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Introduction

* In the view of reverse mathematic, our main question is that which in-
duction axiom are needed to prove theorems of ordinary mathematics.
In particular, we consider which theorems of ordinary mathematics are
equivalent to Σ1-induction, over the base theory RCA0

∗.

* In reverse recursion theory, the nonstandard models of PA, especially
cuts in them, play a key role in studying the induction axioms in
fragments of PA.

* We will review some basic results of nonstandard models of PA. Most
important of them, we will prove that the existence of cuts in non-
standard models is an essential characteristic of models which satisfy
negative induction.

* At last, we will generalize some results about nonstandard models of
first-order arithmetic and cuts to second-order arithmetic. And we
can get some disguises of Σ1-induction by cuts arguments.
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Preliminaries

* Let LA denote the first-order language of arithmetic which consists of
the constant symbols 0 and 1, the binary relation symbol <, and the
two binary function symbols + and ·.

* Let LA
′ denote the first-order language arithmetic LA with adding the

two binary function symbol exp.

* The structure N, called the standard model, is the LA-structure whose
domain is the set of non-negative integers, {0, 1, 2, ...}, where the
symbols in LA are given their obvious interpretation.

* Let L2 denote the language of second-order arithmetic, which is a two-
sorted language with number variables x ,y ,z ,... intended to range over
natural numbers and set variables X ,Y ,Z ,... intended to range over
sets of natural numbers. In addition, the language includes +, · as
operation symbols, 0, 1 as constants and < as a relation symbol, with
adding a binary relation ∈ to relate the two sorts.
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Preliminaries

We will define Peano arithmetic(PA) by a first-order system PA−,
axiomatized by

∀m, n, k((m + n) + k = m + (n + k)), ∀m¬m < m,

∀m, n(m + n = n + m), ∀m, n(m < n ∨ n < m ∨m = n),

∀m, n, k((m · n) · k = m · (n · k)), ∀m, n, k(m < n→ m + k < n + k),

∀m, n(m · n = n ·m), ∀m, n, k(0 < k ∧m < n→ m · k < n · k),

∀m, n, k(m · (n + k) = m · n + m · k), ∀m, n(m < n→ ∃km + k = n),

∀m((m + 0 = m) ∧ (m · 0 = 0)), 0 < 1 ∧ ∀m(m > 0→ m ≥ 1),

∀m(m · 1 = m), ∀m(m ≥ 0),

∀m, n, k((m < n ∧ n < k)→ m < k).

Then PA can be defined by PA− plus first-order induction axiom

(ϕ(0) ∧ ∀n(ϕ(n)→ ϕ(n + 1)))→ ∀nϕ(n)

where ϕ is any first-order arithmetical formula.
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Preliminaries

* The axioms of Z2 consists of basic axioms, the induction axiom

(0 ∈ X ∧ ∀n(n ∈ X → n + 1 ∈ X ))→ ∀n(n ∈ X ),

and the comprehension scheme

∃X∀n(n ∈ X ↔ ϕ(n)),

where ϕ(n) is any formula of L2 in which X does not occur freely.

* The subsystem of Z2, RCA0, is based on the schema of recursive
comprehension axioms(RCA):

∀n(ϕ(n)↔ ψ(n))→ ∃X∀n(n ∈ X ↔ ϕ(n)),

where ϕ and ψ are Σ1 and Π1 respectively.

* We define RCA0
∗ to be the theory of RCA0 minus I Σ1 (Σ1-induction)

plus I Σ0 and the exponentiation axioms: m0 = 1, mn+1 = mn · m.
(Here, the language of Z2 should be extended to the language of Z2

with adding the symbol exp)

* RCA0 ≡ RCA0
∗ + I Σ1.
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Preliminaries

The following lemmas showed that RCA0
∗, as a base theory, is strong

enough to get some basic theorems which are needed.

Lemma 1.1

The following is provable in RCA0
∗. Functions can be defined by Kleene’s

µ-operator.

Lemma 1.2

The following is provable in RCA0
∗. Functions can be defined by bounded

primitive recursion.
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The existence of Nonstandard models

It was Skolem who first showed that nonstandard models of all true
LA-sentences exist (1934).

Theorem 2.1

There is an LA-structure M such that M |= T h(N), but M � N.

Proof.

We now expand our language LA to Lc by adding to it a new constant symbol
c. Consider the following Lc -theory generated by:

T h(N) ∪ {c 6= n : n ∈ N}.

This theory is consistent. Since for each finite fragment of it is contained in

Tm = T h(N) ∪ {c 6= n : n < m}

where m ∈ N, and clearly the Lc -structure satisfies Tm. By the compactness
theorem

⋃
m∈N Tm is consistent and has a model Mc . Thus for all n ∈ N, we

have Mc |= c 6= n. Hence it contains an ‘infinite’ integer. r
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End-extension

Lemma 2.2

Let M |= T h(N). Then the map f : N → M which sends each n ∈ N to
nM is in fact an embedding.

Proof.

Firstly, we check that f is 1− 1, notice that if n, m ∈ N with n 6= m then
N |= n 6= m, so the sentence n 6= m is in T h(N) and hence true in M.
Similarly f preserves <, + and ·, since for any n, m, k ∈ N

n < m iff N |= n < m iff M |= n < m,

n + m = k iff N |= n + m = k iff M |= n + m = k,

n ·m = k iff N |= n ·m = k iff M |= n ·m = k.

r
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End-extension

Furthermore, the embedding f : N→ M has another important property
relating to the order <. Notice that < is a linear order on M with a least
element 0 and no greatest element. Now for each n ∈ N we have

M |= ∀x(x < n→ (x = 0 ∨ x = 1 ∨ ... ∨ x = n − 1)),

since this sentence is satisfiable in N. It follows from this that N is an
initial segment of M, and M is an end-extension of N, i.e., the inclusion
N ⊆ M has the property that

for any n ∈ N, a ∈ M we have that M |= a < n→ a ∈ N

so that no new elements are added below any given n ∈ N. Thus, in
particular a ∈ M is nonstandard just in case that M |= a > n for each
n ∈ N.
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End-extension

Theorem 2.3

Let M |= PA−. Then the map N→ M given by n 7→ nM is an embedding
sending N onto an initial segment of M.

The proof of Theorem 2.3 depends on the following four simple lemmas.

Lemma 2.4

If n, l , k ∈ N and n = l + k, then PA− ` n = l + k.

Lemma 2.5

If n, l , k ∈ N and n = l · k, then PA− ` n = l · k.

Lemma 2.6

If n, k ∈ N with n < k, then PA− ` n < k.
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End-extension

Lemma 2.7

For all n ∈ N, PA− ` ∀x(x ≤ n→ x = 0 ∨ x = 1 ∨ ... ∨ x = n).

proof of Theorem 2.3.

Lemma 2.4, 2.5, 2.6 show that the map n 7→ nM respects +, · and <. Since
PA− ` ∀x , y(x < y → x 6= y), Lemma 2.6 also shows that the map is an
embedding. Finally Lemma 2.7 shows that the image N = {nM : n ∈ N}
is an initial segment of M. r

Because of Theorem 2.3 we will always identify N with the smallest initial
segment {nM : n ∈ N} of a model of PA−. In particular this implies that
there will be no confusion if we denote the closed LA term n simply as n.
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Σ1-completeness

The following theorem shows that the class of ∆0 formulas are absolute
with respect to end-extensions.

Theorem 2.8

Let M, N both be LA-structures, with N an end-extension of M. Then
M ≺∆0 N.

Proof.

Induction on the complexity of ∆0 formulas. The induction hypothesis is
that for all ϕ(x) ∈ ∆0 with complexity ≤ n and for all a ∈ M we have
M |= ϕ(a)⇔ N |= ϕ(a). r
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Σ1-completeness

Corollary 2.9

Suppose M, N are LA-structures, with N being an end-extension of M, and
ϕ(x), ψ(x) are LA-formulas with ϕ(x) ∈ Σ1 and ψ(x) ∈ Π1. Then for any
a ∈ M

M |= ϕ(a)⇒ N |= ϕ(a)

N |= ψ(a)⇒ M |= ψ(a)

Corollary 2.10

PA− ` Σ1 ∩ T h(N).
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Order-Type of Nonstandard Models of PA−

If M is an LA-structure then M �< denote the restrict M in the language
{<}, i.e. the structure with the same domain as M but with only one
relation <.
It is evident that if M |= PA−, then M �< satisfies the theory DI LO of a
discrete linear order with first element but no last element, axiomatized by

DI LO1 : ∀n¬n < n;
DI LO2 : ∀n, m, k(n < m ∧m < k → n < k);
DI LO3 : ∀n, m(n < m ∨m < n ∨ n = m);
DI LO4 : ∀n(∃m(m < n)→ ∃m(m < n ∧ ∀k(k < n→ (k < m ∨ k = m))));
DI LO5 : ∀n∃m(n < m ∧ ∀k(n < k → m < k ∨m = k));
DI LO6 : ∃n∀m(n < m ∨ n = m).

Ke Gao Induction and Nonstandard Models of Arithmetic



Order-Type of Nonstandard Models of PA−

In fact, DI LO has 2ℵ0 non-isomorphic countable models, for if (A,<A) is
any linearly ordered set then N+ Z · A |= DI LO, where the model
N+ Z · A is that with domain N ∪ (Z× A) and order < defined by

(a). n < (z , a) for all n ∈ N and (z , a) ∈ Z× A;

(b). < restricted in N is the natural order on N;

(c). (z1, a1) < (z2, a2) iff (a1 <A a2 or (a1 = a2) and z1 < z2)) for all
(z1, a1), (z2, a2) ∈ Z× A where z1 < z2 is the usual order on Z.

We shall now sketch out a proof about the order-type of the models of
DI LO.

Theorem 2.11

All models of DI LO are isomorphic to N+Z ·A for some linearly order set
A. Moreover, if A � B then N+ Z · A � N+ Z · B.
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Order-Type of Nonstandard Models of PA−

Proof.

Let (M,<M ) |= DI LO and let 0M be the <M -least element of M and define functions
S and P on M by

S(x) = the unique y ∈ M s.t.

M |= x < y ∧ ∀z(x < z → (y < z ∨ y = z));

P(x) = the unique y ∈ M s.t.

M |= y < x ∧ ∀z(z < x → (z < y ∨ z = y)), if x 6= 0M .

and P(0M ) = 0M . Then we can define an equivalence relation ∼ on M by a ∼ b iff
a = P(n)(b) or b = S(n)(a) for some n. Then it is easy to check the following facts:

(1). ∼ is an equivalence relation on M;

(2). <M induces a linear order < on M/ ∼, given by [a] < [b] iff a <M b and [a] 6= [b];

(3). if A = (M − [0M ])/ ∼ ordered by <A defined by (2) is a linear order, then
(M,<M ) ∼= N+ Z · A.

It follows that all models of DI LO are of the form N + Z · A, and by examining the
construction above it is easy to see that the ordered set (A,<A) obtained from (M,<M )
is unique (up to isomorphism).Thus N+ Z · A ∼= N+ Z · B iff A ∼= B. r

From this we can deduce that, since there are up to isomorphism 2ℵ0 countable

linearly ordered sets A, there are 2ℵ0 countable models of DI LO.
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Order-Type of Nonstandard Models of PA

Let’s return to nonstandard models of PA. Surprisingly, if M is countable,
there is only one possibility for the order-type of M �<.

Theorem 2.12

Let M |= PA be nonstandard. Then M �<∼= N + Z · A for some linearly
ordered set (A,<A) satisfying the theory DLO of a dense linear order
axiomatized by

DLO1. ∀n¬n < n;

DLO2. ∀n, m, k(n < m ∧m < k → n < k);

DLO3. ∀n, m(n < m ∨m < n ∨ n = m);

DLO4. ∀m, n(n < m→ ∃k(n < k ∧ k < m));

DLO5. ∀n∃m, k(m < n ∧ n < k).

In particular, if M is countable, then M ∼= N + Z · Q, where Q is the set
of rationals with its natural order.
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Order-type of Nonstandard Models of PA

Proof.

It is a well-known Cantor’s theorem that any countable structure (A,<A)
satisfying DLO is isomorphic to (Q,<). This shows it is sufficient to prove
that M �<∼= N+ Z · A for some (A,<A) |= DLO.
Since the functions S(x) and P(x) defined above are obviously x + 1 and
x − 1, we define a relation ∼ by

a ∼ b iff M |= a + n = b ∨ a = b + n for some n ∈ N.

Then let A = (M − 0)/ ∼ with its order <A induced from M �<
by

[a] <a [b]⇔ [a] 6= [b] ∧M |= a < b.

Then we verify that (A,<A) |= DLO. r
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Cuts

Definition 3.1

A nonempty subset I of a nonstandard model M |= PA is a cut of M if I is
closed under the successor function and downward i.e. x < y ∈ I → x ∈ I and
x ∈ I → x + 1 ∈ I . And we say I is proper if it is not equal to the domain of M.

Lemma 3.2

Let M be a model of PA, then any proper cut I is undefinable in M.

Proof.

Let a ∈ M and ϕ(x , a) be an LA-formula. We suppose that I can be defined by ϕ(x , a),
Then

I = {b ∈ M|M |= ϕ(b, a)}.

Since I is nonempty and is closed under the successor function, we have

M |= ϕ(0, a) ∧ ∀x(ϕ(x , a)→ ϕ(x + 1, a)),

and so by induction in M, M |= ∀xϕ(x , a), hence I = M contradicting the assumption
that I is proper. r
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Cuts

The following overspill theorem, due to Abraham Robinson, essentially
says just above lemma.

Theorem 3.3 (Overspill)

Let M |= PA be a nonstandard and let I be a proper cut of M. Suppose
a ∈ M and ϕ(x , a) is a LA-formula such that for all b ∈ I , M |= ϕ(b, a).
Then there is c > I in M such that M |= ∀x ≤ cϕ(x , a).

Proof.

Suppose not. Then I would be defined by the LA-formula

∀y < xϕ(y , a),

contradicting the fact that I is undefinable in M. This completes the
proof. r
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Cuts

Corollary 3.4

Let M |= PA be nonstandard and I a proper cut of M. Suppose a ∈ M and
ϕ(x , a) is a LA-formula, and that for all x ∈ I there exists y ∈ I such that
M |= y ≥ x ∧ ϕ(y , a). Then for each c > I in M there exists b ∈ M such that
I < b < c and M |= ϕ(b, a).

Proof.

Apply overspill theorem to the formula ∃y(x ≤ y < c ∧ ϕ(y , a)), Where c ∈ M
is an arbitrarily element satisfying c > I . r

Intuitively, the corollary says if there are unboundedly many y ∈ I satisfying
ϕ(y , a), then there are arbitrarily small b > I satisfying ϕ(b, a). Thus the
elements in and beyond I are ‘mirror cofinal’.

Theorem 3.5 (Underspill)

Let M |= PA be nonstandard and I a proper cut of M. Suppose a ∈ M and
ϕ(x , a) is a LA-formula. if for all c > I in M there exists x > I satisfying
M |= ϕ(x , a) ∧ x < c, then for all b ∈ I there exists y ∈ I satisfying M |= y ≥
b ∧ ϕ(y , a).
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Fragments of PA

* P− denote the LA
′-theory which consists of PA−, axioms of exponen-

tiation and Σ0 induction.

* The Σn bounded collection (BΣn) means the scheme:

∀i∃j(ϕ(i , j))→ ∀m∃n∀i < m∃j < n(ϕ(i , j)),

where ϕ(i , j) is any Σn formula in which m and n do not occur.
Intuitively, it says that every total Σn-function onto a proper initial
segment has a bounded range.

Theorem 3.6

For all n ≥ 1, over P−,

I Σn+1 ⇒ BΣn+1 ⇒ I Σn,

and the only true implications are the ones indicated.
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The Role of Σ1-cuts in Fragments of PA

Lemma 3.7

P− ` BΣ0 ↔ BΣ1.

Proof.

One direction is obvious. Now we just show that P− ` BΣ0 → BΣ1.
Assume BΣ0 and ∀i < m∃jϕ(i , j), where ϕ(i , j) is Σ1. Then we suppose
ϕ(i , j) is ∃kφ(i , j , k), where φ(i , j , k). Thus ∀i < m∃j∃kφ(i , j , k), It is easy
to verity that in P−+I Σ0 we can define a bijective function f : N×N→ N,
By BΣ0, we have that ∀i < m∃f (j , k) < nφ(i , j , k), Then ∀i < m∃j <
n∃k < nφ(i , j , k), that is, ∀i < m∃j < nϕ(i , j), as required. r
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The Role of Σ1-cuts in Fragments of PA

Theorem 3.8

P− + I Σ1 ` BΣ1.

Proof.

Let M |= P− + I Σ1 and suppose M |= ∀i < n∃jϕ(i , j), where ϕ(i , j) is ∆0. Let
ψ(u) be the formula n < u ∨ ∃m∀i < u∃j < mϕ(i , j). Then ψ(u) is Σ1

Applying I Σ1 to ψ(u). Clearly M |= ψ(0). If M |= ψ(u) with u < n then there
are m1,m2 ∈ M such that M |= ∀i < u∃j < m1ϕ(i , j) and M |= ∃j < m2ϕ(u, j).
Then m = max(m1, m2) clearly satisfies

M |= ∀i < u + 1∃j < mϕ(i , j),

proving the induction step, M |= ∀u < n(ψ(u)→ ψ(u +1)). Thus M |= ∀uψ(u)
by I Σ1. And in particular we have M |= ∀u ≤ n(∃m∀i < u∃i < mϕ(i , j)), hence
M |= ∃m∀i < n∃i < mϕ(i , j). Thus we have that P− + I Σ1 ` BΣ0. Thus the
aim follows the fact that P− ` BΣ0 ↔ BΣ1 by Lemma 3.7. r
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The Role of Σ1-cuts in Fragments of PA

Lemma 3.9

Let M |= P− and let I be a proper initial segment of M closed under +
and ·. Then I |= P− + BΣ 0

1 .

Proof.

Note that I |= I Σ0 since I ≺∆0 M and M |= I Σ0 and I Σ0 is Π1-axiomatized.
Thus by Lemma 3.7. I |= BΣ1 ↔ BΣ0. Then we only need to show that
I |= BΣ0. Suppose that I |= ∀i < m∃jϕ(i , j) where ϕ(i , j) is Σ0. Then for every
i ∈ M with i < m, i is an element of I and so there is j ∈ I such that ϕ(i , j)
is true in I , and hence ϕ(i , j) is also true in M since I ≺∆0 M. Therefore for
all n ∈ M − I , M |= ∀i < m∃j < nϕ(i , j). This formula is equivalent to a Σ0

formula. And by I Σ0 we may use the Σ0 least element principle to deduce that
there is a least n ∈ M such that M |= ∀i < m∃j < nϕ(i , j). Clearly this least
such n is in I , so for any i < m there exists j < n such that M |= ϕ(i , j). But
this j is in I since n ∈ I and I is a proper initial segment of M. And as I ≺∆0 M,
I |= ϕ(i , j), hence there is n ∈ I such that I |= ∀i < m∃j < nϕ(i , j), that is
I |= BΣ0. r
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The Role of Σ1-cuts in Fragments of PA

Lemma 3.10

Let M be a nonstandard model of P−, then it has a Σ1-cut if and only if
I Σ1 fails in M.

Proof.

Immediate from Σ1 overspill. r

Theorem 3.11

There exists a model M satisfying P−+ BΣ1 which is not a model of I Σ1.

Corollary 3.12

Let M be a model of P− + BΣ1, Then M is a BΣ1 model if and only if it
has a Σ1-cut.
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Generalisations of Cuts in RCA0

Lemma 4.1

RCA0
∗ proves BΣ1.

Proof.

We reason in RCA0
∗. Suppose ∀i∃jϕ(i , j), where ϕ(i , j) is Σ 0

1 . Let ϕ(i , j) =
∃kψ(i , j , k), where ψ(i , j , k) is Σ0. By definition, (j , k) = (j + k)2 + j . Then
we define a function f : N→ N by f (i) = least (j , k) such that ψ(i , j , k) holds,
with using Lemma 1.1. Then using bounded primitive recursion, by Lemma 1.2,
define g : N→ N as follows

g(0) = f (0),

g(m + 1) =

{
g(m) if f (m + 1) ≤ f (g(m)),

m + 1 otherwise.

Let h(m) = f (g(m)) + 1. Then also using ∆1 comprehension, we can get
h(m) = max{f (i) + 1 : i ≤ m}. Thus ∀i < m∃(j , k) < h(m)ψ(i , j , k). Let
n = h(m), clearly ∀i < m∃j < nϕ(i , j). This completes the proof. r
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Generalisations of Cuts in RCA0

Lemma 4.2

Let M be any model of P− and BΣ1. Then there exists a model M ′ of
RCA0

∗ such that M ′ has the same first-order part as M.

Theorem 4.3

The models RCA0
∗ restricted in the first-order part are precisely the models

for LA
′ which satisfy P− and BΣ1.

Corollary 4.4

Let M be a model of RCA0
∗ + ¬I Σ1. Then there is a Σ1-cut in M.
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Generalisations of Cuts in RCA0

Using Corollary 4.4, we can get many results which is equivalent to
Σ1-induction within RCA0

∗.

Theorem 4.5 (Disguises of Σ1-induction)

Within RCA0
∗. The following are equivalent.

(1) Σ 0
1 induction;

(2) The universe of total functions is closed under primitive recursion;

(3) Every torsion-free, finitely generated abelian group is free;

(4) Every finitely generated vector space over rationals has a basis.
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Summary

* We review some results of nonstandard models of PA, including the
order-type of nonstandard models, the relationship between the stan-
dard model and nonstandard models.

* We have seen that there are close ties between I Σ1 and Σ1-cuts in
nonstandard models of fragments of PA. In other words, the existence
of Σ1-cuts is an essential characteristic of negative I Σ1.

* We generalize the idea of cuts to second-order arithmetic, and get
some results of disguises of Σ1 induction by the idea of Σ1-cuts.
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The End

Thanks
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