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Abstract—In this paper, we present an approach to the
design of orthogonal, Doppler tolerant waveforms for diversity
waveform radar (e.g. MIMO radar). Previous work has given
little consideration to the design of radar waveforms that remain
orthogonal when they are received. Our research is focused on:
(1) developing sets of waveforms that are orthogonal on both
transmit and receive, and (2) ensuring that these waveforms are
Doppler tolerant when properly processed.

Our proposed solution achieves the above mentioned goals by
incorporating direct sequence spread spectrum (DSSS) coding
techniques on linear frequency modulated (LFM) signals. We call
it Spread Spectrum Coded LFM (SSCL) signaling. Our transmitted
LFM waveforms are rendered orthogonal with a unique spread
spectrum code. At the receiver, the echo signal will be decoded
using it’s spreading code. In this manner, transmitted orthogonal
waveforms can be match filtered only with the intended received
signals. From analytical expressions of the waveforms we have
designed and from simulation results, we found that: (a) cross-
ambiguity function of two LFM spread spectrum coded (orthogo-
nal) waveforms is small for all delays and Dopplers (i.e. transmit
and receive signals satisfy the orthogonality constraint), (b) The
length and type of the spread spectrum code determines amount
of suppression (i.e. complete orthogonal or near orthogonal
of the received signal), (c) We can process the same received
signal in two different ways; one method can provide LFM
signal resolution and the other method can provide ultra high
resolution.

Index Terms—Linear Frequency Modulation (LFM), Multiple-
input Multiple-output (MIMO), Direct Sequence Spread Spec-
trum (DSSS), Spread Spectrum Coded LFM (SSCL), Cross-
Ambiguity Function (CAF), Orthogonal Waveform (OW).

I. INTRODUCTION

Waveform diverse radar (such as MIMO radar) promises
improved performance (in terms of detection, resolution, etc)
over conventional radar systems [10]. As a new paradigm for
radar systems design, MIMO radar’s novelty relies signifi-
cantly on the waveform’s structure. More specifically, it is
assumed that, in a MIMO radar setting, both the transmitted
and received waveforms will remain orthogonal under the
Doppler shifts caused by targets’ motion [14].
However, state-of-the-art MIMO radar research efforts do
not fully address this key issue of how to maintain the
orthogonality of the received waveforms. Researchers pre-
sented numerous MIMO radar signal processing concepts and

exploitation algorithms based on the assumption that wave-
forms stay orthogonal. Hence, one might argue that enhanced
performance of MIMO radar over traditional radar cannot be
realized unless we fully address the issue of designing MIMO
radar waveforms that will remain orthogonal on both transmit
and receive.

II. PREVIOUS RESEARCH ON MIMO RADAR WAVEFORMS

To address the MIMO radar waveforms design issue, re-
searchers attempted techniques such as employing polariza-
tion diverse waveforms, frequency diverse waveforms, coded
waveforms, and combination of these methods [1], [2], [3],
[4], [5], [6], [7]. Moran et.al. [9] presented polarization
diverse waveforms on multiple channels for MIMO radar.
Principal advantages claimed by this approach are: it enables
detection of smaller radar cross section (RCS) targets and
diversity gains. However, this research did not address whether
waveforms will remain orthogonal on receive. Gladkova et.al.
described a family of stepped frequency waveforms to attain
high range resolution [11]. This paper demonstrated that
a suitable choice of waveform’s parameters leads to the
essential suppression of its autocorrelation function (ACF)
sidelobes. Similarly, Zoltowski et. al. [12], and Nehorai [13]
also illustrated methods to exploit waveforms for MIMO radar
applications.

Other approaches researchers attempted include separating
the waveforms into separate frequency sub-bands that will not
overlap even under the maximum expected Doppler shifts.
In this case, the waveforms will remain orthogonal under
arbitrary delays and Doppler shifts, but in general the Doppler
shifts for a given target velocity and geometry will be different
because of the different carrier (center) frequency of each sub-
band.

III. OUR APPROACH FOR ORTHOGONAL MIMO RADAR
WAVEFORM DESIGN

Mentioned earlier, our goal is designing a practial set of
waveforms that should be Doppler tolerant and remain orthog-
onal (or near orthogonal) on receive. Hence, we choose LFM
waveforms to satisfy good Doppler tolerance criteria. To fulfill



the need for orthogonality on receive, we consider coding each
of the transmited waveforms with a unique code, and each of
these codes should be orthogonal to each other. This concept is
familiar in communications and this is known as spread spec-
trum. Hence, we consider blending LFM waveforms with the
spread spectrum technique for orthogonal (or near orthogonal)
waveform design for MIMO radar. In communication, chirp
modulated spread spectrum combined with antipodal signaling
has been utilized to reduce bit error rate [8]. In radar literature,
coded waveforms have been utilized to reduce sidelobes [2].
Our research provides a mathematical analysis for combining
LFM waveforms with spread spectrum. Simulation results are
used to validate the analysis. This technique solves a very
fundamental and crucial problem (i.e. waveforms that should
remain orthogonal on both transmit and receive).

IV. LFM SIGNAL AND CORRESPONDING AMBIGUITY
FUNCTION

Consider an LFM signal be:
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Therefore,
s(t) = u(t) exp(i2πf0t) (1)

where

f0 : is the carrier frequency
α : is the chirp rate
T : is the pulse width
u(t) = rect( tT ) exp(iπαt2) : is the complex envelope

Now, the ambiguity function of the above LFM signal can be
defined as:
χs(τ, ν) =

∫∞
−∞ s(t)s∗(t− τ)ei2πνtdt

=
∫∞
−∞ rect( tT )eiπαt

2

rect( t−τT )e−iπα(t−τ)
2

.ei2πνtdt

= e−iπατ
2 ∫∞
−∞ rect( tT )rect( t−τT ).ei2παtτ .ei2πνtdt

= e−iπατ
2 ∫∞
−∞ rect( tT )rect( t−τT ).ei2π(ν+ατ)tdt

After further simplification, closed form solution for ambiguity
function of an LFM signal is given by:

χs(τ, ν) = (T − |τ |)sinc[(ν + ατ)(T − |τ |)].

eiπντ .eiπ(ν+ατ)T (2)

for |τ | ≤ T , zero elsewhere.

In equation (2) above, τ and ν represent the delay and Doppler,
respectively.
By adding two LFM signals (one with up-chirp and the other
with down-chirp), we can create another LFM signal that could
provide better interference suppression capability. Figure 1
shows ambiguity function plot of such a signal. In this paper,
to plot ambiguity function χ(τ, ν), we used the convention
|χ(τ, ν)|.

Fig. 1. Linear frequency modulated signal ambiguity function. The signal
has been generated by combining an up-chirp and down-chirp signal.

V. DIRECT SEQUENCE SPREAD SPECTRUM TECHNIQUE

Spread spectrum is a pioneering technique implemented in
modern wireless communication CDMA (code division mul-
tiple access). Spread spectrum (SS) signal performs very well
in high interference environment. In this section, we provide a
brief description of Direct Sequence Spread Spectrum (DSSS)
technique. The presentation provided here closely follows the
texts by Proakis [15] and Simon [16]. Using standard spread
spectrum signal notation, information signal can be expressed
as:

A(t) =

∞∑
n=−∞

anP (t− nTb) (3)

where

an : ± 1
P (t) : is the rectangular pulse of duration Tb

Now, A(t) is multiplied by the coded signal

C(t) =

∞∑
n=−∞

cnP (t− nTc) (4)

to produce the product or spreaded signal.

B(t) = A(t).C(t) (5)

where

cn : is binary PN code of ± 1′s
P (t) : is the rectangular pulse of duration Tc

The product signal is then used to modulate the carrier signal
and transmitted. So, the transmitted signal becomes:

Tx(t) = A(t)C(t). cos(2πfct) (6)

Received signal is the transmitted signal Tx(t) and the inter-
fering signal, I(t) i.e.

Rx(t) = A(t)C(t) cos(2πfct) + I(t) (7)



Fig. 2. Spread spectrum coded LFM signal s1 and corresponding Fourier
transform. Chirp rates used were, α1 = (1 ∗ B)/TP1 and α2 = (−1 ∗
B)/TP1, where B is the bandwidth of the LFM signal after applying spread
spectrum code, TP1 is duration of the signal. Walsh-Hadamard code of length
64 has been used to spread the LFM signal.

In demodulation process, received signal Rx(t) is multiplied
by the coded waveform C(t) i.e.

Dx(t) = Rx(t)C(t) (8)

This process is also known as spectrum despreading. Output
of the despreading process is the original information signal
(after filtering process) i.e.

Dx(t) = A(t) (9)

In equation (3) information rate is 1
Tb

which is bandwidth R
of the information-bearing baseband signal. In equation (4),
the rectangular pulse p(t) and Tc is known as chip and chip
interval respectively. Also, 1

TC
is known as chip rate and this

is approximately the bandwidth, W of the transmitted signal
(i.e. spreaded signal). Processing gain of a DSSS signal is
defined as:

LC =
Tb
Tc

=
W

R
(10)

In DSSS signal, LC represents number of chips used in PN
code. This is also known as bandwidth expansion factor and
it represents reduction in power in the interfering signal.

VI. CROSS-AMBIGUITY FUNCTION FOR SPREAD
SPECTRUM CODED LFM WAVEFORMS

In previous section, we derived closed form mathematical
expression for an LFM signal’s ambiguity function. We have
also presented algorithmic steps for direct sequence spread
spectrum concept. In this section, we develop fundamental
mathematical equation integrating spread spectrum code into
LFM signal.

We define indicator function as:

1[0 T ](t) =
{
1, 0≤t≤T,
0, otherwise. (11)

Fig. 3. Spread spectrum coded LFM signal s2 and corresponding Fourier
transform. Chirp rates used were, α1 = (2 ∗ B)/TP2 and α2 = (−2 ∗
B)/TP2, where B is the bandwidth of the LFM signal after applying spread
spectrum code, TP2 is duration of the signal. Walsh-Hadamard code of length
64 has been used to spread the LFM signal.

Let, an LFM signal be:
s(t) = eiπαt

2

.1[0,T ](t)

Now define two direct sequence spread-spectrum coded LFM
signals as follows:

s1(t) =

M−1∑
m

CmP (t−mTC)eiπα1t
2

(12)

s2(t) =

M−1∑
n

DnP (t− nTC)eiπα2t
2

(13)

where
Cm : first code sequence
Dn : second code sequence (different from Cm)
TC : chip time
P (t) : rectangular pulse
α1, α2 : different chirp rates

Then, cross-ambiguity function of s1(t) and s2(t) can be
expressed as:

χs1,s2(τ, ν) =

∫
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Therefore,

χs1,s2(τ, ν) =
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m=0
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n=0

CmD
∗
nf(m,n, τ, ν) (15)



Fig. 4. Auto-ambiguity function (AAF) of the LFM signal s1. First, we
generated s1 using an up-chirp rate, α1 = (1∗B)/TP1 and down-chirp rate,
α2 = (−1 ∗B)/TP1. Then this signal was spreaded with Walsh-Hadamard
code of length 64. The AAF has been evaluated on the spreaded signal.

Fig. 5. Zero-Doppler cut (i.e. when ν = 0) of the auto-ambiguity function
(AAF) presented in Fig. 4 for signal s1.

Equation (15) above represents the fundamental equation of
a Spread Spectrum Coded LFM (SSCL) signaling. Some
important properties of the SSCL signaling have been listed
below. The proofs for these properties are straightforward:

1) Cross-Ambiguity property of SSCL signaling: When
the codes Cm and D∗n are orthogonal, χs1,s2(τ, ν) ∼= 0.
This property implies that matched filter response of a
transmitted signal s1 with a received signal s2 will be
small if s2 does not have the same code as the s1 (i.e.
cross-ambiguity function will be almost zero when Cm
and D∗n are orthogonal).

2) Auto-Ambiguity property of SSCL signaling: When
codes Cm and D∗n are the same, χs1,s2(τ, ν) will provide
the highest return. This property implies that matched
filter response of a transmitted signal s1 with a received
signal s2 will be the highest if s2 has the same code as
the s1 (this also implies that s1 = s2).

Fig. 6. Zero-Delay cut (i.e. when τ = 0) of the auto-ambiguity function
(AAF) presented in Fig. 4 for signal s1.

3) Code property of SSCL signaling: The type of code
such as Walsh-Hadamard code, Gold code, Kasami code
etc. will influence the cross-ambiguity or auto-ambiguity
response (i.e. degree of orthogonality of the received
signal).

4) Code length property of SSCL signaling: The length of
code such as 8, 16, 32 or 512 will also determine degree
of orthogonality of the received signal. Furthermore, the
length of code will also determine bandwidth expansion
of the SSCL signaling and hence increased resolution.

5) Time bandwidth property of SSCL signaling: In-
creased time bandwidth product can be achieved by
SSCL signaling. Bandwidth expansion provides the
unique capability of this SSCL signaling. First of all,
after dispreading the code, we can get our original
LFM signal back and get our usual LFM signal res-
olution (Doppler tolerant). Secondly, by processing the
coded signal we can get ultra-high resolution to separate
closely spaced targets.

6) Bandwidth reduction property of SSCL signaling:
We can use biorthogonal codes to reduce the bandwidth
(by a factor of half) requirement of SSCL signaling.
This does not affect the performance of SSCL signaling
significantly.

VII. EXPERIMENTS ON SSCL SIGNALING FOR AUTO AND
CROSS-AMBIGUITY RESPONSE

We set up an experiment for SSCL signaling presented in
equation (15) and examined the auto and cross-ambiguity
responses. Table I presents key parameters choosen to evaluate
the auto and cross-ambiguity function of the SSCL signaling-
ing. In terms of transmit orthogonal code selection, we used
Walsh-Hadamard code.

We used different bandwidths for the LFM (chirp) signals
that correspond to the length of the codes. Our initial band-
width of 4 MHz has been used for the code length of 1.
This is the scenario of just using a LFM signal without any
spread spectrum coding. From this signal we expect to get



Parameters Values
Bandwidth (B) 4,36,130,260,1000 MHz
First Pulse Duration(TP1) 10 µsec
Second Pulse Duration (TP2) 10 µsec
First Pulse Chirp Rate(α1) (1 ∗B)/TP1

Second Pulse Chirp Rate (α2) (−2 ∗B)/TP2

First Pulse Code Length (NC1) 1,8,32,64,256
Second Pulse Code Length (NC2) 1,8,32,64,256

TABLE I
EXPERIMENTAL PARAMETERS USED TO EXAMINE SSCL WAVEFORM

PRESENTED IN EQUATION (15).

an ambiguity response as shown in Figure 1. Then we used
a bandwidth of 36 MHz that corresponds to code length 8.
The new bandwidth has been calculated using the following
formula (as a result of spread spectrum coding) and multiplied
by a factor of 4:

BW =
1

TC1
+

1

TP1
(16)

where, TC1 = TP1

NC1
and assume that NC1 = NC2.

Similarly, we have calculated and used bandwidths of 260
MHz and 1000 MHz that corresponds to the code lengths of 64
and 256 respectively. In addition, we used a bandwidth of 130
MHz which corresponds to a code length of 32 to experiment
with the biorthogonal code. The length 32 biorthogonal code
has been generated using a length 64 Walsh-Hadamard code.

VIII. RESULTS AND ANALYSIS

To reiterate our research problem, we wanted to design wave-
forms for diversity radar that should remain orthogonal both on
transmit and receive and should be Doppler tolerant. The chief
benefit of the waveforms that remain orthogonal on receive is
that we can separate them with certainty to be matched filter
with their corresponding transmitted waveforms.

Two signals’ (with code) cross-ambiguity response is a mea-
sure to determine degree of orthogonality (i.e. whether near
orthogonal or completely orthogonal). The lower the value
of maximum cross-ambiguity response, the more the signals
approach to become exactly orthogonal. One key attribute of
our waveform is that it reveals the non-orthogonal waveforms
with the maximum value of cross-ambiguity response. This
implies that both signals must be the same and has been
spreaded with the same code. In this case, cross-ambiguity
response is just the auto-ambiguity response of two signals.
On the other hand, any two signals that have cross-ambiguity
response that is smaller than the maximum cross-ambiguity
response must be orthogonal to each other. In this manner, we
can separate all receive waveforms without cross-ambiguity
response being exactly zero i.e. exactly orthogonal.

Table II presents key results obtained from our waveform
(i.e. SSCL signaling) presented in equation (15). Intuitively,
for a given code, the longer it is, the better cross-ambiguity
response we should expect. From Table II, we can see that by
increasing the code length, we obtained better cross-ambiguity
response (i.e. lower CAF value). With code length of 1,
maximum cross-ambiguity response observed was about -
5 dB. This case is just using LFM signal with chirp diversity;

Code Type Code
Length

Bandwidth
(MHz)

Max. AAF
(dB)

Max. CAF
(dB)

- 1 4 0 -5
Walsh-
Hadamard

8 36 0 -9

Walsh-
Hadamard

64 260 0 -14

Walsh-
Hadamard

256 1000 0 -16

Biorthogonal 32 130 0 -13.5

TABLE II
SSCL SIGNALING PERFORMANCE ANALYSIS. IN THIS TABLE, B IS THE

BANDWIDTH, MAX. AAF IS THE MAXIMUM AUTO-AMBIGUITY
FUNCTION, MAX. CAF IS MAXIMUM CROSS-AMBIGUITY FUNCTION.

no influence from spread spectrum code. With code length of
8, maximum cross-ambiguity response observed was about -
9 dB. In this case, we started to see the influence of spread
spectrum code. Similarly, using the code length of 64 and 256,
we have observed improved cross-ambiguity response.

Figure 4 shows auto-ambiguity response of the signal s1.
The code used was Walsh-Hadamard of length 64. This is
the case, where s1 = s2 and Cm = D∗n. As expected, the
auto-ambiguity function takes the shape of the LFM signal
presented in Figure 1.

Figure 7 shows cross-ambiguity response of the signals s1
and s2. Two orthogonal codes used were Walsh-Hadamard of
length 64. We also applied two different chirp rates for each
signals. The key attribute of Figure 7 is that we don’t see
the shape of LFM signal ambiguity response anymore. This
is due to the fact that signals s1 and s2 were multiplied by
orthogonal codes. We observe that, cross-ambiguity response
approaches to -14 dB.

From Table II, we can see that by increasing the code
length, we can achieve lower cross-ambiguity and hence better
orthogonality of the received signals. However, the longer
the code, the greater the bandwidth expansion. In practical
application, we know that bandwidth is a scarce resource. In
particular, using bandwidth more than 1 GHz could be very
expensive for various reasons. In such a scenario, we can use
biorthogonal coding to reduce the bandwidth (by a factor of
half) requirement of the SSCL signaling. In Table II, we see
that by using a biorthogonal code of length 32 our waveform
achieves a cross-ambiguity response of about - 13.5 dB, which
almost comparable (-14 dB) to using Walsh-Hadamard code of
length 64. However, biorthogonal code reduces the bandwidth
by a factor of half.

IX. CONCLUSION

We have designed a novel Doppler tolerant and orthogonal
waveform for waveform diverse radar applications. We called
this waveform spread spectrum coded LFM (SSCL) signaling
and it’s cross-ambiguity function has been presented in equa-
tion (15). The contributions of this research to MIMO radar
applications are the followings: (1) Designing waveform that
will remain orthogonal on receive has not been accomplished
previously; our research provides a solution to this critical
problem, (2) This waveform inherits Doppler tolerant property
of the LFM waveform when properly processed, (3) This



Fig. 7. Cross-ambiguity function (CAF) of two LFM signals s1 and s2.
First, we generated s1 using an up-chirp rate, α1 = (1∗B)/TP1 and down-
chirp rate, α2 = (−1∗B)/TP1. Second, we generated S2 using an up-chirp
rate, α1 = (2 ∗B)/TP1 and down-chirp rate, α2 = (−2 ∗B)/TP1. Then
this signals were spreaded with Walsh-Hadamard code of length 64. The key
attribute of this figure is that maximum cross-ambiguity becomes about -14dB.

Fig. 8. Zero-Doppler cut (i.e. when ν = 0) of the cross-ambiguity function
(CAF) presented in Fig. 7 for signals s1 and s2.

waveform allows processing of received signal in two different
ways. First, if we despread the received signal, we will
get back our original LFM signal and hence get resolution
capability of simple LFM signal. Second, if we process the
received signal with the spread spectrum code in it, we will
get ultra high resolution capability to separate closely spaced
targets. This is a unique capability of our proposed waveform.

X. FUTURE RESEARCH

Auto and cross-ambiguity function plots presented in this
paper based on SSCL signaling in (15) illustrate matched filter
output in a single element of an antenna array. We will extend
this to a large number of antenna elements and develop a
matched filter receiver structure. We then analyze performance
(probability of detection vs. false alarm) of this waveform in

Fig. 9. Zero-Delay cut (i.e. when τ = 0) of the cross-ambiguity function
(CAF) presented in Fig. 7 for signals s1 and s2.

a noisy/clutter environment. We also examine performance of
other codes.
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