

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

SENIOR CERTIFICATE/ NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 150

TIME: 3 hours

This question paper consists of 16 pages and 4 data sheets.

Copyright reserved

INSTRUCTIONS AND INFORMATION

- 1. Write your centre number and examination number in the appropriate spaces on the ANSWER BOOK.
- 2. This question paper consists of TEN questions. Answer ALL the questions in the ANSWER BOOK.
- 3. Start EACH question on a NEW page in the ANSWER BOOK.
- 4. Number the answers correctly according to the numbering system used in this question paper.
- 5. Leave ONE line between two subquestions, e.g. between QUESTION 2.1 and QUESTION 2.2.
- 6. You may use a non-programmable calculator.
- 7. You may use appropriate mathematical instruments.
- 8. Show ALL formulae and substitutions in ALL calculations.
- 9. Round off your FINAL numerical answers to a minimum of TWO decimal places.
- 10. Give brief motivations, discussions, etc. where required.
- 11. You are advised to use the attached DATA SHEETS.
- 12. Write neatly and legibly.

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Four options are provided as possible answers to the following questions. Choose the answer and write only the letter (A-D) next to the question numbers (1.1 to 1.10) in the ANSWER BOOK, e.g. 1.11 E.

- 1.1 Which ONE of the following is an ALKANE?
 - A C_6H_8
 - B C₆H₁₀
 - C C₆H₁₂
 - D C₆H₁₄
- 1.2 Esters are formed by a reaction between two organic compounds, **X** and **Y**, each with a different functional group.

The functional groups of these compounds are:

	Compound X	Compound Y
А	Hydroxyl group	Carboxyl group
В	Hydroxyl group	Carbonyl group
С	Hydroxide ion	Carboxyl group
D	Hydroxide ion	Carbonyl group

1.3 When butane is subjected to high temperatures and pressures, the following reaction takes place:

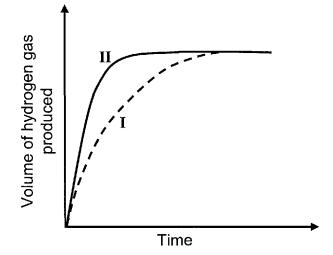
Butane \rightarrow methane + Y

Which ONE of the following represents Y?

- A CHCCH₃
- B CH₂CHCH₃
- C CH₃CH₂CH₃
- D CH₃CHCHCH₃

(2)

(2)


(2)

1.4 A hydrochloric acid solution, HCl(aq), of concentration 1 mol·dm⁻³ is added to EXCESS POWDERED magnesium at 25 °C.

Curve I below represents the volume of hydrogen gas produced during the reaction.

Curve II was obtained at different conditions using the SAME VOLUME of hydrochloric acid solution.

Which ONE of the following represents the conditions used to obtain curve II?

	STATE OF DIVISION OF Mg	CONCENTRATION OF ACID (mol·dm ⁻³)	TEMPERATURE (°C)
А	Ribbon	0,5	25
В	Ribbon	2	25
С	Powder	1	20
D	Powder	1	30

(2)

(2)

- 1.5 In which ONE of the following reactions at equilibrium will the YIELD of the product increase when the VOLUME of the container is increased at constant temperature?
 - A $N_2O_4(g) \rightleftharpoons 2NO_2(g)$
 - $\mathsf{B} \quad \mathsf{H}_2(\mathsf{g}) + \mathsf{I}_2(\mathsf{g}) \rightleftharpoons 2\mathsf{HI}(\mathsf{g})$
 - $C \qquad N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$
 - D $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$

- 1.6 Which ONE of the following statements is TRUE for an EXOTHERMIC reaction?
 - A More energy is absorbed than released.
 - B More energy is released than absorbed.
 - C Heat of reaction (Δ H) is positive.
 - D Energy of the products is greater than the energy of the reactants. (2)
- 1.7 Consider the equation below.

$$H_3PO_4(aq) + H_2O(\ell) \Rightarrow H_3O^+(aq) + H_2PO_4^-(aq)$$

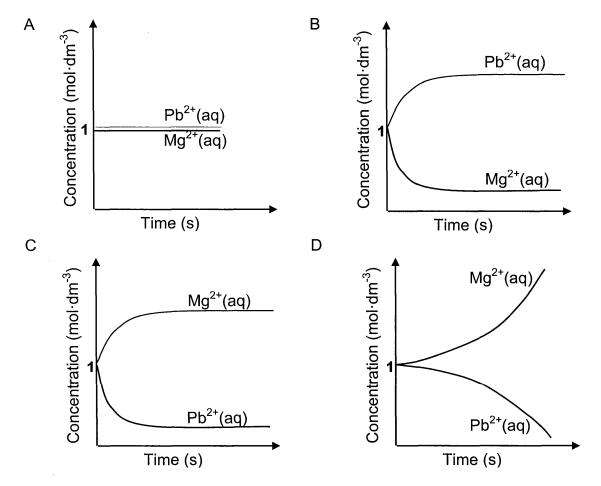
Which ONE of the following is a conjugate acid-base pair?

- A $H_3O^+(aq)$ and $H_2O(l)$
- B $H_3PO_4(aq)$ and $H_2O(l)$
- C $H_3PO_4(aq)$ and $H_3O^+(aq)$
- D $H_3O^+(aq)$ and $H_2PO_4^-(aq)$

1.8 Consider the balanced equation for the reaction below:

$$2Cr^{2+}(aq) + Sn^{4+}(aq) \rightarrow 2Cr^{3+}(aq) + Sn^{2+}(aq)$$

The OXIDISING AGENT is:


(2)

(2)

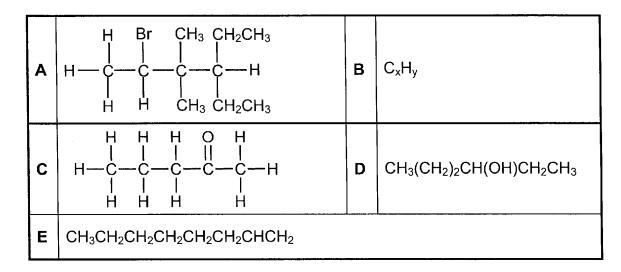
Mg(s) | Mg²⁺(aq) || Pb²⁺(aq) | Pb(s)

The cell is now connected in a circuit. Which ONE of the graphs below BEST represents the concentrations of the electrolytes after a long time?

1.10 Two 50 kg bags, containing fertilisers **R** and **S** respectively, are labelled as follows:

Fertiliser **R**: 3:1:5(20) Fertiliser **S**: 1:2:6(20)

Identify the fertiliser(s) most suitable for healthy leaf growth and healthy root growth.


	LEAF GROWTH	ROOT GROWTH
Α	R	R
В	S	R
С	R	S
D	S	S

(2) [**20**]

(2)

QUESTION 2 (Start on a new page.)

The letters A to E in the table below represent five organic compounds.

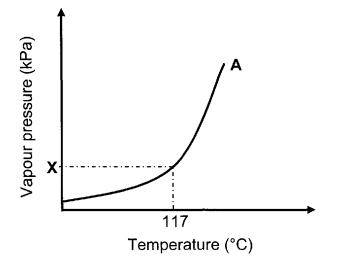
Write down the LETTER that represents EACH of the following: 2.1

	2.1.1	A ketone	(1)
	2.1.2	A hydrocarbon	(1)
	2.1.3	An alkene	(1)
2.2	Write dow	<i>i</i> n the:	
	2.2.1	IUPAC name of compound A	(3)
	2.2.2	STRUCTURAL FORMULA of compound D	(2)
	2.2.3	IUPAC name of the STRAIGHT CHAIN FUNCTIONAL ISOMER of compound C	(2)
2.3		nd B is a straight chain compound that undergoes the following ic reaction:	
		$2C_xH_y + 25O_2(g) \rightarrow 16CO_2(g) + 18H_2O(g)$	
	2.3.1	Besides being exothermic, what type of reaction is represented above?	(1)
	2.3.2	Determine the MOLECULAR FORMULA of compound B .	(2)
		ction above takes place in a closed container at a constant ure higher than 100 °C and at constant pressure.	
	2.3.3	Calculate the TOTAL VOLUME of gas formed in the container when 50 cm^3 of C _x H _y reacts completely with oxygen.	(3)

Copyright reserved

[16]

Please turn over


QUESTION 3 (Start on a new page.)

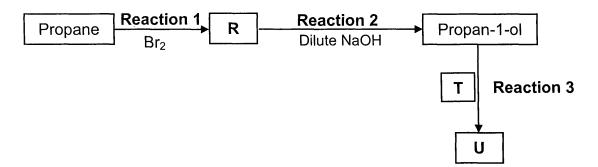
Compounds **A**, **B** and **C** are used to investigate a factor which influences the boiling points of organic compounds. The results of the investigation are given in the table below.

	COMPOUND	BOILING POINT (°C)
Α	Butan-1-ol	117
в	Butan-2-ol	100
С	2-methylpropan-2-ol	82

3	3.1	Is this a fa	air investigation? Choose from YES or NO.	(1)
	3.2	Give a rea	ason for the answer to QUESTION 3.1.	(1)
(3.3	Fully expl	ain the difference in the boiling points of compounds B and C .	(3)
(3.4	Define the	e term <i>positional isomer</i> .	(2)
	3.5	From con the follow	npounds A , B and C , choose the letter(s) that represent(s) EACH of ing:	
		3.5.1	Positional isomers	(1)
		3.5.2	A tertiary alcohol Give a reason for the answer.	(2)

3.6 The graph below represents the relationship between vapour pressure and temperature for compound **A** (butan-1-ol).

- 3.6.1 Write down the value of **X**.
- 3.6.2 Redraw the graph above in the ANSWER BOOK. On the same set of axes, sketch the curve that will be obtained for compound **C**. Clearly label the curves **A** and **C**. Indicate the relevant boiling point for compound **C** on the graph.

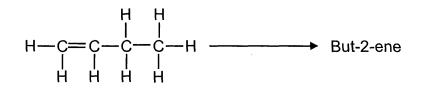

(2) **[13]**

(1)

QUESTION 4 (Start on a new page.)

4.1 The flow diagram below shows various organic reactions using propane as starting reactant. **R**, **T** and **U** represent different organic compounds.

Compound **T** is a CARBOXYLIC ACID and compound **U** is a FUNCTIONAL ISOMER of pentanoic acid.



Write down the NAME of the type of reaction represented by:

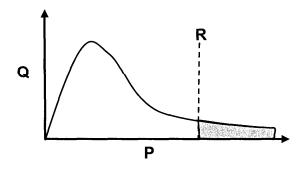
4.1.1	Reaction 1	(1)
4.1.2	Reaction 2	(1)
Conside	er reaction 1 and reaction 2 .	
4.1.3	Write down the IUPAC name of compound R .	(2)
Reactio	on 3 takes place in the presence of a catalyst and heat.	
Write d	own the:	
4.1.4	NAME or FORMULA of the catalyst	(1)
4.1.5	IUPAC name of compound T	(2)
4.1.6	STRUCTURAL FORMULA of compound ${f U}$	(2)

Copyright reserved

4.2 A laboratory technician wants to prepare but-2-ene using but-1-ene as starting reagent, as shown below.

The following chemicals are available in the laboratory:

concentrated H₂SO₄	I H ₂ O	concentrated NaOH
<u> </u>		


Select the chemicals required to design this preparation from the list above.

For EACH step of the preparation, write down the balanced equation, using STRUCTURAL FORMULAE for all organic compounds. Indicate the chemicals needed in each step.

(6) **[15]**

QUESTION 5 (Start on a new page.)

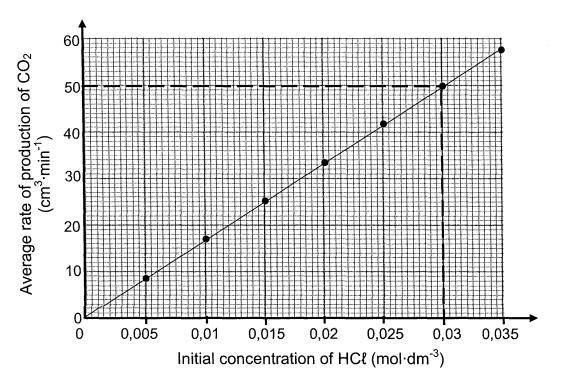
5.1 Study the Maxwell-Boltzmann distribution curve for a certain reaction below.

P and **Q** are the labels of the axes. What quantity is represented by:

5.1.1	Ρ	(1)
5.1.2	Q	(1)
Line R rep	presents the minimum energy required for the reaction to take place.	
5.2.1	Write down the term for the underlined phrase.	(1)
5.2.2	How will the shaded area on the graph be affected when a catalyst is added? Choose from INCREASE, DECREASE or REMAINS THE SAME.	(1)
Use the reaction.	collision theory to explain how a catalyst influences the rate of	(4)

Copyright reserved

5.2


5.3

Please turn over

5.4 The reaction between POWDERED calcium carbonate, $CaCO_3(s)$, and EXCESS hydrochloric acid, HCl(aq), is used to investigate reaction rate at 25 °C. The balanced equation for the reaction is:

$$CaCO_3(s) + 2HC\ell(aq) \rightarrow CaC\ell_2(aq) + H_2O(\ell) + CO_2(g)$$

Several experiments are conducted using the same mass of IMPURE calcium carbonate and different initial concentrations of dilute hydrochloric acid. The graph below represents the results obtained. Assume that the impurities do not react.

For this investigation, write down a:

- 5.4.1 Controlled variable
- 5.4.2 Conclusion

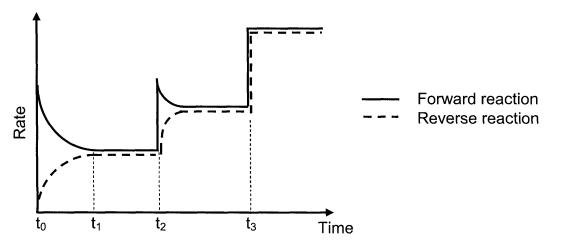
The CaCO₃(s) in 6 g of the impure sample reacts completely with 0,03 mol·dm⁻³ HC ℓ (aq) in 26 minutes.

5.4.3 Use the information in the graph to calculate the percentage purity of the calcium carbonate. Assume that the molar gas volume at 25 °C is 24 000 cm³.

(6) [**17**]

(1)

(2)


QUESTION 6 (Start on a new page.)

Steam, H₂O(g), reacts with hot carbon, C(s), at 1 000 °C according to the following balanced equation:

$$2H_2O(g) + C(s) \rightleftharpoons 2H_2(g) + CO_2(g)$$

Initially, 36 g of steam and a certain amount of carbon were placed in a 2 dm³ sealed container and allowed to react. At equilibrium it was found that the amount of carbon changed by 0,225 mol.

- 6.1 Define the term dynamic equilibrium.
- 6.2 Calculate the equilibrium constant, K_c, for the reaction at 1 000 °C.
- 6.3 The graph shows how the rates of the forward and reverse reactions change with time.

- 6.3.1 Give a reason why the rate of the forward reaction decreases between t_0 and t_1 . (1)
- 6.3.2 What change was made to the equilibrium mixture at t_3 ? (1)

At time t_2 , the temperature of the system is increased.

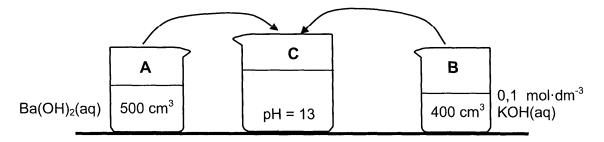
- 6.3.3 Is the forward reaction EXOTHERMIC or ENDOTHERMIC? (1)
- 6.3.4 Refer to Le Chatelier's principle to explain the answer to QUESTION 6.3.3. (2)

[15]

(2)

(8)

QUESTION 7 (Start on a new page.)


Two beakers, **A** and **B**, contain strong bases.

Beaker A: 500 cm³ of barium hydroxide, Ba(OH)₂(aq) of unknown concentration **X**

Beaker **B**: 400 cm³ of potassium hydroxide, KOH(aq) of concentration 0,1 mol·dm⁻³

- 7.1 Define a *base* according to the Arrhenius theory.
- 7.2 Calculate the number of moles of hydroxide ions (OH^-) in beaker **B**.
- 7.3 The contents of beakers **A** and **B** are added together in beaker **C**. The solution in beaker **C** has a pH of 13.

Assume that the volumes are additive and that the temperature of the solutions is 25 °C.

7.3.1 Calculate the concentration, **X**, of the $Ba(OH)_2$ in beaker **A**.

(8)

(2)

(2)

The solution in beaker **C** is titrated with ethanoic acid. It was found that 15 cm^3 of the solution neutralises 30 cm^3 of the acid.

The balanced equation for the reaction is:

 $CH_3COOH(aq) + OH^-(aq) \rightarrow CH_3COO^-(aq) + H_2O(l)$

7.3.2 Is ethanoic acid, $CH_3COOH(aq)$, a WEAK acid or a STRONG acid?

Give a reason for the answer.

7.3.3 Calculate the concentration of the ethanoic acid. (4)

[18]

(2)

8.2

8.3

8.4

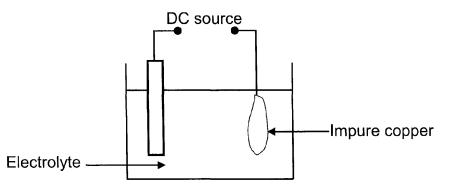
sc/NSC

QUESTION 8 (Start on a new page.)

A galvanic cell at standard conditions is represented by the cell notation below. X and Y are unknown electrodes.

			- 0 L		0.1		
v	754T	(E ~ 37	(aa)	E~47	(aa)	
^	Zn ²⁺ (au) II	ге і	au.	ге і	au	T
		(••• •/ II					-

8.1 Write down the NAME or FORMULA of:


DECREASES or REMAINS THE SAME.

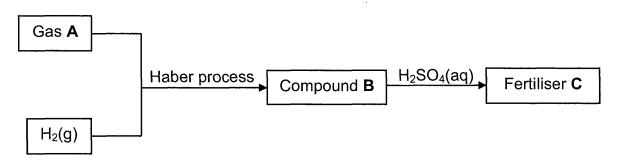
- 8.1.1 Electrode X (1) 8.1.2 Electrode Y (1) 8.1.3 The oxidising agent (1) Write down: 8.2.1 ONE function of electrode Y (1) 8.2.2 The half-reaction that takes place at electrode Y (2) 8.2.3 The net (overall) equation for the cell reaction that takes place in this cell (3) Calculate the initial emf of this cell. (4)How will the initial emf of the cell be affected when the concentration of the iron(III) ions is changed to 0,6 mol·dm⁻³? Choose from INCREASES,
 - (1) **[14]**

QUESTION 9 (Start on a new page.)

The simplified diagram below represents an electrochemical cell used for the purification of copper. The impure copper contains small amounts of silver (Ag) and zinc (Zn) as the only impurities.

9.1 Define the term *electrolysis*.

(2)


- 9.2 Write down the NAME or FORMULA of TWO positive ions present in the electrolyte. (2)
- 9.3 Write down the half-reaction that takes place at the cathode. (2)
- 9.4 Refer to the Table of Standard Reduction Potentials and explain why the purified copper will NOT contain any zinc.
- 9.5 Calculate the maximum mass of Cu formed if 0,6 moles of electrons are transferred.

(3) **[12]**

(3)

QUESTION 10 (Start on a new page.)

10.1 The flow diagram below shows processes involved in the production of fertiliser **C**.

Write down the NAME or FORMULA of:

10.1.1	Gas A	(1)
10.1.2	The catalyst used in the Haber process	(1)
10.1.3	Compound B	(1)
Write dov	wn the:	
10.1.4	Name of the process used to produce gas A	(1)

- 10.1.5 Balanced equation for the formation of fertiliser **C** (3)
- 10.2 A 40 kg bag of fertiliser contains 65% filler. The mass of the nutrients in the bag is shown in the table below.

NUTRIENTS	MASS (kg)
Nitrogen	x
Phosphorous	2 x
Potassium	5

Calculate the NPK ratio of the fertiliser.

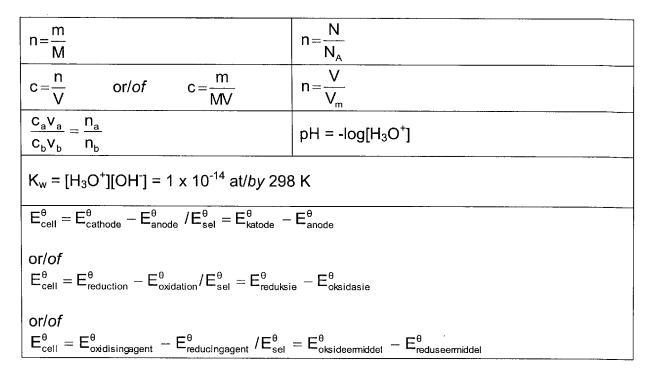
(3)

[10]

TOTAL: 150

d

1. SC/NSC


DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/ <i>NAAM</i>	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	p ^θ	1,013 x 10 ⁵ Pa
Molar gas volume at STP Molêre gasvolume by STD	V _m	22,4 dm ³ ·mol⁻¹
Standard temperature Standaardtemperatuur	Τ ^θ	273 K
Charge on electron Lading op elektron	e	-1,6 x 10 ⁻¹⁹ C
Avogadro's constant Avogadro-konstante	N _A	6,02 x 10 ²³ mol ⁻¹

TABLE 2: FORMULAE/TABEL 2: FORMULES

Copyright reserved

DBE/November 2020(2)

Phy cal Sciences/P2 2. SC/NSC TABLE 3: THE PERIODIC TABLE OF ELEMENTS TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				0,7			0,7			0,8			0,8			0,9			1,0			2,1				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				Т	87	ω	\mathbb{C}	55	86	ł	37	39	ス	19	23	5	11	7		ယ	: 	I	: 	-	•	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				0,9			-												1,5							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			226					56			38			20	24		12	9		4				(11)	ÌN)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-																		J					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Ac	68	139	La	57	89	~	39	45	Sc	21											5	>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			L				1,6			1,4			1,5													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						179	Ť	72	91	Ŋ	40	48		22									T		4	•
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	90 Th 232	140	Ce	58		181	Ta	73	92	NP	41	51		23					Elektr	Elect			(EY/SI		U	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													1,6		Harr				one	ron			EU			
Atomic number Atomic number Atomic number Atom value atomic mass atterelative atomic mass	P 91	141	ק	59		184	٤	74	96						Benac	Appro			gatiw	egativ			TEL		σ	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	92 238	144	Nd	60		186	Re	75		1,9 T	43	55	1,5 Mn	25	lerde i	ximate			iteit	lity ,				•	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ζω	•	σ	6			_						1,8		elat	e rel			1,	9			Ato	lfor	_	ן ג ג
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	dl ql		3	~		190	SO	76	101			56			lewe	ative	•	00,0	лз С	<u>ר</u>	29		buuoc 19	nic ni	a	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	94 Pu	150	Sm	62		192	F	77	103			59			atoom	atomi		L	Si	Sy			etal	Imber	ú	> !
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ي A			6											mas	c ma			nbo	mbo						× [
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ВΩ	52		ŭ		195	Pŧ	78	106	d	46	59	Z	28	Sa	SS			Q	2					C	> ì
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cm ⁹⁶	157	Gd	64		19	A	79	•																	7 7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$))		ω			ບາ 														
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	97 Bk	159	5	65		201			112	Cd	48		Zn	30												2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	09	16		6		N			_															1	<u> </u>	ا بد
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>		<	6		04			5			70			27			11						17	> C	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Шö	16	T	6		N			-			-1													€.	<u>م</u>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	S C	'Ŭ	0	7		70			19			3			8			N						-	> +	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fn	167	Щ	89		20			1			7			ω			<u>_</u>							32	۲ ۲
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			•			90			N	-								4						-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Md	169	Tm	69					128									16)			(• •)		U T
	No	173	ЧY	70			2,5 At	85	127	2,5	; 53	08	2,8 D	3 5 5	35,5	3,0 C	· 17	19			>			()		4
		175	Ľ	71									******								-+	не	- 2			12

pyright reserved

Please turn over

3. D SC/NSC TABLE 4A: STANDARD REDUCTION POTENTIALS TABEL 4A: STANDAARD-REDUKSIEPOTENSIALE

Half-reactions/	Hal	freaksies	Ε ^θ (V)
F ₂ (g) + 2e ⁻	≠=	2F ⁻	+ 2,87
Co ³⁺ + e⁻	⇔	Co ²⁺	+ 1,81
H₂O₂ + 2H ⁺ +2e ⁻	₩	2H ₂ O	+1,77
MnO	≠	Mn ²⁺ + 4H ₂ O	+ 1,51
Cℓ₂(g) + 2e ⁻	÷	2C ł ⁻	+ 1,36
$Cr_2O_7^{2-}$ + 14H ⁺ + 6e ⁻	⇒	2Cr ³⁺ + 7H₂O	+ 1,33
 O ₂ (g) + 4H ⁺ + 4e ⁻	~~	2H ₂ O	+ 1,23
$MnO_2 + 4H^+ + 2e^-$	#	Mn ²⁺ + 2H ₂ O	+ 1,23
Pt ²⁺ + 2e ⁻	=	Pt	+ 1,20
Br₂(ℓ) + 2e [−]	⇒	2Br⁻	+ 1,07
NO ₃ ⁻ + 4H ⁺ + 3e ⁻	~	NO(g) + 2H ₂ O	+ 0,96
Hg ²⁺ + 2e ⁻		Hg(l)	+ 0,85
Ag⁺ + e⁻		Ag	+ 0,80
NO 3 + 2H ⁺ + e ⁻	₩	NO ₂ (g) + H ₂ O	+ 0,80
Fe ³⁺ + e ⁻	+	Fe ²⁺	+ 0,77
O ₂ (g) + 2H ⁺ + 2e [−]	~~	H ₂ O ₂	+ 0,68
l₂ + 2e ⁻		_	+ 0,54
Cu ⁺ + e ⁻	#		+ 0,52 + 0,45
SO ₂ + 4H ⁺ + 4e ⁻		S + 2H ₂ O	
2H ₂ O + O ₂ + 4e ⁻ Cu ²⁺ + 2e ⁻	~ ≜	4OH⁻ Cu	+ 0,40
-	#		+ 0,34
$SO_4^{2-} + 4H^+ + 2e^-$	#		+ 0,17
Cu ²⁺ + e [_] Sn ⁴⁺ + 2e [_]	#		+ 0,16
Sn ⁺ + 2e S + 2H ⁺ + 2e ⁻	₩		+ 0,15
2H ⁺ + 2e [−]	≠	- (0)	+ 0,14
∠⊓ + ∠e Fe ³⁺ + 3e ⁻		H₂(g) Fe	0,00
Pe + 3e Pb ²⁺ + 2e⁻	#	Pb	- 0,06 - 0,13
Sn ²⁺ + 2e [−]	#	Sn	- 0,14
Ni ²⁺ + 2e [−]		Ni	- 0,27
Co ²⁺ + 2e [−]		Co	- 0,28
Cd ²⁺ + 2e ⁻	÷=	Cd	- 0,40
Cr ³⁺ + e ⁻		Cr ²⁺	- 0,41
Fe ²⁺ + 2e ⁻	÷	Fe	- 0,44
Cr ³⁺ + 3e⁻	⇒	Cr	- 0,74
Zn ²⁺ + 2e⁻	=	Zn	- 0,76
2H₂O + 2e⁻		H₂(g) + 2OH⁻	- 0,83
Cr ²⁺ + 2e⁻	≠	Cr	- 0,91
Mn ²⁺ + 2e⁻	~	Mn	– 1,18
Al ³⁺ + 3e ⁻	⇒	Ał	- 1,66
Mg ²⁺ + 2e ⁻	#	Mg	- 2,36
Na ⁺ + e ⁻	+	Na	- 2,71
Ca ²⁺ + 2e ⁻	, 1	Са	- 2,87
Sr ²⁺ + 2e ⁻		Sr	- 2,89
Ba ²⁺ + 2e ⁻	;;;	Ba	- 2,90
Cs⁺ + e⁻	≠	Cs	- 2,92
K ⁺ + e ⁻	#	ĸ	- 2,93
Li ⁺ + e ⁻		Li	- 3,05

Increasing reducing ability/Toenemende reduserende vermoë

Increasing oxidising ability/Toenemende oksiderende vermoë

	.			E ^θ (V)		
	Li ⁺ + e ⁻			- 3,05		
	K ⁺ + e ⁻		К	- 2,93		
	Cs ⁺ + e ⁻			- 2,92		
	Ba ²⁺ + 2e ⁻			- 2,90		
	Sr ²⁺ + 2e ⁻			- 2,89		
	Ca ²⁺ + 2e ⁻			- 2,87		
	Na ⁺ + e ⁻			- 2,71		
	Mg ²⁺ + 2e ⁻			- 2,36		•
	$Al^{3+} + 3e^{-}$		Ał	- 1,66		1
	Mn ²⁺ + 2e ⁻ Cr ²⁺ + 2e ⁻			- 1,18		
ability/Toenemende oksiderende vermoë			Cr	- 0,91		
E I	Zn ²⁺ + 2e ⁻		H₂(g) + 2OH⁻ Zn	- 0,83	10.	
Ve	211 + 2e Cr ³⁺ + 3e ⁻			- 0,76	loë Voë	
Je	Fe ²⁺ + 2e [−]			- 0,74	E E	
Bue	Cr ³⁺ + e [−]			- 0,44	ability/Toenemende reduserende vermoë	
ere	Cr + e Cd ²⁺ + 2e ⁻			- 0,41	de Ze	
sid	Cu ⁺ 2e ⁻			0,40 0,28		
oks	Ni ²⁺ + 2e ⁻			- 0,28 0,27	er er	
e	Sn ²⁺ + 2e ⁻			- 0,27 - 0,14	snj	
oue	Pb ²⁺ + 2e ⁻	#		- 0,14 - 0,13	,eq	
- me	Fe ³⁺ + 3e ⁻			- 0,15 - 0,06	le 1	
nei	2H ⁺ + 2e ⁻			0,00	pu	
Oel	S + 2H ⁺ + 2e ⁻	÷	$H_2S(a)$	+ 0,14	ne	
Ľ.	Sn ⁴⁺ + 2e ⁻	<u> </u>	Sn ²⁺	+ 0,15	Ier	
lit.	Cu ²⁺ + e ⁻			+ 0,16	o	
idi	$SO_4^{2-} + 4H^+ + 2e^-$			+ 0,17	E,	
0	$Cu^{2+} + 2e^{-}$			+ 0,34	lity	
dising	2H ₂ O + O ₂ + 4e ⁻			+ 0,34 + 0,40	lidi	
qi	$SO_2 + 4H^+ + 4e^-$			+ 0,45		
Increasing oxi	Cu ⁺ + e [−]			+ 0,52	Increasing reducing	
5	l ₂ + 2e ⁻			+ 0,54	que	
sin	O ₂ (g) + 2H ⁺ + 2e ⁻			+ 0,68	e E	
ea	$Fe^{3+} + e^{-}$			+ 0,77	0	•
	$NO_{3}^{-} + 2H^{+} + e^{-}$		$NO_{2}(a) + H_{2}O$	+ 0,80	sir	
-=↓			1		ea	
	Ag ⁺ + e ⁻ Hg ²⁺ + 2e ⁻	**	Ag	+ 0,80	C L	
				+ 0,85	<u>_</u>	
	$NO_{3}^{-} + 4H^{+} + 3e^{-}$			+ 0,96		
	Br ₂ (<i>l</i>) + 2e ⁻			+ 1,07		
	Pt ²⁺ + 2 e ⁻			+ 1,20		
	MnO₂ + 4H ⁺ + 2e ⁻			+ 1,23		
	O ₂ (g) + 4H ⁺ + 4e ⁻			+ 1,23		
	$Cr_2O_7^{2-} + 14H^+ + 6e^-$	74	2Cr ³⁺ + 7H₂O	+ 1,33		
	Cℓ₂(g) + 2e ⁻	72	2Cℓ	+ 1,36		
	$MnO_{4}^{-} + 8H^{+} + 5e^{-}$	74	Mn ²⁺ + 4H ₂ O	+ 1,51		
	$H_2O_2 + 2H^+ + 2e^-$			+1,77		
	$Co^{3+} + e^{-}$			+ 1,81		
	F ₂ (g) + 2e ⁻			+ 2,87		

A SC/NSC

TABLE 4B: STANDARD REDUCTION POTENTIALS

basic education

Department: Basic Education REPUBLIC OF SOUTH AFRICA

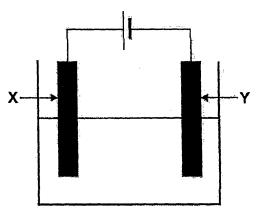
ERRATA/ERRATUM

NSC EXAMINATIONS: Preparatory Examinations 2021 NSS-EKSAMEN: Voorbereidende Eksamen 2021

SUBJECT/VAK:

PHYSICAL SCIENCES/FISIESE WETENSKAPPE

PAPER/VRAESTEL:2DATE OF EXAMINATION:Monday 20 September 2021DATUM VAN EKSAMEN:Maandag 20 September 2021SESSION/SESSIE:1 (09:00–12:00)


ATTENTION/AANDAG: CHIEF INVIGILATOR/HOOFTOESIGHOUER

ENGLISH VERSION:

ERROR 1

			A set of the set of
Page	QUESTION	ERROR	CORRECTION
5	1.10	Incorrect question	Replace with the question below.

1.10 The electrolytic cell illustrated below is used to electroplate a nickel rod with copper.

Which ONE of the following is the correct representation of a suitable electrolyte and the nickel rod that should be used in the above cell to obtain the expected results?

	ELECTROLYTE	NICKEL ROD
A	NiSO₄(aq)	X
В	CuSO₄(aq)	X
C	NiSO ₄ (aq)	Υ
D	CuSO₄(aq)	Y

(2)

New York

ERROR 2

Page	QUESTION	ERROR	CORRECTION
 15 .	10	Incorrect QUESTION 10	Replace QUESTION 10 with the
			entire question below.

ł

QUESTION 10 (Start on a new page.)

Consider the Table of Standard Reduction Potentials below.

Half-rea	E ^θ (V)		
Cr ²⁺ + 2e⁻	1	Cr	- 0,91
2H₂O + 2e⁻	4	H₂(g) + 2OH⁻	- 0,83
Zn²+ + 2e⁻	≓	Zn	- 0,76
Cr³+ + 3e⁻	⊭	Cr	- 0,74
Fe ²⁺ + 2e ⁻	1	Fe	- 0,44
Cr³+ + e⁻	⇒	Cr ²⁺	- 0,41
Sn ⁴⁺ + 2e⁻	;=2	Sn ²⁺	+ 0,15
Cu²+ + e⁻	≓	Cu⁺	+ 0,16
Cu ²⁺ + 2e⁻	≓	Cu	+ 0,34
2H ₂ O + O ₂ + 4e ⁻	≓	40H-	+ 0,40
Cu⁺ + e⁻	≑	Cu	+ 0,52
Ag⁺ + e⁻	7	Ag	+ 0,80
O₂(g) + 4H ⁺ + 4e ⁻		2H ₂ O	+ 1,23
Ct₂(g) + 2e⁻		2Ct-	+ 1,36

Define the term <i>reducing agent</i> in terms of electron transfer.								
From the above Table of Standard Reduction Potentials, write down the:								
10.2.1	NAME or FORMULA of the strongest reducing agent	(1)						
10.2.2	Oxidation half-reaction with the lowest oxidation potential	(2)						
10.2.3	Reduction potential of the half-reaction in which Cr ²⁺ (aq) acts as reducing agent	(1)						
A learner	pours a copper(II) sulphate solution into a zinc container.							
10.3.1	is a zinc container suitable to store a copper(II) sulphate solution? Choose from YES or NO.	(1)						
10.3.2	Explain the answer to QUESTION 10.3.1 by referring to the above table.	(3) [10]						
	From the 10.2.1 10.2.2 10.2.3 A learner 10.3.1	 10.2.1 NAME or FORMULA of the strongest reducing agent 10.2.2 Oxidation half-reaction with the lowest oxidation potential 10.2.3 Reduction potential of the half-reaction in which Cr²⁺(aq) acts as reducing agent A learner pours a copper(II) sulphate solution into a zinc container. 10.3.1 Is a zinc container suitable to store a copper(II) sulphate solution? Choose from YES or NO. 10.3.2 Explain the answer to QUESTION 10.3.1 by referring to the above 						