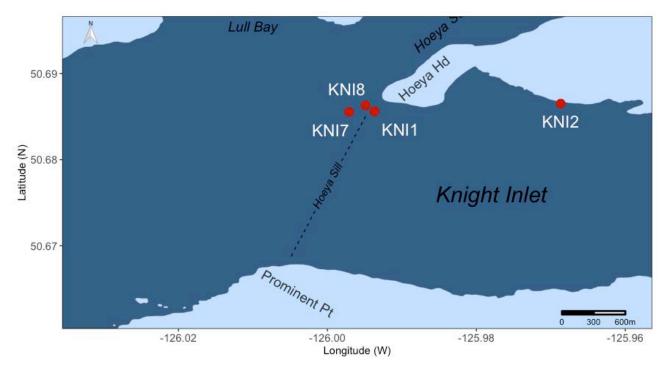
Biodiversity Assessment of the Hoeya Sill in Knight Inlet, British Columbia

November 10, 2020 Prepared for Nanwakolas Council by the Hakai Institute Angeleen Olson¹, Kyle Hall, Zachary Monteith, Ondine Pontier, Carolyn Prentice, Margot Hessing-Lewis²

¹Contact: angeleen.olson@hakai.org, Nearshore Ecology, Hakai Institute ²Contact: margot@hakai.org, Nearshore Ecology, Hakai Institute

Summary	3
Background	3
Survey Locations	4
Habitat Descriptions	5
Biodiversity Assessment	7
Survey Methods	7
Biodiversity Results	8
Species List	11
Anthropogenic Disturbances	16
Conclusion	17
Crew Information	17
References	18

Summary


The Hakai Institute conducted biodiversity surveys of the Hoeya Sill in Knight Inlet, British Columbia (BC), Canada using scuba surveys and environmental DNA (eDNA) analysis between Sept 22 - 24, 2020. Four areas were surveyed via scuba from 17.2 - 19.9 m maximum depth. eDNA water samples were collected during dives at multiple depths. These eDNA samples are being prioritized at the Hakai Institute's genome lab set to be finished in early 2021. A total of n = 134 species, or organisms to lowest taxonomic resolution, were found at sites in the sill. Deepassociated species such as Primnoa pacifica gorgonian corals, basket stars (Gorgonocephalus eucnemis), and glass boot sponges (*Rhabdocalvptus dawsoni*) were observed at unusually shallow depths (16 m). This phenomenon is called 'deepwater emergence', whereby fjord systems can facilitate deep water benthic communities. Additionally, at the Hoeya Sill, seastar diversity was high. The area supported less-common species like the gunpowder star (Gephyreaster swifti) and cookie star (Ceramaster patagonicus). Observations of large healthy (up to 64cm in diameter) Pycnopodia helianthoides, sunflower stars, were recorded in abundance at the Hoeya Sill, which have also been rare on the coastlines of the Pacific Northeast. Individuals showed little seastar wasting disease despite a 96% decline in sunflower population elsewhere in BC inferring a potential refugia from the disease.

Background

Knight Inlet is a long (105 km), narrow (2.9 km) fjord branching off Johnstone Strait and carving eastwards into the mainland of BC. Klinaklini and Franklin rivers are the main headwaters of the inlet, discharging vast amounts of glacial freshwater (410 m³ s⁻¹) into the inlet (Trites 1955). While most of the channel is deep (max. depth 540 m), an underwater ridge bridges 2 distinct regions of the inlet - the shallow Outer Basin to the west and the deep Inner Basin to the northeast. This underwater ridge, the Hoeya Sill, is a distinct shallow geological feature (65 m max depth) between north Hoeya Head and southern Prominent Point, where unique hydrodynamics such as internal gravity waves are generated. It has been suggested that the sill maintains a high diversity of fauna likely maintained by the unique hydrodynamics of the area (McDaniel & Swanston 2013). Several dive expeditions have taken place to investigate the biology at the Hoeya Sill. McDaniel and Swanston (2013) discovered the presence of several deep-water associated animals. Among the most notable species are large, structure-forming red-tree gorgonian corals (*Primnoa pacifica*) at depths of only 12 m. These are known for residing in 150 m - 250 m depths (Stone et al. 2014).

In September 2020, the Hakai Insitute's Nearshore Ecology team were commissioned to conduct a biodiversity assessment of the Hoeya Sill by the Nanwakolas Council. The assessment aims to inform decisions on a proposed Indigenous Marine Protected Area.

Survey Locations

Figure 1. Map of survey locations (red dots) at the Hoeya Sill, Knight Inlet. Dashed lines indicate the approximate location of the sill running from Hoeya Head to Prominent Point.

The Hoeya Sill presents challenging scuba diving conditions due to strong tidal currents and sudden drop offs to deep depths. We targeted two slack currents per day to ensure safe diving conditions, and constrained dive depths to ~ 18m. These depths allowed us to maximize time spent at depth during surveys for more detailed assessments, while capturing both the upper limit of deeper biodiversity and biodiversity at shallow depths. Four sites were surveyed on the north side of the Hoeya Sill (Fig. 1, Table 1). Dive sites were chosen based on the general guidelines: 1) inside the proposed Hoeya Sill marine protected area to assess biodiversity, 2) established dive sites, and 3) a diversity of habitats (deep to steep walls).

Site	Date Surveyed	Latitude (°N)	Longitude (°W)	Depth (m)	Primary Substrate
KNI1	2020-09-22	50.685613	-125.993685	-17.2	cobble
KNI 2	2020-09-22	50.686506	-125.968675	-18	bedrock, boulder
KNI 7	2020-09-24	50.68555	-125.997083	-19.9	boulder
KNI 8	2020-09-24	50.686302	-125.994887	-18	boulder

Table 1. Site locations of scuba surveys located at Hoeya Sill. Depth is maximum dive depth (chart datum).

Habitat Descriptions

KNI1 - Substrate was dominated by cobbles embedded in sand with some boulders present. Slope was 10-20°. Halocline was deep with glacial till reaching down to ~13m. Below 18m, the current appeared strong enough to move boulders. Biological cover included encrusting corallines, colonial hydroids, and seastar aggregations.

Photo 1. Substrate of KNI1 at 17 m depth. Bottom left: A diver's slate for scale.

KNI2 - Steep wall approximately 0.5 km east of Hoeya Head. Substrate was primarily boulders next to a bedrock wall. Biological cover included seastars at greater depths, and barnacles and mussel beds in the intertidal.

Photo 2. Habitat at KNI2 at 15 m depth where boulders were the dominant substrate. Photo shows divers conducting a 30 m seastar transect.

KNI7 - Habitat consisted of 95% medium boulders (1 - 3 m in size) and 5% shell hash. Low gradient slope (5°). Biological cover consisted of primarily hydroids, feather stars, and encrusting coralline algae.

Photo 3. 15m depth at KNI7. Boulders were the dominant substrate. Divers for scale.

KNI8 - Boulder field consisting of large boulders (ranging from 3 - 7 m across) and shell hash with a low gradient slope (5°). Biological cover consisted of primarily hydroids, feather stars, and encrusting coralline algae.

Photo 4. Large boulders scoured the bottom of KNI8 at 18 m depth.

Biodiversity Assessment

Survey Methods

Scuba surveys were conducted off the *MV K2*. We used a Roving Diver Technique to record biodiversity at the Hoeya Sill. We chose this method of positive identification to provide the most efficient observations of biodiversity in the area. Surveys were conducted over an approximate oblique depth transect when slopes were gradual. Divers recorded the presence of species, depth, habitat, abundance, and any anthropogenic disturbances. Absence data relative to McDaniel et al (2013) was recorded, but not presented in this report.

Focal transects were conducted for seastar and fish densities at KNI2 at two depths: 8 m and 15 m. Seastar species and size were recorded over a 30 m x 2 m transect swath. A wasting disease score (0-4) was given to individual seastars based on severity of wasting. Fish were recorded over the same 30 m transect, but over a larger area: 4 m wide x 4 m high transect volume.

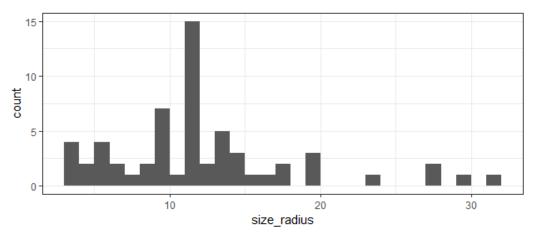
Environmental DNA (eDNA) water samples were also collected during dives at maximum depth, mid-column, and at the surface in 1L bottles. Each depth had 3 replicate samples taken for up to n = 9 samples per site. Water samples were filtered with Sterivex and fixed with Longmires solution until lab processing at the Hakai Institute genomics lab on Quadra Island for winter 2020.

Left: Scuba divers at Hoeya Head. Right: Collecting eDNA water samples at the surface.

Biodiversity Results

A total of 134 species were recorded over 4 dives at the Hoeya Sill in September 2020 (see Table 2 in Species List). To assess the 'commonness' of each species, we summed the frequency of presence across all 4 sites: *common* = present at > 2 sites, *moderately common* = 2 sites, and *rare* = 1 site. While some density-specific transect surveys were conducted to target specific taxa, divers also noted the relative abundance of species. Lastly, we include a column to indicate if species were also observed in previous dives in the area by McDaniel and Swanston 2013 (see Observed Previously = 'x' in Table 2).

Our surveys indicate high diversity at the Hoeya Sill across phyla (Table 1). We found the deepwater emergence of Cnidarian species that are not generally observed at shallow depths. We recorded red-tree gorgonian corals (*Primnoa pacifica*) between 16 - 19.9 m depths at KNI7. At this site, they were relatively abundant with >10 individuals observed at the maximum survey depth of 19.9 m. At the shallow range edge (16m), they were present, but at lower densities. We did not find them at the majority of our sites (Fig. 1) suggesting they are patchily distributed and/or the majority are deeper than we surveyed (e.g., deeper than 18m). Additional deep-water associated species such as basket stars (*Gorgonocephalus eucnemis*), boot sponges (*Rhabdocalyptus dawsoni*), and cloud sponges (*Aphrocallistes vastus*) were also observed at the sill. The sill was rich in pink branching hydrocorals (*Stylaster verrillii*), and ostrich plume (*Aglaophenia spp.*) and sea fir (*Thuiaria spp.*) hydroids - found at every site in high abundance.



Top left: Red-tree gorgonian coral (*P. pacifica*). **Top right:** Sharp lipped boot sponge (*R. dawsoni*). **Bottom Left:** Basket star (*G. eucnemis*). **Bottom Right:** Diver observing a cloud sponge (*A. vastus*).

Common **large mobile invertebrates** surveyed were multiple species of seastars, Coonstripe shrimp (*Pandalas danae*), decorator crabs (*Chorilia longipes, Oregonia gracilis*), red-veiled chitons (*Placiphorella rufa*), and aeolid nudibranchs (*Flabellina* spp.). Seastars were particularly specious and high in abundance at the sill (see Table 1). Most notably, aggregations of large (radius: mean = 12.7 ± 6.3 cm, max = 32 cm) sunflower stars (*P. helianthoides*) were commonly observed with a mean density of 0.5 individuals per m². The full size spectrum of sunflower stars at Hoeya Sill (Fig. 2) is a relatively rare finding on the Northeast Pacific coast. Sunflower seastars have shown an unprecedented decline starting in 2015 due to wasting disease. BC specificalled had a 96% decline in population abundance (Harvell et al. 2019). On exposed outer coastlines, anecdotal observations report primarily juvenile populations of small sunflower stars.

Adult Pycnopodia helianthoides

Figure 2. Size distribution of sunflower stars (*P. helianthoides*) at KNI2 over a 120 m² area. The x-axis represents the size (radius: longest arm to center of body) of an individual in centimeters. The grey bars represent the total count of individuals seen at a specific size (y-axis).

Rockfish were the most common species of **fish** at Hoeya Sill, including quillback rockfish (*Sebastes maliger*), yellowtail rockfish (*S. flavidus*), and copper rockfish (*S. caurinus*). A large school of young-of-the-year black (*S. melanops*) and yellowtail (*S. flavidus*) rockfish species-complex was observed at the Sill as well; otherwise juveniles were rare. Moderately common fish species observed were the buffalo sculpin (*Enophrys bison*) and starry flounder (*Platichthys stellatus*). From the transect surveys at KNI2, yellowtail rockfish were seen in schooling abundances (mean count = 125 transect⁻¹, 0.26 per m³; mean size: 24 cm total length). On average, quillback rockfish were 30 cm and copper rockfish were 31 cm.

Quillback rockfish (Sebastes maliger)

Red irish lord (*Hemilepidotus hemilepidotus*)

Algae and seagrasses were not a diverse biota group at the areas surveyed at the Hoeya Sill. Agarum, filamentous red algae, and Ulva spp. were moderately common in shallower depths. Deep water and glacial till likely limit their persistence to intertidal or shallow subtidal areas.

Species List

Table 2. Species observed at the Hoeya Sill in 2020. Relative commonness indicates how common species were across sites surveyed: rare, moderate, or common. Relative abundance was qualitatively noted by divers. Observed Previously indicates if species have been previously observed at the Hoeya Sill (e.g., McDaniel & Swanston 2013).

Species	Common Name	Relative Commonness	Relative Abundance	Observed Previously
ALGAE - SEAWEEDS				
Ulva sp.	sea lettuce	moderate	high	х
Fucus distichus evanescens	rockweed	rare		x
Alaria marginata	broad winged-kelp	moderate		X
Saccharina latissima	sugar wrack kelp	rare		X
Callophyllis sp.	beautiful leaf seaweed	rare		X
Corallinophycideae spp.	crustose corallines	common	high	
Agarum clathratum	sieve kelp	rare		
<i>Ralfsia</i> sp.	brown kelp	rare		
Pterothamnion sp.	filamentous red algae	rare		
Acrosiphonia sp.	green algae	rare		
red algae unknown	red algae	rare		
ANNELIDA - SEGMENTEI	D WORMS		1	<u> </u>
	red trumpet calcareous			
Serpula columbiana	tubeworm	moderate		Х
Diopatra ornata	ornate tubeworm	moderate		х
Megalomma sp.	twin-eyed feather-duster	rare		X
Myxicola infundibulum	slime-tube feather-duster	rare		X
Serpula sp.	calcareous tubeworm	rare		
Terabellida sp.	spaghetti worm	rare		
ARTHROPODA - CRABS,	SHRIMPS, BARNACLES, etc			
Eualus townsendi	Townsend's eualid	rare		х

Lebbeus grandimanus	candy stripe shrimp	rare		Х
Pandalus danae	coonstripe shrimp	common	high	Х
Pugettia gracilis	graceful decorator crab	rare		Х
Chorilia longipes	longhorn decorator crab	common		X
Cryptolithodes typicus	butterfly crab	moderate		Х
Lopholithodes mandtii	Puget Sound king crab	moderate		Х
Elassochirus tenuimanus	widehand hermit	common		Х
Elassochirus gilli	orange hermit crab	rare		x
Balanus glandula	common acorn barnacle	moderate		Х
Balanus rostratus	rostrate barnacle	moderate		х
Balanus nubilus	giant acorn barnacle	rare		X
Oregonia gracilis	slendor decorator crab	common		
Eualus butleri	sponge eualid	moderate		
Scyra acutafrons	sharp-nosed crab	rare		
Placetron wosnessenskii	Scaled Crab	rare		
BRACHIOPODA - LAMPS	SHELLS			
Laqueus vancouveriensis	California lamp shell	moderate		Х
Terebratalia transversa	transverse lamp shell	moderate		х
Terebratulina unguicula	snake's head lamp shell	moderate		x
Hemithiris psittacea	black lamp shell	common		х
Laqueus californicus	California lampshell	rare		х
BRYOZOA - MOSS ANIMA	ALS			
Schizoporella japonica	orange encrusting bryozoan	moderate		Х
Microporina borealis	stick bryozoan	rare		х
CHORDATA - TUNICATI	ES			
Ascidia paratropa	glassy tunicate	moderate		х
Halocynthia aurantium	pacific sea peach tunicate	rare		

Corella sp.	unknown corella	rare		
Didemnum sp.	colonial tunicate	rare		
CNIDARIA - ANEMONES,	CORALS, HYDROIDS	-	•	
Cribrinopsis fernaldi	snakelock anemone	rare		X
Urticina grebelnyi	painted anemone	moderate		X
Epizoanthus scotinus	orange zoanthid	moderate		X
Ptilosarcus gurneyi	orange sea pen	rare		X
Primnoa pacifica	red-tree gorgonian coral	rare	high	X
Stylaster verrilli	branching pink hydrocoral	common	high	X
Aglaophenia spp.	ostrich plume hydroids	common	high	X
Thuiaria spp.	embedded sea fir hydroids	common	high	X
Plumularia sp.	delicate plume hydroid	common	high	X
Similiclava nivea	white hydroid	rare		X
Thuiaria thuja	bottlebrush hydroid	moderate	high	X
Grammaria sp.	spindly embedded hydroid	rare		X
Ceriantheopsis sp.	tube-dwelling anemone	rare		
Urticina eques	white spotted rose anemone	rare		
Pachycerianthus fimbriatus	burrowing anemone	rare		
Urticina crassicornis	mottled anemone	rare		
Sertulariid sp.	sertulariid hydroid	moderate		
Plumulariid sp.	plumulariid hydroid	rare		
Rhizocaulus sp.	Rhizocaulus hydroid	rare		
ECHINODERMATA - SEAS	STARS, URCHINS, SEA CUCUN	MBERS		
Evasterias troschelii	mottled star	common	high	X

Evasterias troschelii	mottled star	common	high	X
Mediaster aequalis	vermilion star	common		х
Gephyreaster swifti	gunpowder star	common		x
Ceramaster patagonicus	cookie star	common		X

Pteraster militaris	wrinkled star	common		х
Pteraster tesselatus	slime star	rare		Х
Henricia leviuscula	blood star	common		х
Henricia sanguinolenta	fat blood star	rare		X
Pycnopodia helianthoides	sunflower star	common	high	X
Crossaster papposus	rose star	common	high	Х
Solaster dawsoni	morning sun star	common	high	Х
Solaster stimpsoni	striped sun star	common	high	Х
Solaster endeca	northern sun star	common	high	Х
Solaster paxillatus	orange sun star	rare	high	Х
Gorgonocephalus eucnemis	basket star	rare		X
Florometra serratissima	feather star	moderate		X
Strongylocentrotus droebachiensis	green sea urchin	common	high	X
Strongylocentrotus pallidus	white sea urchin	moderate		X
Parastichopus californicus	giant sea cucumber	rare		X
Cucumaria miniata	red sea cucumber	moderate		X
Psolus chitinoides	creeping pedal sea cucumber	common		X
Synallactes challengeri	long-spined sea cucumber	rare		Х
Strongylocentrotus purpuratus	purple sea urchin	rare		
Ceramaster arcticus	arctic cookie star	rare		
FISHES				
Aulorhynchus flavidus	tubesnout	rare		х
Platichthys stellatus	starry flounder	moderate		Х
Chirolophis decoratus	decorated warbonnet	rare		Х
Sebastes caurinus	copper rockfish	common	medium	X
Sebastes maliger	quillback rockfish	common	high	X
Jordania zonope	longfin sculpin	rare		X
Hemilepidotus hemilepidotus	red irish lord	rare		x

Enophrys bison	buffalo sculpin	moderate		x
Rhacochilus vacca	pile perch	rare		
Sebastes flavidus	yellowtail rockfish	moderate	high	
Cottoidea spp.	unknown sculpins	rare		
Sebastes melanops- flavidus complex	YOY black-yellowtail rockfish complex	rare	medium	
MARINE MAMMALS				
Phocoena phocoena	Harbour porpoise	rare		х
Megaptera novaeangliae	Humpback whale	rare		х
Phoca vitulina richardsi	Pacific harbour seal	rare		х
MOLLUSCA - SNAILS, CH	ITONS, BIVALVES		· · · · ·	
Tonicella undocaerulea	blue-lined chiton	moderate		Х
Tonicella lineata	lined chiton	common		х
Mopalia muscosa	mossy chiton	rare		Х
Cryptochiton stelleri	giant Pacific chiton	rare		X
Placiphorella rufa	red veiled chiton	common		х
Clinocardium nuttallii	Nuttall's cockle	rare		х
Diadora aspera	rough keyhole limpet	rare		х
Chlamys hastata	spiny pink scallop	moderate		x
Ceratostoma foliatum	leafy hornmouth	moderate		Х
Nucella lamellosa	wrinkled dogwinkle	moderate		х
Calliostoma variegatum	variable topsnail	moderate		х
Fusitriton oregonensis	Oregon triton	common		Х
Trichotropis cancellata	checkered hairysnail	rare		х
Triopha catalinae	clown nudibranch	moderate		X
Tochuina gigantea	orange-peel nudibranch	rare		х
Enteroctopus dofleini	giant Pacific octopus	rare		x
Tonicella insignis	white-lined chiton	rare		

Flabellina spp.	aeolid nudibranch	common	high	
Cranopsis cucullata	ribbed keyhole limpet	moderate		
Tripolax trifida	three-rib chiton	rare		
Lottia pelta	shield limpet	rare		
Lottia scutum	true limpet	rare		
Mytilus trossulus	pacific blue mussel	rare		
Mopalia sp.	hairy chiton	rare	high	
Dirona pellucida	gold dorid	rare		
Dendronotus sp.	dendronotus nudibranch	rare		
Cadlina modesta	modest cadlina	rare		
Tochuina tetraquetra	giant orange tochuina	rare		
Himatina trophina	red-gilled nudibranch	rare		
Tripoplax trifida	three-rib chiton	rare		
PORIFERA - SPONGES	!			
Rhabdocalyptus dawsoni	sharp-lipped boot sponge	rare	high	X
Aphrocallistes vastus	cloud sponge	rare		X
cf. Suberites	peach ball sponge	rare		

Anthropogenic Disturbances

At sites near Hoeya Head, divers observed fishing gear, as well as damage to benthic communities due to fishing gear in multiple locations (KNI2, KNI7, KNI8). Fishing gear included downrigger equipment (e.g., cannon balls, downrigger planer) snagged and/or stuck in rocky substrates, as well as fishing line tangled in rocky substrates, and, around *P. pacifica* individuals. Tangled *P. pacific* individuals appeared dead or dying, and in some cases appeared to have been pulled over by the fishing gear. Similarly, McDaniel & Swanston (2013) noted that animals were entangled in fishing monofilament and fishing debris was scattered on the ocean floor. Benthically-associated animals are at risk of any bottom-contact gear from fisheries. Currently in BC, fisheries that can damage benthic communities are bottom trawls, longlines, and prawn traps.

Conclusion

During our surveys, we found deep-water species that are normally rare at shallow depths such as basket stars, cloud sponges, and red-tree gorgonian gorgonian corals. While we found *P. pacfica* gorgonian corals as shallow as 16 m off Hoeya Head, we observed the highest densities at 19.9 m. This indicates that their preferred habitat may be deeper than the maximum depths that we primarily surveyed at the sill (<18 m), and that our finding of a patchy distribution may reflect survey design. Given our observations of gorgonians between 16 - 19.9 m chart datum at KNI7, their full habitat extent should be considered throughout this bathymetric range at the Hoeya Sill, with variation in density dependent on depth and other localized factors. In the near vicinity of our surveys, previous observations of gorgonians occurred as deep as 30 m (Lull Bay) and as shallow as 12 m (Hoeya Sill) (McDaniel & Swanston 2013). As such, our surveys provide additional evidence that gorgonians can occupy depths between 12 and 30 m at the Hoeya Sill, but documentation of their full areal extent and patterns of abundance with depth demand additional survey effort.

ROV (Remote Operated Vehicles) or technical deep dives would be necessary to elucidate a more comprehensive geographic extent of gorgonian corals in this area. Additionally, we did not survey the southern reach of the Hoeya Sill and thus encourage further investigation there at Prominent Point. Given the presence of fishing gear and evidence of damage within the bathymetric zone we surveyed, we suggest that future surveys assess the density of these species to better understand their population size, and document changes in their populations associated with benthic disturbance.

Presence-only survey methods are inherently biased towards larger species - there may be more diversity of smaller, more cryptic species that were missed in these surveys. In addition, there are limitations in taxonomic resolution of solitary sponges, encrusting colonial sponges, bryozoans, encrusting corallines, and filamentous red algae due to their lack of distinguishing characteristics and which make identification without genetic sequencing near impossible. For this reason, we recommend that future sampling barcode these species to aid with their identification. Going forward, barcoding information from specific species can be compared to environmental DNA, which can target a broader suite of species in an area.

Crew Information

This Hakai Nearshore Ecology team has spent the last 5 consecutive years conducting biological research on BC's Central Coast waters. Our expertise resides in coastal ecosystem biodiversity and function - particularly in kelp forest, seagrass, rocky reef, and rocky intertidal systems. Divers were Zachary Monteith (BSc Biology), Ondine Pontier (BSc Biology), Kyle Hall (BA

Anthropology), and Grant Callegari (Photographer). Dive supervisors and eDNA processors were Angeleen Olson (BSc Env Sc, MSc Biology) and Carolyn Prentice (BSc Biology, M Resource Management). Species photos are by Grant Callegari. We thank Henry Choong at the Royal BC Museum for expertise in hydroid identification.

References

Harvell, C.D., Montecino-Latorre, D., Caldwell, J.M., Burt, J.M., Bosley, K., Keller, A., Heron, S.F., Salomon, A.K., Lee, L., Pontier, O. and Pattengill-Semmens, C., 2019. Disease epidemic and a marine heat wave are associated with the continental-scale collapse of a pivotal predator (*Pycnopodia helianthoides*). *Science advances*, *5*(1), p.eaau7042.

McDaniel and Swanston 2013. Observations on the Gorgonian Coral *Primnoa pacifica* at the Knight Inlet sill, British Columbia 2008 to 2013. Technical report.

Stone, R. P., M. M. Masuda, and J. F. Karinen. 2014. Assessing the ecological importance of red tree coral thickets in the eastern Gulf of Alaska. ICES J. Mar. Sci. 72:900–915. https://doi.org/10.1093/icesjms/fsu190

Thompson, R.E. 1981. Oceanography of the British Columbia Coast. Canadian Special Publications of Fisheries and Aquatic Sciences 56: 291 pp.