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Geographic range shifts are one major organism response to climate change, especially
if the rate of climate change is higher than that of species adaptation. Ecological
niche models (ENM) and biogeographic inferences are often used in estimating
the effects of climatic oscillations on species range dynamics. ENMs can be used
to track climatic suitable areas over time, but have often been limited to shallow
timescales; biogeographic inference can reach greater evolutionary depth, but often
lacks spatial resolution. Here, we present a simple approach that treats them as
independent and complementary sources of evidence, which, when used in partnership,
can be employed to reconstruct geographic range shifts over deep evolutionary
timescales. For testing this, we chose two extreme African disjunctions: Camptoloma
(Scrophulariaceae) and Canarina (Campanulaceae), each comprising of three species
disjunctly distributed in Macaronesia and eastern/southern Africa. Using inferred
ancestral ranges in tandem with preindustrial and paleoclimate ENM hindcastings,
we show that the disjunct pattern was the result of fragmentation and extinction
events linked to Neogene aridification cycles. Our results highlight the importance of
considering temporal resolution when building ENMs for rare endemics with small
population sizes and restricted climatic tolerances such as Camptoloma, for which
models built on averaged monthly variables were more informative than those based
on annual bioclimatic variables. Additionally, we show that biogeographic information
can be used as truncation threshold criteria for building ENMs in the distant past.
Our approach is suitable when there is sparse sampling on species occurrences and
associated patterns of genetic variation, such as in the case of ancient endemics with
widely disjunct distributions as a result of climate change.

Keywords: biogeographic reconstruction, deep-time climate change, ecological niche model, geographic
disjunction, Rand Flora, temporal resolution, truncation threshold criteria

INTRODUCTION

The current concern on anthropogenic-induced climate change and its impact on biodiversity
levels has increased the interest in reconstructing organisms’ responses to past climatic events.
Geographic range shifts, where species track their climatic niche under events of rapid climate
change, are expected if the rate of environmental change is greater than that of species’ ability
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to adapt to the new conditions (Martínez-Meyer and Peterson,
2006; Thuiller et al., 2006; Waldron, 2010). These shifts can
result in smaller population sizes, reduced genetic diversity,
and a higher extinction risk (Waldron, 2010; Mairal et al.,
2018). Furthermore, limited gene flow increases inter-population
genetic differences and may eventually drive speciation
(Dorn et al., 2014).

Studies on climate change and its effects on species range
dynamics have typically focused on recent geological timescales,
such as the glacial and interglacial stages of the Pleistocene,
the last 2.6 million years (Hewitt, 2004), or the last 120,000
years of the Late Pleistocene-Holocene (Martínez-Meyer et al.,
2004; Martínez-Meyer and Peterson, 2006; Espíndola et al., 2012;
Mairal et al., 2018). However, these shallow timescales are often
insufficient to discern how much evolutionary history loss is
anthropogenic-induced or a result of the natural cycling of
diversification rates in long-term species dynamics (Moen and
Morlon, 2014; Huang et al., 2015). In contrast, evolutionary
data that spans deeper timescales, e.g., tens of millions of
years, is expected to provide a more accurate understanding
of organisms’ persistence and adaptational responses, which are
built over generations of genetic changes (Willis and MacDonald,
2011; Svenning et al., 2015; Meseguer et al., 2018; Burke et al.,
2018), and hence, a more accurate prediction on the impact
of ongoing and future climate change on a species geographic
range (Martínez-Meyer et al., 2004; Diniz-Filho and Bini, 2008;
Romdal et al., 2013; Meseguer et al., 2015; Burke et al., 2018).
One climate change event of major scientific and societal concern
is the current aridification trend that affects areas such as
the African continent, the Mediterranean Basin and Arabia-
Western Asia (Berdugo et al., 2020). Causes are both historical
and contemporary: geotectonic changes starting in the Late
Neogene, the last 25 million years, introduced a drier climate
in the southwest Palearctic, with increasing annual temperatures
and decreasing precipitation levels, which led some lineages to
extinction (Trauth et al., 2008; Pokorny et al., 2015) also human-
induced greenhouse emissions and deforestation also contributed
to this trend by dramatically reducing species ranges (Mairal
et al., 2018; Berdugo et al., 2020).

Two approaches are often used to reconstruct the evolutionary
signature of climate change on species range dynamics.
Biogeographic inferences, based on a time-calibrated phylogeny
and associated taxa distributions, can be used to infer ancestral
geographic ranges and the sequence of geographic range
shifts that led to the current distributions (Ree and Smith,
2008; Ronquist and Sanmartín, 2011). Ecological niche models
(ENM), based on occurrence data, can be used to estimate
the environmental preferences (climatic envelope) of species,
allowing for spatial exploration of similar climate conditions in
the past, present, and future (Araújo and New, 2007; Meseguer
et al., 2015; Mairal et al., 2017; Carboni et al., 2018; Hæuser
et al., 2018). The two approaches have their advantages and
shortcomings. Biogeographic inference typically employs pre-
defined discrete areas that are represented by abstract units (e.g.,
A, B, and AB) instead of bounded by geographical coordinates
(Ree and Sanmartín, 2009; but see Quintero et al., 2015).
ENMs implicitly assume that an organism’s climatic niche is

conserved over evolutionary time, which might be unrealistic
under repeated cycles of ciimate change and over long timescales
(Peterson, 2006). The use of ENMs to hindcast across time is also
limited by the availability of paleoclimatic data, and most ENMs
have been projected onto the recent geological past (Pleistocene,
Martínez-Meyer et al., 2004; Mairal et al., 2018; but see Meseguer
et al., 2015 and Mairal et al., 2017).

Biogeographic inference and ENMs are not mutually
exclusive; there have been attempts to integrate them, even
at deep timescales. For example, some authors used ENMs to
inform biogeographic analyses and include climatically suitable
areas outside the species current range, i.e., due to extinction
or incomplete sampling (Yesson and Culham, 2006; Smith and
Donoghue, 2010); in other studies, hindcasted ENMs were used
to discover transient climatic corridors that facilitated species
geographic movement by connecting patches of suitable habitat
(Metcalf et al., 2014; Meseguer et al., 2015). These approaches
are well suited for medium to large-sized phylogenies (>20 taxa)
and groups that are well represented in georeferenced datasets
(Smith and Donoghue, 2010; Meseguer et al., 2015). However,
in cases where the phylogeny is small (<10 taxa), these methods
can be more difficult to implement because of the uncertainty in
the inferred ancestral ranges (Sanmartín and Meseguer, 2016).
Building ENMs on taxa with sparse and or biased georeferenced
occurrence data, such as rare endemics (Rabinowitz, 1981), is
also problematic because of the treatment of pseudoabsences,
i.e., creation of pseudoabsences to combat the lack of valid
(confirmed) absence data (Engler et al., 2004). As well as a
quantity problem (i.e., number of records), there is a quality
problem (i.e., location accuracy; Engler et al., 2004) because
rare endemics are often represented in herbaria collections by
voucher specimens with imprecise geographic information.
If the rarity of species is associated with ancient origins and
long phylogenetic internodes, as in the case of historically high
extinction rates, uncertainty in biogeographic inference becomes
even larger (Sanmartín and Meseguer, 2016).

Here, we present an approach that, unlike previous approaches
does not rely on integrating ENMs into biogeographic analysis
(Smith and Donoghue, 2010; Meseguer et al., 2015), but treats
them instead as independent and complementary sources of
evidence, which, when used in tandem, can fill their respective
information gaps. Our approach is most useful in cases when
there is high uncertainty in biogeographic analysis associated to a
small-sized phylogeny with deep temporal divergences, and when
sparse and/or biased georeferenced records make the treatment
of pseudoabsences in presence/absence ENM methods difficult
(Allouche et al., 2006; Diniz-Filho et al., 2010). We also introduce
a new approach in the selection of truncation threshold values for
generating binary ENM models in the distant past, which is based
on the use of biogeographic inference information.

To test our approach, we used two species-poor angiosperm
genera that exhibit a pattern of continent-wide geographic
disjunctions attributed to historical climate change. The Rand
Flora (Figure 1) describes a floristic pattern in which sister-
species, or clades of closely related species, are distributed on
opposite sides of the African continent (northwest, eastern,
and southern Africa) and adjacent archipelagos, Macaronesia
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FIGURE 1 | Geographic distribution of species within genera (A) Camptoloma and (B) Canarina, depicting the Rand Flora disjunct distribution across Africa.
Photographs: Camptoloma rotundifolium: Martin Weigand; Camptoloma lyperiiflorum: Morten Ross; Canarina canariensis: Mario Mairal; Canarina eminii and
Canarina abyssinica: Juan Jose Aldasoro.

and Socotra (Sanmartín et al., 2010). Recent studies based on
phylogenetic and biogeographic data explained this pattern as
a result of ecological vicariance and climate-driven extinction
linked to an aridification trend that started in the Neogene
and continues today (Mairal et al., 2015, 2017; Pokorny et al.,
2015; Culshaw et al., 2021; Rincón-Barrado et al., 2021).
Genus Camptoloma (Scrophulariaceae) comprises three species:
the southwestern African endemic C. rotundifolium, which is
sister to a clade formed by Gran Canarian C. canariense and
C. lyperiiflorum, endemic to the Horn of Africa, southern
Arabia and Socotra Island (Figure 1A; Culshaw et al., 2021).
Canarina (Campanulaceae) comprises also three species: the
locally widespread Canarian endemic C. canariensis, which is
sister to a clade formed by two Eastern African montane
species: C. eminii and C. abyssinica (Figure 1B; Mairal et al.,
2015, 2018). In addition to their widely disjunct distribution
separated by thousands of kilometers across northern and
central Africa, Camptoloma and Canarina exhibit deep-temporal
divergences, dating back to the Miocene and Pliocene, among
the three disjunct species as well as with their recent common
ancestors (Mairal et al., 2015; Culshaw et al., 2021). The African
species of these two genera are also characterized by small
and geographically restricted populations, which in the case of

Canarina species are locally threatened by human action (Mairal
et al., 2018). Fieldwork and specimen collection in these species
is problematic due to political conflict (e.g., Somalia and Yemen)
or difficult geographic access (Socotra, Namibian Brandberg
Mountains), which likely explain their poor representation
in worldwide herbaria and global geographic databases such
as GBIF1. Thus, Canarina and Camptoloma fulfill the three
criteria defined above to test our in-tandem biogeographic/ENM
approach: a small-sized phylogeny (three species) with long
internodal branches (ancient divergence times), and a sparse
biased geographic sampling, spanning a broad and continent-
wide disjunct distribution.

The aims of our study were: (i) to build ENM models
for genera Canarina and Camptoloma using all available
georeferenced occurrence data, present-day and paleoclimatic
data, and biogeographic information (i.e., ancestral ranges); the
latter were used to select the truncation threshold value needed
for converting ENM continuous habitat suitability predictions
into binary presence/absence maps that are more readily
interpretable. (ii) To reconstruct the sequence of range shifts that
led to the current distributions using the ancestral ranges inferred

1www.gbif.org
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through biogeographic analysis, in tandem with preindustrial
and paleoclimate ENM hindcasted projections; specifically, ENM
paleoclimate projections were used to reduce uncertainty in the
biogeographic analysis by providing information on climatically
suitable areas at different time points along the long internodal
branches that lead to species divergences. (iii) Finally, the two
selected Rand Flora genera offer us an opportunity to explore the
effects of ancient climate change on species range dynamics.

MATERIALS AND METHODS

Biogeographic Inference
We retrieved biogeographic information, i.e., the geographic
range of ancestral species and the potential sequence of
biogeographic events that led to the current distribution in
Camptoloma and Canarina, from our own published studies:
Culshaw et al. (2021) and Mairal et al. (2015), respectively.
These studies used molecular phylogenies based on several
plastid markers and multi-copy nuclear ITS to reconstruct
phylogenetic relationships among the disjunct species and their
closely related outgroups. Lineage divergence times were inferred
using Bayesian relaxed molecular clocks. Biogeographic inference
was performed using two parametric approaches that are based
on continuous-time Markov-chain (CTMC) models of range
evolution with states representing user-defined, discrete areas of
distribution (Sanmartín, 2020). Mairal et al. (2015) employed
the Bayesian Island Biogeography (BIB) model (Sanmartín et al.,
2008), which assumes single-area ancestors and focuses on the
sequence of migration events between areas. Culshaw et al.
(2021) used the Dispersal Extinction Cladogenesis (DEC) model
(Ree and Smith, 2008), which permits widespread ancestors and
focuses on scenarios of range division at nodes. CTMC models
were implemented in a Bayesian framework using software
BEAST (Lemey et al., 2009; Mairal et al., 2015) and RevBayes
(Landis et al., 2018; Culshaw et al., 2021), allowing inference of
marginal posterior probabilities (mean and 95% high-posterior
credibility intervals) for the CTMC parameters and ancestral
ranges. In both Camptoloma and Canarina, the geographic range
of the stem ancestor, i.e., the divergence between each genus
and its sister-group, was inferred with high uncertainty. This
is linked to long internodal branches subtending the stem- and
crown-nodes in the two genera (Mairal et al., 2015; Culshaw
et al., 2021). More details on these analyses can be found in the
original studies.

Ecological Niche Models
ENMs for genera Camptoloma and Canarina were generated de
novo for this study by following the below steps:

Georeferenced Occurrence Data
Species location data associated with geographical coordinates
were obtained individually for Camptoloma and Canarina
using: (i) herbarium sample vouchers from the collections
of Real Jardín Botánico (MA), Royal Botanical Garden of
Edinburgh (E), Uppsala Museum of Evolution Herbarium
(U), and Pretoria National Herbarium (PRE); (ii) samples

collected during our fieldwork campaigns between 2013 and
2019, mostly in the Canary Islands (details in Mairal et al.,
2015 and Culshaw et al., 2021); and (iii) online georeferenced
databases, including GBIF (downloaded for Camptoloma
from https://doi.org/10.15468/dl.abs9dk; and for Canarina from
https://doi.org/10.15468/dl.9fcg75), the “Flora de Gran Canaria”2,
and “Anthos”3. Sampling was uneven across species within
genera: for Camptoloma, the denser sampling corresponded to
Gran Canarian C. canariense, and the least representative to the
two African species, especially in regards to georeferenced online
records in northern Namibia and Horn of Africa. In Canarina,
C. abyssinica was the least represented species in the occurrence
dataset. Nevertheless, we emphasize that for both genera, our
geographic sampling covered the entire genus distribution.

Climatic Data
Present-day climate datasets for the African continent, the
Canary Islands, Madagascar, Yemen and Oman, were obtained
from the WorldClim database4 (Fick and Hijmans, 2017) at
intervals of 2.5 x 2.5 min. We obtained two sets of climatic
variables (listed in Supplementary Table 1): (i) the mean of seven
monthly variables (minimum, maximum, and mean temperature,
precipitation, solar radiation, water vapor pressure, and wind
speed), which have been averaged over 30 years (between 1970
and 2000; Fick and Hijmans, 2017); and (ii) 17 bioclimatic
(BIO) variables, which are derived from the monthly values
of precipitation and mean temperature variables mentioned
above. This climatic dataset (24 variables in total) was matched
against the above referenced geographical coordinates to generate
a present-day dataset for the environmental preferences of
Camptoloma and Canarina across their current distribution
range in Africa and adjacent regions (datasets found in
Supplementary Appendix 1). Note that the bioclimatic variables
BIO 2 and BIO 3 (Mean Diurnal Range and Isothermality)
were excluded from the ENM projections based on the
paleoclimate datasets because it was not possible to calculate
them, as paleoclimate data include only monthly values for mean
temperature and precipitation (see below).

Paleoclimate datasets for the African continent, southern
Arabia, and Macaronesia were obtained from three global Hadley
Centre-coupled ocean-atmosphere general circulation models
(HadCM3L) that incorporate the effect of changes in atmospheric
CO2 (Beerling et al., 2009; Beerling et al., 2012; Bradshaw et al.,
2012). These paleoclimate datasets consist of monthly values of
mean temperature and precipitation, with spatial resolution 225
x 150 min. They represent major climate warming and cooling
events worldwide (Meseguer et al., 2015), and were used to
represent geological intervals (time slices) that are considered
relevant for the evolution of Rand Flora lineages in Africa
(Pokorny et al., 2015; Mairal et al., 2017). (i) Time slice I:
the Mid Miocene Climatic Optimum (MMCO, c. 17-14 Ma), a
400 ppm CO2 simulation on the Late Miocene paleogeography;
(ii) Time slice II: the Late Miocene Climate Cooling event (LMC,

2www.jardincanario.org/flora-de-gran-canaria
3www.anthos.es
4http://worldclim.org
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11.6-5.3 Ma), a 280-ppm CO2 simulation on Late Miocene
paleogeography; (iii) Time slice III: the Mid-Pliocene Warming
event (MPWE, 3.6-2.6 Ma), a 560-ppm CO2 simulation on Mid
Pliocene paleogeography. We added a fourth period: (iv) Time
slice IV: the Preindustrial world (up to 1900), a 280 ppm CO2
simulation of the climate before the industrial revolution; this
dataset has a higher resolution of 2.5 x 2.5 min, and is used here
to provide a baseline HadCM3L climate. For each time slice, we
calculated the bioclimatic variables using the biovars function (R
package dismo, Hijmans et al., 2017).

Each variable in the present-day and paleoclimate
datasets were normalized to lie within the closed boundaries
[0, 1]: zi =

variablei−min(variable)
max(variable)−min(variable) , where z is the ith

normalized data variable.
A potential issue with our datasets is that of spatial

correspondence. The geographic range of both Camptoloma and
Canarina spans the northern and southern hemispheres (as seen
in Figure 1). Thus, localities for species such as Camptoloma
lyperiiflorum and C. rotundifolium, or Canarina canariensis and
C. eminii are asynchronous in their warm/cool periods, which
could introduce bias if the monthly climatic variables are used
in the ENM predictions (e.g., January is “winter” in the northern
hemisphere but “summer” in the southern hemisphere), which
is in fact the rationale for the use of averaged bioclimatic
variables in ENMs. To address this issue, we “inverted” the
monthly variables in the present-day and paleoclimate datasets
for the southern hemisphere locations, so that the corresponding
summer months for the northern and southern hemisphere
locations were comparable (e.g., “January” was renamed as “July”,
“February” as “August”, and so on).

Lastly, we partitioned the “inverted” present-day dataset into
three subsets: the “full” dataset that included all seven monthly
variables; a “prec-temp” dataset composed of only the two
monthly variables, mean temperature and precipitation, available
in the paleoclimate datasets; and a “bioclimatic” dataset with the
BIO variables. We used the R package caret (Max Kuhn, 2021)
and a correlation matrix to reduce the factorial dimension of
the full and bioclimatic datasets by removing between-variable
correlations and non-informative variables (one correlation
matrix per month for the full dataset and one correlation matrix
for the bioclimatic dataset, 13 in total). Variables with an absolute
correlation of at least 75% were removed. Supplementary Table 2
shows the selected variables.

Generating Present-Day ENMs
We used the modeling approach developed by Hengl et al. (2009)
to build ENM models based on the present-day dataset. Hengl
et al. (2009)’s approach, implemented in R, is an extension of
Engler et al. (2004) to use occurrence and pseudoabsence data
to build ENMs for rare and endangered species. Generating
pseudoabsences at random over the study area is a common
approach in ENMs to explore the reliability of geographic
projections. Unfortunately, this is problematic in rare species
due to paucity of data and lack of valid (confirmed) absence
data (Chefaoui and Lobo, 2008). Hengl et al. (2009)’s approach
uses ecological niche factor analysis (ENFA) and weighted
pseudoabsences to create a presence/pseudoabsence dataset;

the latter is then used to build regression-kriging models
for predicting habitat suitability, and hence, the location of
individuals across geographical space (further details can be
found in Engler et al. (2004) and Hengl et al. (2009). We modified
Hengl et al.’s (2009) R script to allow projection of the ENMs
over geographic data that is either spatially or temporally variable,
i.e., in our study we projected ENMs over four paleoclimate time
slices; the modified R script is provided in GitHub5.

In our study, we used Hengl et al. (2009) method to build
genus-level ENMs for Camptoloma and Canarina, separately,
by pooling all species occurrence data within each genus.
Building a single generic ENM, as in Meseguer et al. (2015),
rather than species-specific ENMs was preferred because of the
sparse and uneven sampling per species, especially between the
Canarian and African taxa, which could introduce bias into
ENM comparisons; also, we were interested here in the deep
evolutionary divergences and not on the extant species niches.
For each genus separately, ENMs were built per month for the
present-day full and prec-temp datasets, and a single ENM for
the present-day bioclimatic dataset, i.e., in total 25 present-day
ENMs were built for each genus.

Assessing Data Bias in Present-Day ENM Projections
Unlike the present-day full dataset that contains seven variables
per month (e.g., solar radiation and wind speed), our time
slice paleoclimate datasets consists of only the monthly mean
temperature and precipitation variables. A lower number of
environmental variables may introduce bias in the hindcasted
ENM projections, if the two variables used to build the
paleoclimate datasets –monthly precipitation and mean
temperature– do not contain enough information to describe
the genus distribution. To test if data reduction causes bias in
hindcasted ENM projections, we compared the present-day
ENM projections built on the full climatic dataset with those of
the prec-temp dataset and the bioclimatic dataset. Specifically, we
projected all our ENMs upon the present-day dataset to generate
the continuous suitability maps. In the full and prec-temp ENMs,
the projections for each of the twelve months were combined to
generate a “yearly” ENM continuous suitability map by averaging
across the monthly continuous suitability maps; thus, for each
grid cell, the “yearly” ENM projection contained the averaged
or “ensembled” (as in Araújo and New, 2007) value of the
twelve monthly ENM projections. Then, we used the truncation
threshold criteria described below (see next section and Figure 2)
to create post-truncation absence/presence binary maps. We
calculated the goodness of fit for these models’ post-truncation
threshold continuous projections using discrimination indices
derived from the confusion matrix: error, accuracy, sensitivity,
specificity, precision, and the false rate (Fielding and Bell,
1997). To measure the strength of association among the ENM
projections derived from the three present-day full, prec-temp
and bioclimatic datasets, we calculated the Spearman’s rho
statistic for the continuous, pre-truncation threshold maps,
and the Simpson’s Similarity Index for the binary, post-
truncation threshold maps. If the ENM predictions generated

5https://github.com/vickycul
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FIGURE 2 | The biogeographically informed truncation threshold criteria to select the truncation threshold value for the ENM projections: The upper row shows three
paleo-time slices I–III and one preindustrial time slice IV used in our artificial example. (i) The biogeographic inference that represents the stem-, crown-, and node
ancestors of an artificial genus example (tree not to scale). Maps at tips show the current distribution of each species, maps at nodes represent the ancestral
distributions inferred in the biogeographic analysis (black). For some nodes, there are suggested connections between potential distribution of ancestors (gray
shading). (ii) Continuous ENM projections of the artificial genus hindcasted across the four time slices before applying the truncation threshold. (iii) The continuous
ENM projections are run through different truncation thresholds values, ranging from between [0, 1]. Cells with values that fall below the truncation threshold are
colored white (“absent”); those equal to or greater than the threshold are colored black (“present”). The red circles represent clusters of connected suitable cells
(here, suitable cells are considered connected if the distance between them is ≤ one unsuitable cells). (iv) Chosen the truncation threshold: for hindcasted ENMs, we
select the value that generates the best match the inferred ancestral distributions in the biogeographic analysis, this was 0.3 for the paleo time slices I-III in our
artificial example. For the present-day time slice IV, we select truncation threshold values that generates an absence/presence map using an established truncation
threshold criteria to select the truncation threshold. In this study we consider the minimized distance of the ROC curve truncation threshold criteria (MinROCdist;
PresenceAbsence R Package, Freeman and Moisen, 2008), here 0.7 in our artificial example.

by the prec-temp and the bioclimatic datasets are found to be
associated to the ENM predictions generated by the full dataset,
we can assume that the prec-temp and bioclimatic datasets
contain enough information to describe climatic suitability in
Camptoloma and Canarina, and hence, are appropriate for
hindcasting ENMs over the paleoclimatic time slices.

Hindcasted ENM Projections
To generate the past ENM predictions for both genera, we
projected upon each of the four time slices the twelve ENMs
built on the monthly prec-temp datasets, as well as the single
ENM built on the bioclimatic dataset. As described above, the
continuous value predictions from the twelve monthly prec-temp
ENMs were averaged to calculate a “yearly” prec-temp ENM

projection for each time slice. Lastly, we used our truncation
threshold method to create post-truncation absence/presence
maps for the bioclimatic ENM and the yearly prec-temp ENM
projections, as described in the next section (see also Figure 2).

Spatial Correspondence Across the Hemispheres
To explore if using monthly values for ENM projections is
appropriate when the genus distribution spans the northern and
southern hemispheres, we performed an additional analysis with
the present-day prec-temp dataset. We built monthly ENMs
for both genera based on the original, non-inverted present-
day datasets and projected them onto the four inverted paleo-
and preindustrial world-time slices. We then used our truncation
threshold to create post-truncation threshold binary maps. As
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above, we measured the strength of association between the non-
inverted and inverted yearly ENM projections by calculating the
Spearman’s rho statistic for the pre-truncation maps and the
Simpson’s Similarity Index for the post-truncation projections.

Using Biogeographic Information to Select the
Truncation Threshold Value
A common practice in ecological niche modeling is to truncate
the continuous value predictions returned by ENM projections
to produce binary absence/presence maps of habitat suitability
that are more readily interpretable (Diniz-Filho et al., 2010). This
truncation threshold is typically selected by using model fitting
techniques and a training dataset, subsetted from the original
dataset (Allouche et al., 2006; Diniz-Filho et al., 2010). The
same selected truncation threshold is used across all temporal
scales. Here, we propose a different truncation threshold method
that uses information obtained from biogeographic inference
and allows for the grouping of time slices at different temporal
scales. Figure 2 demonstrates this approach using a theoretical
example, a genus with three species distributed in three disjunct
regions. First (Figure 2i): biogeographic analysis, based on
distributional and phylogenetic data, is used to infer ancestral
ranges at every node in the phylogeny, and these ranges along
with current distributions are represented as absence/presence
maps; if the ancestral range is composed of disjunct areas,
potential connections among these areas are represented as gray
shading in the maps. Second (Figure 2ii): continuous hindcasted
ENM projections are generated for each time slice crossed by the
phylogeny. Third (Figure 2iii): the resulting continuous ENM
projections are run through alternative truncation threshold
values, ranging from 0 to 1, to generate binary habitat suitability
maps; grid cells with values equal to or greater than the truncation
threshold are assigned the value of 1, indicating suitable climatic
habitat (black cells in Figure 2iii); those lower, are assigned a
value of 0, i.e., unsuitable habitat (white cells). Next, for each
truncation threshold value, the resulting post-truncation ENM is
examined to find clusters of connected cells with suitable habitats:
suitable cells are considered connected if they are separated
by no more than one unsuitable cell (red cells in Figure 2iii).
Fourth (Figure 2iv): the post-truncation ENMs are compared
with the nodal ancestral ranges and the tip distribution maps
(i.e., the current species geographic distribution in Figure 2i);
the threshold value that generates ENM projections that best
match these ranges is selected as the optimal threshold value.
For comparing the post-truncation ENMs projections against the
tip species distribution maps, we used an established truncation
threshold criterion: the minimized distance of the ROC curve,
MinROCdist, as estimated in the PresenceAbsence R Package
(Freeman and Moisen, 2008). This criterion implies finding the
threshold value that minimizes the distance between the ROC
plot and the upper left corner of the unit square, which represents
the probability that the model correctly predicts the observed
presences and absences. MinROCdist has been recommended as
suitable for general use in the building of ENMs for extant species
(Jiménez-Valverde and Lobo, 2007).

We selected a single optimal threshold value for all three
paleoclimate time slices I, II, and III. The Preindustrial world time

slice IV had its own optimal threshold value calculated with the
MinROCdist method. Allowing for different truncation threshold
criteria for the paleoclimate versus the Preindustrial time slices is
justified on the different spatial scale resolution between datasets.
Our paleoclimate time slices have a coarser spatial resolution than
the preindustrial one (100 km vs. 1 km), and, thus, are probably
less sensitive for detecting habitat suitability. Furthermore, there
is increasing uncertainty in our habitat suitability predictions
the further in time we project ENMs. Therefore, a higher, more
conservative threshold value is needed for the Preindustrial
time slice, and a lower, less restrictive threshold value for the
paleoclimate time slices.

RESULTS

Present-Day ENM Projections
Figure 3A shows the continuous post-truncation ENM
projections for Camptoloma and Canarina built upon the
present-day bioclimatic, full and prec-temp datasets (the
latter are presented as the “yearly” monthly averaged values).
Figure 3B shows the corresponding post-truncation ENM
projections under the truncation threshold value selected under
the MinROCdist criterion, which oscillates between a value of
0.93 and 0.99. Supplementary Table 3 reports the performance
statistics (error, accuracy, and precision, etc.) for each model
under the selected threshold value. All models performed well
for all statistics except for precision, which was consistently low
across models. In our study, precision assumes that each genus
that we have recorded is present in all possible locations with
a suitable habitat, which is clearly not the case. Our presence
datasets for Camptoloma and Canarina are incomplete because,
as mentioned in the introduction, data collection is difficult,
and the genera that we are modeling have a limited geographic
distribution. Supplementary Table 4 presents the statistics
for the strength of association between the full-ENM and the
prec-temp and bioclimatic-ENM present-day projections. In the
case of the pre-truncation threshold projections, the full and
prec-temp datasets showed a “strong association” (according
to the descriptor in Dancey and Reidy, 2007) in Camptoloma
(Spearman’s rho = 0.45), and a very strong association in
Canarina (Spearman’s rho = 0.93). The pre-truncation threshold
projections based on the present-day full and bioclimatic
datasets showed a weak association in Camptoloma (Spearman’s
rho = 0.21), but strong in Canarina (Spearman’s rho = 0.78).
The Simpson’s Similarity Index showed a strong to very strong
association between the post-truncation threshold present-day
projections (Supplementary Table 4) based on the full dataset
and the prec-temp and bioclimatic datasets, suggesting that when
an appropriate truncation threshold is used, even projections
with weak associations become strong. In all, these results
support our contention that the monthly mean temperature and
precipitation variables included in the paleoclimate datasets hold
enough information to make reliable predictions about habitat
suitability, and thus can be used for ENM hindcasting over the
paleo and preindustrial time slices (see below).
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FIGURE 3 | Preindustrial ENMs. (A) Continuous, preindustrial geographical projections of the full, bioclimatic and prec-temp ENMs for genus Camptoloma and
Canarina, with the ENMs created on present-day climatic data. For the full and prec-temp ENMs, we present the “yearly” average of the month ENM projections.
(B) Absence/presence maps for full, bioclimatic and prec-temp ENMs for genus Camptoloma and Canarina after applying selected truncation threshold value
obtained from MinROCdist, [range = (0.93, 0.99)] to the continuous projections shown in (A). Black indicates habitat suitability and white habitat unsuitability.

Hindcasted ENM Projections
Figure 4 shows the hindcasted ENM projections, both pre-
truncation (continuous) and post-truncation (presence/absence),
based on the prec-temp dataset in the case of Camptoloma,
and on the bioclimatic dataset in the case of Canarina and for
each of the four time slices. Supplementary Figure 1 shows the
post-truncation ENM projections for different threshold values
in Camptoloma (Supplementary Figure 1A) and Canarina
(Supplementary Figure 1B) using the same datasets as above.
For the paleoclimate time slices I-III, a truncation threshold
value of 0.12 was selected for Camptoloma and a value of
0.21 for Canarina. For the Preindustrial world time slice
IV, a truncation threshold value of 0.95 was selected for
Camptoloma and of 0.99 for Canarina. In both genera, the
hindcasted ENM projections show a much larger extension
of suitable habitat in the past compared to the present-
day distribution. Furthermore, the paleoclimate projections
predicted the existence of suitable habitat corridors connecting
the currently disjunct species ranges during the Miocene and
Pliocene: these involve central and northern Africa during
the LMC for Canarina, and the LMC and MPWE for
Camptoloma (Figure 4).

Supplementary Figure 2 shows the post-truncation
hindcasted ENM projections across different threshold values
based on the alternative climatic dataset for each genus, that
is, ENM projections for the bioclimatic dataset in Camptoloma
(Supplementary Figure 2A) and ENM predictions based on
the yearly prec-temp dataset in Canarina (Supplementary

Figure 2B). Comparisons indicated that for ENM projections
based on these particular datasets and genera, it was not
possible to find an optimal threshold value across the three
paleoclimate time slices. Therefore, the bioclimatic and prec-
temp ENMs for Camptoloma and Canarina, respectively, were
excluded from further analysis. Finally, Figure 5 demonstrates
the need to use a different truncation threshold value for
different temporal scales: we compared post-truncation ENM
projections for the three paleoclimate time slices I-III that were
generated using either the threshold value for the Preindustrial
time slice IV, calculated with the minimized distance ROC
curve, versus the post-truncation ENM projections for
the three paleoclimate time slices I-III that were generated
using an independent threshold value calculated with the
biogeographically informed truncation method described in
Figure 2. Results, shown here for Camptoloma prec-temp
and Canarina bioclimatic ENMs, respectively, indicate that
using the MinROCdist method is too restrictive and fails to
recover any spatial distribution pattern in the ENM hindcasts
of the paleoclimate time slices I-III that fits the biogeographic
inference results.

Spatial Correspondence Between
Hemispheres
Supplementary Figure 3 and Supplementary Table 4 show the
results of the comparison between the pre- (Supplementary
Figure 3A) and post-truncation (Supplementary Figure 3B)
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FIGURE 4 | Hindcasted ENMs. Continuous and geographical projections for the best fitted ENMs for Camptoloma and Canarina over the four time slices: Mid
Miocene Climate Optimum (MMCO, 17-14 Ma); Late Miocene Climate Cooling, (LMC, 11.6-5.3 Ma); Mid Pliocene Climate Warming (MPWE, 3.6-2.6 Ma); and
preindustrial world (up to 1900). Here we selected the ENM created from the prec-temp dataset for Camptoloma and the bioclimatic dataset for Canarina.
A truncation threshold of 0.12 and 0.22 was selected for Camptoloma and Canarina, respectively, for the paleo time slices, and 0.95 and 0.99 for Camptoloma and
Canarina, respectively, for the preindustrial world. Black/white legend bar: “Black” indicates suitable habitat and “white” unsuitable habitat; gray scale legend bar
indicates habitat suitability. Supplementary Figure 1 shows in more detail how the truncation threshold was fine-tuned across the paleo time slices.

ENMs generated with the non-inverted versus the inverted prec-
temp dataset for Camptoloma (we did not investigate hemisphere
effects in Canarina, since, as explained above, the prec-temp
ENMs for this genus were excluded from further analyses). The
truncation threshold value for the non-inverted prec-temp ENM
projections was 0.97 for the preindustrial time slice and 0.1 for
the paleoclimate time slices. A very strong association between
the non-inverted and inverted prec-temp ENM projections was
found for each of the four time slices [pre-truncation threshold:
Spearman’s rho range = [0.72, 0.83]; post-truncation threshold:
Simpson’s Similarity Index range = (0.78, 0.88)]. Moreover, the
non-inverted and inverted post-truncation threshold ENM maps
showed a similar history of range shift events, with climatic
corridors in the LMC and MPWE time slices connecting the
currently disjunct species distributions. This suggests that the

hemisphere effect did not bias our yearly monthly averaged
ENM projections in Camptoloma, and therefore had no effect in
our predictions.

Reconstructing Geographic Range Shifts
Using ENM Projections and
Biogeographic Inference
Figure 6iii reconstructs the history of geographic range shifts in
Camptoloma and Canarina using information provided by the
biogeographic inference analysis (Figure 6i) and the hindcasted
ENM projections (Figure 6iii). The inferred ancestral ranges in
Camptoloma (Figure 6Ai) matched the climatically suitable areas
depicted in the post-truncation ENM projections based on the
prec-temp dataset (Figure 6Aii). In Canarina, the hindcasted
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FIGURE 5 | Performance comparison between the biogeographically-informed truncation threshold criterion and minimized distance ROC curve truncation threshold
criteria.

ENMs based on the bioclimatic dataset (Figure 6Bii) also showed
a good match to the biogeographic inferences (Figure 6Bi).

DISCUSSION

ENMs and Biogeographic Inference
Used in Tandem Reconstruct Geographic
Range Shifts in Rare Endemics
In the original studies exploring Canarina and Camptoloma
biogeographic history (Mairal et al., 2015; Culshaw et al., 2021),
the currently disjunct distribution of the extant species was
explained by ecological vicariance and climate-driven extinction

linked to Neogene aridification cycles, in agreement with other
Rand Flora lineages (Pokorny et al., 2015; Rincón-Barrado
et al., 2021). However, the small phylogenies, with only three
species each, and the deep evolutionary divergences, introduced
large uncertainty in ancestral range inference; for example, the
Western Asian origin of Canarina (Mairal et al., 2015) or the
southern African stem-ancestor of Camptoloma (Culshaw et al.,
2021), were associated with marginal probabilities lower than 0.1.

In our study, the introduction of additional information
provided by hindcasted ENM projections was able to clarify some
of these uncertain biogeographic inferences, in particular along
the long internodal branches. For example, ENM projections
support a restricted distribution of stem-Camptoloma, in
southwestern Africa in the Early-Mid Miocene (21 Ma), while
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the crown-ancestor is reconstructed as occupying eastern Africa-
southern Arabia and Macaronesia already in the Early Pliocene
(4.6 Ma, Figure 6Aii). ENM projections (Figure 6Aii) support
also the hypothesis of a northeastward dispersal of the ancestor of
Camptoloma during the 15-million year branch length separating
the stem and crown nodes (Figure 6Aiii, Culshaw et al.,
2021): the ENM predictions for time slices I and II showed
the presence of suitable habitat corridors over central-eastern
Africa during the MMCO (17-14 Ma) and the LMC (12-5
Ma) time slices (Figure 6Aiii). Similarly, the biogeographic
inference of a widespread distribution across northern Africa for
the most recent common ancestor of Camptoloma canariense
and C. lyperiiflorum (3.4 Ma, Figure 6Ai), Culshaw et al.,
2021) is supported by the ENM projection for time slice III,
which shows climatic corridors with suitable habitat during
the MPWE (Figure 6Aii); these disappear in the preindustrial
projection (Figure 6Aiii).

Mairal et al. (2015) inferred a stem-ancestor of Canarina
distributed in central Asia around the Mid Miocene
(13.9 Ma, Figure 6Bi), which migrated to eastern Africa during
the Mid-Late Miocene (11-8 Ma). This scenario is supported
by our hindcasted ENM projections (Figure 6Bii), which show
suitable habitat in western Asia and central-eastern Africa during
the MMCO interval. The ca. 8 million-year branch separating the
disjunct sister species C. canariensis and C. eminii was explained
in Mairal et al. (2015) by short-range dispersal over climatic
corridors across the Sahara during the Late Miocene, followed
by climatic extinction in the Pliocene (Figure 6Bi). The ENM
projections for time slices II and III support these inferences,
depicting corridors of suitable habitat across the Sahara during
the wetter and colder climates of the LMC (Figure 6Bii), which
disappear in the projections of the drier MPWE (Figure 6Bi).

Using Biogeographical Inference as
Truncation Threshold Criteria in ENMs
A known difficulty in building ENMs for rare endemics is the
selection of the optimal truncation threshold value (Diniz-Filho
et al., 2010). The selection of a threshold value often relies
upon model fit tests, such as the Kappa statistic (Monserud
and Leemans, 1992; Fielding and Bell, 1997), the true skill
statistic (TSS, Allouche et al., 2006), or the Receiver Operator
Characteristic (ROC). All of these approaches rely on using a
training dataset, subsetted from the original data, and evaluating
model fit through examination of true and false predictions of
species presences and absences (Liu et al., 2005; Jiménez-Valverde
and Lobo, 2007). When the georeferenced data is complete and
unbiased, and the ENMs are hindcasted upon shallow timescales,
these truncation threshold criteria are reliable. However, when
occurrence records are incomplete or biased toward certain
regions, or when ENMs are hindcasted upon deep timescales, as
in our study, these methods can lead to biased habitat suitability
projections, as demonstrated in Figure 5.

Here, we propose an alternative approach that uses ancestral
nodal ranges inferred through biogeographic inference as
an independent source of information for selecting the
truncation threshold value of ENM projections (Figure 2).

Our approach is particularly suited for ENMs hindcasted
into the distant past, where traditional criteria such as
the MinROCdist result in very restrictive and conservative
truncation threshold values and fail to recover any spatial
pattern (Figure 5). Our study, thus, supports the importance
of using an appropriate truncation threshold criterion when
using absence/presence ENM models (Nenzén and Araújo,
2011), especially when comparing paleoclimate vs. predindustrial
hindcasted projections.

The Importance of Temporal Resolution
When Building ENMs
There has been recent discussion on the importance of including
fine-scale temporal resolution in the environmental data used
for building ENMs (Kearney et al., 2012; Gardner et al.,
2020; Perez-Navarro et al., 2020). The average-year bioclimatic
variables obtained from WorldClim might be too coarse in
temporal resolution to capture the climatic niche of short-lived
species or species with large geographic ranges and contrasting
seasonal regimes, for example, those distributed north and south
of the equator (Kearney et al., 2012; Montalto et al., 2014).
The importance of considering temporal resolution in climatic
data has been emphasized also for paleoclimate data. Even if
WorldClim bioclimatic variables correlate with physiological
predictors, these relationships could break down when results are
extrapolated into other time frames (Elith and Leathwick, 2009).
Bova et al. (2021) recently showed that the mismatch between
paleoclimate simulations and temperature reconstructions from
geological records disappear when seasonal variation over time is
employed instead of long-term averages.

In the case of Camptoloma, ENM projections built on the
yearly averaged, monthly variables of the prec-temp dataset
showed a strong association to those built on the full climatic
dataset (Supplementary Table 4), suggesting that monthly mean
temperature and precipitation contained enough information
to infer ancestral tolerances when projected into the past;
in contrast, ENMs built on the annual variables of the
bioclimate dataset showed a weak association and we could
not find an optimal threshold value for hindcasted projections
(Supplementary Table 4 and Supplementary Figure 2). For
Canarina, the opposite pattern was found: the ENM projections
built on the annual bioclimatic variables showed a strong
association with the full dataset, while the monthly averaged prec-
temp projections proved to be less informative (Supplementary
Table 4 and Supplementary Figure 2). These differences between
the two genera may be explained by their different “rarity”
character. Camptoloma fits Rabinowitz’s (1981) definition of a
“narrow rare endemic”: a rare species with small populations
restricted to climatic microrefugia. Camptoloma rotundifolium
occurs in moist escarpments in the Namibian Brandberg
Mountains, whereas C. canariense grows in shaded vertical
crevices on the coastal slopes and cliffs of Gran Canaria
and C. lyperiiflorum inhabits a special wetter microclimate in
Socotra Island (Culshaw et al., 2021). In contrast, Canarina
fits the definition of a “widespread rare endemic” (Rabinowitz,
1981): Canarina canariensis occurs in five of the seven Canary
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Islands, while the geographic range of C. eminii extends
from Ethiopia in the north to Malawi in the south (Mairal
et al., 2018). Moreover, Canarina species can spend unfavorable
seasons throughout the year in a tuber/root form, which
could buffer the influence of climate extreme events on
species’ survival, growth and reproductive capacity (Hedberg,
1961). It might be that the use of fine-temporal resolution
environmental data, i.e., the yearly averaged monthly values
from the prec-temp dataset, is important for modeling the
climatic preferences of a species with restricted habitats and
little capacity for behavioral buffering, such as Camptoloma,
whereas the annual bioclimatic variables from WorldClim
work well for the more widespread Canarina. Our study
thus supports the hypothesis that temporal resolution of
environmental data when building ENMs should be at a
scale adequate to understand physiological responses to climate
change in the organism under study (Gardner et al., 2020),
or in other words, at a scale over which biological responses
directly influence their predicted presences in ENM models
(Montalto et al., 2014).

CONCLUSION

We showed that combining information provided by hindcasted
ecological niche models and phylogenetic biogeographic
inference can be useful in reconstructing geographic range
shifts that resulted from climate change, as found in rare
endemics with sparse and biased sampling and ancient
origins. Biogeographic inference can be used to select the
truncation threshold value to build ENM presence/absence
maps for the distant past, whereas hindcasted ENMs
can inform biogeographic inference over phylogenetic
intervals with no observable diversification events. We
additionally demonstrate the importance of temporal
resolution in ENMs, especially in narrow rare endemics
characterized by limited sampling and with restricted
physiological requirements.
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Supplementary Figure 1 | Demonstrating how to select a suitable truncation
threshold with the biogeographically-informed truncation threshold criterion for (A)
the Camptoloma prec-temp ENM paleo projections and (B) the Canarina
bioclimatic ENM paleo projections. Black indicates presence, white indicates
absence, and red represents the bridge between black cells that are no more than
one white cell apart (see Figure 2 for more details). The biogeographic inference
results that were used as the criterion to select the truncation threshold can be
seen in Figure 6i.

Supplementary Figure 2 | Demonstrating the inability to find a suitable truncation
threshold with the biogeographically-informed truncation threshold criterion for (A)
the Camptoloma bioclimatic ENM paleo projections and for (B) the Canarina
prec-temp ENM paleo projections. Black indicates presence, white indicates
absence, and red represents the bridge between black cells that are no more than
one white cell value apart (see Figure 2 for more details). It can be seen that
regardless of the threshold, most of the binary maps resemble one another, and
more importantly they do not represent the biogeographic inference results (seen
in Figure 6i) that are used as a criterion for the selection of the truncation
threshold. For example, in Camptoloma, the bioclimatic models (Supplementary
Figure 2A) predict high habitat suitability across the Sahara Desert in the MMCO
and LMC layers; in Canarina, the prec-temp dataset (Supplementary Figure 2B)
does not show connections across northern Africa in the LMC time slice, as
expected from the biogeographic results.

Supplementary Figure 3 | Exploring if the “hemisphere” effect introduces a bias
into the Camptoloma binary ENM hindcast projections for the prec-temp dataset,
where each projection is a “yearly” average of the month ENMs results. The ENM
prec-temp projections for the non-inverted and inverted binary maps have similar
truncation thresholds (0.1 vs. 0.12) and both show absence/presence
distributions for each time slice.

Supplementary Table 1 | Climatic variables from WorldClim2 (Fick and Hijmans,
2017) with acronyms and units used in the study.

Supplementary Table 2 | Variables per month that were retained after the full
present-day climatic dataset was run through correlation matrices. Only variables
with low absolute correlated attributes (correlation lower than 0.75) were included
in the final models.

Supplementary Table 3 | ENM performance statistics at selected present-day
truncation threshold for genera Camptoloma and Canarina.

Supplementary Table 4 | The strength of association among the three
present-day maps calculated as the Spearman’s rho statistic for the pre-truncation
threshold projections and the Simpson’s Similarity Index for the post-truncation
threshold projections.

Supplementary Appendix 1 | The geographic occurrence and climatic data
used for ecological niche modeling in Camptoloma and Canarina. This data has
been normalized to lie within the closed boundaries [0, 1], and the hemispheres
were “inverted” (details in section “Materials and Methods”) to account for the
“hemisphere effect.”
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