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RESUMO 

Brathys e Trigynobrathys (88 e 59 representantes, respectivamente) são as duas maiores 

seções do gênero Hypericum que são distribuídos principalmente na América Central e 

América do Sul. Das mais de 100 espécies sul-americanas de Hypericum quase 65 são 

endêmicas dos Páramos, ecossistemas de alta altitude, caracterizados por uma vegetação 

composta principalmente de plantas de roseta gigantes, arbustos e gramíneas, nos quais 

Hypericum é um componente importante. Tendo em vista o escasso conhecimento da 

fitoquímica destas espécies de Hypericum, o presente estudo teve como objetivo estudar a 

composição fitoquímica e algumas bioatividades de seis espécies de Hypericum nativas do 

Peru (H. aciculare, H. andinum, H. brevistylum, H. decandrum, H. laricifolium e H. 

silenoides). O material vegetal, seco ao ar, das seis espécies (partes aéreas, caules, folhas e 

flores), e material vegetal subterrâneo de H. andinum (raízes e caules), foram moídas e 

extraídas por maceração à temperatura ambiente com n-hexano. Além disso, foram obtidos 

extrato etanólicos a partir de quatro espécies (H. andinum, H. brevistylum, H. laricifolium e 

H. silenoides). Os extratos n-hexano foram fracionados e as frações foram sometidas a 

processos cromatográficos obtendo-se cinco derivados de floroglucinol diméricos conhecidos, 

uliginosina A, uliginosina B, isouliginosina B, hiperbrasilol B e isohiperbrasilol B. Além 

disso, foram identificadas duas estruturas monoméricas e duas diméricas inéditas em H. 

andinum (raízes) e em H. laricifolium, andinina A, hiperlaricifolina A, laricifolina A e 

laricifolina B. Andinina A mostrou potencial atividade antidepressiva no teste de natação 

forçada. Do mesmo modo, a atividade antidepressiva dos extratos etanólicos foi avaliada. 

Estes quatro extratos apresentaram potencial atividade antidepressiva. As análises 

fitoquímicas por TLC, HPLC-DAD e UPLC-DAD/Q-TOF-MS revelaram que estes extratos 

são ricos em flavonoides, principalmente hiperosídeo. Os extratos n-hexano foram também 

analisados por um novo método de HPLC-DAD associado a LC-MS e UPLC-Q-TOF-MS . A 

presença de homólogos superiores M + 14 e regioisómeros foi determinada. A ocorrência 

natural destes cinco floroglucinois homólogos superiores M + 14 é descrita e a presença de 

outros compostos identificados pelo padrão de fragmentação MS é apresentada. Estes extratos 

e o seu principal componente foram capazes de inibir potencialmente a quimiotaxia induzida 

por LPS. Estes resultados sugerem que os extratos de espécies de Hypericum das seções 

Brathys e Trigynobrathys são fontes potenciais de novos anti-inflamatórios e antidepressivos. 

Palavras-chave: Hypericum, Páramos Peruanos, atividade de tipo antidepressiva, atividade 

antiquimiotática, acilfloroglucinois diméricos, flavonoides. 
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ABSTRACT 

Brathys and Trigynobrathys (88 and 59 representatives, respectively) are the two largest 

sections of the genus Hypericum that are principally distributed in Central and South 

America. Of the more than 100 South American species of Hypericum almost 65 are endemic 

to the Páramos, high-altitude grassland ecosystems characterized by vegetation composed 

mainly of giant rosette plants, shrubs and grasses, in which Hypericum is a prominent 

component. In view of the scare knowledge on the phytochemistry of these Hypericum 

species, the present research aimed to study the phytochemical composition and some 

bioactivities of six Peruvian Hypericum species (H. aciculare, H. andinum, H. brevistylum, H. 

decandrum, H. laricifolium and H. silenoides). The air-dried aerial plant material of those six 

species (stems, leaves and flowers), and underground plant material of H. andinum (roots and 

stems), were ground and extracted by maceration at room temperature with n-hexane. 

Additionally crude ethanolic extracts were obtained from four species (H. andinum, H. 

brevistylum, H. laricifolium and H. silenoides). The n-hexane extracts were fractionated, and 

fractions were further processed by chromatographic procedures to yield five known dimeric 

acylphloroglucinol derivatives uliginosin A, uliginosin B, isouliginosin B, hyperbrasilol B 

and isohyperbrasilol B. In addition, two monomeric and two dimeric acylphloroglucinol 

structures were identified in H. andinum (roots extract) and H. laricifolium for the first time, 

andinin A, hyperlaricifolin A, laricifolin A and laricifolin B. Andinin A showed potential 

antidepressant-like activity in the forced swimming test. Similarly, the antidepressant-like 

activity of the crude ethanolic extracts was assessed. These four extracts possessed a potential 

antidepressant-like activity. The phytochemical analyses by TLC, HPLC-DAD and UPLC-

DAD/Q-TOF-MS revealed that the extracts were rich in flavonoids, principally hyperoside. 

The n-hexane extracts were also analyzed by a new HPLC-DAD fingerprint method 

associated with LC-MS and UPLC-Q-TOF-MS. The presence of M + 14 higher homologues 

and regioisomers could be distinguished. The natural occurrence of these five M + 14 higher 

homologues is described and the presence of other compounds identified by their MS 

fragmentation pattern is presented. These extracts and their main dimeric acylphloroglucinol 

component were able to potently inhibit the LPS-induced chemotaxis on rat PMN. These 

results suggest that extracts of Hypericum species from sections Brathys and Trigynobrathys 

are potential sources of new anti-inflammatory and antidepressant molecules. 

Keywords: Hypericum, Peruvian Páramos, antidepressant-like activity, antichemotactic 

activity, dimeric acylphloroglucinols, flavonoids. 
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As espécies do gênero Hypericum (Hypericaceae) têm uma distribuição principal em 

regiões temperadas, mas também podem ser encontradas em regiões tropicais do mundo, 

particularmente na América do Sul e na África (ROBSON, 2003). A Cordilheira Americana é 

uma série quase ininterrupta de uma gama de montanhas que se encontra do Alasca aos 

Andes, que se estende para o extremo sul da América do Sul. Os picos mais elevados 

encontrados na Costa Rica e Panamá pertencem à Cordilheira de Talamanca, já os picos mais 

elevados na Colômbia, Equador, Venezuela, Peru e Bolívia, pertencem à Cordilheira dos 

Andes da América do Sul (CROCKETT et al., 2010). Nesses países, na faixa de altitudes 

entre 3000 - 5000 m, acima da linha das árvores, mas abaixo da linha de neve, encontra-se um 

tipo de vegetação específico chamado de Páramo, caracterizado por grandes Asteraceae (tais 

como Espeletia), almofadas (Werneria), gramíneas (Calamagrostis) e arbustos verdes 

espalhados (incluindo Hypericum). O conhecimento sobre as espécies de Hypericum que 

ocorrem nessas regiões ainda é disperso e escasso, em parte devido à elevada proporção de 

endemismo e os resultantes padrões de distribuição restritos (CROCKETT et al., 2010). 

 

 

As quase 500 espécies de Hypericum de ocorrência no mundo inteiro foram divididas 

em 36 seções taxonômicas com base em características morfológicas (ROBSON, 2003; 

ROBSON, 2012). A maioria das espécies de Hypericum nativas das regiões montanhosas na 

América do Sul pertence à seção taxonômica Brathys e, em menor extensão, Trigynobrathys. 

A seção Brathys compreende 88 espécies de arbustos (raramente árvores pequenas) 

subarbustos e ervas anuais pequenas (raramente perenes) distribuídas principalmente em dois 

centros: Belize e Cuba, e a fronteira da Venezuela com a Colômbia. A partir desta ultima área 

tem se irradiado espécies, principalmente arbustivas, para o leste de Roraima (Brasil), para o 

oeste de Costa Rica, e ao sudoeste ao longo dos Andes e Bolívia. Igualmente, a seção 

Trigynobrathys inclui 59 espécies de arbustos, subarbustos, bem como ervas perenes e anuais. 
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A principal área de especiação é o sudeste do Brasil, com uma radiação primária para o norte 

e leste do Brasil, sudoeste dos EUA, sul do Uruguai e norte da Argentina, ao oeste da Bolívia 

e do Peru, e norte do Chile e daí para o norte ao longo da Cordilheira dos Andes, ao sul da 

Colômbia e as Ilhas Galápagos, para a Nova Zelândia, Austrália, Nova Caledônia e Nova 

Guiné e ocorrência dispersa no sudoeste da Ásia (ROBSON; 1987; ROBSON; 1990, 

ROBSON, 2012). 

 

 

Nas regiões montanhosas dos Páramos Peruanos têm sido relatadas pelo menos 14 

espécies de Hypericum (CROCKETT et al., 2010), sendo que as espécies H. aciculare Kunth 

(Figura 1), H. andinum Gleason (Figura 2), H. decandrum Turcz (Figura 3), H. laricifolium 

Juss , (Figura 4) (seção Brathys), H. brevistylum Choisy (Figura 5) e H. silenoides Juss 

(Figura 6), (seção Trigynobrathys) têm sido relatadas em diversas áreas geográficas do Peru. 

 

 

  

Figura 1. Distribuição e representação de Hypericum aciculare (▲): Equador (Azuay, Loja), Peru (Piura, 

Amazonas) (ROBSON, 1987). Nomes comuns e usos tradicionais: No distrito de Huancabamba a planta é 

conhecida como ‘Hierba de las Cordilleras’, ‘Lechuguilla’, ‘Hierba de Iman’. As folhas e flores são utilizadas 

em febre e processos inflamatórios (BUSSMANN e GLENN, 2010).  
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Figura 2. Distribuição de Hypericum andinum (▲): Peru (La Libertad, Junín, Huancavelica, Cusco, Puno), 

Bolívia (La Paz, Cochabamba, Santa Cruz) (ROBSON, 1987). Nomes comuns e usos tradicionais: Não há 

relatos na literatura. Na localidade de Amparaes é conhecida como ‘Chinchimali’, as raízes bem como as folhas 

e flores são utilizadas em cozimento como anti-inflamatório renal (comunicação pessoal com habitantes locais). 

 

 

  

Figura 3. Distribuição e representação de Hypericum decandrum (●): Equador (Em localidades dispersas de 

Carchi a Loja), Peru (Amazonas) (ROBSON, 1987). Nomes comuns e usos tradicionais: Não há relatos na 

literatura. 



6 
 
 

  

Figura 4. Distribuição e representação de Hypericum brevistylum (●): Colômbia (Cundinamarca, Valle de 

Cauca), Equador, Peru (Huánuco e Ancash até Puno), Bolívia (La Paz, Cochabamba, Tarija), Argentina (Jujuy e 

Salta) (ROBSON, 1990). Nomes comuns e usos tradicionais: Não há relatos na literatura. 

 

 

   

Figura 5. Distribuição e representação de Hypericum laricifolium (●): Desde o oeste da Venezuela (Lara, 

Trujillo, Mérida, Zulia), através da cordilheira central e oriental da Colômbia e Equador até o Peru (Huánuco, 

Ancash) (ROBSON, 1987). Nomes comuns e usos tradicionais: No departamento de Cajamarca esta espécie é 

conhecida como ‘Chinchanga ou Chinchango’ (BUSSMANN et al., 2010). A decocção de talos e folhas é 

utilizada para tingir de cor amarela o algodão e a lã; também é utilizada para o tratamento de verrugas tópicas. 
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Figura 6. Distribuição e representação de Hypericum silenoides (●): Chile (Antofagasta), Peru (Arequipa até 

Lima, Cajamarca e Piura até Cuzco), Equador, Colômbia (Nariño, Cauca, Antioquia), Bolívia, Argentina (Jujuy 

até Córdoba) (ROBSON, 1990). Nomes comuns e usos tradicionais. No distrito de Morropón, departamento de 

Piura é conhecida como “corazoncillo” e “hierva de la rabia”. No vale do rio Ocoña, distrito de Parinacochas, 

departamento de Ayacucho é conhecido como “sunchito”. Seus usos não tem sido relatados. 

 

 

Em contraste com o amplamente utilizado H. perforatum, as espécies das regiões dos 

Páramos da América Central e América do Sul têm sido raramente examinadas do ponto de 

vista químico (CROCKETT et al., 2010). No entanto, vários estudos de espécies, pertencentes 

às seções Brathys e Trigynobrathys que ocorrem em altitudes mais baixas no Sul do Brasil 

foram publicados. Estes incluem relatos da presença de flavonoides, xantonas e derivados de 

floroglucinol a partir das folhas e flores de H. brasiliense Choisy (ROCHA et al., 1994, 

ROCHA et al., 1994; ROCHA et al., 1996), benzopiranos das partes aéreas de H. 

polyanthemum Klotzsch ex Reichardt (FERRAZ et al., 2001), derivados de floroglucinol de 

H. myrianthum Cham. & Schlecht. (FERRAZ et al., 2002a), H. carinatum Griseb., H. 

polyanthemum, H. caprifoliatum Cham. & Schlecht. e H. connatum Lam. (NÖR et al., 2004), 

derivados de benzofenona de H. carinatum (BERNARDI et al., 2005) e flavonoides de H. 
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ternum A. St.-Hil (BERNARDI et al., 2007). Além disso, taninos e óleos essenciais foram 

pesquisados em algumas espécies (DALL'AGNOL et al., 2003; FERRAZ et al., 2005a) e a 

ausência de hipericinas foi verificada em oito espécies analisadas  pelos métodos 

cromatográficos de TLC e HPLC (FERRAZ et al., 2002b). 

 

 

Em virtude da escassez de dados na literatura sobre a composição química das 

espécies do gênero Hypericum dos Páramos, o presente estudo teve como objetivo geral o 

estudo de seis espécies de Hypericum nativas do Peru, com ênfase no isolamento e 

identificação de compostos fenólicos assim como a determinação de algumas atividades 

biológicas. Visando um ordenamento dos assuntos abordados, o trabalho está dividido em 

quatro capítulos:  

 

 

O Capítulo 1 apresenta uma revisão da ocorrência e as propriedades analíticas mais 

importantes de derivados acilfloroglucinol diméricos, compostos fenólicos relatados 

para o gênero Hypericum, apenas nas seções Brathys e Trigynobrathys. Além disso, 

apresenta-se resultados de isolamento de derivados acilfloroglucinol diméricos 

conhecidos, mas obtidos de novas fontes, em extratos lipofílicos de quatro espécies de 

Hypericum nativas dos Páramos do Peru. O significado quimiotaxonômico destes 

achados é discutido. 

 

O Capitulo 2 apresenta o isolamento e elucidação estrutural por técnicas 

espectroscópicas (UV-Vis, 1D e 2D NMR) e espectrométricas (MS) de derivados 

acilfloroglucinol inéditos a partir de extratos lipofílicos das espécies H. andinum e H. 

laricifolium. Além disso, são apresentados os resultados da avaliação de um dos 

compostos inéditos isolados no ensaio de atividade antidepressiva (FST). 

 

O Capítulo 3 apresenta resultados de ensaios de atividade antidepressiva de extratos 

brutos etanólico de quatro espécies de Hypericum nativas do Peru por meio do teste de 

natação forçada em camundongos (FST). Adicionalmente, apresenta-se a 

caracterização qualitativa e quantitativa de flavonoides e derivados acylphloroglucinol 

diméricos nos extratos por meio de HPLC e UPLC. Além disso, a composição 
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fitoquímica de espécies de Hypericum com atividade antidepressiva é brevemente 

resumida e ressalta-se a importância dos flavonoides para esta atividade. 

 

O Capitulo 4 apresenta resultados de ensaios de atividade antiquimiotática de extratos 

lipofílicos de seis espécies de Hypericum nativas do Peru. Adicionalmente, apresenta-

se a caracterização qualitativa e quantitativa de derivados acilfloroglucinol diméricos 

nos extratos por médio de HPLC e UPLC, com o auxilio de análise de componentes 

principais (PCA) e construção de cladogramas (HCA). Além disso, apresenta-se a 

caracterização de homólogos M+14 inéditos de compostos já conhecidos, uliginosina 

A, uliginosina B, isouliginosina B, hiperbrasilol B e isohiperbrasilol B por médio de 

técnicas cromatográficas (HPLC, UPLC), espectroscópicas (UV-Vis) e 

espectrométricas (MS).  
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“Dimeric acylphloroglucinols in Hypericum species from sections  Brathys 

and Trigynobrathys” 
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12 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 
 
 

Dimeric acylphloroglucinols in Hypericum species from sections Brathys and 

Trigynobrathys  

 

Gari Vidal Ccana-Ccapatinta1, Francisco Maikon Corrêa de Barros1, Henrique Bridi1, Gilsane 

Lino von Poser1* 
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Abstract 

 

Hypericum is a prolific source of acylphloroglucinol derivatives. Unlike the monomeric 

polyisoprenylated acylphloroglucinols hyperforin and adhyperforin, which are the main 

phloroglucinols in Hypericum perforatum (section Hypericum), dimeric structures are to the 

best of our knowledge exclusively reported in sections Brathys and Trigynobrathys belonging 

to the genus Hypericum. Their occurrence, as well as the analytical properties of the thirty-

one dimeric acylphloroglucinols currently reported for Hypericum spp. are reviewed. 

Additionally, the presence of dimeric acylphloroglucinol in four Peruvian Hypericum species 

is presented and their chemotaxonomic significance explored.  

 

Keywords 

 

Chemotaxonomy; isolation; NMR spectroscopy; tautomerism; translucent glands 

 

Introduction 

 

Hypericum L. (Hypericaceae) is a genus of nearly 500 species of small trees, shrubs and herbs 

currently distributed in 36 taxonomic sections. The species of this genus occur in all 
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temperate parts of the world with main centers of diversity in Eurasia and Andean South 

America (Robson 2012). They are absent from habitats that are extremely dry, hot or cold, 

and in the tropics are almost always confined to high elevations (Robson 2003). 

 

Hypericum perforatum L. (St. John’s wort) is one of the most important medicinal herbs of 

the genus. Their extracts are taken for their reported activity against mild to moderate 

depression (Kasper et al. 2010). In addition to H. perforatum many other species of the genus 

have been incorporated in traditional medicine systems in many countries around the world 

(Guedes et al. 2012), are sold as ornamentals (Crockett and Robson 2011), or may play other 

economically important rules as source of firewood and dye plants(Crockett et al. 2010). 

 

Brathys and Trigynobrathys are the two largest sections of the genus Hypericum with 88 and 

59 representatives, respectively. They are principally distributed in South America, from 

southeast Brazil, Uruguay, north Argentina and central Chile northward through the Andes 

from Bolivia, Peru and Venezuela to Central America and on the Galapagos Islands and 

Cuba, to a lesser extent representatives are found in North America, tropical and eastern Asia 

(central China, across the Himalayas to southern India and Sri Lanka), and in the Pacific 

Region from north Japan to New Guinea, New Caledonia, Australia and New Zealand 

(Robson 2012). 

 

Chemical investigations of members of these two sections have revealed that these species are 

prolific sources of flavonoids, xanthones, dimeric acylphloroglucinols and less frequently 

monomeric acylphloroglucinols, benzopyrans and benzophenones (Crockett and Robson 

2011; Crockett 2012; Barros et al. 2013). Many of these metabolites have valuable biological 

activities as antibacterial, antioxidant, cytotoxic, and inhibition of monoamine oxidase 

(Gnerre et al. 2001; Bernardi et al. 2005; Franca et al. 2009; Pinhatti et al. 2013). In an 

attempt to assess the medicinal properties some species of Hypericum from Brathys and 

Trigynobrathys sections, as in H. perforatum, these species were screened for antidepressant 

and analgesic activities (Daudt et al. 2000; Gnerre et al. 2001; Mendes et al. 2002). Even 

though the ethnopharmacological use of these plants as remedies for central nervous system-

related illnesses has been rarely reported (Noeli 1998), this approach was helpful in the search 

for alternative sources of new antidepressant and analgesic molecules. Some dimeric 

acylphloroglucinols have been revealed to display innovative mechanisms of action (Viana et 
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al. 2005; Viana et al. 2006; Sakamoto et al. 2012) and provide promising molecular scaffolds 

for the development of new antidepressant and analgesic drugs (Stein et al. 2012; Stolz et al. 

2012). 

 

Unlike the polyisoprenylated monomeric phloroglucinols hyperforin and adhyperforin from 

H. perforatum, species of Hypericum from the sections Brathys and Trigynobrathys are 

sources of primarily dimeric structures consisting often of a filicinic acid and a phloroglucinol 

moiety linked by a methylene bridge. They possess acetyl, n-propionyl, iso-butyryl or 2-

methylbutyryl functionalities attached to the two carbocyclic rings. Usually a benzopyran ring 

skeleton forms a part of the phloroglucinol moiety, and a C-prenyl side chain may be either 

includes in the filicinic acid or phloroglucinol moiety, in both of them or also attached to the 

benzopyran ring. The presence of O-prenyl, C-geranyl and benzoyl functionalities attached to 

the phloroglucinol moiety is more uncommon. Until now, the isolation of 28 unique structures 

has been reported in the literature (Barros et al. 2013) and an other three have been recently 

identified using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-

MS) and quadrupole orthogonal time-of-flight (Q-TOF) mass spectrometry (Crispin et al. 

2013) (Fig. 1) in 19 species of Hypericum from sections Brathys and Trigynobrathys 

investigated for dimeric acylphloroglucinols (Barros et al. 2013; Crispin et al. 2013). Even 

though this data reveals a high degree of chemical diversity, the low yield, instability and 

difficulties in the process of isolation and identification of these compounds (Glisic et al. 

2008; Barros et al. 2011; Crispin et al. 2013) are some factors that have perhaps justified their 

limited exploration. 

 

In view of the high value and promising activities of dimeric acylphloroglucinols as 

antidepressant, analgesic and cytotoxic drug leads (Stein et al. 2012; Stolz et al. 2012; Pinhatti 

et al. 2013), the identification of new sources and novel structures of compounds of this class 

is of high interest, not only in Hypericum but also in other phloroglucinol-producing genera, 

e.g. Elaphoglossum (Socolsky et al. 2012a). The main chemical and analytical properties of 

dimeric acylphloroglucinols in Hypericum species from sections Brathys and Trigynobrathys 

with an especial emphasis on their structure elucidation using nuclear magnetic resonance 

(NMR) spectroscopy, are reviewed. Additionally, the isolation of some dimeric 

acylphloroglucinols from H. andinum, H. brevistylum, H. laricifolium and H. silenoides, 

species from the Andean Páramos, is presented. 
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Translucent glands and dimeric acylphloroglucinol distribution 

 

The presence of translucent glands is common to all Hypericum species, while dark glands 

(nodules) are found in about 2/3 species of the genus (Crockett and Robson 2011). 

Phloroglucinols and naphthodianthrones, respectively, are biosynthesized in secretory cells 

delimiting these two types of glands. (Zobayed et al. 2006; Soelberg et al. 2007; Crockett and 

Robson 2011). Even though there is a positive correlation between the size and number of 

dark glands and the overall content of the naphthodianthrone hypericin in H. perforatum 

(Zobayed et al. 2006), this correlation could not be made for hyperforin and the translucent 

glands. Nonetheless, morphology, phenology and population metabolite variation studies 

carried out in H. perforatum, H. montbretii, H. orientale, as well as other related species, 

indicate that the content of this metabolite is highly variable. Concentrations of hyperforin 

have been seen to increase during the course of ontogenesis, with the highest levels during the 

floral and fresh fruiting developmental stages. Additionally, open flowers and ripe fruits are 

usually described to have higher amounts as compared to stems, leaves and other reproductive 

parts (Cirak and Radusiene 2007; Cirak et al. 2008; Cirak et al. 2012; Tekel'ová et al. 2000).   

 

In Hypericum species from section Brathys and Trigynobrathys, only translucent glands are 

found (Robson 1987; Robson 1990). The nature, ontogeny and distribution pattern of 

translucent glands in H. gentianoides (Brathys section) have been surveyed, showing that 

these glands develop schizogenously and undergo major morphological and biochemical 

changes over time and space. Additionally, the glandular content was isolated by a capillary 

needle method and analyzed by ESI-MS, showing that these glands contained primarily 

dimeric acylphloroglucinols 12, 13 and 19 (Babka 2009). These findings support the 

hypothesis that the glands are the primary site for the storage of dimeric acylphloroglucinols. 

Furthermore, it was shown that these compounds were distributed in most above-ground 

organs of the flowering plant, with a preferential accumulation in the flower buds and young 

leaves of H. gentianoides (Babka 2009; Babka et al. 2010). 

 

However, dimeric acylphloroglucinols have also been isolated from roots, where no 

translucent glands are present. In the case of H. drummondii, compounds 1, 2, 4, 5 and 6 were 

isolated from roots, while 7, 10 and 11 from aerial parts (Jayasuriya et al. 1989; Jayasuriya et 
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al. 1991). Similar variations in acylphloroglucinols were observed in H. ternum in which 14 

was readily isolated in roots, while the aerial parts afforded only terpene-like compounds; 3 

and 14 were isolated from both roots and aerial parts of H. myrianthum (Bernardi 2007). This 

variation may also be influenced by variability among population and phenology as in the 

case of an accession of H. brasiliense that showed a high content of 16 in the roots, especially 

at the flowering stage, but not in the shoots at all developmental stages (Abreu et al. 2004), 

even though 16 had been previously isolated from the leaves of plants from a different 

population of H. brasiliense (Rocha et al. 1995). These variations might be explained by 

several factors, from the endogenous regulation of physiological processes to environmental 

characteristics. Taking in consideration these aspects could be helpful in the selection of 

materials during future study of the phytochemistry of Hypericum species from sections 

Brathys and Trigynobrathys. 

 

Isolation and identification of dimeric acylphloroglucinols in Hypericum spp. 

 

Extraction and isolation 

 

Dimeric acylphloroglucinols are lipophilic compounds usually extracted from aerial plant 

parts material by percolation or maceration with petrol, ether, n-hexane or methanol 

(references in Table 1). Despite the position of four to five polar hydroxyl groups (Fig. 1), the 

compounds are quite lipophilic which may be explained, at least in part, by the presence of 

neighbouring carbonyl and hydroxyl groups, allowing the formation of intramolecular 

hydrogen bonds (Äyräs et al. 1981; Mammino and Kabanda 2009). When extracted with ether 

or methanol, this extract can be further fractioned with n-hexane yielding a dark or greenish 

viscous oil residue. This residue may be further treated with acetone to obtain an insoluble 

fatty residue, containing undesirable epicuticular waxes, and an acetone-soluble fraction rich 

in dimeric acylphloroglucinols that is further subjected to chromatographic procedures. 

Moreover, it is noteworthy to mention the use of supercritical fluid extraction with CO2, 

considered to be a cleaner and feasible alternative technology to solvent extraction for 

Hypericum. This method has been successfully applied for the selective extraction of 

benzopyrans, benzophenones and dimeric acylphloroglucinols from H. polyanthemum 

(Cargnin et al. 2010), H. carinatum (Barros et al. 2011) and H. caprifoliatum (Almeida et al. 

2013). 
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Column chromatography on silica gel, usually prepared with n-hexane and developed with 

chloroform, using mixtures of increasing polarity of chloroform/methanol, n-

hexane/dichloromethane, n-hexane/ethyl acetate or n-hexane/ethyl ether with 0.25% formic 

acid, is usually the first step of crude extract fractionation. Final purification steps often 

involve the use of countercurrent chromatography, centrifugal planar chromatography, gel 

filtration over sephadex LH-20, reverse phase medium pressure chromatography and/or 

repeated column chromatography with silica gel (references in Table 1). The use of 

preparative high performance liquid chromatography (HPLC) for the isolation of dimeric 

acylphloroglucinols from Hypericum species of section Brathys and Trigynobrathys is not 

frequently reported, although it was used to fractionate a methanol extract of H. gentianoides 

into flavonoid- and -acylphloroglucinol rich fractions (Hillwig et al. 2008), and to obtain 

acylphloroglucinol fractions from an ethanolic extract of H. gentianoides (Huang et al. 2011). 

 

Crystallization 

 

Dimeric acylphloroglucinols are usually isolated as colorless crystals (e.g. 1, 2) or yellow 

powders (e.g. 19, 20, 21, 24) from n-hexane, as yellow crystals from n-hexane (e.g. 4, 5, 6, 9), 

methanol (e.g. 15) or pentane (e.g. 12), as yellow platelets from nitromethane (e.g. 14), as 

yellow needles from methanol (e.g. 13, 17, 26) or acetonitrile (e.g. 15, 16), and sometimes 

recrystallized from mixtures of ethanol-ethyl acetate (e.g. 23) and acetonitrile-chloroform 

(4:1) (e.g. 12) (references in Table 1). 

 

Ultraviolet (UV) spectroscopy 

 

Many dimeric acylphloroglucinols have characteristic three-peaked UV spectra with maxima 

around 220, 300, and 350 nm or 226, 287, and 357 nm (Table 1). These characteristic peaks 

have been used as an indicative of acylphloroglucinols (Hillwig et al. 2008; Crispin et al. 

2013). 

 

Infrared (IR) spectroscopy 
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The IR spectra of almost all dimeric acylphloroglucinols show broad abortion bands in the 

3000-3500 cm-1 range related to the O-H stretching of intramolecularly chelated hydroxyl 

protons, and intense peaks between 1600-1650 cm-1, which are signals that arise from the 

presence of an enolic β-triketo system (references in Table 1). 

 

Electron impact (EI) and electrospray ionization (ESI) mass spectrometry (MS) 

 

The EI-MS reported data of dimeric acylphloroglucinols (Table 1) shows that these 

compounds have a characteristic fragmentation pattern. The methylene bridge that connects 

the filicinic acid and the phloroglucinol moiety is the main fragmentation target, resulting in 

molecule cleavage into two roughly equal pieces. Therefore, in addition to the molecular ion, 

EI-MS spectra reveal the m/z of the fragments composing the diacylphloroglucinol, thus 

potentially revealing the substitution pattern of each moiety. The primary EI-MS 

fragmentation pattern and major fragments expected for dimeric acylphloroglucinols is 

exemplified by drummondin C in Fig. 2. When a benzopyran ring skeleton is present as part 

of the phloroglucinol moiety (e.g. 4, 5, 6, 14, 15 and isomers), characteristic fragment (m/z 

219, m/z 233, m/z 247) is stabilized by the loss of a methyl radical from the dimethyl 

chromene system (Parker an Johnson 1968; Jayasuriya et al. 1989). The fragmentation pattern 

of dimeric acylphloroglucinols submitted to ESI-MS greatly resembles that seen with EI-MS. 

Since EIS-MS is a less aggressive technique, the fragments observed with this method come 

from the molecule cleavage at the methylene bridge, and many characteristic fragments seen 

with EI-MS are lacking with EIS-MS, e.g. the ion of prenyl side chains (m/z 69) were not 

observed in the ESI-MS spectrum of 12 and 13 (Crispin et al. 2013).  

 

Nuclear magnetic resonance (NMR) spectroscopy 

 

The 1H and 13C NMR published data of dimeric acylphloroglucinols are shown in Table 2-6. 

These data were gathered from their original references and organized by reassignment of the 

carbon skeleton numbering scheme of the molecule structures as shown in Fig. 1 in order to 

simply the visualization of common signal features. 

 

1H NMR spectra of dimeric acylphloroglucinols are highly informative, containing several 

interesting features that reveal structural details. As a first insight, the signals that arise from 
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protons present at the methylene bridge and/or hydroxyl protons are highly suggestive of this 

kind of compound. The presence of characteristic methylene protons (δ 3.46-3.60) at the 

linkage between the filicinic acid and the phloroglucinol moiety is a common feature to 

almost all dimeric acylphloroglucinols. This signal, appearing as a singlet or sometimes as a 

broad singlet, may be resolved into two independent singlets (e.g. 1, 2 and 23) or a set of two 

doublets (e.g. 18) in spectra acquired at a high working frequency.  

 

Another interesting aspect of the 1H NMR spectra of dimeric acylphloroglucinols is the 

presence of singlets in a very low field (δ 19.40-9.00; exceptionally δ 6.40 in 12, δ 6.41 in 22 

and δ 6.42 in 11), each accounting for an exchangeable or chelated hydroxyl groups. These 

signals are absent from the spectrum when the sample has been shaken with deuterium oxide 

(Parker and Johnson 1968). The peak at ~ δ 18.00 ppm (e.g. δ 18.68 in 14), at a remarkably 

low position, has proved to be very informative since enolizable β-triketones are one of the 

few systems known to resonate in this region. This observation, together with the fact that 

geminal methyl groups in the filicinic acid moiety display singlet or broad singlet signals at δ 

1.45-1.59 ppm (exceptionally δ 1.19-1.28 ppm in 19, 20, 21 and 22), further characterize the 

acylfilicinic acid moiety. 

 

The presence of protons in simple and branched side chains give rise to signals that are 

indicative of acetyl (e.g. in 1, δ 2.70, s), n-propionyl (e.g. in 2, δ 3.20, q; δ 1.18, t), iso-butyryl 

(e.g. in 3, δ 4.20, sep; δ 1.18, δ 1.18, d) and 2-methylbutyryl (e.g. in 20, δ 4.07, sex; δ 1.11, d; 

δ 1.38, 1.81, m; δ 0.88, t) functionalities attached to both the filicinic acid and the 

phloroglucinol moieties. Variations in the length of the acyl side chains give rise to 

homologues that are readily distinguishable, demonstrated in 1, 2, 3, also 4, 5, 6, and 19, 20, 

21. 

 

C-isoprenylation is revealed by signals corresponding to protons within a methylene, a 

methine and two geminal methyl groups. C-isoprenyl groups in dimeric acylphloroglucinols 

are usually attached to the filicinic acid moiety (e.g. in 13, δ 2.41, br d; δ 4.81, br t; δ 1.39, δ 

1.44, br s), the phloroglucinol moiety (e.g. in 12, δ 3.45, d; δ 5.22 pseudo t; δ 1.79, δ 1.85 s), 

to both (e.g. in 11), or sometimes attached to the benzopyran ring moiety (e.g. in 25, 26 and 

27). O-isoprenyl side chains have been also described in 10 (δ 4.81, d; δ 5.64 br t; δ 1.86, δ 
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1.86 s) and 23 showing more highly deshielded signals than in C-isoprenyl side chains, 

especially as exemplified by the signal of methylene involved in the ether linkage.   

 

The presence of a 2,2-dimethyl chromene moiety is revealed by a characteristic pair of 

doublets that come from olefinic protons (e.g. in 4, δ 5.44, d; δ 6.69, d) and the protons of two 

geminal methyl groups (e.g. in 4, δ 1.49 br s; δ 1.49 br s). The attachment of a C-isoprenyl 

group to one of the geminal methyl groups of the base 2,2-dimethyl chromene moiety results 

in the formation of an isoprenylmethyl-methyl-chromene system that displays an additional 

methylene signal (δ 1.75-1.82, m) as shown in 25, 26 and 27.  

 

Signals displayed by a mono substituted benzene ring (δ 7.35-7.64, m) are exemplified by 23 

and 24. Aromatic proton signals from the phloroglucinol moiety (δ 6.02-6.20, s) are also 

observed in 10 and 23. C-geranyl side chains are revealed as a set of three geminal methyl, 

three methylene and two methine signals as in 22 and 24 (Table 4).  

 

The reliability of the hydroxyl 1H NMR signals for the determination of the cyclisation 

pattern of the 2,2-dimethyl chromene system has been explored and confirmed by selective 

insensitive nuclei enhanced by polarization transfer (SINEPT) experiments on 6 (3-OH, δ 

9.94; 5-OH, δ 18.42; 5’-OH, δ 11.47; 7’-OH, δ 15.88 s) and 8 (3-OH, δ 9.04; 5-OH, δ 18.47; 

7’-OH, δ 11.64; 9’-OH, δ 14.06 s), two isomeric compounds that differ each other in the 

orientation of the pyran ring relative to the rest of the molecule. The SINEPT technique 

resolve this problem by inducing polarization transfer through the slow exchange chelated 

hydroxyl groups on the chromene moiety of these compounds, enabling the localization of 

hydroxyl groups in the chromene moiety and, hence, the orientation of the pyran ring 

(Jayasuriya et al. 1994). Correlation experiments (homonuclear correlation spectroscopy, 

COSY; heteronuclear single-quantum correlation spectroscopy, HSQC; heteronuclear 

multiple-bond correlation, HMBC) can provide details that help determine the substitution 

pattern of the acylphloroglucinol and acylfilicinic acid moieties, as well as the cyclization 

pattern of dimeric acylphloroglucinols with a benzopyran ring skeletal element. The structures 

of elaphogayanin A, yunguensin A and yunguensin F have recently been determined 

(Socolsky et al. 2010a; Socolsky et al. 2010b). 
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The 13C NMR spectra of dimeric acylphloroglucinols display many useful signals. A 

characteristic C-7 methylene bridge carbon signal is displayed at δ 16.8-19.1 ppm; whereas 

the carbonyl carbon signals, C-8 and C-11’, of the acetyl (δ 203.0-205.1), n-propionyl (δ 

206.9-207.1), iso-butyryl (δ 209.9-212.3) and 2-methylbutyryl (δ 208.3-208.9) functionalities 

are displayed in a characteristic low field ranges. A third C-1 carbonyl carbon signal located 

in the filicinic acid moiety is usually seen between δ 195.5-200.1; although this signal may 

have been missassigned because early structure elucidation works were poorly supported by 

correlation spectra, and thus this value corresponds to C-5, as supported by HBMC and 

observed in many fern dimeric acylphloroglucinols (Socolsky et al. 2012a); e.g. for 14 and 16 

in Fig. 3.  

 

Furthermore, the filicinic acid moiety displays four characteristic enol carbon signals, C-2 (δ 

105.8-111.0), C-3 (δ 170.0-183.9), C-5 (δ 187.2-198.9; similarly this value corresponds to the 

C-1), and C-6 (δ 105.0-114.4) and a quaternary carbon signal, C-4 (dimethyl substituted δ 

44.0-44.8; exceptionally δ 53.6-53.7 as in 19, 20 and 21). This latter signal is 

characteristically shifted ca 5 ppm downfield when one of the C-4 geminal methyl groups is 

replaced by a prenyl chain (δ 48.8-49.8) as in 7, 9, 10, 11, 15 and 16 (Jayasuriya et al. 1991; 

Rocha et al. 1996). A further downfield shift ca 13 ppm can be observed when both of the two 

C-4 geminal methyl groups are replaced by a prenyl and an iso-butyryl chain (δ 57.5), as in 13 

(Rocha et al. 1996).  

 

Characteristic substituted aromatic carbon signals, C-5’ (δ 154.6-166.1), C-6’ (δ 103.7-107.5), 

C-7’ (δ 158.2-163.4), C-8’ (δ 103.6-108.3), C-9’ (δ 154.6-163.3), C-10’ (δ 101.7-111.5) 

present on the phloroglucinol moiety are often reported as interchangeable values between C-

6’, C-8’ and C-10’, and between C-5’, C-7’ and C-9’. Additionally, the aromatic non-

substituted C-10’carbon signal is displayed at further upfield as in 10 (δ 93.4) and 23 (δ 94.2). 

 

The benzopyran ring skeleton with a 2,2-dimethyl chromene system displays a characteristic 

dimethyl-substituted C-2’ quaternary carbon signal (δ 77.9-81.5), two olefinic carbon signals 

C-3’ and C-4’ (δ 123.9-126.4; δ 117.0-117.5), in addition to two geminal methyl signals (δ 

27.5-28.2). In the isoprenylmethyl-methyl-chromene system, an additional methylene carbon 

signal (δ 36.5-41.8) appears as in 25, 26 and 27. In this chromene system, the olefinic carbon 

signals C-3’ and C-4’, as present in 25 (δ 123.1; δ 123.7), can be absent and replaced by 
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adjacent C-3’ methine (δ 66.7) and C-4’ methylene (δ 26.2) carbon signals, indicating the 

presence of a hydroxyl group at C-3’as in 26 and 27. 

 

Signals from carbons in the C-prenyl side chains are recognizable as a set of a methylene 

carbon, two vinyl carbon, and two olefinic methyl carbon signals. The C-prenyl side chain is 

distinguishable when attached to the C-4 of the filicinic acid moiety (e.g. in 7, C-1’’, δ 38.9; 

C-2’’, δ 118.2; C-3’’, δ 136.5; 3’’-Me, δ 17.6, δ 25.6); to the C-10’ of the phloroglucinol 

moiety (e.g. in 11, C-4’, δ 22.3; C-3’, δ 123.9; C-2’, δ 132.7; C-2’-Me, δ 18.0, δ 25.9); and 

when forming part of the isoprenylmethyl-methyl-chromene system as in 25, 26 and 27 

(Table 6). Signals of the O-prenyl side chain attached to the C-5’/C-9’ of the phloroglucinol 

moiety are reported in 10 (C-4’, δ 67.1; C-3’, δ 118.1; C-2’, δ 142.5; C-2’-Me, δ 18.2, δ 25.9) 

and 23 (Table 6). 

 

Less frequently observed carbon signals include those from a mono substituted benzene ring 

(C-13’-C17’, δ 127.3-132.0) as seen in 23 and 24, and the signals of a C-geranyl side chain 

that are revealed as a set of three geminal-methyl, three methylene and four vinyl carbon 

signals as in 22 and 24 (Table 6). 

 

X-ray crystallography 

 

The crystallographic data reported for 3, 14, 16 (Leal et al. 2010), the bromo derivate of 16 

(Parker et al. 1968), 18 (Rocha et al. 1995), 23 (Ishiguro et al. 1985) and 25 (Hu et al. 2000) 

reveals unequivocally that these compounds are composed of a filicinic acid and an 

acylphloroglucinol moieties linked by a methylene bridge held in a rigid conformation by two 

hydrogen bonds [e.g. in 14, O(5’)-H---O(1) and O(3)-H---O(7’)]. Two other hydrogen bonds 

with unusually short oxygen-oxygen distances occur in these molecules [e.g. in 14, O(5)-H---

O(8) and O(7’)H---O(11’)] (Leal et al. 2010), and these correlate with very low chemical 

shifts for the chelated protons in the 1H-NMR spectra. 

 

Tautomerism 

 

In general, acylphloroglucinols are constituted of tautomeric mixtures, which more or less 

rapidly interconvert. In solution they usually exist in one major tautomeric form, but the 
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tautomeric composition depends on the effect of pH, solvent polarity, and temperature 

(Verotta 2002; Katritzky et al. 2010). The observed chemical isomerism can complicate NMR 

spectra interpretation; however, some strategies have been effectively used to overcome this 

difficulty. 

 

For example, when dissolved in CDCl3, hyperforin shows primarily broad 1H NMR signals 

and a poorly resolved 13C NMR spectrum that denotes that hyperforin exists in a tautomeric 

mixture, derived from the keto-enol equilibrium of its β-dicarbonyl skeleton (Cui et al. 2004; 

Hostettmann and Wolfender 2005). These facts, in addition to the poor stability of hyperforin 

in CDCl3, have led to the use of CD3OD and acetone-d6 as NMR solvents (Mannila et al. 

2002; Cui et al. 2004). Enolic protons signals (observed in CDCl3 at 7.00–7.50 ppm) are not 

observed in CD3OD or acetone-d6 because of the solvent interaction with the enolic hydroxyl 

group of hyperforin. Specially, this interaction seems to block the structure of hyperforin to 

favor a certain tautomeric form, which explains the sharper peaks observed in acetone-d6 and 

CD3OD than in CDCl3 (Mannila et al. 2002). To further study the effect of tautomerization on 

the 1H NMR spectrum of hyperforin, two derivatization reactions were reported using 

chlordimethylether (CH3OCH2Cl) and benzoyl chloride (C6H4Cl) to convert the enolic 

hydroxyl group to its respective derivatives. The 1H NMR spectra of both derivatized 

hyperforin forms (in CDCl3) showed peaks clearly sharper than those obtained from the same 

sample before the derivatization, further unveiling the tautomeric nature of hyperforin 

(Mannila et al. 2002).   

 

In the same way, both the 1H and the 13C NMR spectra of many dimeric acylphloroglucinol 

compounds are reported as showing certain anomalies, which can best be explained by the 

expected keto-enol tautomerization of the filicinic acid moiety. The possible tautomeric 

structures of the acylfilicinic acid unit are reported by Äyräs et al. (1981). This 

tautomerization complicates the spectral interpretation, but in no case prohibits complete 

assignments in the 1H and 13C NMR spectra (Äyräs et al. 1981; Ishiguro et al. 1985; 

Jayasuriya et al. 1994). Additionally, it is interesting to notice that many unclear elements can 

be solved by carefully analysis of proton-coupled 13C NMR spectra (Äyräs et al. 1981). Initial 

observations in the 1H NMR spectra of 14 showed that the singlet at δ 1.46 ppm 

corresponding to the geminal dimethyl groups of the acyl filicinic moiety (accounted for, in 

part, by two geminal methyl groups of the chromene system) has a shoulder on the low-field 



25 
 
 

side that sharpens into a separate peak on warming or cooling. This temperature dependence 

was more clearly seen in dihydrouliginosin B, because the peak in question, now at δ 1.50 

ppm (the geminal dimethyl groups of the chromene system appear at δ 1.38 ppm), is a singlet 

at room and above temperature, but a doublet at low temperature, thus revealing the 

tautomeric nature of 14 and its dihydro derivative (Parker and Johnson 1968). In addition to 

the characteristic singlets in low field due to the hydroxyl groups in the 1H NMR spectrum of 

many dimeric acylphloroglucinols, additional minor signals (e.g. downfield region in the 1H 

NMR spectra of 14 and 16 in Fig. 3) due to a minor tautomeric components can be observed 

(Äyräs et al. 1981). Other noteworthy features are the very broad signals observed for protons 

within the acyl side chains (9-Me2, 12’-H and 13’-Me) in the 1H NMR spectrum of 20 

measured at 360 MHz, while the spectrum at 200 MHz showed all explicit signals (Ishiguro et 

al. 1987). These observations suggest that 20 exists in wide range of tautomeric structures that 

come from the keto-enol equilibrium in the 1,3-dicarbonyl system, that coincides with the low 

field-shifted signals for C-3 and C-5 in the 13C NMR spectrum of 20 (Ishiguro et al. 1987) and 

most dimeric acylphloroglucinols. 

 

The keto-enol tautomerism has been also observed in many benzophenone derivatives such as 

the guttiferones and related compounds (spectra in CDCl3 show tautomeric pairs), for which 

1H and 13C NMR spectra were recorded in CD3OD + 0.1% trifluoroacetic acid (TFA). This 

acidic medium enhances the rate of the keto-enol interconversion of the β-hydroxy-α,β-

unsaturated ketone, thus simplifying the spectral analysis (Gustafson et al. 1992; Hamed et al. 

2007). The use of pyridine-d5 to reduce signal overlap has been also explored for the structure 

elucidation of some guttiferones (Williams et al. 2003; Cao et al. 2007). Another approach to 

obtain more highly defined NMR signals of acylphloroglucinols showing keto-enol 

tautomerism includes the acetylation of all hydroxyl groups of the molecule, thus blocking the 

potential interconversion among tautomers as reported in the structure elucidation of 

elaphopilosin A, a fern dimeric acylphloroglucinol (Socolsky et al. 2009).     

 

Analysis in vegetal matrices 

 

Thin layer chromatography (TLC)  
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Overall contents of dimeric acylphloroglucinols are usually reported to be lower compared to 

flavonoids in Hypericum species from Brathys and Trigynobrathys sections (Barros et al. 

2013); therefore TLC analysis of dimeric acylphloroglucinols are usually carried out on 

enriched lipophilic fractions rather than on crude alcoholic extracts. Mobile phases commonly 

used are composed of mixtures of n-hexane/chloroform, n-hexane/dichloromethane (50:50), 

n-hexane/ethyl acetate (90:10), n-hexane/ethyl ether (90:10), acidified or not with 0.25% 

formic acid. On TLC, dimeric acylphloroglucinols are readily identified by their characteristic 

UV absorbance at 254 and 356 nm. Characteristic reddish-orange or yellow spots are 

observed after spraying the TLC plate with Godin or anisaldehyde-sulfuric acid reagent 

(recipes can be found in Hostettmann and Marston 1995, and Wagner and Blatt 1996). 

 

High performance liquid chromatography (HPLC) 

  

An HPLC-UV method is reported by Nunes et al. 2009 for the analysis of some dimeric 

acylphloroglucinols in lipophilic extracts of H. polyanthemum and other species from section 

Brathys and Trigynobrathys (Barros et al. 2013). In this method, separations are carried out in 

a Waters Nova-Pack C18 column (4 μm, 3.9 x 150 mm) using an isocratic mobile phase 

program (95% acetonitrile, 5% water, 0.01% TFA), with UV detection at 220 nm. This 

methodology was also applied for the analysis of dimeric acylphloroglucinols 3, 14 and 15 in 

supercritical CO2 extracts (Cargnin et al. 2010; Barros et al. 2011; Almeida et al. 2013).   

 

Over the last years, many HPLC methods have been developed to achieve the analysis of 

crude extracts and preparations of H. perforatum (Meier 2003). Since these 

extracts/preparations usually contain at least six major chemical classes, including 

naphthodianthrones (hypericin and pseudohypericin), flavonoids (rutin, hyperoside, 

isoquercitrin, quercitrin and quercetin), phloroglucinols (hyperforin and adhyperforin), 

biflavonoids (I3, II8-biapigenin, I3′, II8-biapigenin), proanthocyanidins and phenolic acids 

(chlorogenic and caffeic acid), HPLC methods were developed in the attempt to achieve good 

separations in a reasonable total run time that were previously carried out in more than 50 min 

(Liu et al. 2000; Li and Fitzloff 2001). One of the most feasible methods for this purpose is 

that reported by Ganzera et al. (2002), in which separations are carried out in a Synergi MAX-

RP 80 Å column (4μm, 4.6 mm x 150 mm) using 10 mm ammonium acetate buffer (solvent 

A), equilibrated to pH 5.0 with glacial acetic acid, and acetonitrile/methanol (9:1; solvent B) 
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as mobile phase in a gradient system program (from 87:13, A:B to 83:17 in 10 min, then to 

0:100 in 25 min), with a total run time of 35 min, and 10 min of equilibration time. Detection 

is performed at 270 nm, peak purity determined by analysis of DAD spectra, and confirmation 

of peak identity by MS. 

 

This latter method has been used for characterizing the metabolic fingerprint of a crude 

methanol extract of H. gentianoides, in which chlorogenic acid, hyperoside, isoquercitrin, 

quercitrin, and quercetin were detected along with at least nine metabolites (retention time 

from 30 to 45 min) with distinctive three-peaked UV spectra and absorption maxima of 220, 

300, and 350 nm, or of 226, 287, and 357 nm (Hillwig et al. 2008). Three of these compounds 

were identified as 12, 13 and 19 by 2-D NMR (Hillwig 2008). Further HPLC-MS and MS/MS 

analyses of the distinctive fragmentation pattern of dimeric acylphloroglucinols led to the 

identification of 14, 29, 30, 31 and a monomeric phlorisobutyrophenone derivative (Crispin et 

al. 2013). 

 

Dimeric acylphloroglucinols in Peruvian Hypericum species 

 

Background 

 

Most Hypericum species native to the high mountain regions in South America belong to the 

taxonomic section Brathys and, to a lesser extent, Trigynobrathys. In contrast to the widely 

used H. perforatum, the species of the Páramos regions of Central and South America have 

been rarely phytochemically examined (Crockett et al. 2010). Nevertheless, several studies of 

species belonging to sections Brathys and Trigynobrathys occurring at lower elevations have 

been published.  These include reports on the isolation of flavonoids (Rocha et al. 1995), 

xanthones (Rocha et al. 1994), phloroglucinol derivatives, (Rocha et al. 1996), and less 

frequently, benzopyrans (Ferraz et al. 2001) and benzophenones (Bernardi et al. 2005; 

Crockett and Robson 2011), while naphthodianthrones were not detected in almost 15 

investigated species from these two sections (Ferraz et al. 2002; Crockett et al. 2005; Nuevas-

Paz et al. 2005). Since dimeric acylphloroglucinols are commonly reported in Hypericum 

species from sections Brathys and Trigynobrathys, it is proposed that these compounds could 

be considered chemotaxonomic markers for the species of these two sections (Nör et al. 2004; 
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Barros et al. 2013). This proposition is here further explored with the examples of some 

Peruvian Hypericum species. 

 

Experimental 

 

General procedures 

 

Formic acid (Vetec, Rio de Janeiro, Brazil), acetone, dichloromethane, ethyl acetate and n-

hexane (F. Maia, Cotia, Sao Paulo, Brazil), all reagent grade, were regularly used during the 

extraction and isolation procedures. In order to best visualize the isolation development, the 

extracts and fractions were submitted to TLC using precoated silica gel 60 F254 plates (Merck, 

Darmstadt, Germany) as a stationary phase using three different mobile phases composed of 

n-hexane/dichloromethane (50:50 v/v), n-hexane/ethyl acetate (90:10 v/v) and n-hexane/ethyl 

acetate (95:5 v/v) with 0.25% formic acid as mobile phases. After elution, TLC plates were 

observed under 254 and 356 nm UV light and further examined after spraying with 

anisaldehyde-sulfuric acid reagents. 

 

1D- (1H and 13C) and 2D- (HSQC, HMBC, COSY) NMR experiments were performed on a 

400 MHz Varian MR400 spectrometer. Compounds 12, 14 and 16 were dissolved in CDCl3, 

with tetramethylsilane (TMS) as internal standard; while 15 and 17 were dissolved in acetone-

d6, spectra referenced against residual non deuterated solvent. 

 

Plant material 

 

Hypericum andinum Gleason (Amparaes, Cuzco, Peru, 3432 m elevation; Ccana-Ccapatinta 

06), H. laricifolium Juss (Cumbemayo, Cajamarca, Peru, 3450 m elevation; Ccana-Ccapatinta 

08) (Shrubs, Brathys), H. brevistylum Choisy (Paqchaq, Cuzco, Peru, 3573 m elevation; 

Ccana-Ccapatinta 04) and H. silenoides Juss (Pumahuanca, Cuzco, Peru, 3189 m elevation; 

Ccana-Ccapatinta 02) (herbs, Trigynobrathys) are species that occur in high altitude Páramo 

habitats. The aerial parts of these plants were collected (under consent of Dirección General 

Forestal y de Fauna Silvestre of the Republic of Peru, 0147-2010-AG-DGFFS-DGEFFS) and 

identified by Botanist MsC. Washington H. Galiano Sánchez (Principal Professor of the 

academic department of Biology, UNSAAC). Voucher specimens were deposited in the 
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Herbarium of the Federal University of Rio Grande do Sul (ICN), Brazil and in the Herbarium 

Vargas (CUZ) of the Universidad Nacional de San Antonio Abad del Cusco - UNSAAC, 

Peru. 

 

Extraction and isolation 

 

Air dried and powdered vegetal material (H. andinum, 1000 g; H. brevistylum, 850 g; H. 

laricifolium, 400 g; H. silenoides, 1100 g) was successively extracted by maceration with n-

hexane over 72 hours (5 times, plant-solvent ratio 1:5). The extracts were evaporated to 

dryness under reduced pressure and then treated with cold acetone to obtain acetone-soluble 

fractions (ASF) (18.5, 24.5, 12.2 and 27.7 g for H. andinum, H. brevistylum, H. laricifolium 

and H. silenoides, respectively) and insoluble fatty residues for each.  

 

The ASF of H. laricifolium (12.2 g) was subjected to silica gel CC using a gradient elution of 

n-hexane/DCM 100:0-0:100 to afford 12 fractions (Fr. 1-12). Fr. 2-3 were subjected to 

repeated CC using a gradient elution of n-hexane/EtOAc 100:0-90:10 to afford 60 mg of 15 

(eluted with 97:3 n-hexane/EtOAc) and 20 mg of 17 (eluted with 93:7 n-hexane/EtOAc). Fr. 

6-7 were subjected to CC using a gradient elution of n-hexane/EtOAc 100:0-90:10 to afford 

80 mg of 14 (eluted with 95:0 n-hexane/EtOAc) and 30 mg of 16 (eluted with  90:10 n-

hexane/EtOAc). The ASF of H. silenoides (27.7 g) was subjected to silica gel CC using a 

gradient elution n-hexane/DCM 100:0-0:100 to afford 10 fractions (Fr. 1-10). Fr. 2-4 were 

subjected to CC with n-hexane/EtOAc 100:0-90:10 to afford 90 mg of 14 (eluted with 95:0 n-

hexane/EtOAc) and 15 mg of 16 (eluted with 90:10 n-hexane/EtOAc). Fr. 8 was subjected to 

repeated CC with n-hexane/EtOAc 100:0-50:50 acidified with 0.25% HCOOH to afford 30 

mg of 12 (eluted with 70:30 n-hexane/EtOEt with 0.25% HCOOH). The ASF of H. andinum 

and H. brevistylum were also submitted to isolation procedures similar to that for H. 

laricifolium and H. silenoides; 14, 16 and 12 were isolated from both species. 

 

Discussion 

 

Dimeric acylphloroglucinols derivatives, hyperbrasilol B (15), isohyperbrasilol B (17), 

uliginosin B (14), isouliginosin B (16), and uliginosin A (12) were identified after the analysis 

of their 1H and 13C NMR, COSY, HSQC and HMBC spectra and by comparison with 
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reported data. Compounds 15 and 17 have been previously isolated from the aerial parts of H. 

brasiliense (Rocha et al. 1996). Compound 17 has been also described in H. caprifoliatum, H. 

connatum and H. laricifolium by HPLC detection (Barros et al. 2013). Hence, the isolation of 

15 and 17 in the aerial parts of H. laricifolium is reported. Compound 14 was firs isolated 

from aerial parts of H. uliginosum (Taylor and Brooker 1969) and has been described from 

almost eighteen Hypericum species from sections Brathys and Trigynobrathys (Table 1). 

Compounds 14 and 16 were isolated from all the four Peruvian Hypericum species explored. 

However, initially described as a by-product in the synthesis of 14 (Meikle and Stevens 

1978), 16 was originally described as naturally occurring in the aerial parts of H. brasiliense 

(Rocha et al. 1995). Moreover, compound 12 was first isolated from H. uliginosum (Taylor 

and Brooker 1969), further characterized in H. brasiliense (Rocha et al. 1995), recently 

identified in H. gentianoides (Hillwig 2008; Crispin et al. 2013), and here isolated from H. 

andinum, H. brevistylum and H. silenoides. 

 

Valine, and possibly pyruvate, are likely primary metabolite precursors of acylphloroglucinols 

in H. perforatum (Karppinen et al. 2007), that serve as plausible templates for the initial steps 

of acylphloroglucinol biosynthesis in Hypericum spp. Based on the “monomer pool concept” 

postulated for the biosynthesis of dimeric acylphloroglucinols in H. gentianoides (Crispin et 

al. 2013), a possible biosynthetic route to dimeric acylphloroglucinols in H. andinum, H. 

brevistylum, H. laricifolium and H. silenoides is proposed in Fig. 4. The monomer pool 

concept is based on a) the structure characterization of nine prevalent acylphloroglucinols in 

H. gentianoides, that included one monomeric phlorisobutyrophenone (PIB) derivative and 

eight dimeric acylphloroglucinols, based on LC/ESI-MS and Q-TOF mass spectrometry, and 

b) the identification of eight additional PIB derivatives, in trace amount by Q-TOF 

spectrometry, likely to be precursors of the major compounds observed, thus supporting the 

proposition that dimeric acylphloroglucinols are synthesized via modification of PIB to yield 

diverse phloroglucinol and filicinic acids moieties, followed by dimerization of a 

phloroglucinol and a filicinic acid monomer to yield the observed dimeric acylphloroglucinols 

(Crispin et al. 2013). The enzymatic formation of PIB and its prenylated derivative by an 

isobutyrophenone synthase and phlorisobutyrophenone dimethylallyltransferase, respectively, 

have been demonstrated using cell-free extracts from cell cultures of H. calycinum (Boubakir 

et al. 2005; Klingauf et al. 2005). The enzymes involved in the creation of a methylene bridge 

in dimeric acylphloroglucinols remain unknown. However the mechanism for EC 1.21.3.3, 
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which forms a methylene bridge between two phenolic rings has been described (Kutchan and 

Dittrich 1995), and applied to propose the methylene bridge formation in dimeric 

acylphloroglucinol biosynthesis (Crispin et al. 2013).  

 

Dimeric acylphloroglucinols have awakened academic interest in view of the wide array of 

bioactivities they display. Extensive pharmacological work has shown that 14 has a promising 

analgesic and antidepressant profile. It induced an antinociceptive effect when administered at 

15 mg/kg, i.p., as measured by the hot-plate and abdominal writhing tests; it also reduced the 

immobility time in the mouse forced swimming test at 10 mg/kg, p.o. (Stein et al. 2012; Stolz 

et al. 2012). Similarly, 15 has been recently shown to possess antinociceptive activity in the 

hot-plate test when administered to mice, with a maximal effect at 13 mg/kg, p.o. (Sakamoto 

et al. 2012). Additionally, the ability of 12 to inhibit the release of lipopolysaccharides (LPS)-

induced inflammatory mediators in RAW 264.7 mouse macrophages has been demonstrated 

at 2.6, 2.0 and 0.6 μM concentrations (Huang et al. 2011). Among other recently described 

bioactivities for 14 are the anti-Trichomonas vaginalis activity (Cargnin et al. 2013) and 

potential antiproliferative activity against OVCAR-3-human ovarian carcinoma cells (Pinhatti 

et al. 2013). 

 

Chemosystematic significance 

 

Dimeric acylphloroglucinols are usually described in Hypericum species from sections 

Brathys and Trigynobrathys. However, their occurrence is not exclusive to Hypericum, but is 

extended to other genera such as Aspidium, Dryopteris, Elaphoglossum, Eucalyptus, 

Helichrysum, Myrtus, and Mallotus (Singh and Bharate 2006; Socolsky et al. 2012b). 

Nevertheless, of the thirty-one dimeric acylphloroglucinols described for Hypericum (Table 

1), only three of them are known for other genera (1, 2 and 3), thus demonstrating that 

Hypericum displays a specialized chemical diversity. 

 

Several surveys have explored the chemotaxonomic significance of naphthodianthrones 

(Kitanov 2001), flavonoids (Cirak et al. 2010) and acylphloroglucinols (Nör et al. 2004; 

Barros et al. 2013) among the species and taxonomic sections of Hypericum. Focusing on 

acylphloroglucinol derivatives, as a general trend it has been shown that some sections seem 

to produce mostly monocyclic and bicyclic prenylated phloroglucinol derivatives (sections 
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grouped as G1 by Crockett 2012), while tricyclic phloroglucinol derivatives may predominate 

in others (sections grouped as G2 by Crockett 2012), and dimeric acylphloroglucinols 

dominate in section Brathys and Trigynobrathys (Crockett 2012; Barros et al. 2013), 

highlighting the utility of acylphloroglucinol derivatives as potential chemotaxonomic 

markers. However, representatives of less than a third of the taxonomic sections of Hypericum 

have been examined for acylphloroglucinols and related compounds (Crockett and Robson 

2011), thus firm conclusions can not yet be made regarding their utility as chemotaxonomic 

markers (Crockett and Robson 2011; Crockett 2012). 

 

 Nevertheless, to the best of our knowledge, dimeric acylphloroglucinols are exclusively 

distributed in sections Brathys and Trigynobrathys within Hypericum; therefore we 

hypothesize that these compounds have a chemotaxonomic utility at the sectional or 

subsectional level (Barros et al. 2013). The isolation of dimeric acylphloroglucinols in four 

Peruvian Hypericum species further supports the proposition that these compounds could be 

considered as chemotaxonomic markers for the section Brathys and Trigynobrathys in 

Hypericum. 
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Figure captions 

 

Fig. 1 Dimeric acylphloroglucinols identified in Hypericum species from sections Brathys and 

Trigynobrathys. Note that in many cases the carbon skeleton numbering scheme were reassigned 

differently from their original sources following arbitrary criteria 

 

Fig. 2 Primary fragmentation and major fragments expected in drummondin C 

 

Fig. 3 Selected region of the HMBC spectra of uliginosin B and isouliginosin B recorded in CDCl3 

and principal correlations involving the methylene bridge, hydroxyl groups and olefinic protons from 

the benzopyran ring 

 

Fig. 4 Proposed biosynthetic pathway of dimeric acylphloroglucinols in Hypericum andinum, H. 

brevistylum, H. laricifolium and H. silenoides. Valine and possibly pyruvate are likely primary 

metabolite precursors of acylphloroglucinols in H. perforatum (Karppinen et al. 2007). The enzymatic 

formation of PIB and 3’prenPIB by an isobutyrophenone synthase and phlorisobutyrophenone 

dimethylallyltransferase is reported in H. calycinum (Boubakir et al. 2005; Klingauf et al. 2005). The 

methylene bridge formation mechanism is proposed elsewhere (Crispin et al. 2013) based on the 

mechanism of EC 1.21.3.3. PIB and PIB derivatives, 8ib22meC57diol, 3’prenPIB and 

3’3’me6’oxoPIB are reported in H. gentianoides (Crispin et al. 2013). 6ib22meC57diol and 

3’pren3’me6oxoPIB are PIB derivatives here hypothetically proposed. Abbreviations: PIB, 

phlorisobutyrophenone; 6ib22meC57diol, 6-isobutyryl-2,2-dimethyl-chromene-5,7-diol; 

8ib22meC57diol, 8-isobutyryl-2,2-dimethyl-chromene-5,7-diol; 3’prenPIB, 3’-prenyl-

phlorisobutyrophenone; 3’3’me6’oxoPIB, 3’,3’-dimethyl-6’-oxo-phlorisobutyrophenone; 

3’pren3’me6oxoPIB, 3’-prenyl,3’-methyl-6’-oxo-phlorisobutyrophenone 
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Fig. 1 (Continued) 
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Table 1 UV, EI-MS data and sources of dimeric acylphloroglucinols in Hypericum species from Brathys and Trigynobrathys sections 
Compound UV λmax nm EI-MS m/z Sources in Hypericum* Reference 

1 Albaspidin AA  λEtOH 336, 339, 294 404[M+], 209, 208, 196, 193, 181, 168, 153, 137 Brathys: H. drummondii Jayasuriya et al. 1989 

2 Albaspidin PP λEtOH 344, 294, 264 432[M+], 417, 223, 210, 195, 193, 182, 167 Brathys: H. drummondii Jayasuriya et al. 1989 

3 Albaspidin iBiB 

(Japonicin A) 

λMeOH 341, 221 460[M+], 445, 417, 235, 209, 182, 165, 69 Trigynobrathys: H. brasiliense, H. campestre,  

H. caprifoliatum, H. connatum, H. japonicum, H. linoides,  

H. myrianthum, H. polyanthemum, H. salvadorense 

Rocha et al. 1995 

Bernardi 2007 

Barros et al. 2013 

4 Drummondin A  λEtOH 358, 258 470[M+], 455, 261, 245, 233, 227, 215 Brathys: H. drummondii Jayasuriya et al. 1989 

5 Drummondin B  λEtOH 356, 282, sh 270 456[M+], 441, 247, 234, 233, 231, 219, 213 Brathys: H. drummondii Jayasuriya et al. 1989 

6 Drummondin C λEtOH 355, 284 442[M+], 427, 247, 234, 231, 219, 213, 201 Brathys: H. drummondii Jayasuriya et al. 1989 

7 Drummondin D λMeOH 356, 287 496[M+], 428, 409, 247, 231, 219 Brathys: H. drummondii Jayasuriya et al. 1991 

8 Isodrummondin C  442[M+] Brathys: H. drummondii Jayasuriya et al. 1994 

9 Isodrummondin D λMeOH 357, 314, 278 496[M+], 428, 409, 246, 231, 219, 201 Brathys: H. drummondii Jayasuriya et al. 1991 

10 Drummondin E λMeOH 354, 294 498[M+], 343, 247, 236, 193, 181 Brathys: H. drummondii Jayasuriya et al. 1991 

11 Drummondin F λMeOH 350, 300 498[M+], 355, 236, 195, 193, 182, 165 Brathys: H. drummondii Jayasuriya et al. 1991 

12 Uliginosin A λHexane 290, 230 
λCyclohexane 293, 229 

500[M+], 457, 445, 401, 277, 264, 221, 209, 165, 153, 
121, 69 

Brathys: H. andinum**, H. gentianoides 

Trigynobrathys: H. brasiliense, H. brevistylum**, H. mutilum,  

H. silenoides**, H. uliginosum 

Schühly et al. 2007 

Hillwig 2008 

Barros et al. 2013 

13 Hyperbrasilol C λMeOH 348, 301, 224 554[M+], 467, 277, 264, 221, 209, 165, 69 Brathys: H. gentianoides 

Trigynobrathys: H. brasiliense 

Rocha et al. 1995 

Hillwig 2008 

14 Uliginosin B λCyclohexane 270, 230 498[M+] Brathys: H. andinum**, H. gentianoides, H. laricifolium**,  

Trigynobrathys: H. brasiliense, H. brevistylum**, H. campestre,  

H. caprifoliatum, H. carinatum, H. connatum, H. japonicum,  

H. linoides, H. myrianthum, H. mutilum, H. polyanthemum,  

H. salvadorense, H. silenoides**, H. ternum, H. uliginosum 

Taylor and Brooker 1969 

Ishiguro et al. 1986 

Schühly et al. 2007 

Barros et al. 2013 

Crispin et al. 2013 

15 Hyperbrasilol B λMeOH 357, 287, 226 552[M+], 465, 275, 259, 247, 167, 69 Brathys: H. laricifolium** 

Trigynobrathys: H. brasiliense, H. caprifoliatum, H. connatum 

Rocha et al. 1996 

Barros et al. 2013 

16 Isouliginosin B λMeOH 355, 315, 277, 
224 

498[M+], 483, 455, 275, 262, 247, 219 Brathys: H. andinum**, H. laricifolium** 

Trigynobrathys: H. brasiliense, H. brevistylum**, H. silenoides** 

Rocha et al. 1995 

17 Isohyperbrasilol B λMeOH 357, 279, 216 552[M+], 484, 465, 275, 259, 247, 167, 69 Brathys: H. laricifolium** 

Trigynobrathys: H. brasiliense 

Rocha et al. 1996 

18 Hyperbrasilol A λMeOH 355, 306, sh 224, 

209 

568[M+], 332, 289, 209, 193, 179, 165, 150, 111, 95, 

71, 69 

Trigynobrathys: H. brasiliense Rocha et al. 1996 

19 Saroaspidin A λMeOH 350, 302, 225 446[M+], 280, 224, 187, 167 Brathys: H. gentianoides 

Trigynobrathys: H. japonicum 

Ishiguro et al. 1987 

Hillwig 2008 

20 Saroaspidin B λMeOH 348, 302, 225 460[M+], 236, 224, 209, 181, 167 Trigynobrathys: H. japonicum Ishiguro et al. 1987 

21 Saroaspidin C λMeOH 345, 300, 225 474[M+], 250, 224, 167, 149 Trigynobrathys: H. japonicum Ishiguro et al. 1987 

22 Sarothralen A λEtOH 350, 305, 215 568[M+] Trigynobrathys: H. japonicum Ishiguro et al. 1986 

23 Sarothralin λEtOH 362, 245   Trigynobrathys: H. japonicum Ishiguro et al. 1985 

24 Sarothralin G λEtOHsh 332, 308 566[M+], 380, 366, 224, 167, 105, 77 Trigynobrathys: H. japonicum Ishiguro et al. 1990 

25 Sarothralen B λEtOH 357, 294, 226  566[M+] Trigynobrathys: H. japonicum Ishiguro et al. 1986 

26 Sarothralen C λEtOH 354, 305, 222 584[M+], 541, 445, 348, 305, 235, 165, 69, 43 Trigynobrathys: H. japonicum Ishiguro et al. 1994 

27 Sarothralen D λEtOH 354, 303, 225 584[M+], 541, 460, 348, 305, 235, 165, 69, 43 Trigynobrathys: H. japonicum Ishiguro et al. 1994 

28   Trigynobrathys: H. mutilum Schühly et al. 2007 

29 [3’mePIB]-[1’pren3’4me4’oxoPIB] 499[M-H]-***, 209, 221, 227, 289 Brathys: H. gentianoides Crispin et al. 2013 

30 [3’3’4me6’oxoPIB]-[3’prenPIB] 513[M-H]-***, 237, 249, 263, 275 Brathys: H. gentianoides Crispin et al. 2013 

31[1’3’pren45’me4’oxoPIB]-[3’prenPIB] 567[M-H]- ***,263, 291, 303 Brathys: H. gentianoides Crispin et al. 2013 

*Identification by isolation or HPLC detection, **Described by this report, ***ESI-MS in negative mode, Abbreviations: 29 (3,5-dihydroxy-4-isobutyryl-2-methyl-4-(3-methylbut-2-enyl)-6-(2,4,6-trihydroxy-3-isobutyryl-5-methylbenzyl)cyclohexa-

2,5-dienone); 30 (3,5-dihydroxy-4,4-dimethyl-2-(2-methylbutanoyl)-6-(2,4,6-trihydroxy-3-isobutyryl-5-(3-methylbut-2-enyl)benzyl)cyclohexa-2,5-dienone); 31 (3,5-dihydroxy-2-methyl-4-(3-methylbut-2-enyl)-4-(2-methylbutanoyl)-6-(2,4,6-

trihydroxy-3-isobutyryl-5-(3-methylbut-2-enyl)benzyl)cyclohexa-2,5-dienone 
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Table 2 1H NMR data of compounds 1, 2, 4 to 11 

aNMR data recorded at 400 MHz in CDCl3 (Feng and E-li 2007) 
bNMR data recorded at 300 MHz in CDCl3 (Jayasuriya et al. 1989) 
cNMR data recorded at 300 MHz in CDCl3 (Jayasuriya et al. 1994) 
dNMR data recorded at 300 MHz in Me2CO-d6 (Jayasuriya et al. 1991) 
eChemical shifts in ppm and coupling constants in Hz 
fBuried under the signal of δ 2.69 
gSignals observed in CDCl3 
-Absent proton at this position 

 

 

 

  

 

H 1a 2a 4b 5b 6b 7d 8c 9d 10d 11d 

4-Me 1.45 br se 1.47 br s 1.49 br s 1.49 br s 1.49 br s 1.53 s 1.56 br s 1.63 s 1.52 s 1.52 s 

 1.52 br s 1.54 br s 1.49 br s 1.49 br s 1.49 br s - 1.56 br s - - - 

7 3.30 s 3.32 s 3.53 br s 3.53 br s 3.52 br s 3.53 s 3.54 br s 3.59 s 3.54 s 3.55 s 

 3.33 s 3.35 s 3.53 br s 3.53 br s 3.52 br s 3.53 s 3.54 br s 3.59 s 3.54 s 3.55 s 

9 2.70 s; 

2.57 s 

3.20 q J=7.2 3.25 q J=7.5 3.25 q J=7.5 2.74 s 2.69 s 2.75 s 2.69 s 2.69 s 2.69 s 

10 - 1.18 t 
J=7.2 

1.18 t  
J=7.5 

1.18 t  
J=7.5 

- - - - - - 

2’-Me - - 1.49 br s 1.49 br s 1.49 br s 1.50 s 1.56 br s 1.56 s 1.86 br s 1.65 s 

   1.49 br s 1.49 br s 1.49 br s 1.51 s 1.56 br s 1.57 s 1.86 br s 1.76 s 

3’ - - 5.44 d  

J=9.9 

5.44 d  

J=9.9 

5.44 d  

J=9.9 

5.62 d  

J=9.9 

5.50 d  

J=9.9 

5.64 d  

J=9.9 

5.64 br t  

J=7.2 

5.12 br t  

J=7.2 

4’ - - 6.69 d  
J=9.9 

6.68 d  
J=9.9 

6.68 d  
J=9.9 

6.66 d  
J=9.9 

6.72 d  
J=9.9 

6.67 d  
J=9.9 

4.81 d  
J=7.2 

3.39 d  
J=7.2 

10’ - - - - - - - - 6.20 s - 

12’ - - 3.12 q  
J=7.5 

2.69 s 2.69 s 2.69 s 2.75 s 2.70 s 2.69 s 2.69 s 

13’ - - 1.20 t  

J=7.5 

- - - - - - - 

1’’ - - - - - 2.69 

buriedf 

- 2.69  

buriedf 

2.65 br d 

J=7.2 

2.69 

buriedf 

2’’ - - - - - 4.65 br t  
J=8.4 

- 4.70 br t  
J=8.1 

4.68 br t  
J=7.2 

4.67 br t  
J=7.2 

3’’-Me - - - - - 1.33 s - 1.36 s 1.38 s 1.34 s 

 - - - - - 1.38 s - 1.44 s 1.44 s 1.39 s 

3-OH 12.75 s 12.27 s 9.95 s 9.90 s 9.94 s 9.77 s 9.04 s 9.10 s 9.09 s 9.97 br sg 

5-OH 18.40 s 18.49 s 18.49 s 18.49 s 18.42 s 17.90 s 18.47 s 18.57 s 18.58 s 18.39 s 

5’-OH - - 11.44 s 11.47 s 11.47 s 11.38 s - - - 11.44 br sg 

7’-OH - - 16.01 s 15.86 s 15.88 s 16.04 s 11.64 s 11.74 s 11.61 s 15.80 br sg 

9’-OH - - - - - - 14.06 s 14.08 s 13.68 s 6.42 br sg 
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Table 3 1H NMR data of compounds 3, 12 to 18 

aNMR data recorded at 400 MHz in CDCl3 (Bernardi 2007) 
bNMR data recorded at 200 MHz in CDCl3 (Rocha et al. 1995) 
cNMR data recorded at 200 MHz in Me2CO-d6 (Rocha et al. 1996) 
dNMR data recorded at 400 MHz in CDCl3 (Nör 2007) 
eNMR data recorded at 200 MHz in CDCl3 (Rocha et al. 1996) 
fNMR data recorded at 500 MHz in Me2CO-d6 (Rocha et al. 1995) 
gChemical shifts in ppm and coupling constants in Hz 
hThese attributions can be reversed 

†Quaternary methyl groups were better resolved in Me2CO-d6: δ 1.55 (s, 4-Me), 1.46 (s, 2’-Me2), 1.23 and 1.31 (2s, 3’’-Me2) 

†Hydroxyl resonances in Me2CO-d6: δ 18.66, 11.71, 14.02 and 9.15 (br) 
‡Tentative assignment 

-Absent proton at this position 

 

 

H 3a 12b 13c 14d 15c 16b 17e† 18f 

4-Me 1.48 sg 1.45 br s - 1.48 br s 1.51 s 1.50 s 1.26 s‡ 1.52 s 

 1.54 s 1.51 br s - 1.48 br s - 1.50 s - 1.52 s 

6-Me - - 1.17 s - - - - - 

7 3.35 s 3.53 br s 3.41 s 3.54 br s 3.55 s 3.52 br m 3.55 br s 3.58 d J=17 

 3.35 s 3.53 br s 3.41 s 3.54 br s 3.55 s 3.52 br m 3.55 br s 3.48 d J=17 

9 4.20 sep J=7 4.19 sep J=7 3.98 sep J=7 4.21 sep J=7 4.19 sep J=7 4.19 sep J=7 4.20 sep J=7 4.16 m 

9-Me 1.18d J=7 1.17 d J=7h 1.05 d J=7 1.21 d J=7h 1.16 d J=7 1.17 d J=7 1.17 d J=7 1.17 d J=7h 

 1.18d J=7 1.17 d J=7h 1.07 d J=7 1.21 d J=7h 1.17 d J=7 1.17 d J=7 1.17 d J=7 1.17 d J=7h 

2’-Me - 1.79 s 1.57 s 1.48 s 1.53 s 1.55 s 1.52 unres. 1.31 s 

 - 1.85 s 1.72 s 1.48 s 1.53 s 1.55 s 1.52 unres. 1.59 s 

3’ - 5.22 pseudo t J=7 5.22 br t J=7 5.44 d J=10 5.59 d J=10 5.46 d J=10 5.48 d J=10 1.92 m 

4’ - 3.45 d J=7 3.20 br d J=7 6.70 d J=10 6.66 d J=10 6.71 d J=10 6.74 d J=10 2.66 ddd J=13, 13, 6 

12’ - 3.92 sep J=7 4.19 sep J=7 3.90 sep J=7 4.00 sep J=7 4.05 sep J=7 4.11 sep J=7 4.08 m 

12’-Me - 1.18 d J=7h 1.11 d J=7 1.18 d J=7h 1.20 d J=7 1.17 d J=7 1.18 d J=7 1.15 d J=7h 

 - 1.18 d J=7h 1.11 d J=7 1.18 d J=7h 1.21 d J=7 1.17 d J=7 1.18 d J=7 1.15 d J=7h 

13’ - - - - - - - 1.24 m 

 - - - - - - - 2.55 dd J=13, 6 

14’-Me - - - - - - - 1.07 s 

 - - - - - - - 1.16 s 

15’ - - - - - - - 1.22 m 

 - - - - - - - 1.58 m 

1’’ - - 2.41 br d J=7 - 2.8-2.5 m - 2.8-2.5 m - 

2’’ - - 4.81 br t J=7 - 4.60 br t - 4.8-4.4 m - 

3’’-Me - - 1.39 br s - 1.31 s - 1.49 unres. - 

 - - 1.44 br s - 1.34 s - 1.59 unres. - 

3-OH 12.34 s 10.10 br s n.o. 9.94 s 9.90 s 9.05 s 9.00 s 9.42 s 

5-OH 18.76 s 18.78 br s 19.40 s 18.68 s 18.80 s 18.80 s 18.64 s 18.80 s 

5’-OH - 11.50 br s n.o. 12.25 s 11.40 s - - - 

7’-OH - 16.18 br s 14.00 s 16.16 s 16.35 s 11.69 s 11.46 s 11.46 s 

9’-OH - 6.40 br s n.o. - - 14.14 s 14.13 s 14.07 s 
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Table 4 1H NMR data of compounds 19 to 27 

aNMR data recorded at 200 MHz in Me2CO-d6 (Ishiguro et al. 1987) 
bNMR data recorded at 200 MHz in CDCl3+CD3OD (Ishiguro et al. 1986) 
cNMR data recorded at 360 MHz in CDCl3 (Ishiguro et al. 1985) 
dNMR data recorded at 200 MHz in CDCl3 (Ishiguro et al. 1990)  

eNMR data recorded at 500 MHz in CDCl3 (Ishiguro et al. 1994) 
fChemical shifts in ppm and coupling constants in Hz 

n.o. Signal not observed 

-Absent proton at this position

 

H 19a 20a 21a 22b 23c 24d 25b 26e 27e 

4-Me 1.22 sf 1.19 s 1.20 s 1.27 s 1.50 s 1.50 s 1.43 s 1.48 br s 1.49 br s 

 1.22 s 1.19 s 1.20 s 1.27 s 1.56 s 1.50 s 1.43 s 1.55 br s 1.49 br s 

7 3.46 s 3.46 s 3.47 s 3.54 s 3.58 s 3.57 s 3.53 s 3.57 s 3.52 s 

 3.46 s 3.46 s 3.47 s 3.54 s 3.60 s 3.57 s 3.53 s 3.57 s 3.52 s 

9 3.91 sep 

J=7.3 

3.94 sep 

 J=6.6 

3.82 sex 

J=7 

4.20 sep 

 J=7 

4.18 m 

 J=6.5 

4.21 m 3.90 m 4.21 sep 

 J=6.7 

4.15 sep 

J=6.7 

9-Me 1.09 d 

J=7.3 

1.08 d  

J=6.6 

1.08 d 

J=7 

1.15 d 

J=7 

1.18 d 

J=6.9 

1.14 d  

J=6.3 

1.17 d  

J=6.4 

1.18 d 

 J=6.7 

1.19 d 

J=6.7 

 1.09 d 

J=7.3 

1.08 d 

J=6.6 

- 1.15 d 

J=7 

1.18 d 

J=6.9 

1.14 d  

J=6.3 

1.17 d  

J=6.4 

1.18 d 

 J=6.7 

1.19 d 

 J=6.7 

10 - - 1.47 m - - - - - - 

 - - 1.76 m - - - - - - 

11 - - 0.86 t J=7.3 - - - - - - 

1’ - - - 2.05 m - 2.04 br s 1.82 m 1.75 m 1.78 m 

2’-Me - - - 1.77 s 1.54 s 1.72 s 1.66 s 1.52 s 1.53 s 

 - - - - 1.54 s - - - - 

3’ - - - 5.25 m 4.64 tq 

J=6.1, 1.5 

5.12 t  

J=6.3 

5.42 d  

J=10 

3.94 br t 

unres. 

3.98 br d 

J=4.9 

4’ - - - 3.29 d 

J=6.8 

4.16 d 

J=6.1 

3.36 d  

J=6.3 

6.76 d  

J=10 

2.65 dd 

 J=6.4,17.1 

2.70 br d 

J=16.8 

 - - - - - - - 2.94 dd 

J=5.5, 17.1 

2.93 dd 

J=4.9, 16.8 

10’ - - - - 6.02 s - - - - 

10’-Me 1.95 s 1.94 s 1.94 s - - - - - - 

12’ 4.16 sep 

J=6.6 

4.07 sex  

J=7.3 

4.06 sex 

J=6.7 

3.95 sep  

J=7 

- - 4.19 m 3.91 sep 

 J=6.7 

4.12 m 

unres. 

12’-Me 1.13 d J=6.6 1.11 d J=7.3 1.12 d J=6.7 1.18 d J=7 - - 1.20 d J=6.4 1.19 d J=6.7 1.19 d J=6.7 

 1.13 d J=6.6 - - 1.18 d J=7 - - 1.20 d J=6.4 1.19 d J=6.7 1.19 d J=6.7 

13’ - 1.38 m 1.47 m - 7.35 m 7.64 m - - - 

 - 1.81 m 1.76 m - -  - - - 

14’ - 0.88 t J=7.4 0.88 t J=7.3 - 7.46 m 7.50 m - - - 

15’ - - - - 7.46 m 7.50 m - - - 

16’ - - - - 7.46 m 7.50 m - - - 

17’ - - - - 7.35 m 7.64 m - - - 

1’’ - - - 1.95 m - 1.98 br s 2.09 m 2.13 m 2.16 m 

2’’ - - - 5.05 m - 4.96 m 5.09 m 5.08 t  

J=6.7 

5.09 dd 

J=7.4, 5.4 

3’’-Me - - - 1.58 s - 1.52 s 1.57 s 1.59 s 1.60 s 

 - - - 1.65 s - 1.52 s 1.57 s 1.67 s 1.67 s 

3-OH n.o. n.o. n.o. 10.14 s 9.70 s 10.11 s 10.01 s 10.08 s 9.03 s 

5-OH 19.39 s 19.39 s 19.26 s 18.72 s 18.75 s 18.75 s 18.75 s 18.70 s 18.68 s 

5’-OH n.o. n.o. n.o. 10.74 s 11.43 s 11.47 s 11.49 s 11.47 s - 

7’-OH 14.03 s 14.03 s 13.93 s 16.12 s 14.65 s 16.18 s 16.44 s 16.32 s 11.33 s 

9’-OH n.o. n.o. n.o. 6.41 s - 11.47 s - - 14.15 s 
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Table 5 13C NMR data from compounds 1 to 14 

aNMR data recorded at 100 MHz in CDCl3 (Feng and E-li 2007) 
bNMR data recorded at 50 MHz in CDCl3 (Rocha et al. 1995) 
cNMR data recorded at 75 MHz in CDCl3 (Jayasuriya et al. 1989) 
dNMR data recorded at 75 MHz in CDCl3 (Jayasuriya et al. 1994) 
eNMR data recorded at 75 MHz in Me2CO-d6 (Jayasuriya et al. 1991) 

fNMR data recorded at 75 MHz in CDCl3 (Jayasuriya et al. 1991) 

gNMR data recorded at 50 MHz in DMSO-d6 (Rocha et al. 1995) 

hNMR data recorded at 50 MHz in Me2CO-d6 (Rocha et al. 1996) 
iNMR data recorded at 100 MHz in CDCl3 (Nör 2007) 
jChemical shifts in ppm 
†Only two signals observed in the region of δ 190-210. It is assumed that the signal at δ 198.9 can be attributed to C-1 and C-5, while the 

signal at δ 209.9 can be attributed to C-8 and C-11'. All four resonances were observed when the spectrum was recorded in CDCl3 at δ 211.3, 

210.8, 199.3 and 171.6 
‡Tentative assignment (low intensity); signal observed at δ 44.2 in CDCl3 
§Broad signal, unresolved 

*Buried under acetone signal 
x,y,zValues with the same superscripts in each column are interchangeable 

-Absent carbon at this position 

 

 

C 1a 2a 3b 4c 5c 6d 7e 8d 9f 10f 11f 12g† 13h 14i 

1 187.6j 187.6 199.8 198.0 198.0 198.6 198.0 198.4 198.0 198.0 199.1 198.9 195.5 199.4 

2 110.6 110.8 107.1 108.0 108.0 108.2 111.0 108.2 110.2 110.9 111.0 106.5x 109.0x 106.8x 

3 173.5 173.3 173.3 171.6 171.6 171.6 171.0 171.0 170.0 170.5 170.6 182.0 183.8 171.7 

4 44.5 44.3 44.5 44.3 44.2 44.1 49.6 44.0 48.8 49.6 49.8 51.9‡ 57.5 44.3 

4-Me 24.2 24.2 24.3 24.8 24.8 25.0 23.3 25.0 23.3 23.4 23.3 24.6 - 24.3 

 25.3 25.3 25.4 24.8 24.8 25.0 - 25.0 - - - 24.6 - 25.4 

5 199.4 198.7 187.4 187.3 187.3 187.2 189.9 187.3 187.9 188.2 188.6 198.9 199.6 187.3 

6 108.4 107.8 110.8 111.2 111.2 110.9 114.0 111.0 113.1 113.9 114.4 107.5x 105.0x 111.2 

6-Me - - - - - - - - - - - - 23.8 - 

7 18.0 18.0 18.2 16.8 16.8 16.5 16.8 16.8 16.7 17.2 17.4 18.0 18.9 16.9 

8 203.1 207.1 210.6 207.1 207.1 203.2 203.3 204.7 203.0 203.7 203.7 209.9 197.3 211.0 

9 29.2 34.8; 

34.7 

36.6 34.8 34.8 29.2 29.1 29.3 29.3 buried* 29.3 32.2 33.5 36.6 

9-Me - - 18.7 - - - - - - - - 19.2 19.8§ 18.9y 

 -  19.3 - - - - - - - - 19.2 19.8§ 18.9y 

10 - 8.5; 8.2 - 8.6 8.6 - - - - - - - - - 

11 - - - - - - - - - - - - - - 

1’ - - - - - - - - - - - - - - 

2' - - - 78.2 78.2 77.9 79.1 80.5 80.6 142.5 132.7 129.1 129.6 78.1 

2'-Me - - - 28.1 28.2 27.9 28.0 27.5 27.8 18.2 18.0 17.5 17.8 27.7 

 - - - 28.1 28.2 27.9 28.0 27.5 27.8 25.9 25.9 25.3 25.9 27.9 

3' - - - 124.6 124.7 124.6 126.4 124.0 124.2 118.1x 123.9 123.6 125.2 124.6 

4' - - - 117.3 117.2 117.0 117.5 117.0 117.0 67.1 22.3 21.4 22.6 117.3 

5' - - - 159.1 159.4 159.2 159.8 154.8 154.8 166.1y 159.9x 157.4y 159.0y 159.3z 

6' - - - 106.1 106.0 105.7 106.7 104.6 104.9 105.9z 106.9y 103.7x 107.5x 107.1x 

7' - - - 161.4 161.2 161.0 161.6 160.6 160.8 160.8y 161.5x 160.8y 162.5y 162.1z 

8' - - - 104.4 104.8 104.6 105.4 106.6 106.7 107.3z 106.5y 102.7x 104.9x 103.7x 

9' - - - 155.7 155.9 155.7 156.7 159.8 160.0 161.9y 160.0x 161.3y 163.1y 155.4z 

10' - - - 103.6 103.6 103.4 104.1 101.7 101.8 93.4 108.2y 104.6x 107.7x 103.5x 

10'-

Me 

- - - - - - - - - - - - - - 

11' - - - 206.9 203.5 203.2 204.9 203.4 204.9 204.9 205.1 209.9 211.1 210.8 

12' - - - 37.1 32.6 32.5 33.0 33.4 33.5 33.2 32.8 38.0 39.2 39.0 

12'-

Me 

- - - - - - - - - - - 19.2 19.8 19.2y 

 - - - - - - - - - - - 19.2 19.8 19.2y 

13' - - - 8.9 - - - - - - - - - - 

14' - - - - - - - - - - - - - - 

14'-

Me 

- - - - - - - - - - - - - - 

 - - - - - - - - - - - - - - 

15' - - - - - - - - - - - - - - 

16’ - - - - - - - - - - - - - - 

17’ - - - - - - - - - - - - - - 

1'' - - - - - - 38.9 - 38.7 38.6 38.8 - 39.5 - 

2'' - - - - - - 118.2 - 117.0 118.2x 118.2 - 121.2 - 

3'' - - - - - - 136.5 - 136.0 136.4 136.6 - 133.0 - 

3''-

Me 

- - - - - - 17.6 - 17.6 17.6 17.6 - 17.8 - 

 - - - - - - 25.6 - 25.6 25.5 25.6 - 25.9 - 
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Table 6 13C NMR data of compounds 15 to 27 

aNMR data recorded at 50 MHz in Me2CO-d6 (Rocha et al. 1996) 
bNMR data recorded at 50 MHz in CDCl3 (Rocha et al. 1995) 
cNMR data recorded at 50 MHz in Me2CO-d6 (Rocha et al. 1995) 
dNMR data recorded at 25.2 MHz in Me2CO-d6 (Ishiguro et al. 1987) 
eNMR data recorded at 25.2 MHz in CDCl3 (Ishiguro et al. 1986) 
fNMR data recorded at 25.2 MHz in CDCl3 (Ishiguro et al. 1985) 
gNMR data recorded at 25.2 MHz in CDCl3 (Ishiguro et al. 1990) 
hNMR data recorded at 125 MHz in CDCl3 (Ishiguro et al. 1994) 
iChemical shifts in ppm 
x,y,zValues with the same superscripts in each column are interchangeable 

*Original reference assigns δ 25.5 for 9-Me and δ 18.0; 19.2 for 4-Me 

-Absent carbon at this positi 

 

 

 

 

 

 

 

 

C 15a 16b 17a 18c 19d 20d 21d 22e 23f 24g 25e 26h 27h 

1 199.2i 199.1 199.1 200.1 197.4 197.5 200.6 199.4 199.6 199.5 199.4 199.5 199.8 

2 109.8x 106.9x 109.8x 107.9 105.9 105.9 105.8 106.3 106.2 107.8 106.1 106.1 105.9 

3 170.7 170.9 170.2 172.0 183.6 183.7 183.9 171.7 171.5 171.2 171.1 171.8 171.1 

4 49.8 44.1 49.7 44.8 53.7 53.6 53.6 44.4 44.4 44.5 44.4 44.4 44.1 

4-Me 22.8 24.5 22.9 24.9 25.3 25.3 25.6 25.6 25.5* 25.8 25.6 24.4 25.7 

 - 25.0 - 25.1 25.3 25.3 25.6 25.6 25.5* 25.8 25.6 25.6 25.7 

5 188.5 187.2 188.7 188.2 196.7 196.6 196.5 187.4 187.3 187.2 187.3 187.4 187.4 

6 114.2 111.3 114.1 112.2 109.1 109.1 109.1 107.2 111.2 111.2 111.3 111.3 111.7 

6-Me - - - - - - - - - - - - - 

7 16.9 17.0 17.1 18.0 19.1 19.1 19.1 18.8 16.8 16.7 16.9 17.0 17.1 

8 211.9y 211.9 212.3y 211.6 211.3 211.0 208.3 211.4 210.8 211.2 210.9 210.8 212.0 

9 37.2 36.8 37.4 37.4 33.4 33.4 40.3 36.3 36.7 36.3 36.6 36.6 39.5 

9-Me 19.4 18.9y 19.5 19.6 19.9 19.9 17.3 19.1 18.0* 19.5 17.5 19.2 19.0 

 19.5 18.9y 19.5 19.7 19.9 19.9 - 19.5 19.2* 19.6 19.1 19.2 19.3 

10 - - - - - - 27.8 - - - - - - 

11 - - - - - - 12.2 - - - - - - 

1' - - - - - - - 22.2 - 27.0x 41.8 37.6 36.5 

2' 79.2 80.5 81.5 84.3 - - - 132.2 137.2 133.8 81.0 80.7 83.2 

2'-Me 27.8 27.7 27.6 19.9 - - - 19.6 19.0 18.0 26.8 25.6 24.4 

 27.9 27.7 28.0 28.2 - - - - 19.0 - - - - 

3' 126.1 124.1 125.8 51.6 - - - 122.2 118.3 125.3 123.1 66.7 67.7 

4' 117.5 117.1 117.2 36.5 - - - 38.7 65.1 39.8 123.7 26.2 26.2 

5' 160.0z 154.6z 160.9z 157.2 158.9x 158.9x 159.6x 161.7x 164.9x 161.9y 162.2 162.1 154.4 

6' 107.2x 104.9x 106.3x 105.6x 103.7y 103.9y 103.9y 105.7 104.5 103.7 103.3x 103.7 107.1 

7' 162.7z 160.1z 161.0z 158.7 163.4x 163.3x 162.7x 160.7x 161.0x 159.2y 159.4 162.0 158.2 

8' 104.3x 105.7x 106.2x 105.8x 104.0y 103.6y 104.5y 108.3 107.1 106.3 108.2 107.2 104.5 

9' 156.1z 160.4z 155.9z 164.3 162.9x 162.8x 162.8x 158.1x 162.0x 159.2y 155.7 154.6 163.3 

10' 104.2x 102.1x 102.8x 106.4 105.2y 105.9y 105.3y 111.5 94.2 106.3 103.6x 100.1 98.8 

10'-Me - - - - 8.1 8.1 8.1 - - - - - - 

11' 210.8y 210.9 211.0y 212.2 208.6 208.9 208.3 210.8 199.4 202.5 210.7 210.8 212.0 

12' 39.7 39.5 40.1 40.0 39.3 46.0 46.1 37.1 142.0 140.9 38.9 39.1 39.5 

12'-Me 18.9 19.2 18.7 19.1 19.9 17.4 17.3 19.3 - - 19.3 19.8 19.4 

 19.8 19.2 19.6 19.1 19.9 - - 19.3 - - 19.3 19.8 19.4 

13' - - - 47.3 - 28.0 27.8 - 127.3 128.0 - - - 

14' - - - 37.8 - 12.2 12.2 - 127.5 128.5 - - - 

14'-Me - - - 32.2 - - - - - - - - - 

 - - - 32.5 - - - - - - - - - 

15' - - - 41.9 - - - - 130.2 132.0 - - - 

16' - - - - - - - - 127.5 128.5 - - - 

17' - - - - - - - - 127.3 128.0 - - - 

1'' 39.3 - 39.1 - - - - 26.4 - 29.8x 23.2 22.1 22.1 

2'' 118.2 - 118.1 - - - - 121.1 - 121.1 118.0 123.6 123.2 

3'' 136.5 - 136.7 - - - - 140.7 - 139.0 132.0 132.4 132.8 

3''-Me 17.5 - 17.6 - - - - 19.6 - 22.0 19.6 17.6 17.7 

 25.6 - 25.6 - - - - 19.6 - 22.0 19.6 25.7 25.7 
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Como parte do presente capítulo são apresentados espectros de ressonância magnética nuclear 

(RMN) 1D (1H, 13C, DEPT) e 2D (COSY, HETCOR, HMBC) de cinco derivados de 

acilfloroglucinol diméricos, previamente descrevidos para H. uliginosum (PARKER e 

JOHNSON, 1968) e H. brasiliense (ROCHA et al. 1995; ROCHA et al. 1996), uliginosina A, 

uliginosina B, isouliginosina B, hiperbrasilol B e isohiperbrasilol B, mas relatados pela 

primeira vez em quatro espécies Peruanas de Hypericum.  
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H. andinum X X X     

H. brevistylum X X X     

H. laricifolium   X X X X 

H. silenoides X X X     

 

Estes espectros foram obtidos num espectrômetro FTNMR Anasazi de 60 MHz (Frequência 

de trabalho nos experimentos de 1H, e 13C: 60 e 15 MHz respectivamente. Experimentos 

realizados na Central Analítica II da Faculdade de Farmácia - UFRGS) e num espectrômetro 

Varian MR400 de 400 MHz (Frequência de trabalho nos experimentos de 1H, e 13C: 399.736 

e 100.523 MHz respectivamente. Experimentos realizados no Laboratório Regional de 

Nanotecnologia – LRNANO - UFRGS). Este material é sumarizado no seguiste ordenamento: 

Uliginosina A: Figura 1.1 - 1.11 [CDCl3 e acetona-d6] 

Uliginosina B: Figura 2.1 - 2.18 [CDCl3, acetona-d6, CD3OD, C5D5N e CD3SOCD3] 

Isouliginosina B: Figura 3.1 - 3.10 [CDCl3 e acetona-d6]  

Hiperbrasilol B: Figura 4.1 - 4.10 [CDCl3 e acetona-d6] 

Isohiperbrasilol B: Figura 5.1 - 5.10 [CDCl3 e acetona-d6] 
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Figura 1.1 Espectro de RMN-1H de uliginosina A em CDCl3 a 60 MHz 

 

 

 

 

 

 
Figura 1.2 Espectro de RMN-1H de uliginosina A em CDCl3 a 400 MHz 
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Figura 1.3 Espectro de RMN-13C de uliginosina A em CDCl3 a 15 MHz 

 

 

 

 

 

 
Figura 1.4 Espectro de RMN-13C de uliginosina A em CDCl3 a 100 MHz 
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Figura 1.5 Espectro de RMN-1H de uliginosina A em acetona-d6 a 60 MHz 

 

 

 

 

 

 
Figura 1.6 Espectro de RMN-1H de uliginosina A em acetona-d6 a 400 MHz 
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Figura 1.7 Espectro de RMN-13C de uliginosina A em acetona-d6 a 15 MHz 

 

 

 

 

 

 
Figura 1.8 Espectro de RMN-13C de uliginosina A em acetona-d6 a 100 MHz 
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Figura 1.9 Espectro de RMN-13C-DEPT de uliginosina A em CDCl3 a 15 MHz 
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Figura 1.10 Espectro de correlação H-H COSY de uliginosina A em CDCl3 

 

 

 

 
Figura 1.11 Espectro de correlação H-C HETCOR de uliginosina A em CDCl3 
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Figure 1.12 Cromatograma por HLPC de uliginosina A 
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Figura 2.1 Espectro de RMN-1H de uliginosina B em CDCl3 a 60 MHz 

 

 

 

 

 

 
Figura 2.2 Espectro de RMN-1H de uliginosina B em CDCl3 a 400 MHz 
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Figura 2.3 Espectro de RMN-13C de uliginosina B em CDCl3 a 15 MHz 

 

 

 

 

 

 
Figura 2.4 Espectro de RMN-13C de uliginosina B em CDCl3 a 100 MHz 
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Figura 2.5 Espectro de RMN-1H de uliginosina B em acetona-d6 a 60 MHz 

 

 

 

 

 

 
Figura 2.6 Espectro de RMN-1H de uliginosina B em acetona-d6 a 400 MHz 
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Figura 2.7 Espectro de RMN-13C de uliginosina B em acetona-d6 a 100 MHz 

 

 

 

 

 

 
Figura 2.8 Espectro de RMN-1H de uliginosina B em CD3OD a 400 MHz 
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Figura 2.9 Espectro de RMN-1H de uliginosina B em CD3OD + CDCl3 (1:1) a 400 MHz  

 

 

 

 

 

 
Figura 2.10 Espectro de RMN-13C de uliginosina B em CD3OD + CDCl3 (1:1) a 100 MHz  
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Figura 2.11 Espectro de RMN-1H de uliginosina B em C5D5N a 400 MHz 

 

 

 

 

 

 
Figura 2.12 Espectro de RMN-13C de uliginosina B em C5D5N a 100 MHz 
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Figura 2.13 Espectro de RMN-1H de uliginosina B em CD3SOCD3 a 400 MHz 

 

 

 

 

 

 
Figura 2.14 Espectro de RMN-13C de uliginosina B em CD3SOCD3 a 100 MHz 
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Figura 2.15 Espectro de RMN-13C-DEPT de uliginosina B em CDCl3 a 15 MHz 
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Figura 2.16 Espectro de correlação H-H COSY de uliginosina B em CDCl3 

 

 

 

 

 
Figura 2.17 Espectro de correlação H-C HETCOR de uliginosina B em CDCl3 
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Figura 2.18 Espectro de correlação de acoplamento heteronuclear HMBC de uliginosina B em CDCl3 a 400/100 MHz 
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Figure 2.19 Cromatograma por HLPC de uliginosina B 
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Figura 3.1 Espectro de RMN-1H de isouliginosina B em CDCl3 a 60 MHz 

 

 

 

 

 

 
Figura 3.2 Espectro de RMN-1H de isouliginosina B em CDCl3 a 400 MHz 
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Figura 3.3 Espectro de RMN-13C de isouliginosina B em CDCl3 a 15 MHz 

 

 

 

 

 

 
Figura 3.4 Espectro de RMN-13C de isouliginosina B em CDCl3 a 100 MHz 
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Figura 3.5 Espectro de RMN-1H de isouliginosina B em acetona-d6 a 60 MHz 

 

 

 

 

 

 
Figura 3.6 Espectro de RMN-1H de isouliginosina B em acetona-d6 a 400 MHz 
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Figura 3.7 Espectro de RMN-13C-DEPT de isouliginosina B em CDCl3 a 15 MHz 
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Figura 3.8 Espectro de correlação H-H COSY de isouliginosina B em CDCl3 

 

 

 

 

 

 
Figura 3.9 Espectro de correlação H-C HETCOR de isouliginosina B em CDCl3 



75 
 
 

 
Figura 3.10 Espectro de correlação de acoplamento heteronuclear HMBC de isouliginosina B em CDCl3 a 400/100 MHz 
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Figure 3.11 Cromatograma por HLPC de isouliginosina B 
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Figura 4.1 Espectro de RMN-1H de hiperbrasilol B em CDCl3 a 60 MHz 

 

 

 

 

 

 
Figura 4.2 Espectro de RMN-1H de hiperbrasilol B em CDCl3 a 400 MHz 
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Figura 4.3 Espectro de RMN-13C de hiperbrasilol B em CDCl3 a 15 MHz 

 

 

 

 

 

 
Figura 4.4 Espectro de RMN-13C de hiperbrasilol B em CDCl3 a 100 MHz 
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Figura 4.5 Espectro de RMN-1H de hipebrasilol B em acetona-d6 a 60 MHz 

 

 

 

 

 

 
Figura 4.6 Espectro de RMN-1H de hipebrasilol B em acetona-d6 a 400 MHz 



80 
 
 

 
Figura 4.7 Espectro de RMN-13C de hipebrasilol B em acetona-d6 a 100 MHz 

 

 

 
Figura 4.8 Espectro de correlação H-H COSY de hiperbrasilol B em CDCl3 
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Figura 4.9 Espectro de RMN-13C-DEPT de hiperbrasilol B em CDCl3 a 15 MHz 
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Figura 4.10 Espectro de correlação de acoplamento heteronuclear HMBC de hiperbrasilol B em acetona-d6 a 400/100 MHz
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Figure 4.11 Cromatograma por HLPC hiperbrasilol B 
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Figura 5.1 Espectro de RMN-1H de isohiperbrasilol B em CDCl3 a 60 MHz 

 

 

 

 

 

 
Figura 5.2 Espectro de RMN-1H de isohiperbrasilol B em CDCl3 a 400 MHz 
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Figura 5.3 Espectro de RMN-13C de isohiperbrasilol B em CDCl3 a 15 MHz 

 

 

 

 

 

 
Figura 5.4 Espectro de RMN-13C de isohiperbrasilol B em CDCl3 a 100 MHz 
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Figura 5.5 Espectro de RMN-1H de isohipebrasilol B em acetona-d6 a 60 MHz 

 

 

 

 

 
Figura 5.6 Espectro de RMN-1H de isohipebrasilol B em acetona-d6 a 400 MHz 
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Figura 5.7 Espectro de RMN-13C de isohipebrasilol B em acetona-d6 a 100 MHz 

 

 

 
Figura 5.8 Espectro de correlação H-H COSY de isohiperbrasilol B em acetona-d6 
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Figura 5.9 Espectro de RMN-13C-DEPT de isohiperbrasilol B em CDCl3 a 15 MHz 
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Figura 5.10 Espectro de correlação de acoplamento heteronuclear HMBC de isohiperbrasilol B em acetona-d6 a 400/100 MHz
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Figure 4.11 Cromatograma por HLPC isohiperbrasilol B 
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Grande do Sul, Avenida Ipiranga 2752, Porto Alegre/RS 90610-000, Brazil 

 

*To whom correspondence should be addressed: 

Phone: (+55) 51 3308 5456 

Fax (+55) 51 3308 5437 

E-mail: gilsane@farmacia.ufrgs.br (G. L. von Poser) 

 

 

Mental depressive disorders are major public health issues that encourage the search for new 

therapeutic agents (Ferrari et al. 2013). The herbaceous plant H. perforatum (St. John's wort) 

constitutes one of the most recognized phytotherapeutical preparations for the treatment of 

mild to moderate depression (Kasper et al. 2010). Flavonoids, naphthodianthrones and 

acylphloroglucinol derivatives are recognized as mayor contributors to the overall effect 

observed (Butterweck and Schmidt 2007).  

 

The polycyclic polyisoprenylated acylphloroglucinols hyperforin, adhyperforin and 

hyperfoliatin are lipophilic constituents of H. perforatum and H. perfoliatum that display 

similar pharmacological profiles in animal and biochemical models of antidepressant activity. 

They are able to potently and nonselectively inhibit the synaptosomal uptake of dopamine, 

serotonin and noradrenaline and, differently from classical antidepressant drugs, they show no 

direct binding to any of these monoamine transporters, thus offering a new mechanism of 

action not related to the current pharmacological treatments for depressive disorders 

(Chatterjee et al. 1998; Jensen et al. 2001; do Rego et al. 2007).  

 

Differently to the hyperforin-producing (and polyisoprenylated acylphloroglucinol 

derivatives) Hypericum species from sections Androsaemum, Drosocarpium, Hypericum, etc., 
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mainly distributed in Africa and Eurasia (Robson 2012; Crockett 2012), the Hypericum 

species from sections Brathys and Trigynobrathys, mainly distributed in Central and South 

America, are sources of primarily dimeric structures consisting of an acylfilicinic acid and an 

acylphloroglucinol moiety linked by a methylene bridge. The occurrence of thirty-one dimeric 

acylphloroglucinols reported for Hypericum species from sections Brathys and 

Trigynobrathys was recently reviewed, and the presence of five known dimeric 

acylphloroglucinols, uliginosin A, uliginosin B, isouliginosin B, hyperbrasilol B and 

isohyperbrasilol B, in four Peruvian Hypericum species was presented for the first time 

(Ccana-Ccapatinta et al. 2013).  

 

Studies conducted by our group have demonstrated that the dimeric acylphloroglucinol 

molecular scaffold represents a promising tool for the development of new antidepressants 

(Socolsky et al. 2012a; Stein et al. 2012). Uliginosin B is the most investigated dimeric 

acylphloroglucinol and is reported to occur in 19 Hypericum species from sections Brathys 

and Trigynobrathys (Ccana-Ccapatinta et al. 2013). Uliginosin B present antidepressant-like 

effect in rodents by an innovative mechanism of action, not completely elucidated. It 

increases the availability of monoamines in the synaptic cleft, without binding to sites on the 

monoaminergic neuronal carriers indicating that it acts in a different manner from most 

antidepressants (Stein et al., 2012). Considering this background and as part of our continuous 

search for novel structures of dimeric acylphloroglucinol compounds with potential 

antidepressant-like activity, we have conducted further efforts to isolate and identify 

additional constituents present in the n-hexane extracts of H. andinum Gleason and H. 

laricifolium Juss.   

 

Results and Discussion 

 

The air-dried underground plant material of H. andinum (roots and stems) and aerial plant 

material of H. laricifolium (stems, leaves and flowers) were ground and extracted by 

maceration at room temperature with n-hexane. The extracts were fractionated, and fractions 

were further processed as described in the Experimental Section to yield new 

acylphloroglucinols derivatives andinin A, hyperlaricifolin A, laricifolin A and laricifolin B 

(Fig. 1). 
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The HRESIMS of 1 showed a pseudomolecular ion peak [M + H]+ at m/z 501.2491, consistent 

with the molecular formula of C28H37O8. The 1H NMR spectrum of 1 (Table 1) exhibited a 

characteristic signal at very low field (δH 18.74) assigned to an enolizable β-triketonic system, 

as previously reported for acylphloroglucinol derivatives carrying an acylfilicinic acid moiety 

isolated from genus Hypericum, Elaphoglossum and Dryopteris (Ccana Ccapatinta et al. 

2013; Socolsky et al 2012a and 2012b). This evidence, in addition to the presence of carbon 

signals of a carbonyl (C-1, δC 187.3), four enol (C-2, δC 111.3; C-3, δC 171.1; C-5, δC 199.0 

and C-6, δC 107.0), and a dimethyl substituted quaternary carbon (C-4, δC 44.1) in the 13C 

NMR spectrum of 1 confirmed the presence of a dimethyl substituted acylfilicinic acid 

moiety. The 1H and 13C NMR spectrum of 1 showed certain anomalies that are best explained 

by the expected keto-enol tautomerization of the of the acylfilicinic acid moiety in CDCl3 

solution. This phenomena complicates spectra interpretation, but in no case prohibited 

complete assignments. In order to overcome this difficulty and to confirm assignments in 

CDCl3, further NMR experiments of 1 were recorded in acetone-d6 (Table 1). A characteristic 

signal for a methylene bridge was observed at δH 3.53, providing evidence of the presence of 

an acylfilicinic acid moiety linked to an aromatic ring by a methylene bridge. In addition, the 

signals of two acyl residues were clearly detected at δC 208.5 and δC 207.6 in the 13C NMR 

spectrum, providing further evidence of the presence of two rings in 1. The phloroglucinol 

moiety was inferred as the second ring by the observation of two signals of chelated hydroxyl 

groups (8'-OH, δH 11.55; 10'-OH, δH 13.88) and three signals of aromatic oxygen-bearing 

carbons (C-6', δC 160.3; C-8', δC 159.7; C-10', δC 165.6) in the 1H and 13C NMR spectra, thus 

confirming that 1 is a dimeric acylphloroglucinol,  consisting of a acylfilicinic acid and a 

phloroglucinol moiety linked by a methylene bridge. This kind of compounds is frequently 

isolated from Hypericum species from sections Brathys and Trigynobrathys (Ccana-

Ccapatinta et al. 2013). Furthermore, signals of a prenyl side chain were observed (Table 1). 

These 1D-NMR spectroscopic data resemble those of uliginosin A, a dimeric 

acylphloroglucinol first isolated from H. uliginosum (Parker and Johnson 1968). Differently 

to uliginosin A, compound 1 bears an O-prenyl side chain since its methylene signals (δH 

4.66; δC 66.1) displayed more deshielded values compared to the C-prenyl side chain of 

uliginosin A. This side chain is linked to the C-6' of the acylphloroglucinol moiety of 1 as 

confirmed by HMBC correlations observed in the Fig. 2. Hence, compound 1 was identified 

by spectroscopic analysis as 3,5-dihydroxy-2-isobutyryl-4,4-dimethyl-6(2,4-dihydroxy-3-
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isobutyryl-6-((3-methylbut-2-enyl)oxy)benzyl)cyclohexa-2,5-dienone and trivially named 

andinin A. 

 

The HRESIMS of 2 showed a pseudomolecular ion peak [M + H]+ at m/z 623.3566, consistent 

with the molecular formula of C37H50O8. The 1H and 13C NMR spectra of 2 in CDCl3 were 

unresolved but exhibited the characteristic signal of a chelated hydroxyl group at very low 

field (δH 18.57) suggesting the presence of an enolizable β-triketonic system. Further 

experiments of 2 in acetone-d6 confirmed the presence of a acylfilicinic acid moiety as in as in 

andinin A (Table 1). The signal for a methylene bridge (δH 3.54), in addition to those of two 

acyl residues (δC 210.9 and δC 211.7), three aromatic oxygen-bearing carbons (C-6', δC 162.2; 

C-8', δC 162.7; C-10', δC 156.3) and a characteristic quaternary carbon (C-3', δC 80.6) signals 

in the 1H and 13C NMR spectra of 2 suggested the presence of a acylphloroglucinol moiety 

with an tetrahydropyran skeletal element in agreement to a 2,2-dimethyl dihydrochromene 

moiety. Signals corresponding to two prenyl side chain were also observed (Table 1). Only 

one methyl group was found at C-4, in addition the resonance of C-4 (δC 49.9) in the 13C 

NMR spectrum of 2 was shifted ca 5 ppm downfield compared to that of andinin A. Hence, 

one prenyl side-chain was placed at C-4, together with one methyl group in compliance with a 

prenylated acylfilicinic acid moiety. Such a deshielding effect on C-4 when a methyl group is 

replaced by a prenyl chain has been observed in drummondins (Jayasuriya et al. 1989) and 

hyperbrasilols (Rocha et al. 1995; Rocha et al. 1996). These 1D-NMR spectroscopic data 

resemble those of hyperbrasilol B, a dimeric acylphloroglucinol first isolated from H. 

brasiliense (Rocha et al. 1996). Distinctively to hyperbrasilol B, compound 2 displayed a set 

of signals due to and additional prenyl side chain identified as an isopentenylmethyl group 

that replaced one of the geminal methyl groups of the base 2,2-dimethyl chromene moiety to 

form an isoprenylmethyl-methyl-chromene system. This moiety has been previously 

identified in the sarothralens (Ishiguro et al. 1994) and hypercalyxones (Winkelmann et al. 

2003) isolated from H. japonicum and H. amblycalyx, respectively. The fusion of the pyran 

ring in 2 was inferred by direct comparison of the hydroxyl resonances, in particular 6'-OH 

(δH 11.19) and 8'-OH (δH 16.52), with those observed in the regioisomers hyperbrasilol B and 

isohyperbrasilol B. The reliability of these hydroxyl signals for the determination of the 

cyclisation pattern of oxygenated chromenes was confirmed by SINEPT experiments on 

drummondin C and isodrummondin C (Jayasuriya et al. 1994). These 1D observations were 

confirmed by HSQC and HMBC experiments. Therefore, compound 2 was identified by 
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spectroscopic analysis as 2-((5,7-dihydroxy-8-isobutyryl-2-methyl-2-(4-methylpent-3-

enyl)chroman-6-yl)methyl)-3,5-dihydroxy-6-isobutyryl-4-methyl-4-(3-methylbut-2-

enyl)cyclohexa-2,5-dienone and trivially named hyperlaricifolin A. This compound has two 

stereogenic centers at C-4 and C-3' whose absolute configuration could not be determined. 

 

Duplicated and/or overlapping 1H and 13C NMR patterns, in a ratio of approximately 1:1 

(derived from the 1H and 13C NMR signal intensities), and the presence of two 

pseudomolecular ion peaks at m/z 355.1946 [M + Na]+ and 369.2106 [M + Na]+ in the 

HRESIMS, indicated that 3/4 was obtained as a mixture of closely related compounds, which 

were later shown to be M+14 homologue forms consistent with the molecular formula of 

C20H28O4 and C21H30O4. Both sets of signals in the 13C NMR spectrum showed almost 

identical chemical shifts (eight quaternary carbons, two methylenes, four methines, and six 

methyl groups in 3, while 4 displayed and additional methylene group). The presence of 

duplicated signals for a chelated hydroxyl (δH 14.45, δH 14.10), an acyl residue (C-12, δC 

210.5; C-12, δC 210.6), and a carbocyclic ring with three oxygen bearing carbon units (C-6, δC 

161.3; C-8, δC 164.7; C-10, δC 160.5 for 3 and  C-6, δC 161.3; C-8, δC 164.7; C-10, δC 160.5 

for 4) in the 1H and 13C NMR spectrum of 3/4 suggested the presence of a monomeric 

acylphloroglucinol moiety. Two additional set of signals consistent with two prenyl (Table 1) 

side chains in 3/4 was also observed as a common feature. However, one prenyl side chain is 

linked to the acylphloroglucinol moiety by an ether linkage constituting an O-prenyl while the 

other constitutes a C-prenyl side chain. This was inferred since the methylene signals of the 

O-prenyl (C-5, δC 65.4, δH 4.51 for 3) displayed more deshielded values compared to the C-

prenyl side chain (C-1', δC 21.6; δH 3.37 for 3). The principal difference between 3 and 4 is 

the presence of an additional methylene group in 4. This additional methylene signal was 

located at the acyl side chain. This was consistent with the presence of an iso-butyryl (C-13, 

δC 39.4, δH 3.80 sep J=6.8) and a 2-methylbutyryl (C-13, δC 46.1, δH 3.66 sex J=6.8) 

functionality as inferred by its characteristic multiplicities in the 1H NMR spectrum of 3/4 and 

further confirmed by COSY, HSQC and HMBC experiments. The orto and meta placement of 

the O-prenyl and C-prenyl side chains, respectively, with respect to the acyl residue was 

determined and confirmed by HMBC correlations observed in the Fig. 3. Hence, compounds 

3/4 were identified by spectroscopic analysis as 1-(2,4-dihydroxy-3-(3-methylbut-2-enyl)-6-

((3-methylbut-2-enyl)oxy)phenyl)-2-methylpropan-1-one (3) and 1-(2,4-dihydroxy-3-(3-
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methylbut-2-enyl)-6-((3-methylbut-2-enyl)oxy)phenyl)-2-methylbutan-1-one (4) and trivially 

named laricifolin A (3) and laricifolin B (4). 

 

The results displayed in Fig. 4 showed that the administration of andinin A (1) produced a 

significant reduction in the immobility time of mice submitted to the forced-swimming test 

(FST) relative to the vehicle-treated group (ANOVA: F(5,60)= 16.032, p<0.001). This effect 

was observed at doses of 3, 10 and 30 mg/kg, p.o. and presented a magnitude of effect 

comparable to imipramine 20 mg/kg, p.o. (reference drug control). In the FST the immobility 

postures are observed and assumed to be a depressive-like parameter that is considered as an 

expression of “behavioral despair”; however drugs that alter motor behavior can induce false 

results. Andinin A (1) did not altered the locomotor activity at the highest dose (30 mg/kg, 

p.o.) in the open field test (t-Student test: p=0.249), revealing that the anti-immobility effect 

observed in the FST was not related to a nonspecific motor stimulation (data not shown).  

 

Dimeric acylphloroglucinols crassipin A and uliginosin B have been reported to reduce the 

immobility time in the mice FST at doses of 15 mg/kg, p.o. and 10 mg/kg, p.o., respectively 

(Socolsky et al. 2012a; Stein et al. 2012). In the same way as the polyisoprenylated 

acylphloroglucinols hyperforin, adhyperforin and hyperfoliatin, the dimeric 

acylphloroglucinol uliginosin B was able to inhibit non selectively the synaptosomal uptake 

of dopamine, serotonin and noradrenaline, with IC50 values in the nanomolar range, without 

binding to any of these monoamine transporters (Stein et al. 2012). These acylphloroglucinol 

derivatives constitute not only new alternatives for treatment of depression but also introduce 

a new mechanism of action, which could inspire the design of new antidepressants (Stein et 

al. 2012; Richard 2014). The present data allow to suggest that andinin A (1) deserves further 

studies in other animal models predictive of antidepressant activity, as well as, studies to 

elucidate the mechanism of action, since andinin A (1) presented significant effect in doses (in 

molar concentration) 3 to 4 times lesser than the others dimeric acylphloroglucinol previously 

evaluated (Socolsky et al. 2012a; Stein et al., 2012)..  

 

These data set observations added to previous results allow us to suggest that Hypericum 

species from sections Brathys and Trigynobrathys are sources of dimeric acylphloroglucinol 

derivatives with potential antidepressant-like activity, which can represent new chemical 

scaffolds for the design of antidepressants with new mechanism of action.  
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Experimental Section 

 

General Experimental Procedures. 1H, 13C, and 2D NMR spectra were measured at 25 ºC 

on a Varian MR400 spectrometer (operating at 400 MHz for 1H and 100 MHz for 13C). 

Spectra were recorded in CDCl3 (99.8%, Acros Organics, New Jersey, USA), with 

tetramethylsilane (TMS) as internal standard, and acetone-d6 (99.9%, Sigma Aldrich, St. 

Louis, MO, USA) referenced against residual non deuterated solvent (acetone-d6: δH 2.05/δC 

29.8). . The 1D and 2D NMR (COSY, HMBC and HSQC) spectra were obtained by using the 

standard pulse sequences from Varian user library. Spectra of isolated compounds are 

provided as Supporting Information. HRESIMS were acquired in positive-ion mode on a Q-

TOF Premier spectrometer equipped with a nanospray ion source (Waters, Milford, MA, 

USA). Reagent grade Acetone (Acet), dichloromethane (DCM), ethyl acetate (EtOAc), n-

hexane (Hex) (F. Maia, São Paulo, Brazil), formic acid (Vetec, Rio de Janeiro, Brazil), and 

HPLC grade acetonitrile and methanol (Merck, Darmstadt, Germany) were regularly used in 

the extraction and isolation procedures. Dry column vacuum chromatography (DVCC) was 

carried out over silica gel H (10 – 40 µm, Merck, Darmstadt, Germany). Column 

chromatography (CC) was carried out over silica gel 60 (70−230 mesh, Merck, Darmstadt, 

Germany). The extracts and fractions were monitored by TLC on precoated silica gel 60 F254 

plates (Merck, Darmstadt, Germany) as a stationary phase using several different mobile 

phases composed of: Hex/DCM (50:50 v/v), Hex/EtOAc (90:10 v/v), Hex/EtOEt (95:5 v/v), 

Hex/Acet (95:5 v/v), Hex/EtOAc (95:5 v/v), Hex/EtOEt (97.5:2.5 v/v) and Hex/Acet 

(97.5:2.5 v/v), these three later acidified with 0.25 % formic acid. After elution, 

acylphloroglucinols were detected by fluorescence quenching at 254 nm, by dark-blue-

colored spots at 356 nm, and by a brown (1/2), orange (3) and yellow (4) spot colors after 

spraying with anisaldehyde/sulfuric acid reagent. Centrifugal planar chromatography (CPC) 

was carried out on silica gel 60 G F254 (1 mm plates) using a ChromatotronTM instrument 

(model 7924 T, Harrison Research, San Bruno, CA, USA).  

 

Plant material. The underground parts of Hypericum andinum Gleason (Hypericaceae) were 

collected in Amparaes, Calca Province, Cusco, while aerial parts of H. laricifolium Juss were 

collected in Cumbemayo, Cajamarca Province, Cajamarca, under consent of Dirección 

General Forestal y de Fauna Silvestre of the Republic of Peru (0147-2010-AG-DGFFS-
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DGEFFS). The plants were identified by Prof. Washington H. Galiano Sánchez, Academic 

Department of Biology, University of San Antonio Abad del Cusco, Peru. Voucher specimens 

were deposited in the Herbarium of the Federal University of Rio Grande do Sul (ICN), Brazil 

and in the Herbarium Vargas (CUZ) of the National University of San Antonio Abad del 

Cusco, Peru. 

 

Extraction and isolation. The air-dried and powdered vegetal material (H. andinum, 3.50 kg; 

H. laricifolium, 0.85 kg) was successively extracted by maceration with n-hexane over 72 h (5 

times, plant solvent ratio 1:5). The extracts were joined and evaporated to dryness under 

reduced pressure and then treated with cold acetone to obtain insoluble fatty residues and 

acetone-soluble fractions (ASF) that yielded dark-greenish viscous oil residues after solvent 

evaporation (62.5, and 12.2 g for H. andinum and H. laricifolium, respectively). 

 

The ASF of H. andinum (62.5 g) was subjected to DVCC on silica gel H using Hex/EtOAc 

gradient as mobile phase. A first bright yellow broad band was eluted with  Hex/EtOEt 

(100:0–90:10) while a second greenish band rest on application point and eluted only after 

increasing mobile face polarity (90:10–80:20) that were discharged since no 

acylphloroglucinol profile was seen on TLC. This initial fraction (40.2 g) was resubmitted to 

DVCC (100:0–90:10) to obtain an initial bright yellow fraction (100:0–98:2) rich in 

uliginosin B and two further reddish fractions (A, 97:3–95:5 and B, 95:5–90:10). Fraction A 

(4.2 g) was submitted to CC using Hex/EtOAc (100:0–90:10) gradient as mobile phase to 

afford eight subfractions (SbFr. 1–8). SbFr. 3 (980 mg) was subjected to repeated CPC on 1 

mm silica gel plates using gradients of Hex/EtOAc (100:0–90:10), Hex/EtOEt (100:0–95:5), 

Hex/Acet (100:0–95:5), with/without 0.25% formic acid, as mobile phases to afford 23 mg of 

1, uliginosin A and isouliginosin B. 

 

The ASF of H. laricifolium (12.2 g) was subjected to silica gel CC using Hex/DCM gradient 

as mobile phase to afford twelve bright yellow-reddish fractions (100:0–90:10; Fr. 1–12). Fr. 

2–3 (450 mg) were subjected to CC using Hex/EtOAc gradient as mobile phase to afford four 

subtractions (SbFr. 1–4). SbFr. 2 and SbFr. 3 afforded hyperbrasilol B and isohyperbrasilol B, 

respectively. SbFr.1 (60 mg) was subjected to CPC on a 1 mm silica gel plate using 

Hex/EtOAc gradient as mobile phase to afford 7 mg of 2. SbFr. 4 (32 mg) was subjected to 

CC using Hex/EtOAc gradient as mobile phase to afford isohyperbrasilol B and 10 mg of 3/4. 
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On TLC 3/4 appeared as a single spot under several mobile face systems described in the 

Experimental Section. Further attempts to separate 1/2 by CPC were fruitless. Fr. 6-7 afforded 

uliginosin B and isouliginosin B. 

 

Andinin A (1) 3,5-dihydroxy-2-isobutyryl-4,4-dimethyl-6(2,4-dihydroxy-3-isobutyryl-6-((3-

methylbut-2-enyl)oxy)benzyl)cyclohexa-2,5-dienone: yellow oil 1H NMR and 13C NMR see 

Table 1; ESIMS m/z 501 [M + H]+ (6), 445 (17), 433 (63) 375 (27), 277 (13), 265 (24), 237 

(70), 225 (25), 209 (51), 197 (100), 69 (8); HRESIMS m/z 501.2491 [M + H]+ (Calcd for 

C28H37O8, 501.2488); 

 

Hyperlaricifolin A (2) 2-((5,7-dihydroxy-8-isobutyryl-2-methyl-2-(4-methylpent-3-

enyl)chroman-6-yl)methyl)-3,5-dihydroxy-6-isobutyryl-4-methyl-4-(3-methylbut-2-

enyl)cyclohexa-2,5-dienone: yellow oil; 1H NMR and 13C NMR see Table 1; ESIMS m/z 

623[M + H]+ (15), 499 (5), 345 (100), 333 (9), 221 (4); HRESIMS m/z 623.3566 [M+H]+ 

(Calcd for C37H51O8, 623.3584) 

 

Laricifolin A/B (3/4) 1-(2,4-dihydroxy-3-(3-methylbut-2-enyl)-6-((3-methylbut-2-

enyl)oxy)phenyl)-2-methylpropan-1-one / 1-(2,4-dihydroxy-3-(3-methylbut-2-enyl)-6-((3-

methylbut-2-enyl)oxy)phenyl)-2-methylbutan-1-one: white amorphous powder; 1H NMR and 

13C NMR see Table 2; ESIMS (3) m/z 355 [M + Na]+ (3), 333 [M + H]+ (11), 277 (51), 265 

(64), 209 (100), 191 (14), 151 (8), 69 (1), (4) 369 [M + Na]+ (3), 347 [M + H]+ (13), 291 (56), 

279 (67), 223 (100), 207 (88), 205 (22), 151 (9), 69 (1); HRESIMS (3) m/z 355.1946 [M + 

Na]+ (calcd for C20H28O4Na 355.1964), (4) m/z 369.2106 [M + Na]+ (calcd for C21H30O4Na 

369.2120); 

 

Behavioral experiments 

 

Animals. Adult male CF1 mice (25–35 g) were purchased from the Fundação Estadual de 

Produção e Pesquisa em Saúde (Brazil) colony. The animals were housed 6 mice per plastic 

cages (L: 28 cm, W: 17 cm, H: 13 cm) under a 12 hours light/dark cycle (lights on at 7:00 

hour) at constant temperature (23 ± 1ºC) with free access to standard certified rodent diet 

(Nuvilab CR-1®) and tap water. All experiments were approved by a local Ethics Committee 

of Animal Use (UFRGS, number 23825/2012) and were in compliance with Brazilian law 
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(2008; 2013a; 2013b) and Council for International Organization of Medical Sciences 

International guiding principles for biomedical research involving animals (Bankowski and 

Howard-Jones 1985). 

 

Treatments. Imipramine (Henrifarma Produtos Químicos e Farmacêuticos LTDA®, São 

Paulo, Brazil) was dissolved in saline (0.9% NaCl) and andinin A was suspended in saline 

with 2% polysorbate 80 (Merck, Darmstadt, Germany). All solutions were prepared freshly on 

test day and administered per os (p.o.) at 1 mL/ 100 g body weight. The doses of andinin A 

(1) used in the forced swimming test were 1, 3, 10 or 30 mg/kg, and only the highest dose (30 

mg/kg) was evaluated in open field test. Vehicle (saline plus 2% polysorbate 80) and 

imipramine 20 mg/kg were used as control. The drug concentrations in saline solution were: 

imipramine – 2 mg/mL; andinin A (1) was suspended in vehicle at different concentrations 

depending on the dose required: 0.1, 0.3, 1 or 3 mg/mL. 

 

Forced-Swimming Test. The FST was conducted using the method described by Porsolt et 

al. 1977 with minor modifications previously standardized and validated (Stein et al. 2012). 

Briefly, mice were treated with andinin A (1), imipramine or vehicle and forced individually 

to swim in a cylinder pool (10 cm diameter, 13 cm hight, 22 ±1°C) sixty minutes later; the 

total time of immobility during a 6 min test was scored and determined by a blinded observer. 

Each mouse was considered to be immobile when it ceased struggling and remained floating 

motionless in the water, making only those movements necessary to keep its head above 

water. 

 

Open-Field Test. In order to rule out any unspecific locomotor effect, mice were treated with 

andinin A (1) or vehicle and after sixty minutes were placed individually in an acrylic box (40 

× 30 × 30 cm), with the floor divided into 24 equal squares. The number of crossings in the 

squares with the four paws was measured during a period of 6 min by a blinded observer. 

 

Statistical Analysis. The data were evaluated using t-Student test or one-way analysis of 

variance (ANOVA) followed by Student-Newman-Keuls test depending on the experimental 

design. All results were expressed in mean ± S.E.M. The analyses were performed using 

Sigma Stat 3.2 software (Jandel Scientific Corporation®). Differences were considered 

statistically significant at p<0.05. 
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Supporting information. ESIMS and NMR spectra of compounds 1- 4. 
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Fig. 1 Structure of compounds 1-4 
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Table 1 1H and 13C NMR data of compounds 1 (CDCl3 and acetone-d6) and 2 (Acetone-d6) 

a4.65 d J=7.2, 1H NMR spectrum recorded at 60 MHz. 
bTentatively assigned. 

 

 

 1  1  2 

 δC, type δH, (J in Hz)  δC, type δH, (J in Hz)  δC, type δH, (J in Hz) 

1 187.3, C -  187.8, C -  188.6, C - 

2 111.3, C -  111.8, C -  114.5, C - 

3 171.1, C -  171.6, C -  170.7, C - 

4 44.1, C -  44.5, C -  49.9, C - 

5 199.0, C -  199.7, C -  199.3, C - 

6 107.0, C -  107.6, C -  110.0, C - 

7 17.1, CH2 3.53 br s  17.3, 

CH2 

3.54 s  17.0, CH2 3.54 br s 

8 24.8, CH3 

unres 

1.49 br s  24.7, 

CH3 

1.50 s  22.9, CH3 1.52 s 

9 24.5, CH3 

unres 

1.37 br s  24.7, 

CH3 

1.31 s  39.4, CH2 2.8-2.5 m 

10 210.9, C -  211.6, C -  118.3, CH 4.6 br d 

11 36.7, CH 4.13 m J=6.8  37.1, CH 4.10 sep 

J=6.8 

 136.6, C  

12 18.9, CH3 1.18 d J=6.3  19.2, 

CH3 

1.16 d J=6.8  25.7, CH3 1.30 br s 

13 18.9, CH3 1.18 d J=6.3  18.2, 

CH3 

1.16 d J=6.8  17.6, CH3 1.28 br s 

14 - -  - -  211.7, C - 

15 - -  - -  39.7, CH 4.00 sep J=6.7 

16 - -  - -  20.2, CH3  1.16 m 

17 - -  - -  19.6, CH3 1.17 m 

1' 25.9, CH3 1.86 s  25.7, 

CH3 

1.86 s  27.7, CH3 1.52 s 

2' 18.2, CH3 1.79 s  17.9, 

CH3 

1.85 s  41.5, CH2 1.77 m 

3' 142.4, C -  142.2, C -  80.6, C - 

4' 116.8, CH 5.54 pseudo t J= 

7.0 

 117.9, 

CH 

5.61 m  23.4, CH2 2.79 m; 2.18 m 

5' 66.1, CH2 4.66 br sa  66.7, 

CH2 

4.79 d J=7.2  30.0, CH2
b 

buried 

2.32 unres; 1.90 

unres 

6' 160.3, C -  160.2, C -  162.2, C - 

7' 105.2, C -  106.1, C -  106.3, C - 

8' 159.7, C -  159.9, C -  162.7, C - 

9' 106.1, C -  106.0, C -  104.2, C - 

10' 165.6, C -  166.2, C -  156.3, C - 

11' 92.8, CH 6.10 s  93.6, CH 6.18 s  103.4, C - 

12' 211.7, C -  211.7, C -  210.9, C - 

13' 39.4, CH 4.22 m J=6.8  39.7, CH 4.21 sep 

J=6.8 

 37.3, CH 4.18 sep J=6.8 

14' 18.9, CH3  1.18 d J=6.3  19.2, 

CH3 

1.16 d J=6.8  19.5, CH3  1.18 m 

15' 18.9, CH3 1.18 d J=6.3  18.2, 

CH3 

1.16 d J=6.8  19.0, CH3 1.19 m 

16' - -  - -  20.9, CH2 1.29 br s 

17' - -  - -  123.4, CH 5.23 pseudo t J=7.2 

18' - -  - -  133.6, C - 

19' - -  - -  26.0, CH3 1.72 s 

20' - -  - -  18.0, CH3 1.61 s 

3-OH - 8.99 s  - 9.14 s  - 10.07 s 

5-OH - 18.74 s  - 18.81 br s  - 18.72 s 

6’-OH - -  - -  - 11.19 s 

8’-OH - 11.55 s  - 11.72 s  - 16.52 s 

10’-

OH 

- 13.88 s  - 13.65 s  - - 
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Fig. 2 Key HMBC correlations of andinin A (1) 

 

 

 

 

Table 2 1H and 13C NMR data of compounds 3/4 (CDCl3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            
Fig. 3 Key HMBC correlations of hyperlaricifolin A (2) and laricifolin A/B (3/4) 

 

 3  4 

 δC, type δH, (J in Hz)  δC, type δH, (J in Hz) 

1 25.7, CH3 1.76 s  25.7, CH3 1.76 s 

2 18.2, CH3 1.86 s  18.1, CH3 1.86 s 

3 138.7, C -  138.5, C - 

4 118.7, CH 5.48 br s  118.6, CH 5.48 br s 

5 65.4, CH2 4.51 br s  65.3, CH2 4.51 br s 

6 161.3, C -  161.3, C - 

7 106.0, C -  106.0, C - 

8 164.7, C -  164.7, C - 

9 105.5, C -  105.0, C - 

10 160.5, C -  160.4, C - 

11 91.5, CH 5.90 s  91.5, CH 5.90 s 

12 210.6, C -  210.5, C - 

13 39.4, CH 3.80 sep J=6.8  46.1, CH 3.66 sex J=6.8 

14 19.4, CH3 1.14 d J=6.8  16.5, CH3 1.11 d J=7.2 

15 19.4, CH3 1.14 d J=6.8  26.9, CH2 1.35 m J=7.0 

16 - -  11.8, CH3 0.88 t J 7.2 

1' 21.6, CH2 3.37 d J=7.2  21.6, CH2 3.37 d J=7.2 

2' 121.9, CH 5.27 pseudo t J=7.0  121.9, CH 5.27 pseudo t J=7.0 

3' 135.6, C -  135.6, C - 

4' 25.8, CH3 1.73 s  25.8, CH3 1.73 s 

5' 17.9, CH3 1.80 s  17.9, CH3 1.80 s 

6-OH - 6.15  br s  - 6.15 br s 

8-OH - 14.45 s  - 14.40 s 
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Fig. 4 Effect of different doses of andinin A (1), imipramine (20 mg/kg po), or vehicle (1 mL/100 g, 

po) in the mouse forced swimming test. The results are presented as means ± SEM (n = 8−10 

mice/group). Significantly different values were detected by one-way ANOVA followed by a 

Student−Newman−Keuls test. ***p < 0.001 when compared to the vehicle group. ###p < 0.001 when 

compared to andinin A 1 mg/kg group. 
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S1. Effect of acute treatment with andinin A (30 mg/kg, p.o.) or vehicle (p.o.) on the number of 

crossing in the mouse open field test. The results are presented as means ± SEM (n = 10 mice/group) 

and were compared by t-Student test. 
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S2. ESIMS spectrum of andinin A (1) 

 

 

 

 

 

 
S3. 1H NMR spectrum of andinin (1) (CDCl3, 60 MHz) 

m/z

50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

%

0

100
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69.1
139.0 179.1

237.1

209.1

225.1

433.2

265.1 375.1

293.2
363.2 415.2

445.2

501.2
471.1
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S4. 1H NMR spectrum of andinin (1) (CDCl3, 400 MHz) 

 

 

 

 

 

 
S5. 13C NMR spectrum of andinin (1) (CDCl3, 100 MHz) 
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S6. 1H-1H COSY spectrum of andinin A (1) in CDCl3 

 

 

 

 

 

 

S7. HMBC spectrum of andinin A (1) in CDCl3 
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S8. HMBC spectrum of andinin A (1) in CDCl3
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S9. 1H NMR spectrum of andinin A (1) (acetone-d6, 400 MHz) 

 

 

 

 

 

 
S10. 13C NMR spectrum of andinin A (1) (acetone-d6, 100 MHz) 
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S11. 1H-1H COSY spectrum of andinin A (1) in acetone-d6 

 

 

 

 

 

 
S12. HSQC spectrum of andinin A (1) in acetone-d6
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S13. HMBC spectrum of andinin A (1) in acetone-d6 
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S14. ESIMS spectrum of hyperlaricifolin A (2) 

 

 

 

 

 
S15. ESIMS spectrum of hyperbrasilol B 

m/z
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0

100

345.2

221.1
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m/z
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%

0

100

275.1

257.1

223.1
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297.1 331.2 469.1433.2367.1395.1 521.2
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S16. 1H NMR spectrum of hyperlaricifolin A (2) (CDCl3, 400 MHz) 

 

 

 

 

 

 
S17. 13C NMR spectrum of hyperlaricifolin A (2) (CDCl3, 100 MHz) 



120 
 
 

 
S18. 1H NMR spectrum of hyperlaricifolin A (2) (acetone-d6, 400 MHz) 

 

 

 

 

 

 
S19. 13C NMR spectrum of hyperlaricifolin A (2) (acetone-d6, 100 MHz) 
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S20. 1H-1H COSY hyperlaricifolin A (2) in acetone-d6 

 

 

 

 

 

 
S21. HSQC spectrum of hyperlaricifolin A (3) in acetone-d6 
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S22. HMBC spectrum of hyperlaricifolin A (2) in acetone-d6 
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S23. ESIMS spectrum of laricifolin A (3) 

 

 

 

 

 
S24. ESIMS spectrum of laricifolin B (4) 

m/z
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347.2

315.1 369.2
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S25. 1H NMR spectrum of laricifolin A (3) and laricifolin B (4) (CDCl3, 400 MHz) 

 

 

 

 

 

 
S26. 12C NMR spectrum of laricifolin A (3) and laricifolin B (4) (CDCl3, 100 MHz) 
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S27. 1H-1H COSY spectrum of laricifolin A (3) and laricifolin B (4) in CDCl3 

 

 

 

 

 

 
S28. HSQC spectrum of laricifolin A (3) and laricifolin B (4) in CDCl3 
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S29. HMBC spectrum of laricifolin A (3) and laricifolin B (4) in CDCl3
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S30. Exemplification of mobile phase testing on a fraction of Hypericum andinum constituted by a 

mixture of isouliginosin B and andinin A previous to their final purification by Centrifugal planar 

chromatography (CPC) on a ChromatotronTM instrument. Mobile phase composition (1) Hex/DCM 

(50:50 v/v), (2) Hex/EtOAc (90:10 v/v), (3) Hex/EtOEt (95:5 v/v), (4) Hex/Acet (95:5 v/v), (5) 

Hex/EtOAc (95:5 v/v with 0.25 % formic acid), (6) Hex/EtOEt (97.5:2.5 v/v with 0.25 % formic acid) 

and (7) Hex/Acet (97.5:2.5 v/v with 0.25 % formic acid). 
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CAPÍTULO III 

 

“Assessing the phytochemical profiles and antidepressant-like activity of four Peruvian 

Hypericum species using the murine forced swimming test” 

 

Manuscrito submetido à revista Phytochemistry Letters 
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Summary 

 

The antidepressant-like activity of crude ethanolic extracts from Peruvian Hypericum species 

(H. andinum, H. brevistylum, H. silenoides and H. laricifolium) was assessed using the forced 

swimming test (FST) in mice. Different doses of all extracts shortened the immobility time of 

mice in experimental groups, indicating that these extracts possessed a potential 

antidepressant-like activity. Phytochemical analyses revealed that the extracts were rich in 

flavonoids, principally hyperoside, and to a lesser extent, dimeric acylphloroglucinol 

derivatives. The phytochemical composition of these Hypericum species with reported 

antidepressant-like activity in the FST is briefly reviewed and the importance of flavonoids 

with reference to the activity highlighted. 
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Introduction 

 

Extracts of Hypericum perforatum (St. John’s wort) are used worldwide to treat mild to 

moderate depression. The spectrum of side effects is lower compared to that of current 

pharmacological treatments (Kasper et al. 2010). The naphthodianthrone hypericin, the 

polyisoprenylated phloroglucinol derivative hyperforin and several flavonoids appear to 

contribute to the antidepressant activity (Nahrstedt and Butterweck 2010). 

 

The genus Hypericum (Hypericaceae) encompasses nearly 500 species occurring worldwide, 

and is currently divided into 36 taxonomic sections (Robson 2012). The majority of 

Hypericum species native to South America belong to the taxonomic sections Brathys and 

Trigynobrathys (Crockett et al. 2010). From these two sections, extracts from H. 

caprifoliatum and H. polyanthemum and their fractions have been the subject of several 

pharmacological studies, and demonstrated antidepressant and analgesic activity (Viana et al. 

2003; Viana et al. 2006). Flavonoids and dimeric acylphloroglucinol derivatives were 

identified as mayor bioactive constituents in these extracts (Haas et al. 2010; Stein et al. 2012; 

Stolz et al. 2012).  

 

Examinations and comparisons of chemical constituents and pharmacological profiles of 

various Hypericum species can be helpful in the search for alternative sources of 

antidepressant compounds (Viana et al. 2006). The aim of this study was to assess the 

potential antidepressant activity of crude ethanolic extracts of H. andinum Gleason, H. 

brevistylum Choisy, H. laricifolium Juss and H. silenoides Juss, as well as to identify their 

mayor phytochemical components. The phytochemical composition of these Hypericum 

species with antidepressant-like activity in the FST is reviewed and the importance of 

flavonoids with reference to the activity highlighted. 

 

Materials and Methods 
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Chemicals and plant materials 

 

The reference substances chlorogenic acid (1), rutin (2), guaijaverin (4) and quercetin (5) 

were purchased from Sigma (USA, purity ≥ 95%). Hyperoside (3) was isolated by 

chromatographic methods (purity ≥ 94%) from aerial parts of H. andinum as previously 

described (Bernardi 2007). The dimeric acylphloroglucinols uliginosin A (6), isouliginosin B 

(7), isohyperbrasilol B (8), uliginosin B (9) and hyperbrasilol B (10) were isolated from H. 

andinum Gleason, H. brevistylum Choisy, H. laricifolium Juss and H. silenoides Juss as 

described elsewhere (Ccana-Ccapatinta et al. 2013), with purities of 75, 70, 91, 74 and 90%, 

respectively. Fluoxetine-HCl was obtained from CFR Pharmaceuticals (Peru, Purity ≥ 99%). 

The identity and purity of the isolated compounds were confirmed by HPLC analysis and, 1H 

and 13C NMR spectroscopy.  

 

Aerial parts in blossom of the Hypericum spp. listed in Table 1 were collected from several 

Peruvian Páramo habitats characterized by their high altitude. A collection permit (0147-

2010-AG-DGFFS-DGEFFS) was issued by the Dirección de Gestión Forestal y de Fauna 

Silvestre and Dirección General Forestal y de Fauna Silvestre of the Republic of Peru. 

Voucher specimens have been deposited in the Vargas CUZ herbarium at the Universidad 

Nacional de San Antonio Abad del Cusco (UNSAAC) and were identified by the botanist 

Washington H. Galiano Sánchez (Academic Department of Biology, UNSAAC). The plant 

material was dried at room temperature and ground to powder prior to extraction. 

 

Preparation of extracts 

 

Extracts were obtained by maceration of the plant material (plant/solvent ratio = 1/10) with 

96% ethanol for 24 hrs. The extracts were filtered and concentrated in vacuo at 45°C, then 

stored at 4 ºC until test and analyses were performed. This extraction process was repeated 

three times, and the concentrated extracts of each species combined. The yields (w/w) 

obtained were 35.6% for H. andinum, 28.3% for H. brevistylum, 24.6% for H. laricifolium 

and 23.1% for H. silenoides. A portion of each extract was suspended in methanol at a 

concentration of 2.5 mg/mL and filtered (0.22 µm pore size, Sartorius) prior to HPLC 

analysis.  
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Phytochemical characterization of extracts 

 

Thin layer chromatography (TLC) 

 

The extracts were screened for flavonoids and naphthodianthrones by TLC following Wagner 

and Bladt 1996, and Maleš et al. 2004. TLC was performed in triplicate on aluminum sheets 

precoated with silica gel 60 F254 (Merck, Darmstadt, Germany) using ethyl acetate/formic 

acid/glacial acetic acid/water - 100:11:11:26 v/v as the mobile phase. After development, the 

chromatograms were air-dried and subsequently sprayed with natural products reagent (1% of 

diphenylboryloxyethylamine in methanol, w/v), then visualized under UV light (365 nm).  

 

High performance liquid chromatography (HPLC) 

 

An initial HPLC-DAD (diode array detector) analysis of each extract was carried out 

following the method described in Ganzera et al. 2002. Briefly, separations were performed 

on a Synergi MAX-RP 80Å column (4 μm 2.1 × 150 mm) from Phenomenex (Torrance, CA, 

USA) using an Agilent 1100 Separation Module (Agilent Technologies, Palo Alto, CA, 

USA). The mobile phases consisted of a mixture of 10 mM ammonium acetate buffer 

adjusted to pH 5.0 with glacial acetic acid (A) and a 9:1 mixture of acetonitrile and methanol 

(B). Gradient elution was performed as follows: linear gradient from 13% B to 17% B over 10 

min, then increasing to 100% B over 25 min, followed by re-equilibration for 7 min. All 

separations were performed at 40°C at a flow rate of 0.3 mL/min. An aliquot of 10 μL of 

extract per sample was injected. 

 

Additional HPLC analyses were carried out following a method described in Tatsis et al. 2007 

with some modification. Separations were performed on a Waters Nova-Pack C18 column (4 

μm, 3.9 mm × 150 mm) adapted to a guard column Waters Nova-Pack C18 60Å (Waters, 

Milford, MA, USA) using a Shimadzu HPLC system (Shimadzu Corporation, Kyoto, Japan). 

The mobile phases consisted of a mixture of water (A) and a 8:2 mixture of acetonitrile and 

methanol (B), both acidified with 0.1% formic acid. Gradient elution was performed as 

follows: linear gradient from 10% B to 100% B over 30 min, held at 100% B for 20 min, 

followed by re-equilibration for 20 min. All separations were performed at 25°C at a flow rate 
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of 1.0 mL/min, with detection performed at 220 and 350 nm, in triplicate. An aliquot of 10 μL 

of extract per sample was injected. By comparing retention times (tR) of standard peaks with 

sample peaks, the peak identity of flavonoids (tR 7.51, 12.52, 12.77, 13.41, 16.59 min for 1, 2, 

3, 4 and 5 respectively) and dimeric acylphloroglucinols (tR 29.05, 37.66, 39.09, 39.56 and 

40.81 min for 6, 7, 8, 9 and 10 respectively) were assigned. In cases of uncertainty, samples 

were additionally spiked with standard compounds to confirm assignments.  

 

The relative concentrations of the flavonoids and dimeric acylphloroglucinols were quantified 

using calibration curves prepared with 3 and 10 dissolved in methanol with six data points 

covering the concentration range of 1–500 μg/mL. These solutions were injected in triplicate, 

on three different days. The calibration curves were obtained by plotting the peak area signals 

as a function of concentration. Linearity was evaluated by least-squares regression analysis (r2 

= 0.9997 for 3; r2 = 0.9996 for 10). 

 

Ultra performance liquid chromatography (UPLC) 

  

The phytochemical profiles of the extracts were further characterized by using UPLC-

DAD/Q-TOF-MS with a Waters Acquity UPLC system connected to a Waters Q-TOF 

Premier mass spectrometer (Waters, Milford, CA, USA). The ACQUITY UPLC® Columns 

calculator (Waters, Milford, CA, USA) was used to modify the adapted HPLC method of 

Tatsis et al. 2007, described above, into a UPLC method. Separations were performed on a 

Hypersil Gold C18 column (1.9 μm, 2.1 mm x 100 mm). The mobile phases consisted of 

water (A) and a 8:2 mixture of acetonitrile and methanol (B), both acidulated with 0.1% 

formic acid. Gradient elution was performed as follows: linear gradient from 0% B to 100% B 

for the first 10 min, held at 100% B over the next 2 min, then re-equilibrated for 3 min. All 

separations were performed at 45°C and column flow rate was 0.6 mL/min. An aliquot of 4 

μL of extract (500 µg/ml) per sample was injected. Mass detection was carried out in positive 

mode from m/z = 50 to 1000 and data were processed using MassLynx V4.1 software. 

Nitrogen and argon were used as the nebulizer and collision gases, respectively. Other MS 

detection condition were as follows: ESI capillary voltage, +3.0kV; source and desolvation 

temperatures, 120 and 300°C, respectively; desolvation and cone gas flows, 380 and 50 L/h, 

respectively; sample cone voltage and collision energy, 30V and 4 eV, respectively.  
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Animals 

  

Male albino Balb/c/CNPB mice (20-24 g) were purchased from the Instituto Nacional de 

Salud (INS, Lima, Peru) and were housed in groups of 20 animals per cage (30 x 25 x 15 cm) 

in the Centro de Estudios de Plantas Alimenticias y Medicinales laboratory (CEPLAM, 

Cusco, Peru) two weeks prior to pharmacological studies. Animals were maintained in a 

temperature-controlled environment (20 ± 2°C). INS bioterium food and water were freely 

available. Subjects were experimentally naïve and used only once. All animals were subjected 

to fasting overnight before dosing. Plant extracts and the standard drug were suspended in a 

2% aqueous solution of polysorbate 80, when were given orally 1 h before the experiments in 

a dose volume of 0.5 ml/20 g mice body weight. Control animals received 2% polysorbate 80 

suspension under the same conditions. All experiments were performed following the 

recommendations given in the NIH Guide for the Care and Use of Laboratory Animals (8th 

edition, 2010) and the Peruvian guide for mice care and management “INS, Guía de Manejo y 

Cuidado de Animales de Laboratorio: Ratón” (1th edition, 2008). All efforts were made to 

minimize animal suffering and to reduce the number of animals used in the experiments.  

 

Acute toxicity study in mice  

 

Mice were treated in two phases according to Lorke 1983. In the first, p.o. doses of 10, 100 

and 1000 mg/kg of crude extracts were administered to three groups, each with three animals. 

In the second, doses of 1600, 2900 and 5000 mg/kg were administered to groups, each of one 

animal. In both phases, mice were observed daily for a period of 7 days for mortality. Toxic 

effects and/or changes in behavioral patterns and physiological functions were also recorded 

using a data sheet for noting primary observations (Irwin test) as detailed by Roux et al. 2005. 

 

Mice forced swimming test (FST) 

 

The method used was that described by Porsolt et al. 1977. Mice were individually placed in a 

cylinder (25 cm height, 13 cm diameter) containing 10 cm water (22 ± 1 °C), from which they 

could not escape for a period of 6 min. All test sessions were recorded by a video camera 

located directly above the cylinders and tests were conducted between 9:00 and 13:00 h. 

Videotapes were later scored blind. The behavioral measurement scored from videotapes was 
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the duration of immobility during the last 4 min of the test period. A mouse was judged 

immobile when it ceased all active movements (i.e., struggling, swimming and/or jumping) 

and remained passively floating or making only the minimal movements necessary to 

maintain the nostrils above water. The extracts were assayed at the doses of 125, 250 and 500 

and fluoxetine-HCl as a positive control at the dose of 30 mg/kg following a prior dose-

response curve (Table S1). 

 

Statistical analysis  

 

One-way analyses of variance (ANOVA), followed by Dunnett post-hoc tests for multiple 

comparisons were carried out using GraphPad Prisma software 5.0 (GraphPad Software, Inc., 

San Diego, CA, USA). Data are expressed as means ± S.E.M. Differences with p<0.05 

between experimental groups were considered statistically significant. 

 

Results and Discussion 

 

Chemical analysis of the ethanolic extracts prepared from Peruvian Hypericum species 

 

The analyses by TLC showed that the extracts were rich in flavonoids (Fig. S1). A principal 

band with the same Rf and chromogenic pattern of 3 was seen in the four extracts. 

Additionally, a blue fluorescent band with the same chromatographic pattern of phenolic acids 

was observed in the extracts, and was strongest in H. andinum. No band with the same 

chromatographic behavior as the flavonoid rutin or the reddish bands characteristics of 

naphthodianthrones were observed.  

 

The initial HPLC-DAD analysis, using the method of Ganzera et al. 2002, reinforced the 

observations provided by TLC that the main secondary metabolites present in the extracts 

were flavonoids and related compounds (Fig. S2). The HPLC chromatograms of the four 

extracts contained peaks with UV spectra characteristic of flavonoids and phenolic acid 

derivatives (peaks eluting up to 16 min of tR). In the lipophilic region (peaks eluting after 19 

min of tR), some minor peaks with characteristic three peaked UV spectra (maxima of 230, 

290 and 340 nm) and other peaks with strong absorbance peaks at 220 and 300 nm were 

observed. No peak with UV spectra characteristic of naphthodianthrones was observed. The 
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absence of naphthodianthrones in species of Hypericum from sections Brathys and 

Trigynobrathys has been previous cited (Crockett and Robson 2011) 

 

Further efforts were made to characterize the extracts qualitatively and quantitatively by 

HPLC, following the method of Tatsis et al. 2007, associated to UPLC-DAD/Q-TOF-MS 

(Fig. S4 and Fig. S5). The overlaid HPLC chromatograms and the principal components 

detected in the extracts of these Hypericum species are shown in Fig. 1. All four extracts were 

rich in flavonoids, especially 3 (Table 2) which occurred in the highest concentration in H. 

andinum (11.94%), and the lowest in H. laricifolium (7.03%). Compound 5 was also observed 

in concentrations ranging from 0.55 to 0.73%. A considerable concentrations of 3 was 

observed in H. silenoides (2.90%). Compounds 1 and 2 and were not detected in the four 

samples analyzed, even though 1 is described as occurring in several Brazilian Hypericum 

species of section Trigynobrathys (Nunes et al. 2010; Barros et al. 2013), and 2 has been 

described in H. brasiliense and a Mexican accession of H. silenoides (Abreu et al. 2004; 

García-de la Cruz et al. 2013). Compound 3 was previously reported at a concentration of 

17.17% in a methanolic extract from flowers of H. andinum, which was the highest 

concentration found among eight Brazilian and two Peruvian Hypericum species extracts 

(Barros et al. 2013). Similarly, the extract of H. andinum displayed the highest concentrations 

of 3 of the four species, and these four extracts showed higher concentrations of 3 when 

compared to previously published data for Brazilian Hypericum species, except H. 

myrianthum (Nunes et al. 2010; Barros et al. 2013). The Hypericum species included in this 

study were collected in several Peruvian Páramos habitats at a high altitude, exceeding 3,000 

m above the sea level. The flavonoid content of some Hypericum species has been previously 

noted to positively correlate with altitude (Umek et al. 1999), and our observation of high 

content of 3 in Peruvian Hypericum species strengthens this correlation. The Peruvian Páramo 

habitats are exposed to high levels of UV radiation that could led to the induction of flavonoid 

biosynthesis (Casati and Walbot 2005; Jaakola and Hohtola 2010). 

 

In the lipophilic region of the chromatogram, some peaks with characteristics corresponding 

to those of dimeric acylphloroglucinols were detected. Compounds 6, 7 and 9 were present in 

the four samples in varying amounts. The concentration of 6 was highest in H. silenoides 

(0.86 %), while its concentration ranged from 0.06 to 0.11% in the other species. In general, 

the concentration of 7 was similarly in each of the four samples, while concentrations of 9 
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ranged from 0.08 to 0.17%. Compounds 8 and 10 were only detected in H. laricifolium in 

concentrations of 0.04 and 0.03%, respectively. These results are in concordance with those of 

a previous study, in which 6, 7 and 9 were isolates from n-hexane extracts of the same 

accessions of the four Hypericum species, while 8 and 10 were isolated from H. laricifolium; 

the chemotaxonomic implications of these findings are also discussed elsewhere (Ccana-

Ccapatinta et al. 2013). Even though these compounds appeared as a single band on TLC 

using several mobile phases and each displayed clear signals in the 1H and 13C NMR spectra, 

each isolated dimeric acylphloroglucinol displayed a minor peak (named 6a, 7a, 8a, 9a and 

10a) in the HPLC chromatograms (Fig. S3). The identity of these minor components is 

currently under investigation.  

 

Assessing the antidepressant like activity of the ethanolic extracts prepared from Peruvian 

Hypericum species 

 

The ethnopharmacological uses of some Peruvian Hypericum species in northern Peru have 

recently been published (Bussmann and Glenn 2010; Bussmann et al. 2010). Of the four 

species surveyed here, only extracts of H. silenoides has been reported to be taken orally as an 

antimicrobial preparation (Bussmann et al. 2010), and to the best of our knowledge no 

ethnopharmacological records exist for the use if these species as remedies for central nervous 

system related illnesses. Therefore, an acute toxicity test was carried out following the method 

of Lorke 1983 (Table S2). The extracts of Hypericum species administered p.o. did not 

induce mortality up to a dose of 5000 mg/kg in mice, up to 7 days after administration. The 

tested animals did not present any symptoms of toxicity, however, the mice that received H. 

brevistylum at 2900 and especially 5000 mg/kg showed signs of nervous system sedation, a 

loss of balance, and finally akinesia. Similar results have been previously observed with 

alcoholic extracts of other Hypericum species (Rieli Mendes et al. 2002; Sánchez-Mateo et al. 

2002).  

 

The results of the FST, following the method of Porsolt et al. 1977, are summarized in Table 

3. In this test, immobility postures are observed and assumed to be a depressive-like 

parameter. All Hypericum extracts at different doses significantly shortened the immobility 

time in the FST in comparison to the control group. The ethanolic extract of H. brevistylum 

(500 mg/kg), in this regard, the most effective, with an activity value (58.47 %) close to that 
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observed for the positive control, fluoxetine-HCl at 30 mg/kg. Compared with the control 

group, significant differences were seen between H. andinum 125 (p<0.05), H. andinum 250 

(p<0.01), H. andinum 500 (p<0.01), H. brevistylum 250 (p<0.001), H. laricifolium 250 

(p<0.05) and H. silenoides 500 mg/kg (p<0.001) as assessed by ANOVA among the fourteen 

groups. U-shaped dose-response curves were observed in the groups that received extracts of 

H. brevistylum and H. laricifolium. A previous study showed that an alcoholic extract of H. 

perforatum at doses of 125, 250, 500 and 1000 mg/kg significantly reduce the immobility 

time in the rat FST, displaying a U-shaped dose-response curve (Butterweck et al. 1997).  

 

Dimeric acylphloroglucinols were detected in low concentration in the Peruvian Hypericum 

extracts, while naphthodianthrones were absent. Compound 9 was cited to reduce the 

immobility time in the FST at 10 mg/kg, p.o. by Stein et al. 2012, but the concentration of this 

compound in the Peruvian Hypericum extracts are low to fully account for the overall activity 

observed. Compounds 6, 7, 8 and 10 are structurally related to 9 and may contribute to the 

effect observed, but their concentrations are also lower than 0.1% in the extracts. Further 

studies are needed to determine the overall contribution of dimeric acylphloroglucinols in the 

antidepressant-like activity of the crude extracts.    

 

In contrast to dimeric acylphloroglucinols, some flavonoids were abundant in the extracts. 

Compounds 5 and especially 3 were identified as primary secondary metabolites shared 

among these extracts. Fractions and the isolated compound 3, from H. perforatum and H. 

caprifoliatum, reduced the immobility time in the rat FST at 0.3 and 1.2 mg/kg, p.o. 

(Butterweck et al. 1997; Butterweck et al. 2000), and in the mice FST at 10 and 20 mg/kg, i.p. 

(Haas et al. 2010). Since the extracts of Peruvian Hypericum species are rich in 3, the 

antidepressant-like activity observed could be attributed mainly to this flavonoid and, to a 

lesser extent, to the dimeric acylphloroglucinols. Even though it has demonstrated selective 

MAO-A inhibitory activity in the nanomolar range, 5 has failed to reduce the immobility time 

in the FST, and, therefore, its antidepressant-like behavioral effects are considered 

controversial (Butterweck et al. 2000; Chimenti et al. 2006). Further studies are ongoing in 

our laboratory to examine the contribution of each main component to the overall effects 

observed this study. In addition, the issues of possible synergism and/or antagonism must be 

addressed. 
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Fig. 1 HPLC chromatogram overlaid and principal components identified in the ethanolic extracts of Peruvian Hypericum species: chlorogenic acid (1), rutin 

(2), hyperoside (3), guaijaverin (4), quercetin (5), uliginosin A (6), isouliginosin B (7), isohyperbrasilol B (8), uliginosin B (9), hyperbrasilol B (10) 
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Table 1 Collection localities of Peruvian Hypericum species 

Species Collection locality Elevationa Collection Date Voucher number 

H. andinum Amparaes, Cuzco, Peru 3432 May 2008 Ccana-Ccapatinta 06 

H. brevistylum Paqchaq, Cuzco, Peru 3573 March 2008 Ccana-Ccapatinta 04 

H. laricifolium Cumbemayo, Cajamarca, Peru 3450 November 2009 Ccana-Ccapatinta 08 

H. silenoides Pumahuanca, Cuzco, Peru 3189 March 2008 Ccana-Ccapatinta 02 

ameters above sea level 

 

 

 

Table 2 UV, MS and content (%) of identified compounds in the ethanolic extracts of Hypericum species 

 
HPLC  

tR (min) 

UPLC 

tR (min) 

UV λmax 

(nm) 

ESI [M+H]+ 

(m/z) 

Characteristic 

Ions 
H. andinum H. brevistylum H. laricifolium H. silenoides 

1 7.51 1.92 217, 325 355 377[M + Na]+, 163 n.d. n.d n.d n.d 

2 12.52 2.67 255, 353 611 633[M + Na]+, 465, 303 n.d. n.d n.d n.d 

3 12.77 2.69 255, 353 465 487[M + Na]+, 303 11.94 8.83 7.03 8.11 

4 13.41 2.90 255, 353 435 457[M + Na]+, 303 + + + 2.90 

5 16.59 3.66 255, 354 303 - 0.63  0.55 0.73 0.71 

6 29.05 8.27 227, 299, 347 501 - 0.06 0.07 0.11 0.86 

7 37.66 9.51 231, 268,  499 - 0.02 0.03 0.04 0.02 

8 39.09 9.81 269 553 - n.d. n.d 0.04 n.d 

9 39.56 9.85 229, 269 499 - 0.08 0.14 0.13 0.17 

10 40.81 10.10 230, 269 553 - n.d. n.d 0.03 n.d 

n.d., not detected; +, presence, not quantified, overlapping peaks 
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Table 3 Results of the forced swimming test in mice of the ethanolic extracts of Hypericum species 

Treatment Dose (p.o.) 

(mg/kg) 

N Duration of Immobility 

(Mean ± S.E.M.) (s) 

Variation 

(%) 

Control  - 10           202.0 ± 7.31   - 

Fluoxetine 30 10           91.50 ± 19.25*** -54.70 

H. andinum 125 10           131.5 ± 18.68* -35.15 

H. andinum 250 9           115.0 ± 9.20** -43.07 

H. andinum 500 10           120.5 ± 12.21** -40.35 

H. brevistylum 125 10           168.0 ± 10.65 -16.83 

H. brevistylum 250 9           83.89 ± 15.76*** -58.47 

H. brevistylum 500 9           156.1 ± 15.76 -22.77 

H. laricifolium 125 10           158.0 ± 15.11 -21.78 

H. laricifolium 250 10           139.5 ± 19.08* -30.94 

H. laricifolium 500 9           175.6 ± 12.48 -13.06 

H. silenoides 125 10           150.5 ± 8.865 -25.49 

H. silenoides 250 9           188.9 ± 11.78 -6.49 

H. silenoides 500 9           93.89 ± 21.09*** -53.52 

*p<0.05, **p<0.01, ***p<0.001, compared with control group (ANOVA followed by Dunnett´s 

multiple comparison test). N, number of animals per group 
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Table 4 Presence and content (%) of major compounds in hydroalcoholic crude extracts of some Hypericum species with reported antidepressant like activity 

in the murine forced swimming test  

Species* 1 2 3 4 5 hypericin hyperforin Reference 

H. brasiliensea + n.d. + + + n.d. n.d. Perazzo et al. 2008 

H. enshienseb 1.0 0.2 0.8 n.r. 1.0 0.3 n.d. Wang et al. 2010 

H. grandifoliumc n.r. n.d. 0.7 n.r. 3.2 n.d. ˂ 0.5 Bonkanka et al. 2008 

H. montbrettid ˂0.01 0.15 ˂0.01 n.r. ˂0.01 ˂0.01 ˂0.01 Can et al. 2011 

H. origanifoliume 0.23 0.21 ˂0.01 n.r. ˂0.01 ˂0.01 0.01 Yaşar et al. 2013 

H. perforatumg n.r. <4.0; 2.0> <3.0; 1.5> n.r. <0.5 >0.24 <4.0; 2.0> Kurth and Spreemann 1998 

H. silenoidesi + + n.r. n.r. + n.d. + García-de la Cruz et al. 2013 

*Hydroalcoholic extracts of H. calycinum (Öztürk et al. 1996) H. caprifoliatum (Daudt et al. 2000), H. canariense, H. glandulosum, H. reflexum (Sánchez-Mateo et al. 2002), 

H. cordatum (Rieli Mendes et al. 2002), H. laricifolium (Laines Lozano 2010) and H. scabrum (Eslami et al. 2011) were also active in the FST. 

aEthanolic extract previously extracted with hexane. Reported to have 8.5 % of flavonoids calculated in quercetin.  

bHydroalcoholic extract with 80% ethanol. Pseudohypericin constituted 0.5 % of the extract. 

cMethanolic extract also surveyed by Sánchez-Mateo et al. 2002. Quercitrin constituted 0.6 % of the extract. 

dMethanolic extract. Quercitrin and isoquercitrin constituted 0.07 and ˂0.01% of the extract. 

eHydroalcoholic extract with 50% ethanol. Quercitrin and isoquercitrin constituted 0.03 and ˂0.01% of the extract.  

gRanges for flavonoids, hypericin and hyperforin constituents of HyperiFinTM commercial extract. Isoquercitrin, approximately 1%; quercitrin, not more than 0.5%; 

biapigenin, approximately 0.3%.  

iAqueous extract.  

n.d., not detected. n.r., not reported. +, presence 
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Table S1 Results of the forced swimming test in mice of different doses of fluoxetine-HCl 

Treatment Dose (p.o.) 

(mg/kg) 

N Duration of Immobility 

(Mean ± S.E.M.) (s) 

Variation 

(%) 

Control  - 6 160.0 ± 4.08 - 

Fluoxetine 20 6 120.0 ± 21.64 -25.00 

Fluoxetine 30 5 68.0 ± 25.13** -57.50 

Fluoxetine 40 6 107.5 ± 15.64 -32.81 

**p<0.01, compared with control (ANOVA followed by Dunnett´s multiple comparison test). N, number of 

animals per group 
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Table S2 Results of the acute toxicity study in mice of the ethanolic extracts of Hypericum species 

Species Phase I dose (mg/kg) Phase II dose (mg/kg) DL50 (mg/kg) 

 10 100 1000 1600 2900 5000  

H. andinum 0/3a 0/3 0/3 0/1 0/1 0/1 >5000 

H. brevistylum 0/3 0/3 0/3 0/1 0/1 0/1 >5000 

H. laricifolium 0/3 0/3 0/3 0/1 0/1 0/1 >5000 

H. silenoides 0/3 0/3 0/3 0/1 0/1 0/1 >5000 

aNumber of animals dead/number of animals used 

 

 

 

 

 

 

Fig. S1 TLC of flavonoids and phenolic acids in the ethanolic extracts of Peruvian Hypericum species. 

Separation on aluminum sheets precoated with silica gel 60 F254 with ethyl acetate/formic acid/acetic 

acid/water - 100:11:11:26 (v/v) as mobile phase. (A) visible light; (B) UV light at 365 nm; HA, H. 

andinum; HB, H. brevistylum; HL, H. laricifolium; HS, H. silenoides; 1, chlorogenic acid; 2, rutin; 3, 

hyperoside; 4, guaijaverin; 5, quercetin 
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Fig. S2 HPLC-DAD chromatogram and UV spectra of principal and some minor components in the 

ethanolic extract of H. andinum, H. brevistylum, H. laricifolium and H. silenoides (following the 

method described in Ganzera et al. 2002) 
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Fig. S3 HPLC chromatograms of reference substances. (A) Hyperoside isolated from H. andinum. (B) 

Mixture of flavonoids and a phenolic acid: 1, chlorogenic acid; 2, rutin; 3, hyperoside; 4, guaijaverin; 

5, quercetin. (C) Mixture of dimeric acylphloroglucinol: 6, uliginosin A; 7, isouliginosin B; 8, 

isohyperbrasilol B; 9, uliginosin B; 10, hyperbrasilol B. Each reference substance displayed a minor 

peak named as 6a, 7a, 8a, 9a and 10a (following the method described in Tatsis et al. 2007) 
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Fig. S4 UPLC-DAD/Q-TOF-MS chromatogram of reference substances: (A) UPLC-DAD 

chromatogram; (B) base peak ion (BIP) chromatogram in positive mode (m/z range 50-1000); (1A - 

5A) UV spectra of flavonoids and a phenolic acid, 1 (chlorogenic acid), 2 (rutin), 3 (hyperoside), 4 

(guaijaverin) and 5 (quercetin); (1B - 5B) MS spectra of flavonoids and a phenolic acid in positive 

mode; (1C - 5C) reconstructed BIP chromatogram at m/z values of 355, 611, 465, 435 and 303    
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Fig. S5 UPLC-DAD/Q-TOF-MS chromatograms (phenolic acids and flavonoids region) of ethanolic extracts of Peruvian Hypericum species: (HA, HB, HL and HS) UPLC-

DAD chromatograms of H. andinum (HA) , H. brevistylum (HB), H. laricifolium (HL) and H. silenoides (HS); (HA1, HB1, HL1 and HS1) base ion peak (BIP) 

chromatograms in positive mode (m/z range 50-1000); reconstructed BIP chromatograms at m/z values of 465 (HA2, HB2, HL2 and HS2), 435 (HA3, HB3, HL3 and HS3) 

and 303 (HA4, HB4, HL4 and HS4). Notice: entire chromatogram last 15 min, nevertheless peaks corresponding to dimeric acylphloroglucinols were of low intensity 
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CAPÍTULO IV 

 

“Dimeric acylphloroglucinol rich n-hexane extracts of Peruvian Hypericum 

species with antichemotactic activity: fingerprint and chemometrics” 

 

Manuscrito em preparação 
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The genus Hypericum (Hypericaceae) is a prolific source of numerous molecules that include 

principally flavonoids, xanthones, naphthodianthrones, and acylphloroglucinol derivatives 

(Crockett 2012). The presence of mono-, bi-, and tricyclic isoprenylated acylphloroglucinols, 

as well as, mono- and dimeric acylphloroglucinols in lipophilic fractions from representatives 

of Hypericum is frequently reported, providing evidence that Hypericum displays a 

specialized chemical diversity of acylphloroglucinol derivatives (Pal Singh and Bharate 2006; 

Crockett 2012; Stojanović et al. 2013). 

 

Hyperforin is certainly the most well-known acylphloroglucinol of the genus Hypericum. It is 

the main acylphloroglucinol of H. perforatum and also regarded as one of the main active 

principles responsible for the recognized antidepressant activity of St John’s wort 

phytochemical preparations. Among many other bioactivities (Medina et al. 2006), hyperforin 

exhibited potent anti-inflammatory effect on a UV erythema test associated to its in vitro and 

ex vivo antioxidant activity in skin and skin cells (Meinke et al. 2012), to its ability to 

suppress the in vivo and in vitro prostaglandin (PG)E2 biosynthesis (Koeberle et al. 2011), and 

to block other pro-inflammatory functions of leukocytes such as chemotaxis and 

chemoinvasion (Dell'Aica et al. 2007). 
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Brathys and Trigynobrathys (88 and 59 species respectively) are the two largest sections of 

the genus Hypericum that are principally distributed in Central and South America and, in a 

less extent, North America, Australia and Asia (Robson 2012). Of the more than 100 South 

American species of Hypericum almost 65 are endemic to the Páramo, a high-altitude 

grassland ecosystem characterized by vegetation composed mainly of giant rosette plants, 

shrubs and grasses (Crockett et al. 2010; Nürk et al. 2013). 

 

Differently to the polyisoprenylated acylphloroglucinol hyperforin, species of Hypericum 

from sections Brathys and Trigynobrathys are described to produce mainly dimeric 

acylphloroglucinol structures consisting of a filicinic acid and a phloroglucinol moieties 

linked by a methylene bridge (Barros et al. 2013; Ccana-Ccapatinta et al. 2013). To date, 31 

unique structures of dimeric acylphloroglucinols are described, which have shown to display a 

wide array of bioactivities as antimicrobials, antidepressants, analgesics, and anti-

inflammatories (Ccana-Ccapatinta et al. 2013). 

 

Fractions rich in dimeric acylphloroglucinols saroaspidin A, uliginosin A and hyperbrasilol A 

from H. gentianoides were shown to potently inhibit the Escherichia coli lipopolysaccharide 

(LPS)-induced prostaglandin E2 (PGE2) and nitric oxide (NO) production in RAW 264.7 

mouse macrophages (Huang et al. 2011). Likewise, lipophilic extracts from three southern 

Brazilian Hypericum species, rich in dimeric acylphloroglucinols uliginosin B, japonicin A 

and hyperbrasilol B, inhibited markedly the in vitro LPS-induced chemotaxis on rat 

polymorphonuclear neutrophils (PMNs) (Barros et al. 2013).  

 

Since Hypericum species from section Brathys and Trigynobrathys are potential alternative 

sources of anti-inflammatories, the present study was aimed to evaluate the ability of 

lipophilic extracts from six Páramo Peruvian Hypericum species to inhibit the in vitro LPS-

induced chemotaxis on rat PMNs. These extracts are hypothesized to be rich in dimeric 

acylphloroglucinol structures, therefore their chemical composition were characterized by a 

HPLC-DAD fingerprint method, associated with LC-ESI-MS, UPLC-Q-TOF-MS, principal 

component analysis (PCA) and hierarchical clustering analysis (HCA). 

  

Material and methods 



159 
 
 

 

Plant material 

 

Hypericum aciculare Kunth (HACI), H. andinum Gleason (HAND), H. decandrum Turcz 

(HDEC), H. laricifolium Juss (HLAR) (Shrubs, section Brathys), H. brevistylum Choisy 

(HBRE) and H. silenoides Juss (HSIL) (herbs, section Trigynobrathys) are species that occur 

in high altitude Páramo habitats. Aerial parts of these plants were collected in some regions of 

Peru (Table 1) and identified by Botanist MsC. Washington H. Galiano Sánchez. Collection 

authorization 0147-2010-AG-DGFFS-DGEFFS was issued by the Dirección de Gestión 

Forestal y de Fauna Silvestre and Dirección General Forestal y de Fauna Silvestre of the 

Republic of Peru. Voucher specimens were deposited in the Herbarium of the Federal 

University of Rio Grande do Sul (ICN), Brazil and in the Herbarium of the Universidad 

Nacional de San Antonio Abad del Cusco (CUZ), Peru.    

 

Preparation of plant extracts and reference substances 

 

Air dried and powdered vegetal material (10g) was successively extracted with n-hexane with 

the aid of an ultrasonic bath (5 times of 15 min, plant-solvent ratio 1:10). The extracts were 

evaporated to dryness under reduced pressure and then treated with cold acetone to obtain 

respective acetone soluble fractions (3.20, 2.48, 2.92, 2.57, 4.24 and 4.52% for HACI, 

HAND, HBRE, HDEC, HLAR and HSIL, respectively). The extracts were stored under 

refrigeration and dissolved in HPLC grade methanol (2000, 1000, 500, 250 and 100 µg/mL) 

and filtered (0.22 μm pore size) once required.   

 

Uliginosin A (1), isouliginosin B (2), isohyperbrasilol B (3), uliginosin B (4) and 

hyperbrasilol B (5) were isolated from some Peruvian Hypericum spp. by chromatographic 

procedures and identified after the analysis of their 1D and, 2D NMR spectra as described 

elsewhere (Ccana-Ccapatinta et al. 2013). Further purification attempts were carried out by 

centrifugal thin-layer chromatography (ChromatotronTM, San Bruno, CA, USA) on 1mm 

silica gel 60 F254 (Merck, Darmstadt, Germany) plates using several mobile phase mixtures 

described elsewhere (Rocha et al. 1995). The purity of each isolated compound were proved 

to be 75, 70, 91, 73 and 90%, respectively, by HPLC analysis. 
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High-performance liquid chromatography (HPLC) 

 

HPLC-DAD separations were performed on a Waters Nova-Pack C18 column (4 μm, 3.9 mm 

x 150 mm) adapted to a guard column Waters Nova-Pack C18 60Å (Waters, Milford, MA, 

USA) using a Shimadzu Prominence HPLC system (Shimadzu, Kyoto, Japan) equipped with 

a UV/Vis/DAD SPD-M20A system detector. The mobile phases consisted of a mixture of 

water (A) and an 8:2 mixture of acetonitrile and methanol (B), both acidified with 0.1% 

formic acid. Gradient elution was performed as follows: linear gradient from 75% B to 100% 

B over 10 min, held at 100% B for 10 min, followed by a re-equilibration for 5 min. All 

separations were performed at 25°C and a flow rate of 1.0 mL/min. Scan wavelength was set 

from 190 to 400 nm and detection wavelength at 350 nm. An aliquot of 20 μL of extract per 

sample (1000 µg/mL) was injected to obtain the fingerprint chromatograms and for 

quantifying purposes. Comparison of retention times (tR) and UV spectra of standard injection 

peaks (isolated substances) against sample peaks was used to assign peaks identity. Spiking of 

samples with standard compounds was employed to confirm assignments.  

 

Fingerprinting method validation  

 

The precision of the chromatographic method was assessed by performing nine consecutive 

injections of the same concentration of HLAR (1000 µg/mL). The repeatability of the 

extraction procedure and subsequent analysis was performed by repeating the extraction and 

HPLC analysis procedure by six times on the same sample of HLAR (1000 µg/mL). The 

intra-day reproducibility was performed by three repeated analyses at four concentration 

points of HLAR (2000, 1000, 500 and 100 µg/mL). The inter-day reproducibility was also 

evaluated by analyzing a sample of HLAR (1000, 500 µg/mL) on three consecutive days. The 

relative standard deviation (RSD) of retention times (tR) and peak concentration (PC) of three 

selected peaks were used to determine the method precision, repeatability, intra- and inter-day 

reproducibility. 

 

The relative concentration of dimeric acylphloroglucinols in the n-hexane extracts were 

quantified using a calibration curve prepared with 5 dissolved in MeOH with six data points 

covering the concentration range of 0.9–450 μg/mL. These solutions were injected in 
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triplicate, on three different days. The calibration curve was obtained by plotting the peak area 

signals as a function of concentration.  

 

Chemometric analyses 

 

The HPLC-DAD fingerprint chromatograms and UV spectra of major peaks were submitted 

to principal component analysis (PCA) and hierarchical clustering analysis (HCA) performed 

with the MINITAB® 15 software (State College, PA, USA). HCA: Agglomerative 

hierarchical method and Ward’s linkage method were employed to determine the number and 

distance between clusters, respectively and Euclidean distance for their amalgamation. PCA: 

the number of components was determined from Kaiser's eigenvalue greater than 1.0 rule 

employing the correlation matrix.        

 

Liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) 

 

Mass detection was carried out on an Agilent 1260 infinity LC-ESI-MS instrument equipped 

with an Agilent 6120B series mass detector (Agilent Technologies, Palo Alto, CA, USA). The 

analytical column, mobile phase composition and gradient elution were the same as described 

in the HPLC section. An aliquot of 10 μL of extract per sample (500 µg/mL) was injected. 

The mass spectrometer was operated with an electrospray ionization source in positive (ESI+) 

and negative (ESI-) mode. Detection was initially carried out from m/z = 100 to 1000 and 

further optimized from m/z = 400 to 700. The following parameters were set to spray 

chamber: capillary voltage 3.0 kV, drying gas flow 10.0 L/min, nebulizer pressure 50 psig, 

drying gas temperature 350 °C and fragmentor voltage kept at 100V.  

 

UPLC -Q-TOF-MS 

 

MS/MS spectra of principal peaks were characterized by UPLC-Q-TOF-MS using a Waters 

Acquity UPLC system coupled to a Waters Q-TOF Premier mass spectrometer (Waters, MA, 

Milford, USA). Separations were performed on a Hypersil Gold C18 column (1.9 μm, 2.1 mm 

x 100 mm). The mobile phases consisted of a mixture of water (A) and an 8:2 mixture of 

acetonitrile and methanol (B), both acidulated with 0.1% formic acid. Gradient elution was 

performed as follows: linear gradient from 75% B to 100% B over 2.7 min, held at 100% B 
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for 2.9 min, followed by a re-equilibration for 1.4 min. All separations were performed at 

30°C and a column flow rate was 0.49 mL/min. An aliquot of 2.5 μL of extract (250 µg/mL) 

per sample was injected. Mass detection was carried out in positive mode from m/z = 50 to 

1000 and data were processed using MassLynx V4.1 software (Waters, MA, Milford, USA). 

Nitrogen and Argon were used as nebulizer and collision gas, respectively. Other detection 

condition were as follows: ESI capillary voltage, +3.0kV; source and desolvation 

temperatures, 120 and 250°C, respectively; desolvation and cone gas flows, 350 and 70 L/h, 

respectively; sample cone voltage 25V ; collision energy 35 eV. 

 

Antichemotactic activity assay 

 

The antichemotactic activity assays of the n-hexane extracts on rat PMNs were performed 

according to the method described by Suyenaga et al. (2011). Briefly, stock solutions (1000 

µg/mL) of the extracts were prepared with Hanks buffer and Tween 80 (maximum 

concentration = 10%). The stock solutions were diluted in rat leukocyte solution (leukocyte 

density of about 1.5 × 106 cells/mL) to obtain suspensions with extract concentrations of 0.01 

to 10.0 µg/mL that were incubated at 37°C for 30 min. Then, the leukocyte/extract 

suspensions were added to the upper wells of a modified Boyden chamber, separated from the 

chemotactic stimulant (LPS from Escherichia coli) present in the lower compartment by an 

8.0 m nitrocellulose filter (Millipore, Billerica, MA, USA). Positive (lower wells containing 

LPS) and negative controls (lower wells containing medium only) were conducted in parallel 

with experimental groups. The Boyden chambers were incubated at 37°C in a humidified 

atmosphere for 1 h and, thereafter, the filters were removed and stained. The leucocytes 

migration was measured using a microscope Alphaphot-2 YS2 (Nikon, Tokyo, Japan). The 

mean value of migration corresponds to the micrometer distance from the top of the filter to 

the farthest plane of focus still containing two cells in five microscopic fields. All experiments 

were carried out in triplicate. A stock solution of uliginosin B (1000 μM) was also prepared 

and diluted to concentrations of 0.01 to 100 μM. Indomethacin (28 μM) was used as reference 

drug. 

  

Statistical analysis 
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Differences between the control and the treatments were statistically analyzed by one-way 

analysis of variance (ANOVA), followed by Dunnett post-hoc test for multiple comparisons. 

Data is expressed as means ± S.E.M. Differences with p<0.05 between experimental groups 

were considered statistically significant. Regression analysis was used to estimate the IC50 

value for the inhibitory activity of uliginosin B using GraphPad Prism 5.0 (GraphPad 

Software, San Diego, CA, USA). 

 

Results and discussion 

 

Fingerprinting method validation  

 

The precision of the method was determined by nine consecutive injections of HLAR. The 

RSDs of tR and PC of selected peaks were below 1.9% and 5.6%, respectively. The 

repeatability test was performed with six independently prepared sample solutions of HLAR. 

The RSDs of tR and PC were below 2.0% and 7.4%, respectively. The intraday reproducibility 

was performed by analyzing three repeated analyses at four concentration points of HLAR 

and The RSDs of tR and PC percentages were below 1.2% and 4.2%, respectively. The inter-

day reproducibility was also evaluated and the results showed acceptable RSD values (below 

3.7% and 8.7%). Despite the complex nature of the sample extracts, these results indicate that 

the fingerprinting method is valid and applicable. 

 

For the quantification of known dimeric acylphloroglucinols (and peaks with dimeric 

acylphloroglucinol pattern) in the n-hexane extracts, a calibration curve was constructed with 

compound 5 (Y = 4363.13 X - 14204.7) as external standard, displaying a good linearity (r2 = 

0.9999) in the range of concentrations analyzed. The limit of detection and limit of 

quantification were 0.68 and 2.05 µg/mL, respectively. 

 

Dimeric acylphloroglucinols reference substances and its M + 14 higher homologues 

 

Five dimeric acylphloroglucinol previously isolated from four Peruvian Hypericum species 

and identified after their respective 1D and 2D NMR spectra (Ccana-Ccapatinta et al. 2013), 

were used to assign peak identity on the fingerprint chromatograms of the n-hexane extracts 

from Hypericum species included in the present study. However, when these samples were 
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individually submitted to the HPLC fingerprint analysis each of them displayed a principal (1 

- 5) and a minor peak (1a - 5a). The reference substances showed a single spot on TLC under 

several mobile phase systems and displayed clear signals in their 1H and 13C NMR spectra 

(Ccana-Ccapatinta et al. 2013) that could not reveal and identify the nature of these minor 

peaks, even though their concentrations in some samples were shown to be almost a quarter of 

the main peak (21, 15, 3, 25, and 8% for 1a, 2a, 3a, 4a and 5a, respectively, by HPLC 

analysis), potentially identifiable by NMR spectroscopy. These observations, in addition to 

the fact that the UV spectra profile and the λmax of both pair peaks were almost identical 

(determined by HLPC-DAD), and a difference of 14 mass units between both pair peaks were 

observed (determined by LC-ESI-MS), suggested a close structural similarity of the two pair 

peaks observed in each sample (Fig. 1).  

 

The mayor peaks with m/z of 501 (tR 3.25 min), 499 (tR 15.26 min), 553 (tR 16.90 min), 499 

(tR 17.29 min) and 553 (tR 18.76 min) correspond, undoubtedly, to uliginosin A (1), 

isouliginosin B (2), hyperbrasilol B (3), uliginosin B (4) and hyperbrasilol B (5) as confirmed 

by NMR spectroscopy. Therefore, these samples were further submitted to UPLC-Q-TOF-MS 

analysis and direct infusion Q-TOF-MS to further determine the structure of the observed 

minor peaks at m/z of 515 (1a), 513 (2a), 567 (3a), 513 (4a) and 567 (5a). The Table 2 shows 

the retention times, molecular and fragment ions from each MS/MS spectrum of compounds 1 

- 5 and 1a - 5a (spectra provided as Supplementary Information). MS/MS spectra, in positive 

mode, of dimeric acylphloroglucinols 1 - 5 indicate that the methylene bridge, that connects 

the filicinic acid and the phloroglucinol monomers, is the main fragmentation target (Table 

2). The minor pair peaks 1a - 5a were identified based on the MS/MS fragmentation pattern 

of the five NMR identified compounds 1 – 5 (Table 3, Table 4) and on the criteria that the 

MS/MS spectra of a dimeric acylphloroglucinol should reveal the m/z of the two monomers 

composing the diacylphloroglucinol. For example the MS/MS spectra in positive mode of 1 

(m/z 501) (Fig. 2) displayed the ions at m/z of 277 and 265 corresponding to 3’-

prenylphlorisobutyrophenone (m/z 265 = M - 236, neutral loss of 3’,3’-dimethyl-6’-

oxophlorisobutyrophenone with a methyl group fragment of the methylene bridge) and to 3’-

prenylphlorisobutyrophenone (m/z 277 = M - 224, neutral loss of 3’,3’-dimethyl-6’-

oxophlorisobutyrophenone) with a methyl group fragment of the methylene bridge, 

respectively. Similarly, the homologue 1a (m/z 515) displays the ions at m/z of 279 and 291 

corresponding to the phloroglucinol moiety and a neutral loss of the filicinic acid moiety (M-
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236 and M-224, respectively). Similar observations were found in the MS/MS fragmentation 

profiles of 2 - 5 and 2a - 5a, indicating the location of an additional fragment, corresponding 

to 14 mass units, in the phloroglucinol moiety of compounds 1a - 5a (Table 3). 

 

The presence of higher homologues for 1 and 4 isolated from H. uliginosum was mentioned 

by Parker and Johnson 1968, who were unable to remove and identify this minor compound. 

Likewise, the isolation of compounds 1 - 5 from Peruvian Hypericum species were previously 

reported (Ccana-Ccapatinta et al. 2013), and here these compounds were shown to be in 

mixture with minor amounts of their correspondent M + 14 higher homologues. These minor 

compounds (1a - 5a) are here identified by chromatographic (HPLC, UPLC), spectroscopic 

(UV) and spectrometric (MS) evidence (Fig. 1, Table 2, Table 4). NMR analysis was not 

performed on these minor compounds because of the difficulty to separate these compounds 

in quantities sufficient for NMR experiments (Crispin et al. 2013). The difference in 14 mass 

units undoubtedly corresponds to an additional methylene group as part of the phloroglucinol 

moiety of compounds 1a - 5a (Fig. 1, Table 2). The iso-butyryl side chain as part of the 

phloroglucinol moiety is found in hyperforin, while the 2-methylbutyryl side chain is 

observed in its M + 14 higher homologue adhyperforin (Maisenbacher and Kovar 1992). The 

levels of adhyperforin in H. perforatum is approximately 1/10 those of hyperforin (Jensen et 

al. 2001) that is in concordance with the minor levels found for compounds 1a - 5a compared 

to their homologues 1 - 5, even from different batches and from different plant sources (data 

not shown). A variety of M + 14 homologues with the iso-butyryl and 2-methylbutyryl acyl 

side chains are reported from H. empetrifolium (Schmidt et al. 2012a, 2012b), H. chinense 

(Abe et al. 2012) H. cohaerens (Liu et al. 2013) H. beanii (Shiu and Gibbons, 2006) among 

many other species. The structures proposed for 1a - 5a as homologues of 1 - 5 (Fig. 1) are 

further supporter by the biosynthetically feasibility of their plausible precursors 2-

methylbutyrylphloroglucinol and iso-butyrylphloroglucinol, respectively (Crockett et al. 

2008). Valine and isoleucine are likely primary metabolite precursors involved in the 

biosynthesis of the iso-butyryl and 2-methylbutyryl acyl side chains of the phloroglucinol 

moiety as demonstrated in the biosynthesis of hyperforin and adhyperforin in shoot cultures 

of in H. perforatum (Karppinen et al. 2007). The structure of compounds 1a - 5a and its 

natural occurrence in some Hypericum species (Table 4) are here presented for the first time. 

  

Chemical fingerprinting of n-hexane extracts 
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The individual and overlaid HPLC-DAD chromatograms of the n-hexane extracts of six 

Peruvian Hypericum species, using the above mentioned HPLC fingerprint method, are 

shown in Fig. 3. Two popular clustering algorithms, hierarchical clustering analysis (HCA) 

and principal component analysis (PCA), were employed to investigate compositional 

similarities of the fingerprints.  

 

In order to find some characteristic constituents which can serve as ideal taxonomic markers 

PCA was conducted. The score plot on the first two principal components (2PCs, 90.2% of 

variance explained) is presented in the Fig. 3C. Six peaks assigned as a - f were identified to 

explain 90.2 % of total variance by PCA. The peak a (4, uliginosin B) was certainly the main 

peak among the six samples analyzed. The chemotaxonomic importance of this compound in 

Hypericum species from section Brathys and Trigynobrathys was previously verified (Ferraz 

et al. 2002; Nör et al. 2004) and here further highlighted for six Peruvian Hypericum species. 

Peak b - f were located in the region of 5 – 15 min of the fingerprint chromatogram and the 

complete identity of these peaks are unknown. The content of these main peaks (a - f) as 

determined by PCA, dimeric acylphloroglucinol 1 - 5, their M + 14 higher homologues 1a - 

5a, and also some other minor common peaks (u - z) were quantified in equivalents of 5 and 

the result are shown in Table 4.   

 

The HCA result is illustrated in the Fig 3D. Hypericum andinum was seen to be highly similar 

to H. brevistylum and those together with H. decandrum, H. laricifolium and H. silenoides 

were grouped in one cluster due to their similar fingerprint profiles, while H. aciculate was 

individually placed in another cluster. The present research included four species from section 

Brathys (H. aciculare, H. andinum, H. decandrum and H. laricifolium) and two from section 

Trigynobrathys (H. brevistylum and H. silenoides), which could not be differentiated at the 

sectional level by HCA. The number of species analyzed in this research was low compared 

to the total number of species described for these two sections (88 and 59). However, this 

study could serve as a framework for further studies exploring the chemotaxonomic utility of 

HPLC fingerprints of lipophilic extracts rich in acylphloroglucinol derivatives. 

 

Dimeric acylphloroglucinol rich n-hexane extracts 
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With the aid of our reference substances, it was possible to identify peaks in the region of 3 - 

4 min (1 and 1a) and 15 - 20 min (2 - 5 and 2a -5a) of the fingerprint chromatograms (Fig. 3). 

However, the region corresponding to 5 - 15 min and, in a lesser extent, 20 - 25 min of the 

chromatograms exhibited many other unidentified peaks. Lipophilic extracts of Hypericum 

species from section Brathys and Trigynobrathys are hypothesized to be mainly constituted by 

dimeric acylphloroglucinols (Barros et al. 2013; Ccana-Ccapatinta et al. 2013). As a first 

approach to determine the nature of these unidentified peaks, a comparison of their UV 

spectra with those UV spectra of identified peaks were conducted in each sample and 

subsequently analyzed by PCA and HCA (Supplementary information). These UV spectra 

overlaid of identified and unidentified peaks showed that most of these peaks display 

characteristically three-peaked UV spectra with absorption maxima in turn of 220, 300 and 

350 nm as determined by PCA. This initial observation, in addition to the high percentage of 

similarity (more than 65%, determined by HCA), suggested that these peaks would 

correspond to dimeric acylphloroglucinols. Previously, three peaked UV spectra were 

suggested as indicative of dimeric acylphloroglucinols in H. gentianoides (Hillwig et al. 

2008).  

 

Further efforts were carried out to obtain structural information of the unidentified mayor (b - 

f) and some minor common (u - z) peaks. LC-ESI-MS analysis revealed m/z values above 500 

(Table 4), compatible with the proposition that these peaks must correspond to dimeric 

acylphloroglucinols because they exceeded the minimum weight for a diacylphloroglucinol 

(404 D for albaspidin AA) (Crispin et al. 2013, Ccana-Ccapatinta et al. 2013). The MS/MS 

spectra of peaks b - f and u - z acquired by UPLC-Q-TOF-MS displayed a characteristically 

fragmentation pattern as observed for compounds 1 - 5 and 1a - 5a (Supplementary 

information). As a general trend, the beak down into two roughly equal parts and the 

characteristic neutral loss of a 3’,3’-dimethyl-6’-oxophlorisobutyrophenone (M-224 and M-

236) was clearly seen in the MS/MS spectra of peaks b - f and u – z. These observations 

further suggested the possible dimeric nature of these potential acylphloroglucinol derivatives.  

 

The occurrence of regioisomers in the n-hexane extracts of Peruvian Hypericum species is 

illustrated in Fig. 4 and Fig. 5. The monitoring at m/z of 499, 513, 553 and 567 showed the 

presence of the regioisomeric compounds corresponding to 2 and 4 (Fig. 5B), 3 and 5 (Fig. 

5C), 2a and 4a (Fig. 5D), 3a and 5a (Fig. 5E). The certainly assignment of these 
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regioisomers in the BIP chromatograms were achieved by cochromatography with the 

reference substances, comparison of MS/MS spectra and analysis of the chromatographic 

elution pattern. In fact, the distinction of these regioisomers solely by MS/MS data was not 

possible because of the highly similarity of their fragmentation patterns. Compounds 2 and 4, 

which differ in the cyclisation pattern of the pyran ring, are distinguished each other by 

comparison of their hydroxyl resonances in the 1H and HMBC NMR spectra. The Fig. 4 

displays the monitoring at m/z of 517, 531, 585 and 599 that showed peaks corresponding to v 

and c (Fig. 5B), w and x (Fig. 5C), d and e (Fig. 5D), then y and z (Fig. 5E). The possible 

identities of those dimeric acylphloroglucinols are presented in Fig. 6 based on their molecular 

ions, fragmentation pattern, and biosynthetically possibilities. 

 

Antichemotactic activity of n-hexane extracts and its main component  

 

The effect of n-hexane extracts of six Peruvian Hypericum species on the in vitro chemotaxis 

of polymorphonuclear neutrophils is illustrated in Table 5. The results showed that the 

extracts displayed significant inhibition of the LPS-induced chemotaxis on rat PMNs. The 

effect was dose-dependent in the range of concentration assayed. Inhibition values above 60% 

on the same antichemotactic assay were observed in the dose range of 10 - 0.3 µg/mL of n-

hexane extracts from H. carinatum, H. linoides and H. myrianthum, southern Brazilian 

Hypericum species (Barros et al. 2013). In the present study inhibition values of 100% were 

observed at doses of 10 and 1 µg/ml of H. aciculate, H. laricifolium and H. silenoides. These 

species together with H. decandrum displayed the highest approximate total content of 

dimeric acylphloroglucinols. This observation together with the greater chemical diversity as 

seen in their fingerprint profiles can explain the greater values of PMN chemotaxis imbibition 

observed for these four extracts compared to H. andinum and H. brevistylum. Uliginosin B (4) 

was the common compound among the six samples assayed, and as a general trend its 

concentrations were the highest of dimeric acylphloroglucinols (Table 4). This compound (as 

an 3:1 mixture with its M + 15 higher homologue) was shown to inhibit considerably the in 

vitro PMN chemotaxis with a IC50 of 0.26 µM (Table 6). Fractions and uliginosin A from H. 

gentianoides were shown to potently inhibit the PG(E2) production at 2.0 and 2.6 µM (Huang 

et al. 2011). The concentrations of uliginosin A in the extracts were shown to be low that 

could not count for the overall effect observed. Event thought, the structural similarity of 

uliginosin A with uliginosin B and the rest of dimeric acylphloroglucinols suggest the 
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inhibition of PG(E2) production as one possible mechanism of the observed inhibitory effect 

of the n-hexane extracts and its main component uliginosin B (4) on the PMN chemotaxis. 

Further studies are needed to elucidate the individual contribution of each dimeric 

acylphloroglucinol in the overall effect observed for the n-hexane extracts. 

 

Conclusions 

 

The n-hexane extracts of Peruvian Hypericum species, collected in high altitude Páramo 

habitats, are complex mixtures of dimeric acylphloroglucinols derivatives. The presence of M 

+ 14 higher homologues and regioisomers could be discriminated by means of HPLC-DAD, 

LC-ESI-MS and UPLC-Q-TOF-MS. The naturally occurrence of five previously undescribed 

acylphloroglucinols (M + 14 higher homologues) is presented and the presence of other 

compounds (mixture of regioisomers), identified by the analysis of their fragmentation 

pattern, is presented. These extracts and its main dimeric acylphloroglucinol component were 

able to potently inhibit the LPS-induced chemotaxis on rat PMNs. These results suggest that 

the n-hexane extracts of Hypericum species from sections Brathys and Trigynobrathys are 

potential sources of new anti-inflammatory molecules. 
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Table 1 Collection localities of Peruvian Hypericum species 

Species Collection locality Elevationa Collection Date Voucher number 

H. aciculare Huancabamba, Piura, Peru 3100 February 2012 Ccana-Ccapatinta et al., 10 

H. andinum  Amparaes, Cuzco, Peru 3432 May 2008 Ccana-Ccapatinta 06 

H. brevistylum  Paqchaq, Cuzco, Peru 3573 March 2008 Ccana-Ccapatinta 04 

H. decandrum Luya, Amazonas, Peru 3120 February 2012 Ccana-Ccapatinta et al., 12 

H. laricifolium Cumbemayo,  

Cajamarca, Peru  

3450 November 2009 Ccana-Ccapatinta 08 

H. silenoides  Pumahuanca, Cuzco, Peru 3189 March 2008 Ccana-Ccapatinta 02 

ameters above sea level 

 

 

 

Table 2 Retention times values, molecular and MS/MS ions of dimeric acylphloroglucinols (1-5) and 

its M+14 higher homologues (1a-5a) as identified by HPLC and UPLC-Q-TOF-MS 

Standard HPLC 

tR (min) 

UPLC 

tR (min) 

Abbreviation/ 

Common name 

m/z Fragment ions 

1 3.25 1.89 uliginosin A 501 191, 209, 225, 265, 277, 413, 445, 483 

1a 3.75 2.17 [3’3’me6’oxoPIB]-

[3’pren4mePIB] 

515 191, 209, 237, 279, 291, 425, 459, 497 

2 15.26 3.15 isouliginosin B 499 193, 219, 245, 263, 275 

2a 16.27 3.32 [3’3’me6’oxoPIB]-

[6meb22meC57diol] 

513 205, 245, 263, 275, 277, 289 

3 16.90 3.49 isohyperbrasilol B 553 69, 223, 257, 263, 275, 276 

3a 17.95 3.63 [3’pren3’me6’oxoPIB]-

[6meb22meC57diol] 

567 69, 205, 223, 257, 263, 271, 289 

4 17.29 3.51 uliginosin B 499 219, 237, 245, 263, 275 

4a 18.39 3.63 [3’3’me6’oxoPIB]-

[8meb22meC57diol] 

513 233, 245, 263, 275, 277, 289 

5 18.76 3.73 hyperbrasilol B 553 69, 205, 223, 245, 257, 263, 275 

5a 19.90 3.88 [3’pren3’me6’oxoPIB]-

[8meb22meC57diol] 

567 69, 223, 259, 271, 275, 277, 289 
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Table 3 Empirical formulas, molecular ions, and designation of dimeric acylphloroglucinols (1-5) and its corresponding M+14 higher homologues (1a-5a), as 

identified by high-resolution Q-TOF mass analysis 

Standard Empirical 

formula 

Predicted 

m/z 

Measured 

m/z 

Mass difference 

(ppm) 

Systematic name 

1 C28H37O8 501.2488* 501.2463 2.5 3,5-dihydroxy-2-isobutyryl-4,4-dimethyl-6-(2,4,6-trihydroxy-3-isobutyryl-5-(3-methylbut-2-

enyl)benzyl)cyclohexa-2,5-dienone 

1a C29H39O8 515.2645 515.2677 -3.2 3,5-dihydroxy-2-isobutyryl-4,4-dimethyl-6-(2,4,6-trihydroxy-3-(2-methylbutanoyl)-5-(3-

methylbut-2-enyl)benzyl)cyclohexa-2,5-dienone 

2 C28H35O8 499.2332 499.2306 2.6 2-((5,7-dihydroxy-6-isobutyryl-2,2-dimethyl-2Hchromen-8-yl)methyl)-3,5-dihydroxy-6-

isobutyryl-4,4-dimethylcyclohexa-2,5-dienone 

2a C29H37O8 513.2488 513.2491 -0.3 2-((5,7-dihydroxy-2,2-dimethyl-6-(2-methylbutanoyl)-2Hchromen-8-yl)methyl)-3,5-dihydroxy-

6-isobutyryl-4,4-dimethylcyclohexa-2,5-dienone 

3 C32H41O8 553.2801 553.2800 0.1 2-((5,7-dihydroxy-6-isobutyryl-2,2-dimethyl-2Hchromen-8-yl)methyl)-3,5-dihydroxy-6-

isobutyryl-4-methyl-4-(3-methylbut-2-enyl)cyclohexa-2,5-dienone 

3a C33H43O8 567.2958 567.2963 -0.5 2-((5,7-dihydroxy-2,2-dimethyl-6-(2-methylbutanoyl)-2Hchromen-8-yl)methyl)-3,5-dihydroxy-

6-isobutyryl-4-methyl-4-(3-methylbut-2-enyl)cyclohexa-2,5-dienone 

4 C28H35O8 499.2332 499.2320 1.2 2-((5,7-dihydroxy-8-isobutyryl-2,2-dimethyl-2Hchromen-6-yl)methyl)-3,5-dihydroxy-6-

isobutyryl-4,4-dimethylcyclohexa-2,5-dienone 

4a C29H37O8 513.2488 513.2465 2.3 2-((5,7-dihydroxy-2,2-dimethyl-8-(2-methylbutanoyl)-2Hchromen-6-yl)methyl)-3,5-dihydroxy-

6-isobutyryl-4,4-dimethylcyclohexa-2,5-dienone 

5 C32H41O8 553.2801 553.2804 -0.3 2-((5,7-dihydroxy-8-isobutyryl-2,2-dimethyl-2Hchromen-6-yl)methyl)-3,5-dihydroxy-6-

isobutyryl-4-methyl-4-(3-methylbut-2-enyl)cyclohexa-2,5-dienone 

5a C33H43O8 567.2958 567.2922 3.7 2-((5,7-dihydroxy-2,2-dimethyl-8-(2-methylbutanoyl)-2Hchromen-6-yl)methyl)-3,5-dihydroxy-

6-isobutyryl-4-methyl-4-(3-methylbut-2-enyl)cyclohexa-2,5-dienone 

* in positive mode
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Table 4 Retention time values, molecular ions and content (%) of dimeric acylphloroglucinols (1-5), 

their correspondent M+14 higher homologues (1a-5a), main peaks as determined by PCA (a-f) and 

some minor common peaks (u-z) in the n-hexane extracts of Peruvian Hypericum species  

 HPLC 

tR (min) 

m/z 

(ESI-) 

m/z 

(ESI+) 

HACI HAND HBRE HDEC HLAR HSIL 

1 3.25 499 501 0.5a 0.5 0.4 1.1 0.9 0.8 

1a 3.75 513 515 0.4 0.4 0.5 0.8 0.4 0.6 

b 6.26 567 569 1.3 0.4 Nd 1.9 9.6 Nd 

u 7.04 567 569 + + + 2.5 1.4 + 

v 8.32 515 517 1.2 1.1 1.5 1.3 2.4 5.2 

f 9.28 583 585 + + Nd 0.7 3.5 Nd 

w 9.55 529 531 1.2 0.4 0.9 1.1 + 1.3 

c 10.56 515 517 2.5 1.0 2.0 1.8 3.2 6.7 

d 11.33 583 585 2.1 1.1 1.1 1.8 1.8 1.1 

x 11.56 529 531 + + 1.3 + + + 

y 12.43 597 599 2.5 0.9 0.7 nd + + 

e 14.39 583 585 4.5 3.6 0.3 + + + 

2 15.26 497 499 0.2 0.6 0.4 1.6 2.2 0.4 

z 15.69 597 599 2.6 0.5 0.4 0.5 0.4 0.3 

2a 16.27 511 - 0.6 + + 1.3 + + 

3 16.90 551 - nd Nd nd nd 2.8 Nd 

a(4) 17.29 497 499 6.8 5.9 8.5 8.6 9.1 9.1 

3a 17.95 565 - nd Nd nd nd 0.6 Nd 

4a 18.39 511 - 3.3 1.0 2.2 2.2 1.1 2.3 

5 18.76 551 - nd + nd 0.4 1.7 Nd 

5a 19.89 565 - nd Nd nd nd 0.5 Nd 

Approx. Total Content (Σ)  29.7 17.4 20.2 27.6 41.6 27.8 

aValues are expressed as mean ± standard deviation of three assays; nd, not detected; +, presence, 

below limit of detection and/or overlapping signal peaks. Peruvian Hypericum species: Hypericum 

aciculare (HACI), H. andinum (HAND), H. decandrum (HDEC), H. laricifolium (HLAR), H. 

brevistylum (HBRE) and H. silenoides (HSIL) 
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Table 5 Effect of n-hexane extracts of some Peruvian Hypericum species, on the in vitro LPS-induced 

chemotaxis of rat polymorphonuclear neutrophilsa 

Sample Concentration  

(μg/mL) 

Migration 

(μm) 

Migration inhibition  

(%) 

HACI 10 0* 100 

 1 0* 100 

 0.1 38.4 ± 4.4* 50.8 

 0.01 26.8 ± 1.0* 65.7 

HAND 10 12.8 ± 0.4* 83.7 

 1 11.0 ± 0.5* 85.9 

 0.1 46.9 ± 3.9* 39.9 

 0.01 50 .0 ± 5.6* 35.9 

HBRE 10 2.6 ± 0.3* 96.7 

 1 43.3 ± 1.6* 44.6 

 0.1 63.8 ± 1.9* 18.3 

 0.01 74.0 ± 1.4* 5.2 

HDEC 10 8.2 ± 0.6* 89.5 

 1 32.4 ± 3.5* 58.4 

 0.1 26.5 ± 1.3* 66.1 

 0.01 24.8 ± 1.4* 68.2 

HLAR 10 0* 100 

 1 0* 100 

 0.1 30.3 ± 3.5* 61.1 

 0.01 21.4 ± 2.2* 72.6 

HSIL 10 0* 100 

 1 0* 100 

 0.1 27.3 ± 3.7* 65.0 

 0.01 48.8 ± 2.3* 37.5 

aChemotaxis is presented as means ± SEM of leukocyte migration (μm). Positive control: 

lipopolysaccharide (LPS 13 µg/mL) from E. coli (LPS = 78.1 ± 2.6). *p≤0.001 compared to positive 

control (reference chemoattractant) LPS (ANOVA-Tukeyʼs test). Peruvian Hypericum species: 

Hypericum aciculare (HACI), H. andinum (HAND), H. decandrum (HDEC), H. laricifolium (HLAR), 

H. brevistylum (HBRE) and H. silenoides (HSIL). 
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Table 6 Effect of uliginosin B on the in vitro chemotaxis of polymorphonuclear neutrophilsa 

Sample Concentration  

(μM) 

Migration 

(μm) 

Migration 

inhibition  

(%) 

IC50 

Uliginosin B 100 10.2 ± 0.4* 87.4  0.26 ± 0.07 

 10 11.7 ± 0.9* 85.6  

 1 20.0 ± 0.1* 75.3  

 0.1 48.0 ±  3.6* 39.9  

 0.01 77.7 ±  3.1 4.3  

Indomethacin 28 38.0 ± 3.4* 44.9  

aChemotaxis is presented as means ± SEM of leukocyte migration (μm). Positive control: lipopolysaccharide 

(LPS 13 µg/mL) from E. coli (LPS = 81.2 ± 3.2). *p≤0.001 compared to positive control (reference 

chemoattractant) LPS (ANOVA-Tukeyʼs test) 

 

 

 

 

 

 

Fig. 1 HPLC-DAD chromatogram, UV spectra, MS values, and chemical structures of dimeric 

acylphloroglucinols (1-5) and their correspondent M+14 higher homologues (1a-5a) as determined by 

HPLC-DAD associated with LC-ESI-MS and UPLC-Q-TOF-MS 
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Fig. 2 Fragmentation pattern of 1 and 1a in positive mode and expansion of their MS/MS spectra. 
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Fig. 3 HPLC-DAD chromatograms of Peruvian Hypericum spp. (A) individual and (B) overlaid 

chromatograms of the n-hexane extracts from Hypericum spp., monitored at 350 nm. (C) Score plot 

(PC1xPC2) obtained from PCA analysis of the n-hexane extract chromatograms. (D) Dendrogram 

obtained from HCA analysis of the n-hexane extract chromatograms. Note: peaks assigned as 1 to 5 

and 1a to 5a correspond to known dimeric acylphloroglucinols and its M+15 higher homologues, 

respectively; a to f represent main peaks in the HPLC-PDA chromatograms of Peruvian Hypericum 

spp., responsible for chemical differentiation of n-hexane extracts as determined by PCA; u to z are 

other common minor peaks.  
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Fig. 4 UPLC-Q-TOF-MS chromatogram of the n-hexane extract of H. aciculare. (A) Base ion peak (BIP) 

chromatogram in positive mode (m/z range 50-1000). (B-E) reconstructed BIP chromatograms at m/z values of, 

517 (v, c), 531 (w, x), 585 (d, e) and 599 (y, z) and their correspondent MS/MS spectra with key fragment 

values.  

  

 

Fig. 5 UPLC-Q-TOF-MS chromatogram of the n-hexane extract of H. laricifolium. (A) Base peak ion (BIP) 

chromatogram in positive mode (m/z range 50-1000). (B-E) reconstructed BIP chromatograms at m/z values of 

499 (2, 4), 513 (2a, 4a), 553 (3, 5) and 567 (3a, 5a) and their correspondent MS/MS spectra with key fragment 

values. 
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Fig. 6 Possible identify of dimeric acylphloroglucinols based on their molecular and fragmentation 

pattern, fragment ions and biosynthetically possibilities. 
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Supplementary information 

 

 

Table. S1.  Precision, repeatability, intra- and inter-day reproducibility of the HPLC-DAD fingerprint 

method  based on the relative standard deviation (RSD) of retention times (tR) and peak concentration 

(PC) of isohyperbrasilol B, uliginosin B and hyperbrasilol B determined in a samples of Hypericum 

laricifolium. 

Parameter 
Sample 

Concentration 

 Isohyperbrasilol 

B 

 Uliginosin 

 B 

 Hyperbrasilol 

B 

  
 

tR 
Peak  

Area 

 
tR 

Peak 

Area 

 
tR 

Peak 

Area 

Precision RSD (%) HLAR 1000 µg/ml  1.9 3.6       1.9 2.2  1.9 5.6 

Repeatability RSD (%) HLAR 1000 µg/ml  2.0 7.4  2.0 2.1  1.9 6.2 

Intra-day reproducibility 

RSD (%) 

HLAR 100 µg/ml  1.1 3.4  1.1 3.6  1.2 4.2 

HLAR 500 µg/ml  0.7 1.3  0.7 2.4  0.7 3.3 

HLAR 1000 µg/ml  0.3 1.9  0.4 0.3  0.4 0.2 

HLAR 2000 µg/ml  0.3 1.2  0.3 0.4  0.3 1.1 

Inter-day reproducibility 

RSD (%) 

HLAR 500 µg/ml  3.4 8.7  3.6 6.1  3.5 8.7 

HLAR 1000 µg/ml  1.9 3.2  1.9 2.6  1.9 4.4 
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Fig. S1 (A) HPLC-DAD chromatogram of the n-hexane extract of Hypericum aciculare (HACI), at 350 nm. (B), UV-Vis spectra overlaid of major 

peaks presents in the HPLC-DAD chromatogram. (C) Dendrogram obtained from HCA analysis of UV-Vis spectra of major peaks presents in the 

HPLC-DAD chromatogram. Note: a – c represent the main peaks of the UV-Vis spectra.  
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Fig. S2 (A) HPLC-DAD chromatogram of the n-hexane extract of Hypericum andinum (HAND), at 350 nm. (B) UV-Vis spectra overlaid of major 

peaks presents in the HPLC-DAD chromatogram. (C) Dendrogram obtained from HCA analysis of UV-Vis spectra of major peaks presents in the 

HPLC-DAD chromatogram. Note: a – c represent the main peaks of the UV-Vis spectra.  
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Fig. S3 (A) HPLC-DAD chromatogram of the n-hexane extract of Hypericum brevistylum (HBRE), at 350 nm. (B) UV-Vis spectra overlaid of major 

peaks presents in the HPLC-DAD chromatogram. (C) Dendrogram obtained from HCA analysis of UV-Vis spectra of major peaks presents in the 

HPLC-DAD chromatogram. Note: a – c represent the main peaks of the UV-Vis spectra.  

0.0 5.0 10.0 15.0 20.0 25.0 min

-5

0

5

10

15

20

25

30

mAU

1

2

3

4 5
6

7
8

9

1
0

1
1

1
2

1
3 1
4

1
5

1
6

1
7 1

8

Observations

S
im

ila
ri

ty

181751614131211109738415621

74.61

83.07

91.54

100.000

1

2

3

4

210 260 310 360

nm

In
te

n
s
it

y
%

HBRE 5.40 min (1)

HBRE 8.33 min (2)

HBRE 9.57 min (3)

HBRE 10.53 min (4)

HBRE 11.36 min (5)

HBRE 11.56 min (6)

HBRE 12.41 min (7)

HBRE 12.69 min (8)

HBRE 13.23 min (9)

HBRE 14.01 min (10)

HBRE 14.37 min (11)

HBRE 15.71 min (12)

HBRE 16.19 min (13)

HBRE 16.46 min (14)

HBRE 17.28 min (15)

HBRE 18.37 min (16)

HBRE 19.87 min (17)

HBRE 22.94 min (18)

a

b

c

A

B C



185 
 
 

 

Fig. S4 (A) HPLC-DAD chromatogram of the n-hexane extract of Hypericum decandrum (HDEC), at 350 nm. (B) UV-Vis spectra overlaid of major 

peaks presents in the HPLC-DAD chromatogram. (C) Dendrogram obtained from HCA analysis of UV-Vis spectra of major peaks presents in the 

HPLC-DAD chromatogram. Note: a – c represent the main peaks of the UV-Vis spectra. 
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Fig. S5 (A) HPLC-DAD chromatogram of the n-hexane extract of Hypericum laricifolium (HDEC), at 350 nm. (B) UV-Vis spectra overlaid of major 

peaks presents in the HPLC-DAD chromatogram. (C) Dendrogram obtained from HCA analysis of UV-Vis spectra of major peaks presents in the 

HPLC-DAD chromatogram. Note: a – c represent the main peaks of the UV-Vis spectra. 
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Fig. S6 (A) HPLC-DAD chromatogram of the n-hexane extract of Hypericum silenoides (HSIL), at 350 nm. (B) UV-Vis spectra overlaid of major 

peaks presents in the HPLC-DAD chromatogram. (C) Dendrogram obtained from HCA analysis of UV-Vis spectra of major peaks presents in the 

HPLC-DAD chromatogram. Note: a – c represent the main peaks of the UV-Vis spectra. 
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Fig. S7 MS/MS spectra of compound 1 – 5, higher homologues 1a – 5a, and some mayor (a - f) and 

minor (u - z) common components in the n-hexane extracts of Peruvian Hypericum species 
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Fig. S7 (Continued) 
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O gênero Hypericum apresenta pouco menos de 500 espécies. Estima-se que cerca de 

80 membros do gênero tenham sido estudados fitoquimicamente, os quais tem se mostrado 

ricos em metabolitos secundários, em especial policetídeos do tipo III que inclui flavonoides, 

xantonas, naftodiantronas e/ou floroglucinois (HÖLZL e PETERSEN 2003; HILLWIG et al., 

2008). Os policetídeos do tipo III formam-se da condensação de três moléculas de malonil-

CoA e várias substâncias precursoras tais como aminoácidos, derivados de aminoácidos de 

cadeia ramificada, fenilpropanoides derivados do chiquimato, acido benzoico e acetil-CoA 

(Figura C1). Diversas enzimas policetídeos sintases de tipo III têm evoluído para criar esta 

grande variedade de policetídeos. Frequentemente estes policetídeos são modificados por 

outras enzimas, ocorrendo, por exemplo, prenilações como observado na paxantona (xantona) 

e hiperforina (floroglucinol), entre outras.  

 

Figura C1. Policetídeos do tipo III e sintases descritas para o gênero Hypericum. 

 

A chalcona sintase foi a primeira enzima policetídeos sintases do tipo III a ser 

caracterizada, sendo a mais conhecida. Os flavonoides observados nas espécies de Hypericum 

como hiperosídeo, rutina, isoquercetrina, quercitrina, quercetina entre outros (Figura C2), são 

produtos derivados da naringenina chalcona (proveniente da atividade enzimática da chalcona 

sintase). Os resultados do Capítulo II demostram que as espécies Peruanas de Hypericum 
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representam ricas fontes de flavonoides, o que demostra a preservação da rota biossintética 

destes compostos durante a evolução destas espécies nos Páramos Peruanos. Estes habitats 

são caracterizados por grandes altitudes (superiores a 3000 metros acima do nível do mar) e 

estão expostos a níveis elevados de radiação UV que pode ter levado a indução da biossíntese 

de flavonoides nas espécies Peruanas de Hypericum pesquisadas. A ocorrência destes 

metabólitos nas secções taxonômicas e membros do gênero Hypericum estão descritos por 

CROCKETT e ROBSON (2011) e STOJANOVIĆ et al., (2013). 

 

 

Figura C2. Biossínteses de flavonoides no gênero Hypericum. 
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Biossinteticamente, as xantonas e as benzofenonas têm uma origem comum. A 

benzofenona sintase é a enzima chave na formação do intermediário 2,4,6-tri-

hidroxibenzofenona (Figura C3). As vias biossintéticas assim como a ocorrência de xantonas 

no gênero Hypericum são discutidas por DEMIRKIRAN (2007). No presente estudo não foi 

explorada a ocorrência de xantonas nem benzofenonas nas espécies Peruanas de Hypericum. 

Diversas xantonas têm sido descritas previamente para H. brasiliense (ROCHA et al., 1994), 

H. irazuense (CROCKETT et al., 2010) e H. laricifolium (RAMÍREZ-GONZÁILEZ et al., 

2013), e duas benzofenonas para H. carinatum (BERNARDI et al., 2005), sugerindo, assim, a 

preservação da rota biossintética destes compostos nas espécies de Hypericum das seções 

Brathys e Trigynobrathys. 

 

 

Figura C3. Xantonas e benzofenonas descritas para H. irazuense e H. carinatum. 

 

Presume-se que a biossíntese das naftodiantronas (hipericina, pseudo-hipericina) siga a 

via dos policetídeos, e, de acordo com essa proposta, num primeiro passo, uma molécula de 

acetil-CoA condensa-se com sete moléculas de malonil-CoA para formar a emodinantrona. A 

enzima policetídeo sintase do tipo III, responsável pela biossíntese da emodinantrona, é ainda 

desconhecida. No entanto, a biossíntese de hipericina a partir da emodinantrona já foi 

caracterizada (KARIOTI e BILIA, 2010). Ainda, foi verificado que as naftodiantronas são 

biossintetizadas em células que delimitam um tipo de glândulas denominadas glândulas 

escuras, demostrando-se, assim, uma correlação positiva entre o tamanho e o número de 

glândulas escuras e o conteúdo geral de hipericina em H. perforatum. No entanto, a presença 

de glândulas escuras e, consequentemente, naftodiantronas, é comum a 2/3 das espécies do 

gênero Hypericum, característica que tem sido advertida com particular utilidade 

quimiotaxonômica (CROCKETT e ROBSON, 2011). Os resultados do Capitulo 2 mostram  a 

ausência de hipericinas nas espécies Peruanas de Hypericum. A ausência deste tipo de 

metabolitos em espécies de Hypericum das secções Brathys e Trigynobrathys foi previamente 

descrita (FERRAZ et al., 2002b; CROCKETT e ROBSON, 2011), mostrando que esta via 

biosintética poderia ter evoluído mais tardiamente. Brathys e Trigynobrathys são seções 
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taxonômicas consideradas basais dentro do gênero Hypericum, o que poderia explicar a 

distribuição preferencial de hipericinas nas seções mais evoluídas morfologicamente.  

 

Os compostos derivados do floroglucinol comumente descritos para o gênero 

Hypericum são formados por meio da condensação de varias moléculas de malonil-CoA e 

derivados de aminoácidos de cadeia ramificada. A florisobutirofenona sintase, uma 

policetídeo sintase do tipo III, tem sido identificada como a enzima chave na biossíntese de 

floroglucinois. Os floroglucinois são frequentemente substituídos por prenilas, que 

posteriormente podem sofrer reações de ciclização dando origem a benzopiranos. Uma grande 

variedade de floroglucinois tem se descrita para o gênero. No entanto dentro das espécies de 

Hypericum das secções Brathys e Trigynobrathys é comum o relato de floroglucinois 

monoméricos e mais frequentemente diméricos. Os resultados do capitulo 2 apresentam o 

isolamento e elucidação estrutural de dois floroglucinois monoméricos inéditos para H. 

laricifolium. Tendo em conta a presença de três benzopiranos em H. polyanthemum mais dois 

derivados de floroglucinol em H. japonicum e um em H. styphelioides pode se descrever a 

ocorrência de oito floroglucinois monoméricos, identificados inequivocamente por RMN 1D e 

2D, dentro das espécies de Hypericum das seções Brathys e Trigynobrathys (Figura C4).  

 

 

Figura C4. Floroglucinois monoméricos reportados para as espécies de Hypericum das seções Brathys 

e Trigynobrathys. 
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Recentemente, foi relatada a identificação de nove floroglucinois monoméricos num 

extrato alcoólico de H. gentianoides. Apenas um destes compostos (1'3'pren45'me4'oxoPIB) 

apresentou concentração suficiente para ser detectável por LC-MS. Os demais oito 

floroglucinois monoméricos de H. gentianoides apresentaram contrações muito baixas, mas 

que foram detectáveis por meio de análises Q-TOF-MS por infusão direta do extrato. As 

baixas concentrações destes floroglucinois monoméricos e os altos níveis de floroglucinois 

diméricos detectados em H. gentianoides levaram à formulação da hipótese denominada 

‘monomer pool concept’ por CRISPIN et al. (2013), na qual os floroglucinois monoméricos 

seriam precursores dos diméricos. Assim, postula-se que os floroglucinois diméricos sejam 

sintetizados via modificações da unidade básica florisobutirofenona (PIB) para gerar 

estruturas básicas de monômeros de floroglucinol e de ácido filicínico, os quais 

posteriormente sofreriam um processo de dimerização para gerar os floroglucinois diméricos. 

 

A enzima responsável pela reação de dimerização dos floroglucinois monoméricos 

gerando, assim, compostos diméricos é ainda desconhecida, mas o mecanismo da enzima EC 

1.21.3.3, responsável pela formação de uma ponte metilenica entre dois anéis aromáticos, é 

conhecido (KUTCHAN e DITTRICH, 1995). Esta enzima formadora de ponte (BBE, 

Berberine brigde enzime) foi caracterizada em culturas celulares de Berberis beaniana, e é 

responsável pela catalise da ciclização oxidativa da (S)-reticulina, para formar a (S)-

scoulerina (Figura C5 e Figura C6).  

 

 

Figura C5. Biossíntese de (S)-scoulerina a partir da (S)-reticulina. 

 

 

Figura C6. Exemplificação do mecanismo proposto por CRISPIN et al., (2013) na formação de ponte metilênica 

na biossíntese do floroglucinol dimérico andinina A. A formação da ponte metilênica a partir de dois 

floroglucinois monoméricos prossegue através de um processo multi-passo semelhante ao da reticulina oxidase 

(KUTCHAN e DITTRICH, 1995). B1, B2 e B3 são resíduos básicos propostos da enzima envolvida na formação 

dos floroglucinois diméricos. 
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Figura C6. Biossínteses de floroglucinois monoméricos e diméricos nas espécies peruanas de 

Hypericum: derivados da valina 
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Figura C7. (Continuação): derivados da isoleucina 
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A ocorrência natural de pelo menos 31 floroglucinois diméricos (Capitulo 1) nas 

espécies de Hyperium das seções Brathys e Trignobrathys sugere a preservação das vias 

biossintéticas que levam à formação dos floroglucinois diméricos dentro dos membros destas 

duas seções taxonômicas. A via inicial que leva à formação de floroglucinois monoméricos 

parece ser comum a todas as espécies do gênero Hypericum, mas a via de dimerização poderia 

ser exclusiva das espécies das seções Brathys e Trigynobrathys. Tendo em conta os resultados 

do Capítulo 1, Capitulo 2 e capitulo 4, propõe-se as vias de biossíntese de floroglucinois 

monoméricos e diméricos nas espécies peruanas de Hypericum (Figura C6 e Figura C7). 

 

O processo de isolamento por métodos cromatográficos (cromatografia em coluna de 

sílica e cromatografia planar centrifuga, Cromatroton®) possibilitou a identificação de sete 

floroglucinois diméricos e dois floroglucinois monoméricos nas frações n-hexano de quatro 

espécies peruanas de Hypericum (Capítulo 1 e Capítulo 2). No entanto a análise dos extratos 

n-hexano de seis espécies peruanas de Hypericum por meio de uma nova metodologia de 

HPLC (Capítulo 4) revelou que cada um destes extratos apresenta uma alta complexidade 

química. Por meio de combinação de técnicas cromatográficas (HPLC-DAD, LC-MS, UPLC-

QTOF-MS) foi possível a identificação de mais cinco floroglucinois diméricos adicionais 

homólogos M + 14, junto com pelo menos 10 compostos tentativamente identificados, que 

apresentaram um perfil UV e MS indicativo de floroglucinois diméricos. Estes achados 

suportam a hipótese de que os extratos n-hexano das espécies de Hypericum das seções 

Brathys e Trigynobrathys são fontes copiosas de floroglucinois diméricos.  

 

 Extratos e frações de espécies de Hypericum têm mostrado uma ampla gama de 

propriedades farmacológicas destacando-se as propriedades anti-inflamatórias, analgésicas, 

antidepressivas e antibacterianas. Extratos alcoólicos estandardizados de H. perforatum são 

amplamente utilizados no tratamento de depressão leve a moderada (STEVINSON e ERNST, 

2003). Estes extratos contem uma ampla gama de constituintes sendo os principais, 

flavonoides, naftodiantronas e floroglucinois, tendo se atribuído a estes o efeito observado 

(HÖLZL e PETERSEN, 2003). A observação de que muitas outras espécies de Hypericum 

que não produzem naftodiantronas nem floroglucinois do tipo da hiperforina, mas que são 

ricas em flavonoides destaca a importância destes compostos na atividade antidepressiva de 

extratos de Hypericum. Os resultados do capítulo 3 mostra que os extratos alcoólicos de 

quatro espécies de Hypericum peruanas apresentam potencial atividade antidepressiva. A 
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análise fitoquímica destes extratos mostrou uma alta concentração de flavonoides em especial 

hiperosídeo, e uma baixa concentração de floroglucinois diméricos, pelo que os flavonoides 

destacam-se como os principais responsáveis do efeito observado. 

 

Frações lipofílicas de H. caprifoliatum e H. polyanthemum também têm mostrado 

potencial atividade antidepressiva. O efeito destas frações tem sido atribuído à presença de 

floroglucinois diméricos, como HC1 e uliginosina B (STEIN et al., 2012). A uliginosina B 

tem mostrado um perfil promissor de atividade antidepressiva mostrando que floroglucinois 

diméricos poderiam ser moléculas protótipo para o desenvolvimento de novos 

antidepressivos. Os resultados do Capítulo 2 mostram que a andinina A, floroglucinol 

dimérico inédito isolado das raízes de H. andinum, apresenta potencial atividade 

antidepressiva. 

 

Extratos e frações de H. gentianoides têm mostrado capacidade de bloquear a 

produção de mediadores pro-inflamatórios, prostaglandina E2 e óxido nítrico, induzida por 

LPS, usando macrófagos murinhos RAW 264.7 como modelo experimental. A uliginosina A 

foi identificada como um dos componentes reesposáveis por está atividade (HILLWIG et al., 

2008; HUANG et al., 2011). Os resultados do capitulo 4 mostram que as frações n-hexano de 

seis espécies de Hypericum são misturas complexas de floroglucinois diméricos. Estes 

extratos inibiram a quimiotaxia induzida por LPS em neutrófilos polimorfonucleares, 

mostrando potencial atividade anti-inflamatória. O componente principal destes extratos, a 

uliginosina B, também mostrou um perfil de atividade anti-inflamatória dose dependente no 

modelo testado. 

 

Assim o presente estudo apresenta as espécies peruanas de Hypericum como fontes 

ricas de flavonoides derivados da quercetina e floroglucinois diméricos com potencias 

propriedades anti-inflamatórias e antidepressivas. 
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