
Ti d al di s r u p ti o n of s oli t o n s i n s elf-i n t e r a c ti n g ul t r ali g h t a xi o n d a r k m a t t e r

N o a h Gl e n n o n, 1 , ∗ Et h a n O. N a dl er, 2, 3 , † N at h a n M u s o k e, 1 , ‡ Ar k a
B a n erj e e, 4, 5 , § C h a n d a Pr e s c o d- Wei n st ei n, 1 , ¶ a n d Ri s a H. We c h sl er 6, 7 , ∗ ∗

1 D e p a rt m e nt of P h y si c s a n d A st r o n o m y, U ni v e r sit y of N e w H a m p s hi r e, D u r h a m, N e w H a m p s hi r e 0 3 8 2 4, U S A
2 C a r n e gi e O b s e r v at o ri e s, 8 1 3 S a nt a B a r b a r a St r e et, P a s a d e n a, C A 9 1 1 0 1, U S A

3 D e p a rt m e nt of P h y si c s & A st r o n o m y, U ni v e r sit y of S o ut h e r n C alif o r ni a, L o s A n g el e s, C A, 9 0 0 0 7, U S A
4 D e p a rt m e nt of P h y si c s, I n di a n I n stit ut e of S ci e n c e E d u c ati o n a n d R e s e a r c h,

H o mi B h a b h a R o a d, P a s h a n, P u n e 4 1 1 0 0 8, I n di a
5 F e r mi N ati o n al A c c el e r at o r L a b o r at o r y, C o s mi c P h y si c s C e nt e r, B at a vi a, I L 6 0 5 1 0, U S A

6 K a vli I n stit ut e f o r P a rti cl e A st r o p h y si c s a n d C o s m ol o g y a n d
D e p a rt m e nt of P h y si c s, St a nf o r d U ni v e r sit y, St a nf o r d, C A 9 4 3 0 5, U S A
7 S L A C N ati o n al A c c el e r at o r L a b o r at o r y, M e nl o P a r k, C A 9 4 0 2 5, U S A

( D a t e d: R e c ei v e d 2 3 M a y 2 0 2 2; a c c e p t e d 6 J u n e 2 0 2 2 )

Ul t r ali g ht a xi o n s ( U L A s ) a r e p r o mi si n g d a r k m a t t e r c a n di d a t e s t h a t c a n h a v e a di s ti n c t i m p a c t
o n t h e f o r m a ti o n a n d e v ol u ti o n of s t r u c t u r e o n n o nli n e a r s c al e s r el a ti v e t o t h e c ol d, c olli si o nl e s s
d a r k m a t t e r ( C D M ) p a r a di g m. H o w e v e r, m o s t s t u di e s of s t r u c t u r e f o r m a ti o n i n U L A m o d el s d o
n o t i n cl u d e t h e e ff e c t s of s elf-i nt e r a c ti o n s, w hi c h a r e e x p e c t e d t o a ri s e g e n e ri c all y. H e r e, w e s t u d y
h o w t h e ti d al e v ol u ti o n of s oli t o n s i s a ff e c t e d b y U L A s elf-i nt e r a c ti o n s t r e n g t h a n d si g n. S p e ci fi c all y,
u si n g t h e p s e u d o s p e c t r al s ol v e r U l t r a D a r k . j l , w e si m ul a t e t h e ti d al di s r u p ti o n of s elf-i nt e r a c ti n g
s oli t o ni c c o r e s a s t h e y o r bi t a 1 0 1 1 M N a v a r r o- Fr e n k- W hi t e C D M h o s t h al o p o t e nti al f o r a r a n g e
of o r bi t al p a r a m e t e r s, a s s u mi n g a fi d u ci al U L A p a r ti cl e m a s s of 1 0 − 2 2 e V. We fi n d t h a t r e p ul si v e
( a t t r a c ti v e ) s elf-i nt e r a c ti o n s si g ni fi c a ntl y a c c el e r a t e ( d e c el e r a t e ) s oli t o n ti d al di s r u p ti o n. We al s o
i d e ntif y a d e g e n e r a c y b e t w e e n t h e s elf-i nt e r a c ti o n s t r e n g t h a n d s oli t o n m a s s t h a t d e t e r mi n e s t h e
e ffi ci e n c y of ti d al di s r u p ti o n, s u c h t h a t di s r u p ti o n ti m e s c al e s a r e a ff e c t e d a t t h e ∼ 5 0 % l e v el f o r
v a ri a ti o n s i n t h e di m e n si o nl e s s U L A s elf- c o u pli n g f r o m λ = − 1 0 − 9 2 t o λ = 1 0 − 9 2 .

I. I N T R O D U C T I O N

E vi d e n c e fr o m t h e c o s mi c mi cr o w a v e b a c k gr o u n d
( C M B), g al a cti c r ot ati o n c ur v e s, g al a x y cl u st eri n g, t h e
L y m a n- α f or e st, a n d gr a vit ati o n al l e n si n g i n di c at e s t h at
t h e m aj orit y of m att er i n t h e u ni v er s e i s d ar k [ 1 – 5 ]. D ar k
m att er i s u s u all y a s s u m e d t o b e c ol d a n d c olli si o nl e s s
( C D M; [ 6 , 7 ]). H o w e v er, a n e n or m o u s r a n g e of p arti-
cl e d ar k m att er m o d el s t h at ar e c o m p ati bl e wit h c urr e nt
c o s m ol o gi c al, c olli d er, a n d dir e ct d et e cti o n e x p e ri m e nt s
b r e a k t h e s e a s s u m pti o n s i n d et ail, yi el di n g u ni q u e a s-
t r o p h y si c al si g n at ur e s t h at will b e pr o b e d b y u p c o mi n g
o b s er v ati o n al f a ciliti e s [ 8 – 1 1 ].

A n i n cr e a si n gl y p o p ul ar cl a s s of d ar k m att er m o d el s
f e at ur e s c al ar fi el d s wit h a s hift s y m m etr y [1 2 – 1 4 ]. T hi s
cl a s s of m o d el s i n cl u d e s c a n di d at e s li k e t h e Q C D a xi o n,
w hi c h w a s ori gi n all y t h e ori z e d t o s ol v e t h e Str o n g C P
P r o bl e m [ 1 5 ], a n d ultr ali g ht a xi o n s ( U L A s), w hi c h h a v e
m a s s e s o n t h e or d er of ∼ 1 0 − 2 2 e V or s m all er. A xi o n-
li k e p arti cl e ( A L P) m o d el s t h at ar e m oti v at e d b y stri n g
t h e or y s u g g e st t h er e m a y b e m a n y di ff er e nt a xi o n p arti-
cl e s wit h a wi d e r a n g e of m a s s e s. F or e x a m pl e, t h e a xi-
v er s e h y p ot h e si s s u g g e st s t h at t h er e m a y b e m a n y A L P s
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wit h di ff er e nt m a s s e s i n d e c a d e s fr o m ∼ 1 e V d o w n t o
1 0 − 3 3 e V [ 1 6 , 1 7 ]. I n U L A m o d el s, t h e p arti cl e s ar e
b o s o ni c a n d u n d er c ert ai n cir c u m st a n c e s c a n b e h a v e c o-
h er e ntl y a s a B o s e – Ei n st ei n c o n d e n s at e ( B E C) d u e t o
t h eir e xtr e m el y hi g h o c c u p ati o n n u m b er s [ 1 8 – 2 2 ]. M e a n-
w hil e, t h e d e Br o gli e w a v el e n gt h f or U L A s i s r o u g hl y o n
t h e kil o p ar s e c s c al e [ 2 3 ], a n d t h e cl u st e ri n g of t h e s e p ar-
ti cl e s i s s u p pr e s s e d o n s m all er s c al e s. T hi s l e a d s t o a
c ut o ff i n t h e h al o m a s s f u n cti o n a n d yi el d s d ar k m att er
c or e s r at h er t h a n c u s p s o n s c al e s c orr e s p o n di n g t o d w arf
g al a xi e s [ 2 4 – 3 2 ]. T h u s, t h e e xi st e n c e of U L A fi el d s wit h
c o n s pi c u o u s a str o p h y si c al si g n at ur e s i s t h e or eti c all y m o-
ti v at e d.

B el o w t h e Q C D s c al e, t h e p ot e nti al f or a xi o n or a xi o n-
li k e p arti cl e s oft e n t a k e s t h e f or m

V (φ ) = Λ 4 1 − c o s φ / f a . ( 1)

H er e, φ i s t h e a xi o n fi el d, Λ ≈ 0 .1 G e V, a n d f a i s t h e
P e c c ei – Q ui n n s y m m etr y br e a ki n g s c al e or a xi o n d e c a y
c o n st a nt [ 1 7 , 3 3 ]. B y e x p a n di n g t h e p ot e nti al, w e s e e t h at
a xi o n s g e n eri c all y u n d er g o s elf-i nt er a cti o n s, wit h l e a di n g
or d er t er m φ 4 . It i s i m p ort a nt t o a c c o u nt f or t hi s t er m
b e c a u s e, a s s h o w n i n [ 3 4 , 3 5 ], e v e n s m all s elf-i nt er a cti o n s
c a n h a v e l ar g e e ff e ct s o n t h e t h e d y n a mi c s of U L A d ar k
m att er. M a n y a xi o n-li k e d ar k m att er m o d el s i g n or e p o-
t e nti al s elf-i nt er a cti o n s b e c a u s e t h e y ar e c o n str ai n e d t o
b e v er y s m all [ 3 4 , 3 6 ]. F or e x a m pl e, U L A m o d el s i n t h e
fr e e- fi el d li mit ar e s o m eti m e s r ef err e d t o a s f u z z y d ar k
m att er ( F D M) m o d el s [ 2 4 , 3 2 ]. Alt h o u g h t h er e ar e a v a-
ri et y of a str o p h y si c al c o n str ai nt s o n t h e F D M m a s s ( e. g.,
[3 7 – 4 4 ]), n o n e of t h e s e a n al y s e s i n c or p or at e t h e e ff e ct s
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of potential ULA self-interactions.1 However, as seen in
prior work, even a small self-interaction can greatly im-
pact the resulting dynamics because axion-like particle
densities can be very large [34, 48, 49]. For example, any
attractive self-interaction ensures that there is a maxi-
mum mass that a bound dark matter state (or “soliton”)
can have before collapsing into a black hole, and also al-
lows for oscillating or exploding solitons [34, 35]. There
are are also compelling reasons to study ULAs with re-
pulsive self-interactions [36].

The tidal evolution of gravitationally bound dark mat-
ter subhalos as they orbit within a larger host halo dic-
tates the properties of small-scale structure at late times.
In turn, this physics has important consequences for the
interpretation of observational probes of low-mass subha-
los. In particular, studies leveraging strong gravitational
lensing [50], the Milky Way satellite galaxy population
[51], and stellar stream perturbations [52] have recently
gained sensitivity to subhalos as small as ∼ 108 M�. At
fixed particle mass, characteristic ULA effects including
soliton sizes [25] and gravitational heating due to wave
interference [23, 53] become larger with decreasing sub-
halo mass and velocity dispersion. Precise theoretical
predictions for the evolution of these systems in realis-
tic ULA models, including self-interactions, are therefore
timely.

Several previous studies have considered the tidal evo-
lution of ULA subhalos and solitons. Specifically, [54]
simulates a soliton orbiting a central potential using a
pseudospectral solver to evolve the Schrödinger-Poisson
equation. In the absence of self-interactions, these au-
thors find that, once the soliton drops below a criti-
cal fraction of the host’s average density within the or-
bital radius, tidal stripping results in runaway disruption.
Meanwhile, [55] show that the presence of an outer CDM-
like halo profile surrounding the soliton can make the soli-
ton significantly more resilient to tidal disruption, and
[56] propose that an eigenmode analysis provides insight
into this process. None of these studies consider the cou-
pled effects of ULA self-interactions and tidal stripping,
motivating our study. Furthermore, cosmological simu-
lations of ULAs (e.g., [24, 30, 31, 57, 58]) currently lack
the resolution to resolve solitons’ detailed tidal evolution
within larger host halos, and no cosmological simulations
to date include the effects of ULA self-interactions.

Here, we present simulations of ULA dark matter us-
ing a version of UltraDark.jl [59], which is capable of
accounting for self-interactions. We attempt to charac-
terize the effects of self-interactions on ULA dark matter
as it tidally disrupts. We find that there is a degeneracy
between the self-interaction strength and soliton mass in
determining the disruption time. This work extends ear-

1 However, see [45, 46] for analytic studies and idealized simula-
tions of ULAs with repulsive self-interactions in the Thomas-
Fermi regime, and see [47] for joint constraints on the ULA mass
and self-coupling from the enclosed mass profile of M87.

lier results looking at tidal disruption in ULA dark mat-
ter [54], introducing the possibility of self-interactions
and showing that they can have a significant impact on
the disruption times of solitons.

This paper is organized as follows. In Section II, we
present our ULA model and the physical setup we im-
plement in our soliton simulations. In Section III, we
estimate the tidal radii of the solitons considered in our
simulations to qualitatively assess how efficiently these
systems will tidally disrupt. In Section IV, we dis-
cuss the pseudospectral solver used for our simulations,
UltraDark.jl, and the initial conditions for our simula-
tions. In Section V, we discuss the results of our simula-
tions, including how soliton disruption time depends on
self-interaction strength and sign, soliton mass, and or-
bital parameters. We show that self-interaction strength
and sign and soliton mass influence the disruption time
in a degenerate fashion. In Section VI, we discuss the
importance of our work and its main caveats. Lastly, in
Section VII, we summarize our results. Throughout, we
work in units with c = G = 1.

II. ULTRALIGHT AXION MODEL AND
PHYSICAL SETUP

Our ULA model consists of a classical field minimally
coupled to gravity. Considering only the leading order
self-interaction term from Eq. 1, the action takes the form

S =

∫
d4x
√
−g
[

1

2
gµν∂µφ∂νφ−

1

2
m2φ2 − λ

4
φ4
]
. (2)

Here, φ is the scalar field, m is the mass of the field,
and λ is the dimensionless self-coupling. We obtain the
equations of motion by writing the real scalar field φ in
terms of a complex field ψ,

φ =
~√
2m

(
ψe−imt/~ + ψ∗eimt/~

)
. (3)

The equations of motion in the Newtonian gauge are the
Gross-Pitaevskii-Poisson (GPP) equations,

i~ψ̇ = − ~2

2m
∇2ψ +mΦψ +

~3λ
2m3
|ψ|2 ψ (4)

and

∇2Φ = 4πGm|ψ|2 . (5)

Here, Φ is the gravitational potential and ψ is the ULA
field. A more detailed derivation of the equations of mo-
tion can be found in [60]. In the following analysis, using
a particle mass of m = 10−22 eV, the self-interaction
strength is parameterized by a dimensionless variable κ̃,
defined as

κ̃ ≡ 2.1× 1092λ (6)
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Table I details the relevant units and ranges of ULA pa-
rameter values in our study.

There are different approaches to constraining the self-
interaction strength of ULAs [34, 36, 61]. Different meth-
ods can lead to constraints that have large order of mag-
nitude differences. Here, we use a dimensionless coupling
on the order of O(10−92) that falls within the bounds
found in [61]. Although the self-interaction strength
is predicted to be very small, the effects of the self-
interactions are governed by the self-interaction strength
times the phase-space density of axions in the region of
interest [49]. In particular, the non-linear self-interaction
term in the adimensional GPP equations (see Eq. 4) is

given by λ|ψ|2 ψ; since the density is given by ρ = m|ψ|2,
the non-linear term is proportional to λρψ. Since the
denisty of ULAs can be very large in the inner regions
of solitons, the non-linear effects of the self-interactions
may be important despite the self-interaction strengths
being small. In this work, we consider attractive and re-
pulsive self-interactions with similar magnitudes because
there are numerical difficulties when self-interactions are
large.

The term soliton refers in this work to the localized
dark matter that is a Bose–Einstein condensate. In ULA
models, dark matter halos are composed of a solitonic
core with an NFW outer region [24, 26]. In our simula-
tions, we consider a soliton orbiting a more massive host
to mimic the central region of a dwarf galaxy falling into
a larger system. For most of this work, we simulate the
solitonic core being tidally disrupted without the NFW
region in order to isolate the effects of self-interactions
on the core disruption time. We assume a fiducial ULA
mass of 10−22 eV.

III. ANALYTIC ESTIMATES OF SOLITON
TIDAL RADII

In this Section, we use the physical setup described
in Section II to estimate the tidal radii of solitons or-
biting a host halo. The tidal radius represents the dis-
tance within which the soliton’s gravity dominates over
the host’s tides, and thus provides an estimate of which
regions are protected from tidal disruption. Note that,
due to the wave-like nature of ULAs, all regions of the
soliton can potentially be tidally stripped regardless of
the tidal radius [23, 56]. However, the tidal radius still
provides a useful means to qualitatively assess how effi-
ciently disruption can proceed for a given solitonic and
orbital configuration.

We estimate the tidal radii of solitons in circular orbits
using several related definitions presented in [62]. First,
consider the tidal radius rt,1 [62],

rt,1 = R

[
m(rt,1)/M(R)

2− d lnM
d lnR |R

]1/3
, (7)

where R is the separation between the centers of the soli-

ton and the host, m(rt,1) is the mass of the soliton, and
M(R) is the mass of the host within the orbital radius.
This result only assumes that the soliton and host have
extended mass profiles, and ignores effects like centrifu-
gal force. The host mass within the orbital radius can be
found using

M(R) = 4πρ0R
3
s

[
ln

(
Rs +R

Rs

)
+

Rs
Rs +R

− 1

]
(8)

where ρ0 is a density parameter and Rs is the scale
radius of the central NFW potential. In our simula-
tions, we adopt c = 20, rvir = 95 kpc, and M(rvir) =
1011 M�. This gives a density parameter of ρ0 =
3.5×107 M�/kpc3. Across the range of values of M and
R we consider, d lnM/d lnR is roughly constant, with
a typical value of about 0.46. According to Eq. 8, our
solitons’ tidal radii are then on the order of 8 kpc.

We can alternatively define the tidal radius as [62]

rt,2 = R

[
m(rt,2)/M(R)

3− d lnM
d lnR |R

]1/3
, (9)

which accounts for centrifugal force, or using

rt,3 = R

[
m(rt)

M(R)

]1/3
, (10)

which corresponds to the radius where the frequency of
tidal forces applied by the host matches the internal mo-
tion of the soliton. These definitions satisfy rt,2 < rt,1 <
rt,3 for the configurations we simulate, implying that
rt,1 ≈ 8kpc remains a reasonable estimate.

The solitons we initialize have core radii of roughly
2 kpc. This is smaller than the tidal radius by a factor of
a few, indicating that tidal disruption will not occur im-
mediately, but that it can plausibly occur once the core
radius expands sufficiently due to tidal stripping. Impor-
tantly, self-interactions influence the dynamical evolution
of our solitons in a manner that is not easily captured by
tidal radius calculations. Qualitatively, we expect at-
tractive (repulsive) self-interactions to make solitons less
susceptible (more susceptible) to disruption and there-
fore to effectively increase (decrease) the tidal radius, but
the extent to which the tidal radius alone can accurately
characterize the disruption of self-interacting solitons is
unclear. Our simulations are therefore crucial to quantify
how self-interactions affect tidal disruption.

We note that, in a previous study of soliton tidal dis-
ruption without self-interactions, [54] found that the tidal
radius of a soliton depends only on the ratio of its core
density to the average density of the host within the soli-
ton’s orbit. These authors found that if this ratio is less
than 4.5, the tidal radius of the soliton is smaller than
its core radius, leading to rapid disruption: as the core
loses mass, its density drops and it expands further in
a runaway process. In most of our simulations, the ini-
tial density ratio is ≈ 50, which ensures that > 95% of
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the soliton’s mass is contained within the tidal radius at
first [54], protecting the soliton from immediate runaway
disruption due to the host’s tides. The sharp transition
to runaway disruption at low density ratios motivates our
choice to simulate a narrow range of soliton masses with
initial density ratios above the critical threshold.

IV. SIMULATION DESCRIPTION

A. Numerical Methods

We perform our simulations using UltraDark.jl, a
code that can be used to simulate ultralight dark mat-
ter [59], with modifications to allow for self-interactions.
UltraDark.jl uses a pseudospectral method to solve the
GPP equations (Eq. 4–5), similar to PyUltraLight and
PySiUltraLight [35, 63]. This means that the linear and
nonlinear operators in Eq. 4 are computed in Fourier
space and configuration space respectively. In particu-
lar, a single step in the evolution with self-interactions is
given by

ψ(~x, t+ h) = exp

[
− ih

2
Φ(~x, t+ h)

]
× exp

[
− ihκ

2

∣∣ψ(~x, t+ h)
∣∣2]

×F−1 exp

[
− ih

2
k2
]
F exp

[
− ih

2
Φ(~x, t)

]
× exp

[
− ihκ

2

∣∣ψ(~x, t)
∣∣2]ψ(~x, t),

(11)

where h is a small time step, F is the Fourier transform,
F−1 is the inverse Fourier transform, k is the wavenum-
ber in Fourier space, ψ(~x, ti) is the field at the half step.
The gravitational potential is updated in phase space,

Φ(~x, t+ h) = F−1
(
− 1

k2

)
F4π

∣∣ψ(~x, ti)
∣∣2 + Φext , (12)

and a fixed background gravitational field Φext is added.
A detailed description of how the ULA field with
self-interactions and an external gravitational potential
evolves over time can be found in [35].

There are some computational limitations associated
with this method. The primary constraint we encoun-
tered came from the so-called “maximum velocity cri-
terion.” Specifically, when recasting the GPP to the
Madelung equations, it is apparent that the velocity of
the field is equal to the gradient of its phase [64]

v =
~
m
∇ arg(ψ) . (13)

However, information about this phase gradient is lost
when ψ is represented on a grid with finite resolution; the

phase difference between neighboring cells is only known
modulo π and so the velocity is represented modulo

vmax =
~
m

π

∆x
, (14)

where ∆x is the grid point spacing, set by the size of
the simulation box and the resolution of the simulation.
Attempts to simulate velocities greater than vmax result
in unphysical numerical artifacts and so UltraDark.jl
terminates if velocities exceed vmx/4.

Since we use an FFT-based method to solve the equa-
tions of motion, it is natural to adopt periodic boundary
conditions for our simulations, meaning that the simula-
tion box is topologically equivalent to a torus. This im-
plies that angular momentum is not necessarily conserved
if matter crosses the boundary of the box. This issue is
mitigated simply by minimizing the amount of matter
that crosses the boundary. We therefore use a box size
that is large enough to comfortably encompass our soli-
tons’ orbits and stripped material, and small enough to
yield reasonable maximum velocity criteria for these sys-
tems. To balance these factors, we use a box length that
is about 320% larger than the host’s virial radius. We
found that this box size does not compromise the max-
imum velocity criteria for any of our simulations while
preventing a significant amount of matter from crossing
the boundary of the box.

B. Physical Setup

We consider solitons on circular orbits around a cen-
tral halo, which we model using a static, external grav-
itational potential corresponding to an Navarro-Frenk-
White (NFW; [65]) halo,

Φext(r) = −Mhost

r

ln(1 + chost
r
rvir

)

ln(1 + chost)− chost
1+chost

, (15)

where Φext is the gravitational potential, chost is the
host concentration, Mhost is the host mass, and rvir is
the viral radius of the host. We simulate a host with
mass Mhost = 1011M� and concentration chost = 20,
roughly corresponding to the properties of halos that host
the Large Magellanic Cloud (LMC) [66, 67] and similar
galaxies. The LMC is known to host faint satellite galax-
ies (e.g., [68]), which would be affected by ULA physics
given our fiducial particle mass of 10−22 eV model (e.g.,
[23]), adding to the astrophysical relevance of our simu-
lations.

Our simulations use a fiducial box length of 306 kpc
and resolution of 512 grid points per side. They are ini-
tialized with a soliton, specified by its mass, position,
velocity, phase, and density profile. The position and ve-
locity are derived from the orbital energy xc and orbital
circularity η, following [69]. Specifically, these parame-
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Parameter Range Definition

ma 10−22eV Particle mass
κ̃ -5–5 Self-coupling strength
xc 0.7–1.1 Orbital energy
rcir 67–105 kpc Orbital radius
η 1.0 Circularity

Mhost 1011 M� Host mass
Msol 1.04–1.13 × 108 M� Soliton mass
chost 20 Host concentration

TABLE I: The definitions and values of the parameters
that enter our simulations. Orbital energy (xc) and
circularity (η) are defined according to Eq. 16–17.

ters are defined as [69]

xc ≡
rc(E)

rvir
, (16)

η ≡ L

Lc(E)
. (17)

Thus, xc corresponds to radius of a circular orbit with to-
tal energy E, in units of the host’s virial radius, and η is
the ratio of the orbital angular momentum L to that for a
circular orbit of total energy E. Thus, η = 0 (η = 1) cor-
responds to a radial (circular) orbit; throughout, we sim-
ulate solitons on circular orbits to minimize the impact
of the maximum velocity criterion. Given this assump-
tion, xc effectively parameterizes the soliton’s distance
from the host center, which we often quote in units of
the host halo’s virial radius. We summarize the range of
xc we use, which avoids violating the maximum velocity
criterion (Eq. 14), in Table I.

We initialize our solitons by assuming an equilibrium
configuration without self-interactions, with an initial
profile following [63] (also see [35]). Note that, in models
with nonzero self-interactions, the solitons do not start
in equilibrium; however, for the range of self-interaction
models we simulate, oscillations about the equilibrium
state are small for isolated versions of our solitons. These
small non-equilibrium oscillations do not significantly im-
pact our results. Note that we simulate the evolution of
“bare” soliton profiles rather than include an outer NFW
component of the density profile past some transition ra-
dius. We discuss this choice further in Section V.

We simulate bare solitons with initial masses ranging
from 1.04×108M� to 1.13×108M�, well below the host
halo mass of 1011M�. This allows us to neglect the ef-
fects of dynamical friction, which is expected to differ in
ULA models relative to CDM (e.g., [70]). Within the
narrow range of soliton masses that we simulate, bare
solitons survive long enough to complete several orbits,
which allows to characterize their disruption timescales
accurately, and short enough to disrupt on the order of
a Hubble time (see Section III). We also used a range
of values for xc from 0.7 to 1.1 and a range of λ from
−2.4 × 10−92 to 2.4 × 10−92 (κ̃ = -5.0 to 5.0). A sum-
mary of our simulation parameters is provided in Table I.

Ideally, we would run simulations with more massive
hosts in order to model the effects of tidal stripping of
solitons within the Milky Way; however, this is more chal-
lenging computationally because the maximum velocity
criterion is more easily violated as host mass increases
for a given set of orbital parameters. In particular, we
use our fiducial box length and grid resolution to cal-
culate the velocity of the orbit based on the host mass
and concentration to identify the accessible region of or-
bital parameter space shown in Fig. 1. We observe that,
as the host mass decreases or the host concentration in-
creases, our simulations are able to access more of the
orbital parameter space. This follows because, for any
given set of orbital parameters, decreasing the host mass
or increasing the host concentration reduces the veloc-
ity of the orbit, and therefore makes it less likely that
the maximum velocity criterion is violated. Based on
Fig. 1, our simulations can robustly probe subhalos of
LMC-mass hosts on nearly circular orbits. Subhalos of
more massive hosts like the Milky Way, and subhalos on
more radial orbits around hosts of mass, remain difficult
to simulate robustly given our setup.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
10 1

100

101

102

103

x c

Typical Satellite Parameters

Mh = 1012M ch = 10
Mh = 1012M ch = 20
Mh = 1011M ch = 10
Mh = 1011M ch = 20

FIG. 1: The orbital parameter range, specified by
orbital energy xc and orbit circularity η, accessible for
soliton evolution given our simulations’ fiducial box size
and resolution and the maximum velocity criterion
(Eq. 14). The black shaded region is typical of CDM
subhalos (e.g., see [69]). The pseudospectral solver we
employ, UltraDark.jl, is able to accurately simulate
orbits in the regions above the solid lines at our fiducial
resolution of 512 grid cells per side and box length of
306 kpc. These accessible regions depend on the mass
and concentration of the host halo, as indicated in the
legend. The simulations we run in this work all use
η = 1 (i.e., circular orbits) and xc ∈ [0.7, 1.1] (see
Eq. 16–17), corresponding to orbital radii between
0.7rvir to 1.1rvir (67 kpc to 105 kpc). The small cyan
region represents the region of parameter space we
simulate.
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FIG. 2: Projected density distributions in the orbital plane from representative simulations where a soliton is tidally
disrupted in the presence of attractive self-interactions with κ̃ = −5.0 (left) and repulsive self-interactions with
κ̃ = 5.0 (right). In these simulations, the soliton mass is 1.13× 108M� and xc = 0.8. The visualized region is
approximately 300 kpc long in the x and y directions. Tidal stripping is noticeably more efficient in the case with
repulsive self-interactions. An animation can be found at https://bit.ly/3wzgBQw.

https://bit.ly/3wzgBQw
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FIG. 3: Evolution of the peak density (left panel) and core radius (right panel) for the solitons shown in Fig. 2, for
the repulsive (green) and attractive (blue) self-interaction cases. Before tidal disruption sets in, the peak density
corresponds to the soliton’s core density. The left (right) dashed vertical line represents the 50% (5%) density
threshold relative to the initial peak density for each self-interaction model, and the region between the dashed and
dot-dashed lines corresponds to the disruption phase. Note that the peak density after the disruption phase is not
necessarily located at the center of the remaining soliton core. In the right panel, the shaded bands represent the
maximum uncertainty in the core radius given our spatial resolution and interpolation scheme. The core radius
expands as the soliton is tidally disrupted.

V. SIMULATION RESULTS

We now present the our key results. We begin by
briefly describing our initial attempts at simulations,
which motivated the choice of soliton masses and orbital
configurations presented here. Next, we describe rep-
resentative examples of simulations with different self-
interaction strengths and signs, and we compare the evo-
lution of the respective solitons as they orbit the cen-
tral potential. We then summarize how soliton disrup-
tion times depend on soliton mass and self-interaction
strength and sign. Lastly, we identify a degeneracy be-
tween self-interaction strength and soliton mass when cal-
culating the disruption time of solitons.

We reiterate that the simulations we present in this sec-
tion only include solitonic profiles for the orbiting satel-
lites. In particular, we do not include an outer NFW com-
ponent of the density profile past some transition radius,
which is expected for subhalos in ULA models formed in
a cosmological context [25]. This choice allows us to iso-
late the effects of self-interactions on the disruption time
of bare solitons, which disrupt on timescales comparable
to the dynamical time set by the central potential (and,
thus, on timescales comparable to the Hubble time).
We perform and discuss a limited number of simulations
where an NFW profile is smoothly added to the soliton in
Appendix B. These simulations indicate that adding an
outer NFW component allows solitons to survive signifi-
cantly longer, which is expected due to the “outside-in”
nature of tidal stripping [62] and is consistent with previ-
ous ULA studies without self-interactions [55]. Nonethe-
less, we find that the general relation of disruption time

dependence on self-interactions that we focus on here is
qualitatively unaffected in these scenarios.

In our initial simulations, we used less massive soli-
tons that disrupted nearly instantaneously. An expla-
nation for this can be found in [54]. Briefly, the ratio
of the soliton core density to the average host density
within the soliton’s orbit is approximately 1. According
to [54], solitons should disrupt very quickly if the ratio
is below 4.5 since this would mean the soliton’s core ra-
dius is larger than the tidal radius. We then chose to
use higher mass solitons to allow the solitons to survive
on cosmological timescales. Thus, our initial tests con-
firm that bare solitons with low masses are difficult to
observe today because they disrupt quickly. Because of
this rapid disruption, self-interaction strength and sign
had little effect on the results of these simulations. This
motivates the range of soliton masses we consider, 1.04 to
1.13× 108 M�, which yield density ratios relative to the
host of roughly 50 within the orbital radii we consider,
allowing us to study their tidal evolution for significantly
longer and to highlight the effects of self-interactions.

A. Examples of Soliton Evolution in the Presence
of Self-Interactions

Two example simulations are shown in Fig. 2. In these
simulations, the soliton mass is set to 1.13 × 108M�
and xc = 0.8, corresponding to an orbital radius of
0.8rvir ≈ 75 kpc. The only difference is that the plots
on the left have an attractive coupling of κ̃ = −5.0 and
the plots on the right have a repulsive coupling of κ̃ = 5.0.
In these examples, we can see that the solitonic core is
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FIG. 4: The spherically averaged density profile centered on the soliton, for the simulations in Fig. 2. The left plot
shows the density profile of a soliton where the self-interaction is attractive and κ̃ = −5.0. The right plot shows the
case where the self-interaction is repulsive and κ̃ = 5.0. We see that the peak density falls faster with time for the
simulation where the self-interaction is repulsive. We also see that, when there are repulsive self-interactions, the
overall density profile has more mass in the outer regions at early times. This demonstrates how matter is stripped
more quickly in the presence of repulsive self-interactions.

disrupted less quickly (more quickly) in the case with at-
tractive (repulsive) self-interactions. Specifically, Fig. 3
shows the evolution of the peak density and core radius
of the solitons from Fig. 2, where the core radius is de-
fined as the distance at which the density drops to 50%
of the central density.

The core expands rapidly at late times as the soliton
loses mass (recall that soliton size is inversely propor-
tional to soliton mass). In particular, the hatched re-
gions between the vertical lines in Fig. 3 represent the
period during which the soliton rapidly disrupts. Dur-
ing this phase, the central density decreases and that
the core radius expands less quickly (more quickly) in
the case with attractive (repulsive) self-interactions. We
study these trends in detail for a range of soliton masses,
self-interaction models, and orbital parameters in Sec-
tion V B.

Finally, Fig. 4 shows the spherically averaged density
profiles of the two solitons, demonstrating that mass is
removed from the central regions more quickly in the case
with repulsive self-interactions. This qualitatively ex-
plains the differences among the tidal tails in these cases
observed in Fig. 2—namely, in the case with attractive
self-interactions, the tidal tails are more compact than in
the case with repulsive self-interactions; we explore this
effect in Appendix C.

B. Disruption Timescale

We quantify the disruption timescale of each simulated
soliton by calculating how long it takes for the soliton’s
peak density to drop to some percentage of its initial

value. The peak density is the maximum density found
in any grid cell. We used different thresholds for calcu-
lating the disruption timescale, corresponding to when
the peak density dropped to 50%, 25%, 10%, and 5%
of its initial value. These thresholds are somewhat ar-
bitrary, and are in fact rather extreme in comparison to
disruption thresholds typically assumed for CDM sub-
halos, which lose roughly 99% of their mass once their
central density drops by a factor of two [71]. Practi-
cally, if the threshold is too small, the soliton is no longer
well defined when the threshold is reached, such that the
peak density over all grid cells no longer corresponds to
the center of a coherent object. We have verified that,
for the density thresholds we consider, the peak density
over all grid cells correctly represents the peak density of
the soliton. We measure the disruption timescale using
the number of orbits elapsed until the density threshold
is reached due to the limited temporal resolution of our
simulations.

We find that the relationship between soliton mass and
the number of orbits elapsed until disruption is well-
described by an exponential relation. A similar rela-
tion describes the relationship between the disruption
timescale and self-interaction strength. We therefore fit
the time elapsed until disruption as a function of initial
soliton mass M0 and κ̃ according to

S(M, κ̃) = a exp
[
(bM̃0 + cκ̃0)/102

]
Gyr, (18)

where M̃0 ≡M0/106 M�, and a, b, and c are dimension-
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FIG. 5: Dependence of disruption time of a soliton on
the soliton mass and self-interaction strength, κ̃. Here,
the density cutoff used to determine the disruption time
is 50%, and we assume an orbit where xc = 0.9. Points
of the same color correspond to a specific value of the
self-interaction strength, κ̃, with solid lines indicating
the best fits to these data using Eq. 18. The dashed
lines are the extrapolated extensions of the best-fit lines
into a region where it is difficult to measure the
disruption time accurately. The error bars represent the
maximum uncertainty in survival time measurements
given our temporal resolution. The black horizontal line
indicates the Hubble time. Increasing the soliton mass
and making the self-interaction more attractive both
cause the soliton to survive longer.

less constants.2

Using Eq. 18, we determined the best fit parameters,
a, b, and c, that fit our data for different combinations of
xc and density cutoff. The parameter a, can be thought
of as the amplitude of the disruption time for our fit-
ting function. The ratio of parameters b to c describes
the degeneracy. We find that: (1) a becomes larger with
decreasing xc and increasing density thresholds, (2) b be-
comes larger with increasing xc and decreases density
thresholds, and (3) c becomes more negative with in-
creasing xc and decreasing density thresholds.

To quantify how the disruption timescale depends on
the soliton mass, Fig. 5 shows the best fit lines using
Eq. 18 for specific values of κ̃. Over the range of masses
and xc we use, a 9% increase in soliton mass can increase
the disruption time by up to a factor of 4.5 depending
on the value of xc and the density cutoff. This strong
dependence on soliton mass results from the sharp tran-
sition to runaway disruption below a critical density ra-

2 Although this functional form fits our simulation results well, it
is not obviously physically motivated. For example, a power-
law relation also describes the results of our simulations reason-
ably well. Regardless of the fitting function, the degeneracy be-
tween self-interaction strength and soliton mass that we present
is largely unaffected.

tio (see Section III). We leave a detailed exploration of
this dependence across a wider range of soliton masses
and self-interaction strengths, and including NFW out-
skirts (see Appendix B), to future work. Similarly, Fig. 6
shows how the self-interaction strength affects the dis-
ruption timescale for a given soliton mass. Going from
κ̃ = 5 to κ̃ = −5 (getting more attractive), the disrup-
tion time increases up to 100% depending on xc and the
density cutoff. Both sets of results indicate that Eq. 18
is a reasonable fit to our simulation results.

These results suggest that there is a degeneracy be-
tween soliton mass and self-interaction strength when
determining soliton disruption timescales. In order to
gain intuition for this degeneracy, note that attractive
(repulsive) self-interactions work to enhance (diminish)
the effects of the soliton’s own gravity. In this way, the
same disruption timescale can be achieved by making
self-interactions more attractive and reducing the soliton
mass, or vice versa. Fig. 7 illustrates how different combi-
nations of soliton mass and self-interaction strength can
yield the same disruption timescale. The points in Fig. 7
are extracted from our simulations, while the contours
correspond to the best fit surface generated using Eq. 18.

Based on Eq. 18, we can estimate the size of the degen-
eracy between soliton mass and self-interaction strength
by requiring that

bM̃0,1 + cκ̃1 = bM̃0,2 + cκ̃2, (19)

which leads to

r ≡ b

c
=

κ̃2 − κ̃1
M̃0,1 − M̃0,2

. (20)
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FIG. 6: Dependence of disruption time on
self-interaction strength and orbital radius. Here the
soliton mass is 1.08× 108M�. The density cutoff in this
plot is 50%. Points of the same color represent orbits
with the same orbital radius. The error bars represent
the maximum uncertainty in survival time given our
temporal resolution. The black line represents the
Hubble time. Making the self-interaction more
attractive and extending the orbital radius both make
the soliton more difficult to disrupt.
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FIG. 7: Disruption time as a function of soliton mass
and self-interaction strength. Here the orbital energy is
xc = 0.9 and the density cutoff is 50%. The points on
the plot represent results from indivudual simulations.
The best-fit surface given by Eq. 18 is shown, where the
color represents the disruption time. This demonstrates
the degeneracy between different combinations of κ̃ and
the soliton mass that give the same disruption time.

The parameter, r, becomes more negative with increas-
ing xc and increasing density cutoff but has little vari-
ation overall. In particular, r approaches −2.4 as the
measured disruption time increases (either by extending
the density cutoff or increasing xc). This dependence di-
minishes as xc increases. A summary of these results are
found in Table II.

Breaking this degeneracy is important in order to facil-
itate robust constraints on ULA dark matter, including
its potential self-interactions, using observations of small-
scale structure at late times. At fixed ULA particle mass,
the simplest way to isolate the effects of self-interactions
on solitons’ orbital evolution would be to measure the
masses of these solitons, or, alternatively, properties of
solitons that correlate with soliton mass such as the soli-
ton radius or central density. On the other hand, given a
measurement of the self-interaction strength, the soliton
mass could be inferred from observational estimates of
the disruption timescale for low-mass solitons.

Note that the ULA particle mass can be adjusted in-
dependently of soliton mass and self-interaction strength.
Thus, we performed several simulations with a particle
mass of m = 2× 10−22 eV (recall that our fiducial simu-
lations assume m = 10−22 eV). We find that, for a fixed
soliton mass, increasing the particle mass increases the
disruption timescale coherently across all self-interaction
strengths. This is to be expected as the soliton’s central
density increases with particle mass, making the soliton
more difficult to disrupt. This does not significantly af-

fect the soliton mass–self-interaction degeneracy reported
above.

VI. DISCUSSION

This work serves as a first step toward a systematic
study of subhalo and soliton evolution in ULA cosmolo-
gies. We now discuss various aspects of this first study
that need to be addressed to enable more robust predic-
tions. First, we have mainly considered isolated solitonic
profiles herein; as discussed above, a more realistic sce-
nario will be to initialize the central soliton in an ex-
tended NFW profile. As indicated by the results in Ap-
pendix B, the presence of additional matter in the out-
skirts delays the disruption of the central soliton. How-
ever, since the self-interactions are most important in the
central regions of solitons, the trend with self-interaction
strength is likely more robust; we plan to quantify this
in detail in future work.

Second, we have not included baryons (or gravitational
potentials representing baryonic components) in our sim-
ulations, which must be incorporated in a more complete
analysis. Baryonic physics could manifest in multiple
ways in such a study; for example, the presence of a
non-negligible baryonic component can lead to adiabatic
contraction in the solitons themselves, potentially mak-
ing them more resilient to tidal disruption. In analogy
to the response of self-interacting dark matter halos to
baryons [72–74], this effect may be enhanced in the pres-
ence of ULA self-interactions. The presence of a central
baryonic disk in the host halo can also have important
effects on disruption times, as has been demonstrated in
CDM and SIDM simulations [75–77].

For a full characterization of ULA subhalo and soliton
populations in a cosmological context, it is also crucial
to sample the evolution and disruption of these systems
over the full parameter space of possible orbits, which we
were not able to achieve in this study due to resolution
limitations (see Fig. 1). Note that this is an issue for

xc Density Cutoff r

0.7 0.50 -1.5
0.7 0.25 -1.9
0.7 0.10 -2.1
0.7 0.05 -2.0
0.8 0.50 -2.0
0.8 0.25 -2.2
0.8 0.10 -2.3
0.8 0.05 -2.3
0.9 0.50 -2.3
0.9 0.25 -2.4
0.9 0.10 -2.4
0.9 0.05 -2.4

TABLE II: Dependence of the degeneracy parameter
(Eq. 20) on the density cutoff and xc. The ratio r of
parameters b to c remains fairly constant.
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all solvers of this type, rather than a limitation specific
to UltraDark.jl. There are multiple distinct possible
paths forward. One is to continue using static, isolated
hosts, while varying the masses and trajectories of the
infalling subhalos, as in done in, e.g., [62, 69]. Such an
approach is the most straightforward generalization of
this study, but to do so, the numerical issues that have
been highlighted in Sec. IV must be addressed so that
subhalos on orbits with small pericenters can be faith-
fully modeled. The other approach is to use simulations
with cosmological initial conditions, where the evolution
of both the host and the infalling subhalos are consis-
tently tracked over the entire history. Within such an
approach, it is possible to either zoom in on the evolution
of particular hosts with very high resolution, or consider
the (lower-resolution) subhalo populations of all hosts in
a chosen mass range within the simulation volume. We
will address these issues in future work.

One of the central results of the present work is char-
acterizing the degeneracy between the soliton mass and
the self-interaction strength of the ULA in terms of dis-
ruption time in a central potential. This has deep im-
plications for the use of the subhalo populations as a
probe of ultralight dark matter. In particular, analyz-
ing data without accounting for the possible presence of
self-interactions can bias inferences about the mass of the
central soliton, and in turn the particle mass of an ULA
dark matter candidate. Further, this suggests that to
disentangle the effects of the soliton mass and the self-
interaction strength, we need to consider—in addition to
subhalo abundances and density profiles—other observ-
ables that do not share the same degeneracy direction.
For example, self-interactions may affect structure for-
mation at early times, as encoded in the linear matter
power spectrum (e.g., [45]), relative to a corresponding
ULA model with the same particle mass but without self-
interactions. Complementary cosmological observables
including the small-scale matter power spectrum, clus-
ter mergers [36], the expansion history and number of
relativistic degrees of freedom in the early universe [61],
and the primordial gravitational wave background [78]
may further differentiate ULA models with and without
self-interactions.

VII. CONCLUSION

In this work, we have shown how self-interactions in
an ultralight dark matter model are capable of affecting
soliton disruption times. We have done this by running
simulations in UltraDark.jl that models a ≈ 108M�
soliton in a circular orbit around a 1011M� host. Our
results indicate that self-interactions can significantly im-
pact soliton disruption timescales at fixed ultra-light ax-
ion (ULA) particle mass and soliton mass for astrophys-
ically relevant orbital configurations. Our main results
are summarized below.

• We find that ULA self-interaction strength and sign

affect soliton disruption, such that solitons disrupt
more (less) efficiently for repulsive (attractive) self-
interactions.

• For plausible variations in the dimensionless
ULA self-coupling κ̃, soliton disruption timescales
change by about 30% at fixed soliton mass and orb-
tal configuration.

• We identify a degeneracy between the self-
interaction strength and the soliton mass in deter-
mining the disruption time.

• Bare solitons with a central density below a cer-
tain threshold of the host halo’s density within the
orbital radius disrupt in � 1 Gyr, even with rel-
atively strong attractive self-interactions, corrobo-
rating previous results (e.g., [54]).

Our results indicate that the effects of ULA self-
interactions should be accounted for to accurately model
solitons’ nonlinear evolution within larger host halos.
Conversely, neglecting the effects of self-interactions may
lead to biased inferences on the properties of solitons and
on the ULA mass. Joint inferences of the ULA particle
mass and self-interactions therefore represent an impor-
tant area for future work. Furthermore, our results qual-
itatively suggest that the internal structure of surviving
solitons can be affected by self-interactions, which may
alter the density profiles and core–halo mass relations as-
sumed when fitting inferred dwarf galaxy density profiles
(e.g., [79, 80])

These considerations are particularly important given
imminent advances in the precision of small-scale struc-
ture measurements. For example, over the next two
decades, the Vera C. Rubin Observatory and the Nancy
Grace Roman Space Telescope are expected to dramat-
ically expand the populations of stellar streams, ultra-
faint dwarf galaxies, and strong gravitational lenses avail-
able for detailed follow-up studies. In this way, these fa-
cilities will precisely measure the abundance and proper-
ties of small halos and subhalos on scales that originally
motivated ULA dark matter [8–10, 81, 82]. Our work
takes a new step towards constructing a robust model
of small-scale structure in realistic ULA particle models,
which will be necessary to interpret these exciting obser-
vations.
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Appendix A: Resolution Tests

In order to verify that the disruption times we cal-
culated do not change significantly at resolutions higher
than our fiducial choice of 512 grid cells per side, we per-
formed several simulations at varying resolutions. For
these tests, we adopt a soliton mass of 1.13 × 108 M�,
xc = 0.8, and two self-interaction models: κ̃ = −2.5 and
κ̃ = −5. We chose these parameters because the disrup-
tion times at our fiducial resolution were relatively short.
In particular, since the simulation run time scales as the
number of grid cells per side cubed, simulations with very
large disruption times take an infeasible amount of com-
puting resources for very high-resolution runs.

We tested these simulations at resolutions of 384, 512,
640, an 768 grid cells per side. At a resolution of 384, the
maximum velocity criterion (Eq. 14) was violated and no

FIG. 8: The evolution of soliton peak density for
different simulation resolutions, labeled by the number
of grid cells per side. All simulation shown here use
Msol = 1.13× 108 M�, xc = 0.8, and κ̃ = −5.0. The
disruption times calculated at our fiducial resolution of
512 grid cells per side are stable at the 1% level for
higher-resolution runs. Note that the peak density
cannot be calculated meaningfully at a resolution of 384
grid cells per side because the maximum velocity
criterion (Eq. 14) is violated for this soliton and orbital
configuration.

meaningful disruption timescale could be calculated. At
resolutions of 512 and above, we found that the calcu-
lated disruption time differed by at most 1%. Fig. 8
demonstrates this by showing the evolution of soliton
peak density for the resolutions we tested. Thus, we con-
clude that our fiducial results are not significantly impact
by resolution.

Appendix B: Adding an NFW Region

In cosmological simulations of ULAs, subhalos are ex-
pected to form with a solitonic core and an NFW outer
region [24, 26]. Previous studies indicate that adding
an outer NFW region around a central soliton causes a
tidally evolving soliton to survive for significantly longer
than “bare” solitons [55]. We test this in our simula-
tions by adding an outer profile to our solitons using the
density profile

ρNFW(r) =
ρ0

r
rs

(
1 + r

rs

)2 . (B1)

Here, rs is the scale radius of the NFW profile and ρ0 is
given by

ρ0 = ρsol(rt)
rt
rs

(
1 +

rt
rs

)2

, (B2)

where rt is the transition radius and ρsol is the soliton’s
density at the transition radius.

FIG. 9: The evolution of the peak density for a
combined soliton-NFW profile in the presence of
attractive (blue) versus repulsive (green)
self-interactinos. These simulations use xc = 0.8 and a
soltion mass of 5.5× 107M�. The dashed (dot-dashed)
vertical line represents the 50% (5%) density threshold
relative to the initial peak density. For each
self-interaction model, the region between the dashed
and dot-dashed lines corresponds to the disruption
phase.
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FIG. 10: Projected density distributions in the orbital plane from simulations where a soliton is tidally disrupted in
the presence of attractive self-interactions with κ̃ = −5.0 (left) and κ̃ = −2.5 (center), and with no self-interactions
(right) Note that the second density peak (i.e., the tidal tail of the stripped soliton) is increasingly coherent for
stronger attractive self-interactions. In each simulation, the soliton mass is 1.13 × 108M� and xc = 0.8.

We added this profile to the solitonic profile two dif-
ferent ways. First, we added the profiles together in a
piecewise fashion, with a transition from soliton to NFW
profiles at rt. Adding the profiles in this way created
a discontinuity in the slope of the density profile at the
transition radius. As a result of this discontinuity, the
NFW region in these simulations appeared to separate
from the soliton. To alleviate this effect, we performed
another set of simulations where the soliton and NFW
profiles were simply added together. In this case, the in-
ner regions are dominated by the soliton profile and the
outer regions are dominated by the NFW profile. This
method created a smooth profile while increasing the to-
tal mass in the inner regions.

We ran several simulations with this combined pro-
file with different self-interactions and found that adding
the NFW region increased the lifetimes of the solitons in
each scenario. We also found that the qualitative effects
of self-interactions on soliton’s disruption times remained
unchanged. In particular, at fixed soliton mass and or-
bital parameters, we find the solitons survive longer in
the presence of attractive self-interactions in comparison
to models with with repulsive self-interactions even when
an outer NFW region is included in our simulations.

As an example, the evolution of the peak density for a
set of sample simulation is in Fig. 9. Note that in these
simulations, we use a smaller soliton mass to reduce the
disruption time because adding the NFW region extends
the soliton lifetime significantly. In this example simu-
lation, we find that disruption timescales are increased
by ∼ 50% for ULA models with attractive versus repul-
sive self-interactions. In comparison, our fiducial simula-

tions with larger soliton mass and no NFW region exhibit
a factor of ∼ 2 difference among disruption timescales
in attractive versus repulsive self-interaction models (see
Fig. 3). Exploring how the impact of self-interactions
depends on the entire extent of the soliton profile over a
wider range of soliton masses is therefore an interesting
avenue for future work.

In Fig. 9, we also see that the shapes of the peak den-
sity curves look different than those in Fig. 3. This is
caused by how the initial profiles were initialized. With-
out the NFW region, the soliton starts out close to equi-
librium. When we include the NFW region, the system
starts much further from equilibrium. The added mass
in the central region causes the soliton/NFW profile to
collapse initially, and explains the sharp increase in the
maximum density. After this, the soliton/NFW profile
oscillates in size until it disrupts.

Appendix C: Tidal Tails of Stripped Solitons

In our simulations, gaps often appear in the tails of soli-
tons’ stripped matter (e.g., see Fig. 2). These tidal tails
result in “self-friction,” i.e., they apply a torque to the
main body of the soliton, causing its rotation to slow [83].
Interestingly, the clumpiness of the tidal tails is often
enhanced for simulations performed with attractive self-
interactions. This effect can be seen in Fig. 10, which
demonstrates that, as self-interactions become more at-
tractive, the second density peak associated with the soli-
ton’s tidal tail becomes more coherent.
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[37] V. Iršič, M. Viel, M. G. Haehnelt, J. S. Bolton, and

G. D. Becker, Phys. Rev. Lett. 119, 031302 (2017),
arXiv:1703.04683 [astro-ph.CO].

[38] E. Armengaud, N. Palanque-Delabrouille, C. Yèche,
D. J. E. Marsh, and J. Baur, Mon. Not. Roy. Astron.
Soc. 471, 4606 (2017), arXiv:1703.09126 [astro-ph.CO].

[39] P. S. Corasaniti, S. Agarwal, D. J. E. Marsh, and S. Das,
Phys. Rev. D 95, 083512 (2017), arXiv:1611.05892 [astro-
ph.CO].

[40] M. Safarzadeh and D. N. Spergel, (2019), 10.3847/1538-
4357/ab7db2, arXiv:1906.11848 [astro-ph.CO].

[41] K. Schutz, Phys. Rev. D 101, 123026 (2020),
arXiv:2001.05503 [astro-ph.CO].

[42] K. K. Rogers and H. V. Peiris, Phys. Rev. Lett. 126,
071302 (2021), arXiv:2007.12705 [astro-ph.CO].

[43] E. O. Nadler et al. (DES), Phys. Rev. Lett. 126, 091101
(2021), arXiv:2008.00022 [astro-ph.CO].

[44] N. Dalal and A. Kravtsov, (2022), arXiv:2203.05750
[astro-ph.CO].

[45] P. R. Shapiro, T. Dawoodbhoy, and T. Rindler-
Daller, Mon. Not. Roy. Astron. Soc. 509, 145 (2021),
arXiv:2106.13244 [astro-ph.CO].

[46] T. Dawoodbhoy, P. R. Shapiro, and T. Rindler-
Daller, Mon. Not. Roy. Astron. Soc. 506, 2418 (2021),
arXiv:2104.07043 [astro-ph.CO].

[47] S. Chakrabarti, B. Dave, K. Dutta, and G. Goswami,
(2022), arXiv:2202.11081 [astro-ph.CO].

[48] P. H. Chavanis and L. Delfini, Phys. Rev. D 84, 043532
(2011), arXiv:1103.2054 [astro-ph.CO].

[49] V. Desjacques, A. Kehagias, and A. Riotto, Phys. Rev.
D 97, 023529 (2018), arXiv:1709.07946 [astro-ph.CO].

[50] D. Gilman, S. Birrer, T. Treu, A. Nierenberg, and
A. Benson, Mon. Not. Roy. Astron. Soc. 487, 5721
(2019), arXiv:1901.11031 [astro-ph.CO].

[51] E. O. Nadler et al. (DES), Astrophys. J. 893, 48 (2020),
arXiv:1912.03303 [astro-ph.GA].

[52] N. Banik, J. Bovy, G. Bertone, D. Erkal, and T. J. L.
de Boer, Mon. Not. Roy. Astron. Soc. 502, 2364 (2021),
arXiv:1911.02662 [astro-ph.GA].

[53] N. Dalal and A. Kravtsov, arXiv e-prints ,
arXiv:2203.05750 (2022), arXiv:2203.05750 [astro-
ph.CO].

[54] X. Du, B. Schwabe, J. C. Niemeyer, and D. Bürger,
Phys. Rev. D 97, 063507 (2018), arXiv:1801.04864 [astro-
ph.GA].

[55] H.-Y. Schive, T. Chiueh, and T. Broadhurst, Phys.
Rev. Lett. 124, 201301 (2020), arXiv:1912.09483 [astro-
ph.GA].

[56] X. Li, L. Hui, and T. D. Yavetz, Phys. Rev. D 103,
023508 (2021), arXiv:2011.11416 [astro-ph.CO].

http://dx.doi.org/10.1103/RevModPhys.90.045002
http://dx.doi.org/10.1103/RevModPhys.90.045002
http://dx.doi.org/10.1051/eas/0936016
http://arxiv.org/abs/0812.4005
http://dx.doi.org/10.1093/mnras/stz2310
http://arxiv.org/abs/1905.08103
http://dx.doi.org/10.1016/j.physrep.2018.07.003
http://dx.doi.org/10.1016/j.physrep.2018.07.003
http://arxiv.org/abs/1712.06615
http://dx.doi.org/10.1088/1475-7516/2014/03/049
http://dx.doi.org/10.1088/1475-7516/2014/03/049
http://arxiv.org/abs/1309.6971
http://arxiv.org/abs/1902.01055
http://arxiv.org/abs/1902.01055
http://arxiv.org/abs/1903.04425
http://arxiv.org/abs/2202.12311
http://arxiv.org/abs/2203.07491
http://arxiv.org/abs/2203.07491
http://dx.doi.org/ 10.1103/PhysRevLett.124.101303
http://dx.doi.org/ 10.1103/PhysRevLett.124.101303
http://arxiv.org/abs/1910.08638
http://dx.doi.org/10.1103/PhysRevLett.122.121802
http://arxiv.org/abs/1803.01627
http://dx.doi.org/10.1103/PhysRevLett.38.1440
http://dx.doi.org/10.1103/PhysRevLett.38.1440
http://dx.doi.org/10.1103/PhysRevD.81.123530
http://arxiv.org/abs/0905.4720
http://dx.doi.org/10.1016/j.physrep.2016.06.005
http://arxiv.org/abs/1510.07633
http://dx.doi.org/10.1103/PhysRevD.42.384
http://dx.doi.org/10.1103/PhysRevLett.71.3051
http://dx.doi.org/10.1103/PhysRevLett.71.3051
http://arxiv.org/abs/hep-ph/9303313
http://dx.doi.org/10.1007/978-1-4615-1855-6_6
http://dx.doi.org/10.1007/978-1-4615-1855-6_6
http://dx.doi.org/10.1103/PhysRevLett.103.111301
http://dx.doi.org/10.1103/PhysRevLett.103.111301
http://arxiv.org/abs/0901.1106
http://dx.doi.org/10.1103/PhysRevD.92.103513
http://arxiv.org/abs/1412.5930
http://arxiv.org/abs/1412.5930
http://dx.doi.org/10.1103/PhysRevD.95.043541
http://arxiv.org/abs/1610.08297
http://arxiv.org/abs/1610.08297
http://dx.doi.org/10.1038/nphys2996
http://dx.doi.org/10.1038/nphys2996
http://arxiv.org/abs/1406.6586
http://dx.doi.org/ 10.1103/PhysRevLett.113.261302
http://dx.doi.org/ 10.1103/PhysRevLett.113.261302
http://arxiv.org/abs/1407.7762
http://dx.doi.org/10.1093/mnras/stv1050
http://dx.doi.org/10.1093/mnras/stv1050
http://dx.doi.org/10.1103/PhysRevD.101.083518
http://dx.doi.org/10.1103/PhysRevD.101.083518
http://arxiv.org/abs/1911.09614
http://dx.doi.org/10.1103/PhysRevD.94.043513
http://dx.doi.org/10.1103/PhysRevD.94.043513
http://arxiv.org/abs/1606.05151
http://dx.doi.org/ 10.1103/PhysRevD.102.083518
http://arxiv.org/abs/2007.08256
http://dx.doi.org/10.1103/PhysRevLett.128.181301
http://dx.doi.org/10.1103/PhysRevLett.128.181301
http://arxiv.org/abs/2110.09145
http://dx.doi.org/10.1103/PhysRevLett.85.1158
http://dx.doi.org/10.1103/PhysRevLett.85.1158
http://dx.doi.org/10.1016/0370-2693(83)90639-1
http://dx.doi.org/10.1103/PhysRevD.94.083007
http://arxiv.org/abs/1604.05904
http://dx.doi.org/10.1103/PhysRevD.104.083532
http://dx.doi.org/10.1103/PhysRevD.104.083532
http://arxiv.org/abs/2011.09510
http://dx.doi.org/10.1016/j.dark.2016.10.005
http://arxiv.org/abs/1603.06580
http://arxiv.org/abs/1603.06580
http://dx.doi.org/ 10.1103/PhysRevLett.119.031302
http://arxiv.org/abs/1703.04683
http://dx.doi.org/10.1093/mnras/stx1870
http://dx.doi.org/10.1093/mnras/stx1870
http://arxiv.org/abs/1703.09126
http://dx.doi.org/ 10.1103/PhysRevD.95.083512
http://arxiv.org/abs/1611.05892
http://arxiv.org/abs/1611.05892
http://dx.doi.org/10.3847/1538-4357/ab7db2
http://dx.doi.org/10.3847/1538-4357/ab7db2
http://arxiv.org/abs/1906.11848
http://dx.doi.org/10.1103/PhysRevD.101.123026
http://arxiv.org/abs/2001.05503
http://dx.doi.org/10.1103/PhysRevLett.126.071302
http://dx.doi.org/10.1103/PhysRevLett.126.071302
http://arxiv.org/abs/2007.12705
http://dx.doi.org/ 10.1103/PhysRevLett.126.091101
http://dx.doi.org/ 10.1103/PhysRevLett.126.091101
http://arxiv.org/abs/2008.00022
http://arxiv.org/abs/2203.05750
http://arxiv.org/abs/2203.05750
http://dx.doi.org/10.1093/mnras/stab2884
http://arxiv.org/abs/2106.13244
http://dx.doi.org/10.1093/mnras/stab1859
http://arxiv.org/abs/2104.07043
http://arxiv.org/abs/2202.11081
http://dx.doi.org/10.1103/PhysRevD.84.043532
http://dx.doi.org/10.1103/PhysRevD.84.043532
http://arxiv.org/abs/1103.2054
http://dx.doi.org/10.1103/PhysRevD.97.023529
http://dx.doi.org/10.1103/PhysRevD.97.023529
http://arxiv.org/abs/1709.07946
http://dx.doi.org/ 10.1093/mnras/stz1593
http://dx.doi.org/ 10.1093/mnras/stz1593
http://arxiv.org/abs/1901.11031
http://dx.doi.org/ 10.3847/1538-4357/ab846a
http://arxiv.org/abs/1912.03303
http://dx.doi.org/ 10.1093/mnras/stab210
http://arxiv.org/abs/1911.02662
http://arxiv.org/abs/2203.05750
http://arxiv.org/abs/2203.05750
http://dx.doi.org/10.1103/PhysRevD.97.063507
http://arxiv.org/abs/1801.04864
http://arxiv.org/abs/1801.04864
http://dx.doi.org/10.1103/PhysRevLett.124.201301
http://dx.doi.org/10.1103/PhysRevLett.124.201301
http://arxiv.org/abs/1912.09483
http://arxiv.org/abs/1912.09483
http://dx.doi.org/10.1103/PhysRevD.103.023508
http://dx.doi.org/10.1103/PhysRevD.103.023508
http://arxiv.org/abs/2011.11416


15

[57] J. Zhang, H. Liu, and M.-C. Chu, Front. Astron. Space
Sci. 5, 48 (2019), arXiv:1809.09848 [astro-ph.CO].

[58] S. May and V. Springel, Mon. Not. Roy. Astron. Soc.
506, 2603 (2021), arXiv:2101.01828 [astro-ph.CO].

[59] N. Musoke, “Ultradark.jl,” (2021).
[60] K. Kirkpatrick, A. E. Mirasola, and C. Prescod-

Weinstein, Phys. Rev. D 102, 103012 (2020),
arXiv:2007.07438 [hep-ph].

[61] B. Li, T. Rindler-Daller, and P. R. Shapiro, Phys. Rev.
D 89, 083536 (2014), arXiv:1310.6061 [astro-ph.CO].

[62] F. C. van den Bosch, G. Ogiya, O. Hahn, and A. Burk-
ert, Mon. Not. Roy. Astron. Soc. 474, 3043 (2018),
arXiv:1711.05276 [astro-ph.GA].

[63] F. Edwards, E. Kendall, S. Hotchkiss, and R. Easther,
JCAP 10, 027 (2018), arXiv:1807.04037 [astro-ph.CO].

[64] T.-P. Woo, Astrophys. J. 697, 850 (2009),
arXiv:0806.0232 [astro-ph].

[65] J. F. Navarro, C. S. Frenk, and S. D. M. White, Astro-
phys. J. 490, 493 (1997), arXiv:astro-ph/9611107.

[66] D. Erkal, V. Belokurov, C. F. P. Laporte, S. E. Koposov,
T. S. Li, C. J. Grillmair, N. Kallivayalil, A. M. Price-
Whelan, N. W. Evans, K. Hawkins, D. Hendel, C. Mateu,
J. F. Navarro, A. del Pino, C. T. Slater, S. T. Sohn, and
Orphan Aspen Treasury Collaboration, Mon. Not. Roy.
Astron. Soc. 487, 2685 (2019), arXiv:1812.08192 [astro-
ph.GA].

[67] N. Shipp, D. Erkal, A. Drlica-Wagner, T. S. Li, A. B.
Pace, S. E. Koposov, L. R. Cullinane, G. S. Da Costa,
A. P. Ji, K. Kuehn, G. F. Lewis, D. Mackey, J. D. Simp-
son, Z. Wan, D. B. Zucker, J. Bland-Hawthorn, P. S.
Ferguson, S. Lilleengen, and S. Lilleengen, Astrophys. J.
923, 149 (2021), arXiv:2107.13004 [astro-ph.GA].

[68] N. Kallivayalil, L. V. Sales, P. Zivick, T. K. Fritz, A. Del
Pino, S. T. Sohn, G. Besla, R. P. van der Marel, J. F.
Navarro, and E. Sacchi, Astrophys. J. 867, 19 (2018),
arXiv:1805.01448 [astro-ph.GA].

[69] G. Ogiya, F. C. van den Bosch, O. Hahn, S. B. Green,
T. B. Miller, and A. Burkert, Mon. Not. Roy. Astron.
Soc. 485, 189 (2019), arXiv:1901.08601 [astro-ph.GA].

[70] L. Lancaster, C. Giovanetti, P. Mocz, Y. Kahn,
M. Lisanti, and D. N. Spergel, JCAP 01, 001 (2020),

arXiv:1909.06381 [astro-ph.CO].
[71] R. Errani and J. F. Navarro, Mon. Not. Roy. Astron. Soc.

505, 18 (2021), arXiv:2011.07077 [astro-ph.GA].
[72] A. B. Fry, F. Governato, A. Pontzen, T. Quinn, M. Trem-

mel, L. Anderson, H. Menon, A. M. Brooks, and J. Wad-
sley, Mon. Not. Roy. Astron. Soc. 452, 1468 (2015),
arXiv:1501.00497 [astro-ph.CO].

[73] O. D. Elbert, J. S. Bullock, M. Kaplinghat, S. Garrison-
Kimmel, A. S. Graus, and M. Rocha, Astrophys. J. 853,
109 (2018), arXiv:1609.08626 [astro-ph.GA].

[74] O. Sameie, M. Boylan-Kolchin, R. Sanderson, D. Var-
gya, P. F. Hopkins, A. Wetzel, J. Bullock, A. Graus,
and V. H. Robles, Mon. Not. Roy. Astron. Soc. 507, 720
(2021), arXiv:2102.12480 [astro-ph.GA].

[75] S. Garrison-Kimmel, A. Wetzel, J. S. Bullock, P. F.
Hopkins, M. Boylan-Kolchin, C.-A. Faucher-Giguère,
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