 

. -35.75°, 
+138.166667° 

Recent  - Darragh, 
1988 
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SA042 Backstairs Passage, South 
Australia 

-35.688554°, 
+138.072018° 

Recent  - Darragh, 
1988 

SA043 Shell sand, Gleesons, 
Landing, Daly Head, Yorke 
Peninsula, South Australia 

- 34.992879°, 
+136.976166° 

Recent  - Darragh, 
1988 

SA044 Observation Bore A, 
Virginia, Head of Munno 
Para sec 3036, 63.7-66.1m, 
South Australia 

-34.666316°, 
+138.560411° 

Bookpurnong 
Beds 

Mitchellian (L. 
Miocene) 7.2-

6.5Ma 

Darragh, 
1988 

SA045 Kooyonga bore no. 1, 
1932, Hd of Adelaide, Sec. 
2028, 119-146m, South 
Australia 

-34.92866°, 
+138.59863° 

Bookpurnong 
Beds 

Mitchellian (L. 
Miocene) 7.2-

6.5Ma 

Darragh, 
1988 

SA046 F. Virgin bore. Mar 1958, 
Hd of Munno Para Sec. 
3224 103-107m, South 
Australia 

. -34.732127°, 
+138.583435° 

Bookpurnong 
Beds 

Mitchellian (L. 
Miocene) 7.2-

6.5Ma 

Darragh, 
1988 

SA047 DeRuro bore, Waterloo 
Corner, Hd of Munno Para, 
Sec. 4259, 73.2-74.7m, 
South Australia  

-34.732127°, 
+138.583435° 

Bookpurnong 
Beds 

Mitchellian (L. 
Miocene) 7.2-

6.5Ma 

Darragh, 
1988 

SA048 Jones bore, 1934, Bolivar, 
Hd of Port Adelaide, Sec. 
3502, 106m, South 
Australia 

-34.751487°, 
+138.587813° 

Bookpurnong 
Beds 

Mitchellian (L. 
Miocene) 7.2-

6.5Ma 

Darragh, 
1988 

SA049 Cliff base, 0.5 miles north 
of Port Willunga, South 
Australia 

-35.251367°, 
+138.463097° 

Blanche Point 
Formation 

Johannian - 
Aldingan (L. 

Eocene) 37.8-
34Ma 

Long, 1981 
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QLD001 Palleranda Beach and 
Strand, Townsville, 
Queensland 

-19.19747°, 
+146.77460° 

Recent - Cernohorsky, 
1981 

QLD002 Mouth of Funnel Creek, 
Sarina, Queensland 

-22.3°, 
+148.95° 

Recent - Cernohorsky, 
1981 

QLD003 Heron Island, Queensland -23.44291° 
+151.91539° 

Recent - Cernohorsky, 
1981 

QLD004 Calliope River estuary, 
Port Curtis, Queensland 

-23.82877°, 
+151.21951° 

Recent - Cernohorsky, 
1981 

QLD005 Yeppoon, Queensland  -23.12528°, 
+150.76778° 

Recent - Cernohorsky, 
1981 

QLD006 Point Vernon, Hervey Bay, 
Queensland 

-25.28961°, 
+152.83091° 

Recent - Cernohorsky, 
1981 

QLD007 Eli Creek, Hervey Bay, 
Queensland 

-25.28961°, 
+152.83091° 

Recent - Cernohorsky, 
1981 

QLD008 Pialba, Hervey Bay, 
Queensland 

-25.28961°, 
+152.83091° 

Recent - Cernohorsky, 
1981 
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QLD009 Urangan, Queensland -25.23333°, 
+152.86667° 

Recent - Cernohorsky, 
1981 

QLD010 Tin Can Bay, NE of Gympie, 
Queensland 

-25.91646°, 
+153.00584° 

Recent - Cernohorsky, 
1981 

QLD011 Noosa Inlet, Queensland -26.38507°, 
+153.07578° 

Recent - Cernohorsky, 
1981 

QLD012 Maroochydore, 
Queensland 

-28.65667°, 
+153.08444° 

Recent - Cernohorsky, 
1981 

QLD013 Caloundra, Queensland -26.79709°, 
+153.13771° 

Recent - Cernohorsky, 
1981 

QLD014 Sangate, Moreton Bay, 
Queensland 

-27.29°, 
+153.25945° 

Recent - Cernohorsky, 
1981 

QLD015 Cleveland, Moreton Bay, 
Queensland 

-27.29°, 
+153.25945° 

Recent - Cernohorsky, 
1981 

QLD016 Scarborough, Moreton 
Bay, Queensland 

-27.29°, 
+153.25945° 

Recent - Cernohorsky, 
1981 
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QLD017 Stradbroke Island, 
Moreton Bay, Queensland 

-27.29°, 
+153.25945° 

Recent - Cernohorsky, 
1981 

QLD018 3.2km SE of Redland Bat 
Jetty, Moreton Bay, 
Queensland 4m.  

-27.29°, 
+153.25945° 

Recent - Cernohorsky, 
1981 

QLD019 Southport, Queensland -27.97361°, 
+153.40471° 

Recent - Cernohorsky, 
1981 

QLD020 Coolangatta, Queensland -28.16673°, 
+153.53746° 

Recent - Cernohorsky, 
1981 

QLD021 Cape Moretone, 
Queensland 

-27.028321°, 
+153.467954° 

Recent - Darragh, 
1988 

NSW001 Off Tweed’s Head, New 
South Wales 

-28.17352°, 
+153.54305° 

Recent - Cernohorsky, 
1981 

NSW002 Ballina Beach, New South 
Wales 

-28.88095°, 
+153.55874° 

Recent - Cernohorsky, 
1981 

NSW003 Newcastle, New South 
Wales 

-32.92779°, 
+151.78448° 

Recent - Cernohorsky, 
1981 
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NSW004 Angourie, New South 
Wales 

-29.4181°, 
+153.3596° 

Recent - Cernohorsky, 
1981 

NSW005 Smith’s Lake, S of Forster, 
New South Wales 

-32.3818°, 
+152.50121° 

Recent - Cernohorsky, 
1981 

NSW006 Mereweather Beach, 
Newcastle, New South 
Wales 

-32.94875°, 
+151.75713° 

Recent - Cernohorsky, 
1981 

NSW007 Norah Head, New South 
Wales 

-33.2818°, 
+151.58459° 

Recent - Cernohorsky, 
1981 

NSW008 Wangi Point, Lake 
Macquarie, New South 
Wales 

-33.0818°, 
+151.1679° 

Recent - Cernohorsky, 
1981 

NSW009 Towoon, near The 
Entrance, New South 
Wales 

-33.36186°, 
+151.49824° 

Recent - Cernohorsky, 
1981 

NSW010 Prickly Point, Hawkesbury 
River, New South Wales – 
11m 

-33.5152°, 
+151.17619° 

Recent - Cernohorsky, 
1981 

NSW011 Pittwater, Broken Bay, 
New South Wales 

-33.5485°, 
+151.3512° 

Recent - Cernohorsky, 
1981 
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NSW012 Pittwater Basin, New 
South Wales 

-33.5485°, 
+151.3512° 

Recent - Cernohorsky, 
1981 

NSW013 Palm Beach, New South 
Wales 

-33.5985°, 
+151.3262° 

Recent - Cernohorsky, 
1981 

NSW014 Narrabeen Lake, New 
South Wales 

-33.71247°, 
+151.28457° 

Recent - Cernohorsky, 
1981 

NSW015 Long Reef, Collaroy, New 
South Wales 

-33.7318°, 
+151.3179° 

Recent - Cernohorsky, 
1981 

NSW016 Lane Cove River, New 
South Wales 

-33.7485°, 
+151.0929° 

Recent - Cernohorsky, 
1981 

NSW017 Parramatta River, Port 
Jackson, New South Wales 

33.8318°, 
+151.1012° 

Recent - Cernohorsky, 
1981 

NSW018 Port Jackson, New South 
Wales – 4m 

-33.8318°, 
+151.2679° 

Recent - Cernohorsky, 
1981 

NSW019 Off Mort’s Dock, Balmain, 
New South Wales – 7m 

-33.84247°, 
+151.17154° 

Recent - Cernohorsky, 
1981 
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NSW020 Queenscliff Lagoon, 
Sydney, New South Wales 

-3378335°, 
+151.28001° 

Recent - Cernohorsky, 
1981 

NSW021 Willoughby Bay, Middle 
Harbour, Sydney, New 
South Wales 

-33.8152°, 
+151.2179° 

Recent - Cernohorsky, 
1981 

NSW022 Botany Bay, New South 
Wales – 6m 

-33.9818°, 
+151.1846° 

Recent - Cernohorsky, 
1981 

NSW023 Gunnamatta Bay, Port 
Hacking, New South Wales 

-34.0652°, 
+151.1512° 

Recent - Cernohorsky, 
1981 

NSW024 Port Kembla, New South 
Wales 

-34.4818°, 
+150.9012° 

Recent - Cernohorsky, 
1981 

NSW025 Kelly’s Bay, Lake Illawarra, 
New South Wales 

-34.54027°, 
+150.86458° 

Recent - Cernohorsky, 
1981 

NSW026 Hare Bay, Jervis Bay, New 
South Wales 

-35.0152°, 
+150.7679° 

Recent - Cernohorsky, 
1981 

NSW027 Burrill Lake, near Ulladulla, 
New South Wales 

-35.3652°, 
+150.4346° 

Recent - Cernohorsky, 
1981 
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NSW028 Sussex Inlet, New South 
Wales 

-35.1652°, 
+150.6012° 

Recent - Cernohorsky, 
1981 

NSW029 Pambula Lake, New South 
Wales 

-36.9652°, 
+149.9012° 

Recent - Cernohorsky, 
1981 

NSW030 Budgewoi Beach, New 
South Wales 

-33.236378°, 
+151.571761° 

Recent - Cernohorsky, 
1981 

NSW031 Cooks River, New South 
Wales 

-33.9152°, 
+151.1346° 

Recent - Cernohorsky, 
1981 

NSW032 Wollanga, New South 
Wales – 100m 

-36.36941°, 
+150.07218° 

Recent - Cernohorsky, 
1981 

NSW033 Merimbula Estuary, New 
South Wales 

-36.892664°, 
+149.92012° 

Recent - Cernohorsky, 
1981 

NSW034 Wagonga River, New 
South Wales 

-36.2152°, 
+150.1012° 

Recent - Cernohorsky, 
1981 

NSW035 Richmond River Beach, 
New South Wales 

-29.87911° 
+153.56585° 

Recent - Cernohorsky, 
1981 
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NSW036 Wooli, New South Wales -29.86161°, 
+153.26772° 

Recent - Cernohorsky, 
1981 

NSW037 Well sinking, Murray 
Desert, Tareena, New 
South Wales 

-33.970413°, 
+141.038017° 

Bookpurnong 
Beds 

Mitchellian (L. 
Miocene) 7.2-

6.5Ma 

Darragh, 
1988 

WA001 Penguin Island, Western 
Australia 

-32.30545°, 
+115.9607° 

Recent - Cernohorsky, 
1981 

WA002 Oyster Harbour, Albany 
area, Western Australia  

-34.97° 
+117.9599° 

Recent - Roberts & 
Wells, 1980; 
Cernohorsky, 

1981 

WA003 Princess Royal Harbour, 
Albany area, Western 
Australia 

-35.04917° 
+117.8897° 

Recent - Roberts & 
Wells, 1980; 
Cernohorsky, 

1981 

WA004 Minim Cove, Western 
Australia 

-32.0225°, 
+115.765° 

Formation 
unknown 

Pleistocene Reath, 1925; 
Cernohorsky, 

1981 

WA005 Mosman Park, Western 
Australia 

-32.01573°, 
+115.7353° 

Formation 
unknown 

Pleistocene Reath, 1925; 
Cernohorsky, 

1981 

WA006 Swan River, Western 
Australia 

-32.05528°, 
+115.7353° 

Formation 
unknown 

Pleistocene Reath, 1925; 
Cernohorsky, 

1981 
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WA007 Peppermint Grove, 
Western Australia 

-33.52878°, 
+115.50537°  

Formation 
unknown 

Pleistocene Reath, 1925; 
Cernohorsky, 

1981 

WA008 Perth Water, Western 
Australia 

-31.96795°, 
+115.8612° 

Formation 
unknown 

Pleistocene Reath, 1925; 
Cernohorsky, 

1981 

WA009 Melville Water, Western 
Australia 

-32.01156°, 
+115.8154° 

Formation 
unknown 

Pleistocene Reath, 1925; 
Cernohorsky, 

1981 

WA010 Israelite Bay, Western 
Australia 

-33.561°, 
+123.885° 

Recent - Cernohorsky, 
1981 

WA011 Middleton Beach, King 
George’s Sound, Western 
Australia 

-35.013°, 
+117.922° 

Recent - Cernohorsky, 
1981 

WA012 Emu Point, Western 
Australia  

-34.99434°, 
+117.9493°.  

Recent - Cernohorsky, 
1981 

WA013 Albany, Western Australia -35.02°, 
+117.8838°  

Recent - Cernohorsky, 
1981 

WA014 South Point, east of 
Albany, Western Australia 

-34.967°, 
+118.189° 

Recent - Cernohorsky, 
1981 
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WA015 Flinders Bay, near Cape 
Leeuwin, Western 
Australia 

-34.326°, 
+115.186° 

Recent - Cernohorsky, 
1981 

WA016 Mississippi Bay, 48km east 
of Esperance, Western 
Australia 

-33.966°, 
+122.272° 

Recent - Cernohorsky, 
1981 

WA017 Geographe Bay, Western 
Australia 

-33.625° 
+115.319° 

Recent - Cernohorsky, 
1981 

WA018 Garden Island, Western 
Australia 

-32.204°, 
+115.675° 

Recent - Cernohorsky, 
1981 

WA019 Fremantle, Western 
Australia 

-32.056°, 
+115.746° 

Recent - Cernohorsky, 
1981 

WA020 Rottnest Island, Western 
Australia 

-32.00528°, 
+115.5125° 

Recent - Cernohorsky, 
1981 

WA021 Perth, Western Australia -31.952°, 
+115.859° 

Recent - Cernohorsky, 
1981 

WA022 Irwin River, between 
Thursday Island and 
Cowaramup Bay, Wester 
Australia 

-29.259°, 
+114.920° 

Recent - Cernohorsky, 
1981 
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WA023 Dunsborough, Western 
Australia 

33.604°, 
+115.104° 

Recent - Cernohorsky, 
1981 

WA024 Eyre Highway, 104km east 
of Madura, Western 
Australia 

-31.924193°, 
+128.078613° 

Formation 
unknown 

 Cernohorsky, 
1981 

WA025 Salt lake, onshore, 
Rottnest Island, Western 
Australia 

-32.00528°, 
+115.5125° 

Formation 
unknown 

Pleistocene Cernohorsky, 
1981 

WA026 Western Eucla Basin, 
Western Australia 

-32.069774°, 
+127.371368° 

Roe 
Calcarenite 

Kalimnan - 
Yatalan (L. 

Pliocene) 4.4-
2.59Ma 

Ludbrook, 
1978; 

Cernohorsky, 
1981 

WA027 Rando’s No. 1 Bore, 11 
Spring Road, Thornlie, 
Western Australia 

-28.86145°, 
+122.9161° 

Ascot Beds Kalimnan - 
Yatalan (L. 
Pliocene E. 

Pleistocene) 
.59-1.8Ma 

Cernohorsky, 
1981 

WA028 Nullarbor Plain, Western 
Australian 

-31.149761°, 
+128.077519° 

Roe 
Calcarenite 

Kalimnan - 
Yatalan (L. 

Pliocene) 4.4-
2.59Ma 

Cernohorsky, 
1981 

WA029 51km east of Madura, 
Western Australia 

-31.938178°, 
+127.556763° 

Roe 
Calcarenite 

Kalimnan - 
Yatalan (L. 

Pliocene) 4.4-
2.59Ma 

Cernohorsky, 
1981 

WA030 90 miles west of Eucla, 
Western Australia 

-32.454156°, 
+126.848145° 

Recent - Darragh, 
1988 
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WA031 78 mile pit, north side of 
Eyre Highway, 58.5km east 
of Madura, Western 
Australia 

 -31.798224°, 
+127.63916° 

Roe 
Calcarenite 

Kalimnan - 
Yatalan (L. 

Pliocene) 4.4-
2.59Ma 

Darragh, 
1988 

WA032 Pit 88km west of Eucla 
Motel, Eucla, Western 
Australia 

-31.709476°, 
+128.012695° 

Roe 
Calcarenite 

Kalimnan - 
Yatalan (L. 

Pliocene) 4.4-
2.59Ma 

Darragh, 
1988 

WA033 Cape Hamelin, Western 
Australia 

-34.266667°, 
+115.033333° 

Recent - Darragh, 
1988 

AUS001 OLD, NSW, VIC, TAS, SA, 
WA 

 Recent -  
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APPENDIX 2 – TIMESCALE (Based on Gradstein et al., 2012) 
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APPENDIX 3 – SPECIES DATA 

SPECIES D VOL D/VOL 
LARVAL 
MODE 

SPECIES 
DURATION 

(MYRS) 
NO. OF 

LOCALITIES 
GEOGRAPHIC 
RANGE (KM) 

        Athleta (Ternivoluta) 
antiscalaris 
antispinosa 
 

1.97 1.50 1.31 DD 19 7 740 

Athleta (Ternivoluta) 
subcrenulifera 
 

1.55 1.50 1.03 DD 6 2 1 

Athleta (Ternivoluta) 
antiscalaris antiscalaris 
 

1.70 1.50 1.13 DD 17 19 666 

Athleta (Ternivoluta) 
wangerrip 
 

1.05 3.00 0.35 P 7 1 1 

Athleta (Ternivoluta) 
curvicostata 
 

1.58 1.50 1.05 DD 3.5 2 32 

Athleta (Ternivoluta) 
anticingulata craticula 
 

1.68 1.50 1.12 DD 9 3 284 

Athleta (Ternivoluta) 
antiscalaris levior 
 

2.06 1.50 1.37 DD 17 18 277 

Athleta (Ternivoluta) 
anticingulata 
anticingulata 
 

1.68 1.50 1.12 DD 4 6 331 

Athleta (Ternivoluta) 
bungae 
 

1.90 1.50 1.27 DD 1.5 6 5 

Lyria semiacuticostata 
 

1.07 2.50 0.43 P 17 2 359 

Lyria acuticostulata 
 

1.47 1.50 0.98 L 17 12 277 

Lyria harpularia 
 

2.68 1.50 1.79 DD 17 8 277 

Lyria gemmata 
 

2.11 1.50 1.41 DD 12 2 52 

Leptoscapha 
crassilabrum 
 

1.05 1.50 0.70 L 25 4 805 

Scaphella (Aurinia) 
johannae 

4.62 1.50 3.08 DD 3 1 1 

Amoria undulata 
undulata 
 

5.34 3.25 1.64 DD 10 19 4000 

Amoria costellifera 
 

6.39 3.25 1.97 DD 17 8 666 

Amoria undulata 
masoni 
 

4.64 3.25 1.43 DD 12 3 52 

Nannamoria ralphi 
 

3.64 3.25 1.12 DD 17 3 256 
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Nannamoria 
fasciculata 
 

2.90 3.00 0.97 DD 6 3 1 

Nannamoria stolida 
 

2.78 3.00 0.93 DD 0.9 1 1 

Nannamoria weldii 
 

2.98 3.00 0.99 DD 11 4 334 

Nannamoria deplexa 
 
 

2.64 3.00 0.88 DD 17 9 276 

Nannamoria limbata 
 

2.93 3.00 0.98 DD 17 9 282 

Nannamoria 
 cinctuta 
 

3.11 3.00 1.04 DD 1 1 1 

Nannamoria 
paraboloides 
 

2.84 3.00 0.95 DD 13.5 8 539 

Nannamoria amplexa 
 

3.05 3.25 0.94 DD 1.5 4 65 

Nannamoria trionyma 
 

2.96 3.00 0.99 DD 17 5 666 

Nannamoria 
strophodon 
strophodon 
 

2.98 3.00 0.99 DD 22.41 30 682 

Notovoluta saginata 6.41 3.25 1.97 DD 2.9 2 1 

Notovoluta 
pseudolirata 
 

4.92 2.25 2.19 DD 25 14 2760 

Notovoluta tabulate 
 

2.83 1.50 1.89 DD 0.7 2 120 

Notovoluta differta 
 

4.46 2.00 2.23 DD 17 4 131 

Notovoluta cathedralis 
 

3.45 2.50 1.38 DD 17 3 653 

Notovoluta linigera 
 

3.53 2.00 1.77 DD 9 3 87 

Notovoluta variculifera 
 

2.84 2.75 1.03 DD 7 2 13 

Notovoluta ellipsoidea 
 

5.30 3.00 1.77 DD 20.41 3 587 

Notovoluta capitonica 
 

3.43 3.00 1.14 DD 4.5 2 586 

Notovoluta lintea 
 

2.93 2.50 1.17 DD 0.5 1 1 

Alcithoe (Alcithoe) 
macrocephala 
 

6.02 2.50 2.41 DD 10 2 467 

Alcithoe (Alcithoe) 
orphanata 
 

5.42 1.50 3.61 DD 1 2 19 

Alcithoe (Waihaoia) 
sarissa 
 

3.75 2.00 1.88 DD 17 17 666 

Alcithoe (Waihaoia) 
cribrosa 
 

3.70 2.00 1.85 DD 7 3 600 
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Alcithoe (Waihaoia) 
pagodoides 
pagodoides 
 

2.44 1.50 1.63 DD 15.5 8 718 

Alcithoe (Waihaoia) 
pagodoides sorcula 
 

2.58 1.50 1.72 DD 2 2 47 

Alcithoe (Waihaoia) 
neglectoides 
 

2.54 1.50 1.69 DD 2 1 1 

Alcithoe (Waihaoia) 
pueblensis 
 

2.49 2.50 1.00 DD 2 1 1 

Alcithoe (Waihaoia) 
tateana 

3.28 2.00 1.64 DD 2.9 2 1 

Ericusa fulgetroides 
 

4.94 2.50 1.98 DD 2 2 2 

Ericusa sowerbyi 
sowerbyi 
 

3.36 1.50 2.24 DD 6 11 1525 

Ericusa sowerbyi 
pellita 
 

5.64 2.00 2.82 DD 17 9 113 

Ericusa macroptera 
 

6.08 2.00 3.04 DD 2 1 1 

Ericusa atkinsoni 
 

5.72 2.00 2.86 DD 11 7 961 

Ericusa ancilloides 
 

6.96 2.00 3.48 DD 17 15 931 

Ericusa hamiltonensis 
 

5.04 1.75 2.88 DD 17 4 277 

Livonia mortoni 
connudata 
 

7.44 1.70 4.38 DD 17 2 281 

Livonia mortoni 
mortoni 
 

6.54 1.50 4.36 DD 2.9 2 1 

Livonia voluminosa 
 

5.20 2.00 2.60 DD 2.9 2 1 

Livonia gatliffi 
 

9.26 1.50 6.17 DD 4 1 1 

Livonia stephensi 
 

9.08 2.00 4.54 DD 2 2 314 

Livonia spenceri 
 

5.27 2.00 2.64 DD 17 6 308 

Livonia heptagonalis 
 

13.87 1.50 9.25 DD 0.5 1 1 

Livonia hannafordi 
 

9.08 2.00 4.54 DD 17 14 277 

Notopeplum mccoyi 
mccoyi 
 

2.05 1.50 1.37 DD 2.9 2 1 

Notopeplum mccoyi 
translucidum 
 

2.70 1.50 1.80 DD 25 20 1766 

Notopeplum 
primarugatum 
 

3.64 2.50 1.46 DD 3.5 1 1 

Notopeplum 
protorhysum 
 

3.95 2.50 1.58 DD 4.5 4 586 

Notopeplum politum 4.96 2.80 1.77 DD 4 1 1 
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Cymbiola macdonaldi 
 

1.45 3.00 0.48 P 17 5 277 

Nassarius (Niotha) 
sublirellus 
 

0.96 3.00 0.32 P 2 2 2 

Nassarius (Niotha) 
crassigranosus 
 

0.68 2.50 0.27 P 2 4 255 

Nassarius (Zeuxis) 
spiraliscabrus 
 

1.01 3.50 0.29 P 2.6 5 2272 

Nassarius (Zeuxis) 
Pyrrhus 
 

0.88 3.00 0.29 P 5.5 82 2991 

Nassarius (Zeuxis) 
subcopiosus 
 

0.98 3.00 0.33 P 1.81 2 1085 

Nassarius 
(Plicarcularia) 
burchardi 
 

0.77 3.00 0.26 P 5.5 82 3426 

Nassarius (Hima) tatei 
tatei 
 

1.06 3.50 0.30 P 22.6 14 1735 

Daphnella cuspidatus 
 

0.89 4.00 0.22 P 17 2 42 

Teleochilus gracillima 
 

1.88 1.20 1.57 DD 2.9 2 1 

Tomopleura dilectoides 
 

0.57 3.00 0.19 P 1.5 3 623 

Cryptocordieria 
variabilis 
 

1.42 1.80 0.79 L 3 3 1 

Borsonia balteata 0.66 1.50 0.44 L 17 2 19 

Borsonia 
Torquayensis 
 

0.81 1.50 0.54 L 2 1 1 

Borsonia tatei 
 

0.95 1.60 0.59 L 22 3 94 

Borsonia protensa 
 

0.68 1.50 0.45 L 3.5 1 1 

Borsonia otwayensis 0.70 1.50 0.47 L 3.5 1 1 

Borsonia polycesta 
 

0.67 1.50 0.45 L 3.5 1 1 

Zemacies procerior 
 

1.20 4.00 0.30 P 5 1 1 

Microdrillia steiroides 
 

0.64 4.10 0.16 P 17 4 277 

Bathytoma 
rhomboidalis 
 

1.46 1.75 0.83 L 17 4 666 

Bathytoma fontinalis 
 

1.02 1.50 0.68 L 14 3 219 

Bathytoma 
decomposita 
 

1.48 1.50 0.99 L 17 6 173 

Bathytoma pritchardi 
 

1.17 1.50 0.78 L 1.5 1 1 

Antiguraleus incises 
 

0.87 1.75 0.50 L 1.81 1 1 



401 
 

Guraleus eocenicus 
 

0.93 3.50 0.27 P 7 4 600 

Guraleus adelaidensis 
 

0.74 3.00 0.25 P 1.81 1 1 

Guraleus volutiformis 
 

0.72 3.00 0.24 P 4 2 255 

Guraleus subnitidus 
 

0.49 2.20 0.22 P 1.81 2 9 

Macteola eocenica 
 

0.62 1.50 0.41 L 3 2 1 

Gemmula 
gellibrandensis 
 

0.97 2.00 0.49 L 6.5 1 1 

Gemmula 
(Clavogemmula) prima 
 

1.25 5.00 0.25 P 3 1 1 

Lophiotoma 
murrayana 
 

1.26 2.30 0.55 L 0.5 1 1 

Lophiotoma 
murndaliana 
 

1.42 2.00 0.71 L 17 2 255 

Turris septemliratus 
 

1.09 1.50 0.73 L 17 3 256 

Optoturris optatus 1.12 2.00 0.56 L 17 2 277 
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