ON THE FUNDAMENTAL THEOREM OF ALGEBRA
HANS ZASSENHAUS, Ohio State University

Introduction. In the year 1799 C. F. Gauss [4] gave the first formal proof
of the theorem that every nonconstant polynomial with real coefficients can be
factored into a product of linear factors and quadratic factors. A constructive
proof based on arguments of a purely algebraic nature and on assumptions
about the real number field that were stated in purely algebraic terms (though
the proof of these assumptions would require analytic methods) was first given
by O. Perron [6]. In this paper Perron’s method is further developed towards
an algorithmic routine for solving algebraic equations with complex coefficients.

1. Really closed fields. The real number field has the following properties:

1.1. The negative of a nonsquare is a square.

1.2. The sum of squares is zero only if each summand is zero.

1.3. An algebraic equation of odd degree has a real solution.

The first two properties derive from the existence of an algebraic ordering
of the real number field and a square root of every positive real number.

The last property follows from an application of the intermediate-value
theorem of analysis to a polynomial: f(x) =x"4ax*'+ - - - +a, of odd degree
n with real coefficients, in view of the inequalities:

1.4 f<1+ > la;|)>0>f<—<1+ Zla.-l))-
=1 =1

Fields with the properties 1.1, 1.2, 1.3 are said to be really closed. E.g. the
real number field is really closed. For a really closed field F an algebraic ordering
is given by the rule:

1.5 The element a of F is greater than the element b of F if and only if the
difference element a—b is a nonzero square element of F. This implies the
positivity concept:

1.6 An element of F is positive if and only if it is a nonzero square ele-
ment of F.

In order to deduce the ordering properties of F from 1.5 we have to verify
the positivity rules:

1.7 The negative of any nonpositive nonzero element is positive.

1.8 The sum and product of two positive elements are positive.

Indeed, if a is non positive and nonzero, then a is a non square of F. It follows
from 1.1 that —a is a square element of F so that —a is positive.

If @ and b are positive elements of F then the equations

a=§g, =17
are solvable by non zero elements £, 5 of F. From 1.2 it follows that a+b does
not vanish. If there would hold an equation: —(a-+b)=¢{? in F then
g+t =
would hold contrary to 1.2.
485
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Thus a+b is a square element of F so that the sum of two positive elements
of F always is positive. Since,

ab = g* = (gn)* # 0

the product of two positive elements is positive.
Clearly, for any really closed field only one positivity concept exists.

2. Ordered division rings. (See [1], [2], [3], [5], [7]). For a unital ring D
with positivity concept satisfying 1.7, 1.8 we define an algebraic ordering by
declaring the relation

a>b(or:b<a

to mean that the difference of the elements a, b of D is positive.

This definition implies the rules customarily demanded of an algebraic order-
ing relation:

2.1 (trichotomy). For any two elements @, b of R, there holds one and only
one of the three relations:

a > b, a = b, b > a.

2.2 (transitivity). If a>b, b>c¢ then a>c.

2.3 If a>b, ¢c>d then a+c>b+d and ac+bd >ad+be.

Conversely, if a>relation is defined in D which satisfies 2.1, 2.3 then the
relation a >0 defines a positivity concept satisfying 1.7 and 1.8, from which the
>relation can be derived as was done above.

The derived relation:

az=b(r:b=a)

meaning that either a is greater than b or a is equal to b (or: not @ <b) and the
functions:

1 ifa>0
sign @ = 0 ifa=0
-1 ifa<0

| a| = a-sign a = (sign @) -a
satisfy the basic rules:
e = a, azb and b=a=a=0b, azb and b=c=a =g,
a=b and c=d=a+c=b+4d, ab+ cd = ad 4 cb
sign (e¢b) = sign a-sign b
Ial-signa=(signa)-|a|=a
|a|=|—a|g0, |a|=0=»a

la+b| < |a|+ 8], |a—25|

0,
[lal = Toll,  [at] = [e]-]a].

(1%
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The positive elements of an ordered division ring D form a half-ring H
(according to [8], p. 95, a halfring is a nonempty subset of a ring that is closed
under addition and multiplication,) with the following properties:

2.4. The halfring H contains the square of every non zero element of the
subdivision ring Dy generated by H.

2.5. The halfring H is a maximal subhalfring of D not containing the zero
element of D.

Conversely, every halfring H of D satisfying 2.4 and 2.5 is associated with
a positivity concept of Dg satisfying 1.7, 1.8.

Indeed, for any two non zero elements %, v of D we have the identity:

2.6 wou vt = (uv)2(v—lu 1) 2(vY)2
so that
2.7 wu v C H if0 3 u & Dy, 05 v E Dy.

Thus uh=h(h~u huYu & Hu if 04 & Dy, h&H; hence hucuH, uHC Hu.
Similarly HuCuH; hence uH = Hu(u& Dy).
For & of H we have
H = hp'hH C I 'H, =42 c hlH,
h'H 4 kH C b 'H,
F'Hi'H = i~ (Hr)H = im'%'HH C H C h'H,
hence #~'H is a halfring of Dy containing H, but not zero. Since #~1H contains
every non zero square element of Dg=D;-1y it follows from the maximal

property of H that »~'H=H, hence »~1€H.
If the non zero element ¢ of Dy is not contained in H then —¢ belongs to H.

Indeed,
c=c¢12EcHC A = HUH\U (H + ¢H)
(H+c¢H)+ (H+c¢H)C H+cH
HcH = ¢cHH C ¢H,
c¢HcH = ¢(Hc)H = ¢(cH)H = ¢*HH C H
(H+ cH)(H + ¢cH) C H + cH.

Hence, H is a halfring of Dy properly containing H, so # contains zero because

of the maximal property of H.
There are elements k1, h; of H for which ki +chy=0. Hence,

—¢ = hhy' € HH = H.

THEOREM 1. A division ring D can be algebraically ordered if and only if the
sum of finitely many finite products of square elements is zero only if all summands
are zero. (What happens if one makes the weaker assumption that the sum of
finitely many squares can be zero only in the trivial way?)
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Proof. That the condition is necessary was shown above. Let it be satisfied.

The set Hy of all sums of finitely many finite products of non zero square
elements of D does not contain zero. H, is a halfring. By Zorn’s lemma [9] H,
is contained in a maximal halfring H of D not containing zero. Hence,
2=12412€H,CH, 20.

Since for any element « of D we have u =1((u+1)2—u?) € Dpg it follows that
Dy =D and D has indeed the algebraic ordering which is given by

2.8. a>b if and only if a—b is in H.

THEOREM 2. If the field F is algebraically ordered and if F is contained in
an algebraically closed field extension Q, then there is a really closed subfield ® of
Q such that

2.9. every positive element of F is a square element of ®.

2.10. Q s algebraic over P.

Proof. By Zorn’s lemma [9] there is a maximal halfring H of Q containing all
positive elements of F and every non zero square element of the subfield ®
generated by H, but not zero.

We have shown above that the given ordering of F can be extended to an
algebraic ordering of the field ® such that H is the halfring of the positive
elements.

If there were an element £ of Q that would not be algebraic over ® then the
halfring formed by the sums of finitely many nonzero square elements of ®(§)
with coefficients in H would be larger than H and it would contain all nonzero
square elements of ®(£). Because of the maximal property of H it would contain
zero; hence there would be an equation.

z Pi(®) \?
0= Eh.-(——) (ks € H)
i1 \DN(@)
where N(x), Pi(x), - - -, Pa(x) are non zero polynomials of ®[x]. Let m be the
maximum degree of the polynomials Pi(x), - - -, P,(x) and let a; be the co-

efficient of x™ in P;(x). Then

0=2 WPA®)’ = > wPi)" = > hia,
=1 =1 i=1
contrary to the construction of H. Hence  is algebraic over ®.

For every element # of H the equation #=£2 is solvable in Q. If £ would
not belong to ® then the elements a+bf with @, b contained in & such that
220,620, a+b>0 forms a halfring H of Q larger than H; it would be contained
in the halfring H H~! containing all square elements of ®(£), but not zero, which
is a contradiction. (It is clear that H is a halfring larger than H, not containing
zero and that H H-1has the same properties. Moreover, if a, bE®, a =0, 5 <0,
a?>b%, then both —bu+aé and (a+bf)(—bu-+taf) = (a?—>b2u)¢ belong to H;
hence a+b¢ belongs to H H-'. Now, if ¢, dE® and c+d{#0, then (c+d§)25=0,
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then (c+df)?=a+bf when a=c?+d*u & H, and b=2cd, a®—b% = (c*—d?u)?>0
so that indeed (c+d£)? belongs to H H~'.) Hence every element of H is a square
element of ® and 1.1, 1.2 are satisfied by &.

If there were a polynomial f(x) of odd degree with coefficients in ® for which
the equation

2.11 —1= Zlf;(x)z (f(x))
could be solved by polynomials fi(x), - - -, f.(x) with coefficients in ®, then we
could find among these f(x) one of minimal degree 2n+1. Upon substitution of
the least remainders with regard to division by f(x) it would follow that a
relation 2.11 would obtain in which the maximum degree % of the polynomials
filx), - -+, fo(x) would be not greater than 2.

Moreover, since $ has an algebraic ordering we conclude that >0 and
that the coefficient of x?* in

2 fi(x)?

=1
does not vanish, therefore the polynomial 1+ D ¢_; fi(x)2=f(x)g(x) is of degree
2k and consequently the polynomial g(x) is of odd degree less than 2n41.
But this is impossible in view of the congruence:

1= Zl.fe(x)z (g(=)
and the minimal property of f(x).

Hence, for a polynomial f(x) of odd degree over & a relation of the form 2.11
never holds. On the other hand there must be a polynomial g(x) of odd degree
among the irreducible divisors of f(x) in ®[x]. Since Q is algebraically closed,
there is a root £ of g(x) in Q. As was shown above, no sum of square elements
of the extension field #(§) can be equal to —1. This implies that the sums of
finitely many nonzero square elements of ®(£) form a halfring H containing H
as well as all nonzero square elements of ®(£). Because of the maximal property
of H we conclude that H coincides with H, ®() =&, £E®, & is really closed.

3. The ring extensions associated with an equation. Suppose that the
polynomial

3.1. f(x) =x"+aw" '+ - - - +a, with coefficients ap=1, a1, as, - - -, a, in
the commutative unital ring v has the root £ in » then

f@) = 1@) — @) = 3 ann(e® — £)

h=0

=@—9 Z”: a,._;.( E gh—i—lx;)

h=1 =0
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= =)@
where
f n—1 n—1—j
3.2 (x) = Z( > a,,_j_h_lf"> ¥,
x— & =0\ h=0

Hence every root of the polynomial 3.2 is also a root of f(x). Moreover,
if v is an integral domain then every root of f(x) that is not equal to £ is also a
root of 3.2. And if for some polynomial g(x) of degree n—1 over v the equation
f(x) = (x—£)g(x) holds then g(x) =f(x)/(x—§). This is because the equation for
g(x) allows us to determine recursively the coefficients of g(x).

The preceding remarks motivate the following formal construction.

Let us denote by v[£; f] the »-module with basis 1, £ - - -, £ over v.
The rule

£(1) = ¢
£EE) =81 0<i<n—1)
3.3 Ef(é"_l) — _alsn—l - azsn—2 . d,,].
n—1 n—1
E’( Z bi‘fj) = Z &) B EL0=27<n)
j=0 =0

establishes a v-endomorphism &, of v[£; f] satisfying the equation:
3.4 f&) =0

which is an equation for £, over v of minimal degree.
We define a multiplication on v[£; f] by the rule:

n—1 n—1 B

(Zme)n = Sudoe el
h=0 h=0

which turns the v-module v[£; f] into a commutative unital ring extension of

v when the mapping b—b1+0£'+ - - - +0£»~1(b&v) provides the embedding

isomorphism of v into v[£; f]. The unit element of v also is the unit element of

v[£; f]. Together with

£= 01418 4+ 082+ - - - + 0p—

the ring v generates the v-ring v[£; f] with v-basis 1, £, £2, - - -, £1 such that
f()=0. If in a commutative unital ring extension v* of v for some element 7 of
v the equation f(n) =0 holds, then the mapping

n—1 n—1
2 b — 2 bni(b; € 030 £ j < )

j=0 =0
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provides a v-homomorphism of »[§; f] into v*.
Extending the preceding construction we define the commutative unital

ring extension (&, - + -, &.; f] of v with ! basis elements
vy V2

BE b OSw<n—jij=1,2,-+,n)

over v as follows:

3.5 7’[‘51, T En;f] = (”[El;.f])[&’ R gmf/(x - El)]
It follows that in o[£, - - -, &; f] there holds the factorization:
3.6 f@) =@ —&)(x—&) - (x— &)

of f(x) into # linear factors.

TuEOREM. 3 The n! permutations of the n distinct roots &1, &, - -+, & of f
determine automorphisms of v[éy, - + -, &x; f] such that the automorphism induced
by the permutation ™ maps the polynomial expression P&, &, - - -, &) on
P(nti, - - -, wka) for any polynomial P(xy, - - + ,xn). These n! automorphisms form
a group v. such that every element of v is fixed by every member of y.. The ele-
ments of v are the only elements of the ring v[&1, - - -, En; f] that are fixed by ..

Proof. This is clear if n=1. Apply induction over n. Let #>1. The subset
7 of all elements of the ring extension that are fixed by 7, is a subring containing
9. Because of 3.5 and the induction assumption it follows that 7 is contained in
v[£1]. Applying a permutation automorphism interchanging &, & to an element
of v[£] that is not contained in », we obtain an element of v[£] [£] which is
not contained in v[£]. Hence the theorem.

CoRrOLLARY. (Theorem on symmetric functions.) Let R=v[x1, %3, - + -, %n]
be the polynomial ring in n commuting independent variables x1, %2, - - - , Xn 0Ver v.
Let $;= ) Xafa * + * %oyl 1 S1< -+ - <a;Sn be the i-th basic symmetric func-
tion (1=1=n). Then every polynomial in xi, X2, + + +, X, 0ver v that is fixed by
all variable permutations (symmetric polynomial in x1, X2, + + -, %) 1S equal to
a polynomial in si, S3, + + +, S, over v.

Proof. We note that, for the polynomial f(x)=x"—sx? 14sexm"2— « + «
+(=1)"su,
3.7 f@) = (& — 2)(® — 29) - - - (# — %),
3.8 fx) =0 (A =214=n).

If v coincides with the rational integer ring Z, then R is an integral domain,
Hence

3.9 —'ﬁa—cz—)—-=0.

X — X
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Using the homomorphism of Z[x1, xs, - - +, %a] into R which sends 1 into 1, x;
into x;(1 <7=%) we find that 3.9 always holds. By induction over # we conclude
that there is a homomorphic mapping ¢ of the ring extension T'=S[§, - - -, &; f]
over the subring S of R generated by v and sy, 83, « * -, s» which maps &; onto «x,.
Clearly T is generated by v and &, &, - - -, &, hence there is a homomorphism
o of R onto T over v mapping x; onto £;,(1=:=<#n). We have oy=1pr,
Yo =1k, hence o, ¥ are isomorphisms over . Now the corollary follows from
Theorem 3.

Let 51, 52, * * -, 5, be another set of # independent commuting variables over
v and let f(x) =x"—5xm14-5xm2— - - - (—1)"5,.

There is a homomorphism ¢ of the ring extension T=3S[&, - - -, £; f] of
S=v[5, -+, 5.] onto T over v which maps §; onto £(1<¢<#) and hence 3;

onto s;. On the other hand, there is a homomorphism «k of R onto T over v
mapping x; onto £;(1 <4=<#) and we have: ¢ =17, ¢pxy =17 therefore ¢, xf are
isomorphisms over v. It follows that the homomorphic mapping of S onto .S
over » which maps §; onto s;(1<¢<#)is an isomorphism. In other words the
basic symmetric functions are independent over .

From the theorem on symmetric functions it follows that the coefficients of
the polynomials

SJ(f) (x) = II (x - (Eal + Eag + tt + Eaj))

lga<ag<l-<ajsn

of degree (}) are in v. Moreover, if v is an integral domain in which the factori-
zation f(x) = []7~, (x—=;) obtains then the mapping of £; onto 7;(1<j=<n) can
be extended in precisely one way to a homomorphism of v[£, - - -, £.; f] onto
v over v, and the equations S;(f)(7y,+ - - - +9,;) =0 hold whenever 1 <v:1<7:
< v LZy;Em.

Assume that v is a field and that S:(f) has the root £ in v. Let d(x) be the
greatest common divisor of the polynomials f(x) and f(¥ —x) in v [x] with leading
coefficient 1.

There holds an equation d(x)=A4 (x)f(x)+B(x)f(¢—x) with polynomials
A(x), B(x) in v[x]. Hence in v[&, - - -, &; f]:

d(x) = A@)f () + B@)f(1+ &2 — 2) + (¢ — &1 — &)g(x, & + &)

where g(x, ¥) is a polynomial in two variables x, y over v. Upon substitution of &:
dE)=(E—a—E)g&, Hi+5).

If d(x) would be a nonzero constant then d(x)=1=d(&), hence {§—&—§&
would be invertible in v[&, - - -, &; f]. The same would apply to £—£;—&
(1=i<k=n) and hence to the product.

But this product is equal to S(f) (§) which is zero, a contradiction. Hence,
d(x) is not constant.

4, The fundamental theorem of algebra.

THEOREM 4. Let F be a really closed field. The field extension E formed by the
symbols a+b7 (a, bE F) with the operational rules
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at+bi=ct+dica=c,b=4d

(a4 b))+ (c+di) =(a+c)+ B+ d)
(¢ + bi)(c + di) = (ac — bd) + (ad + bc)i
(a, b,¢c,d EF)

4.1

s algebraically closed.

Proof. The field property of E is shown in the customary manner. The zero
element of E is the symbol 0404, the unit element of E is the symbol 1404,
the inverse of ¢+ b1 is the symbol

ot )
a2+b2 a2_|_b2$

provided not both of the elements a, b of F are zero. The mapping of a onto
a-+0: provides an embedding isomorphism of F into E such that upon identi-
fication of @ and a0z the field F becomes a subfield of E. The symbol 017
generates the quadratic extension E over F. Since a+bi= (a+07)+ (b407)
(0+414), we are entitled to denote the symbol 0+1¢ by 2z, so that a+b:¢ is the
actual sum of the element a of F and the product of the element b of F by <.
The element 7 is a root of the irreducible quadratic equation:

4.2 i?4+1=0

over F the other root being —4. Hence the complex conjugate mapping:
4.3 a+bi—a+ bi=a—bi(e,bEF)

establishes an involutoric automorphism of E over F. An element v of E is in
F if and only if its complex conjugate v coincides with 7. The automorphism
4.3 is extended to an involutoric automorphism:

4.4 f(x) — J(x)

of E[x] over F[x] by setting

4.5 fx) = Goa™ + Gzt 4 - - - + @y
if
4.6 f(®) = apx® + et + - - - + aulag, 01, * - -, aa € E).

The polynomial 4.6 lies in F[x] if it coincides with its complex conjugate poly-
nomial F(x).

Let us further mention that for every element a+4b: of E(a, bEF) the
equation

4.7 a+bi= (¢+ m)E n EF)
is solved in E by:
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t= Vi + [Va + 5|

48
n = (signd)-| vV1/2(—a + | va® + 82])|.

Our task is to find a root in E for every polynomial
4.9 flx) = 2"+ ot F a2 4 - - -+ a,

with coefficients a4, @3, - - -+, @, in E.

Let n=2" when 0=s, n'=1(2).

If it would not always be possible to find a root in E for a given nonconstant
polynomial, then there would be polynomials 4.9 with minimum value of s for
which no root could be found in E and among those polynomials there would
be a polynomial 4.9 with minimum value of #»'.

If s=0 and if all coefficients a1, as, - + -, @, are real then by assumption
about F we can find a root of f(x) in F, a contradiction.

If there is a root 7 of Sy(f) in E then the greatest common divisor d(x) of
f(x) and of f(n—x) can be formed in E[x]. It is not constant as we have seen
previously.

There holds an equation f(x) =d(x)e(x) in E[x] so that every root of d(x)
or e(x) also is a root of f(x). Since there is no root of f(x) in E the same applies
to the polynomials d(x), e(x). Because of the minimal property of f(x) it follows
that d(x) has the same degree as f(x) whereas e(x) is a nonzero constant. In other
words f(x) =f(n—x) if s>0. Or, setting y=x—17/2 we have

f@) =g@), g0 =gl=y, g =hrd?), [f& =hr((z—n/2)?

when % is a polynomial of degree #/2 with coefficients in E.

It follows from this argument that S;(f) has no root in E if # is even. On
the other hand, the degree of S:(f) is not divisible by 2¢, hence we can find a
root of Sy(f) (x) in E due to the minimal property of f(x).

These arguments show that # is odd and that not all coefficients of f(x)
are real. But the degree of fi(x) =f(x)f(x) is 2n, the degree of S;(f1) is the odd
number # (2% —1). Since f1(x) has real coefficients, also Sy(f1) has real coefficients.
Therefore, S;(fi) has a real root and by the argument given above fi(x) has a
root £ in E. Since 0=f,(§) =f()7(£), but by assumption 05=f(£) it follows that
0=7(¢). Forming the complex conjugate of this equation we obtain 0=F(§) so
that f(x) does have the root £ in E which is a contradiction.

Thus we have established Theorem 4.

This existence proof can be reformulated so as to yield an algorithm:

I. If s=0, f(x) EF[x] then we know by assumption how to find a root of
fin F.

II. If the algorithm is defined already for polynomials of odd degree less
than 2n#-+1 with coefficients in E and if f(x) is a polynomial of degree 2n-+41
with coefficients in E, then solve S:(ff)(n) =0 as in I. Form d(x) as above.
If [d]=1 (2) then [d]<2n+1; apply the algorithm to find a root of d in E.
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It turns out to be a root of f too. If [¢]=0(2), then the algorithm can be applied
to e(x) = (f/d) (x) and provides a root of e which turns out to be also a root of f.

Thus, the algorithm is obtained for solving in E equations of odd degree
over E.

ITI. If s>0 and if the algorithm is defined for solving in E equations with
coefficients in E such that either the degree is not divisible by 2¢ or it is smaller
than the degree of f and not divisible by 2:*!, then apply the algorithm to the
equation Sy(f)(n) =0 and form d(x) as above. Apply the algorithm to d(x)
in case 2¢f[d] or 2++![d] and [d]<[f]. Apply the algorithm to f/d in case
[d] < [f], 2=*1|[d]. In either case, a root of f is obtained. If [d]=[f], then form
h as above. Apply the algorithm to %, to find a root £ of . As above we obtain
the root /2 +4+/£ of f for finding a root.

However, the degrees of the auxiliary equations involved may become very
large. E.g. for n=8 we may find the degrees 8,

8 28 378
( ) = 28, < ) = 378, ( ) = 71253.
2 2 2

But let us note that the binomial coefficient

<n>_28n'o(n—1)---(n—2"—|—1)
2) 261 .. (20— 1)

is divisible by 25—¢, but not divisible by 2+ for 4=0, 1, 2, - - - 5. Hence the
same arguments also apply to the auxiliary equations:

f(x) = 0} S2(f)(x) = 0) 54(f)(x) = 0: ) S2s—i(f)(x) = 07 tt
Sz‘(f)(x) = 0.

Note that polynomial Sei(f) is symmetric about — (1/2)a; in case n=2s.
Hence in that case it is of the form g(x+ (1/2)a.)? where g(x) is of odd degree.

In any event we obtain considerable economy; e.g. for #=8 we have to
form and to solve equations of degrees 8, 28, 2, 35.

Assuming that there exists an algorithm for finding the real roots of a
polynomial 4.9. with real coefficients we extend it as follows to an algorithm for
finding all the roots of f(x)

(1) If ged(f, df/dx) =d(x) is not constant, let (f/d) (x) =eo(x), gcd (eo, (df/dx))
=e1(x) not constant, (eo/e1)(x) =fi(x), gcd(e;_1, (dif/dxi)) =e;(x) not constant,

(ej—1/ 6]-) (x) =f;(x)
ditt .
ged (67', w{) =1, (7>0).

Hence f(x) =f1(x)f2(x)® - - - fi(x)fir2(x)7* when fi(x), fa(x), -« «, fi(%), fira(x)
are mutually prime, separable polynomials.

The task is now to find the roots of these polynomials.

(2) ged(f, df/dx) =1, f(x) has the real roots ai, oy, - * +, a, f(x)=(r—ay)
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(x—ae) « + -+ (x—oy)g(x), g(x) is separable and has no real root. The task is to
find the roots of g(x).

(3) f(x) is separable and has no real root.

Find the real roots of Sa(f(x)) say Bi1<B:< - - - <B,. Normally speaking
each of the real roots 8; is simple and in this case we have ged(f(x), f(8;—x))
= (x—@B;/2)%+~? where v; is positive.

In this case the roots of f(x) are the # =2p complex numbers

Bi/2 tiy; (1=j=0p).

If the real roots (8; are not all simple, a more elaborate algorithm must be
carried out.

Let B, be the set of all roots 8; and let uo(8;) be the multiplicity of the root
B; of S:(f)(x). Denote by A the set of all elements of B, that are not the arith-
metic mean of two distinct elements of By. We find that gcd (f(x), f(B—x))
=¢s(x) =¢s(8—x) is nonconstant for any 3 of 4;. Hence ¢s(x) =hs((x—B/2)?)
where ¢g(x) has degree 2u¢(8) and ks is a polynomial with half the degree of
¢s(x) such that all roots of ks are negative, say, they are of the form: —1g,
(1 =k =3po(B)) when v4, is positive. Hence the roots of ¢g(x) are the uo(8) com-
plex numbers 8/2 & yg,:. If the total number of these roots is # then the task is
completed.

If the total number is less than # then we determine for each member v of
By that is not contained in 4; the number of times, say vo(y) that y=3%(8+8")
(B’ BleAly 6<BI) and

Yoo = Vo1 S k= we(8)/2,1 = B = w(B)/2).

In view of the connection between f and S,(f) we find that ui(y) =mo(y)
—2v0(y) 20 when w1 (y) is not always zero.

Let us form the set B; of all 4’s for which u;(y) is positive.

We proceed as above, substituting By for By, u1 for wo, As for 4; when 4., is
the subset of all members of B; that are not an arithmetic mean of two distinct
members of By. In this way some further roots of f(x) will be obtained. If not
yet all of them are found, proceed as before until all # roots are constructed.
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PSEUDOPOLYHEDRONS
J. R. GOTT, III, Mayme S. Waggener High School, Louisville, Kentucky

A regular generalized polyhedron may be defined as a network of congruent
regular polygons connected vertex to vertex so that the number and arrange-
ment of polygons around every vertex is the same. The five regular polyhedrons
and the three regular tessellations are the familiar examples of regular general-
ized polyhedrons. In the regular polyhedrons the sum of the face angles around
any vertex is less than 360°. In the regular tessellations the sum of the face
angles around a vertex is equal to 360°. The regular polyhedrons approximate
positively curved surfaces (spheres), while the regular tessellations approximate
surfaces with 0 curvature (planes).

We may define a third group of regular generalized polyhedrons in such a
way that they will share the properties of the regular polyhedrons and tessel-
lations but will have the sum of the face angles around a vertex greater than
360°. I have called such a group of figures regular pseudopolyhedrons. I have
chosen the name pseudopolyhedrons (or false polyhedrons) because while
possessing many of the properties of polyhedrons they are in some aspects
distinctly different. A similar convention was used in naming a specific nega-
tively curved surface, the pseudosphere. The pseudosphere has similar properties
to the sphere except that it is negatively, instead of positively, curved. By the
same token it will be shown later that the pseudopolyhedrons possess similar
properties to the polyhedrons except that they approximate negatively curved
surfaces.

I have defined a regular pseudopolyhedron as follows:

A regular pseudopolyhedron is a network in space of congruent regular
polygons fitted together vertex to vertex so that (1) every vertex is surrounded
by the same number and arrangement of polygons; (2) the sum of the face
angles around every vertex is greater than 360°; (3) just two polygons may
meet at an edge; and (4) two polygons may share no more than one edge.

Except for condition (2), the definition is identical with that of the regular
polyhedrons and the regular tessellations.

I have found seven regular pseudopolyhedrons which satisfy the conditions
of this definition. These are diagrammed in Figures 1-7. Each is a repeating
structure with an infinite number of faces. In the diagrams the structural form
of each is presented. Each of the pseudopolyhedrons is a surface which divides
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