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Abstract

A plasma is a gas of charged particles, say of electrons and ions. In
the tail of a comet, for instance, the dominant force on the particles is
the electromagnetic force. In kinetic theory the velocity is treated as an
independent variable, which leads to the Vlasov equation. In the absence
of collisions, entropy plays no special role. There are many equilibria,
some of which are stable and some unstable. We consider three classes
of equilibria, the homogeneous ones, the electric BGK equilibria, and the
magnetic equilibria. In the second and third classes some of the particles
are trapped by the field and there is no exact dispersion relation. Until
two years ago very little was known about their stability properties. We
discuss several results asserting their stability or instability.

1. Introduction

A gas may be modeled in three fundamentally different ways. In a Particle
Model, each of the N molecules satisfies a differential equation mz = force +
collisions. Unfortunately N typically has the order 10%®. In a Fluids Model,
the velocity v, spatial density p, etc. are functions of time ¢ and space z. This
kind of modeling leads to the Fuler equations, Navier-Stokes equations, etc. In
a Kinetic Model, the density f(t,z,v) of particles in phase space (z,v) plays
the central role. The velocity v is an independent variable. The passage from a
Particle to a Kinetic Model is the subject of Statistical Mechanics. The passage
from a Kinetic to a Fluids Model has also been much studied, for instance by

Hilbert in 1912.
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In this lecture 1 will talk exclusively about Kinetic Theory. If the individual
particles (of unit mass) are acted upon by a force K, and the phase-space density

of particles is f(¢,z,v), then the basic dynamical equation is

atf‘l’ 'Uazf + I('avf = Q(f)

where K is the force and @) is the collision operator. The characteristics of the
PDE are the paths of the physical particles.

A collision between particles is governed by the conservation of momentum
u+v = +v" and energy |ul® + [v]? = [u'|* + |[v]2. Tt occurs with a probability

o(Ju — v|,w) that depends on the particular physical situation. The collision

operator then takes the form

QW) = [ olfW)F () = F(u)f (o)

where the integral is taken over all possibilities. The Boltzmann equation
O f+v-0.f = Q(f) governs a pure gas of uncharged particles that undergo col-
lisions. The total mass [ f, momentum [wvf and energy [ |v|?f are conserved.
Furthermore, the entropy is increasing: % [ flog f < 0. (The entropy is the
negative of this integral.) It is natural to expect that the entropy is driven
to a maximum. The critical points of the entropy subject to constant mass,
momentum and energy are the distributions p = exp(a + b - v — c|v|?), called
the maxwellia. Ukai [U] was the first to prove that under some reasonable as-
sumptions the equilibria g are asymptotically stable. This means that if f is
initially near y then f — p as { — +oc.

In most of this lecture we will be concerned with a plasma, a large collection
of charged particles. Examples include the stellar interior, interstellar dust,
a fluorescent bulb, the solar wind, the magnetosphere, the tail of a comet, a
particle accelerator, and a fusion reactor such as a tokamak.

We will assume that collisions between the particles are negligible, that the
plasma is relativistic, that both the mass and the charge of an individual particle

are 1 and that the speed of light is ¢ = 1. We consider a collection of electrons
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(=) and ions (+). Let
fe(t,z,v) = density of ions, electrons; E(t,z) [B(t,z)] = electric [magnetic| field

The momentum of a particle is v, the velocity © = v/y/1 + v?, the energy
(v) = V1 4 v? and the charge e = £1. A single particle satisfies

=0, v=¢e(FK+0xB)= force.

3

The particle density and field satisfy the Vlasov-Maxwell system (here in its

relativistic form)

{0 +0-Vot(E+6xB) - V,}fy =0,

OE=NxB-j, V-E=p  p=[(li—[)dv,

8B =—V x E, V.B=0, j:/ﬁ(f+—f_)dv.

2. One-dimensional case

In one-dimension all the variables are scalars and the system reduces to

Ofy + 00, fx £ E0,f+ =0
atE = —j, 8ZE =p

This system has been proven to be well-posed. Notice that the last two (Maxwell)
equations are compatible because d;p+ 30,7 = 0 from the first (Vlasov) equation.
A similar system describes a continuous distribution of particles under gravity
(e.g. stars in a galaxy).

Unlike the Boltzmann case there are many equilibria. Any equilibrium must
satisfy (00, £ F0,)f+ = 0. Because fi must be constant on the characteristics,

the typical equilibrium takes the form

f+ = p=({v) F 0(2))
E = &' (z)
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for some functions p4,p_ and ® where

657(12) = /_Z[u+(<v> — ®(x)) — p-((v) + ®(x))] dv = —H'(P).

Such solutions are called BGK equilibria after the authors of the original paper
[BGK]. There are hundreds of physics papers about them. Here we assume

neutrality:

|l () = ()] do = 0.

For example, if H'(0) = 0 and H"”(0) > 0, then the origin is a center for the
second-order ODE. Thus there is a family of small periodic solutions. Although
such equilibria are quite simple, initial perturbations in the PDE can induce

very complicated spatial and temporal behavior!

Theorem 1.[GS1,GS2] If H'(0) = 0 and H"(0) > 0 together with some technical
assumptions, then a small periodic solution of period P is unstable (both linearly
and nonlinearly) with respect to perturbations of the initial data of period 2P.

More precisely, there exists ¢g > 0 such that for all § > 0 there exists a solution
f=f° such that

1 F(0) = g flwia +[[E(0) = @slwrs <6

but
sup  |[f(1) = pllp +E() = @[ > eo.

0<t<C|log §|
The strategy of the proof is (I) to linearize and (1I) to pass from the linear to
the nonlinear system. For (I) it has to be proven that there exist exponentially

growing solutions of the linearized system.

3. Proof of linear instability
The linearized system around the inhomogeneous equilibrium [py, p_, @] is
[0y + 00, + ®,0,] g+ = —F Oppus((v) F ®(2))

9IE=/_OO(9+—9—)dv, &E:—/ b (94 —g-) dv.

—00
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This problem has a lot of marginal, continuous spectrum! However, we will
look for some unstable point spectrum F = e_i‘“tE(x) with Sw > 0. The char-
acteristics (particle paths) are given by & = ¢, ¥ = £, with a phase portrait
just like a pendulum that includes trapped particles (periodic orbits). Thus by
inverting the operator [0; + 00, + ®,0,], we get an equation like

g+ = / - E Oy
characteristics

Then we look for solutions F = e~®! E(m) and plug them into the Poisson

equation. We obtain
0. FE(x) = /OO k(z,2',w) E(;t:') dz’ |
where k = kT — k™ and

k‘i (z,7',w) = / / t 0,2',v") Oyps ((v) F ®(z')) et idv'dt.

Integrating from —oo to x, we obtain an equation in the abstract form
E=Cw,®) E.

We prove three statements about this operator:
w — C(w,®) is analytic in {Sw > 0}.
¢ — C(w,®) is continuous in a certain sense near ¢ = 0.
—  C(w,®)E is a compact operator in L.
The last statement is the Main Lemma. Under these conditions it is well-known
by general operator theory that the poles of [I —C(w,®)]™' vary continuously
as functions of ®. Therefore the problem is reduced to the case of & = 0.
The homogeneous case ® = 0 can be studied easily by Fourier transform in

x, or alternatively by looking directly for exponential solutions

E = ei(kz—wt) 7 gy = ei(kz—wt)gi(v)’

from which we easily get the dispersion relation

k2:/oo Mdv:Z(Z)

-0 vV—Zz
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—iwt| —

where z = w/k, k # 0. We look for real k£ and complex w. Since |e
e’ we ask whether there exists Sw > 0 or not. Thus the homogeneous
equilibrium is linearly unstable if and only if the image of the upper half-plane
{32z > 0} under Z meets the positive real axis. Penrose [P] found a nice
necessary and sufficient condition on p4 for this to be true. In particular, if
p4 + pi— is a decreasing function of |v], the equilibrium is linearly stable, but if
fy + p— deviates sufficiently from monotonicity, it is linearly unstable. Under

the assumption of our theorem, Z(0) = H"”(0) > 0, which places us in the

unstable case.

4. Proof of nonlinear instability

Let us drop the notation £, and cryptically write the linearized system in the
form (0; + L) g = 0. We have just shown there exists a solution g = ™ R(z,v)

where A\ = —iw is an eigenvalue of — L. The full nonlinear system is

O+ L)(f =) = (B =) 0,(f — )

where we again have simplified the notation. We choose f(0) = u + § R
where § is a small parameter and R e has the maximum possible R\. Next we

write the full nonlinear system in the integral form
¢
[(6)—p =8 R+ [ M=) (B —0,)-0,(f — p) dr.
0
We will show that the linear term dominates by estimating

t
1F(t) = p = GReM|l1n < /0 NNE = @yl 10,0 — )z dr.

We treat the dangerous factor involving the v-derivative of f — u by the

Lemma. If ||f — p|lrr = O(e®") and if certain norms of [ — p are bounded,
then

10.(f = )l = O(e™).
Then the instability follows with @ = RA. Furthermore we prove that fi > 0 if

for instance |p/| < Cpu, so that fi are true densities.
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5. Solitary waves and collisionless shocks

Assume now that the distributions p4 are such that a solitary wave ® () exists,
meaning that the ODE has a homoclinic orbit, and that the linearized system

around the homogeneous state [y ((v)), £ = 0] has a growing mode.

Theorem 2. [GS3] The equilibrium [us((v) + ®(z)), £ = ®,] coming from
the solitary wave is linearly and nonlinear unstable with respect to perturbations

that vanish as x — +oo.

Here the new difficulty is that we lose the compactness of the operator
C(w,®). Even the unstable spectrum has become continuous! We evade this
difficulty by using the causality of the relativistic system. By hypothesis, the
linearized system around p((v)) has a growing plane wave expi(kx — wt) of
some period P/2. Hence the full nonlinear system with boundary conditions
of period P has an unstable solution fp(t,z,v). For the full nonlinear system
with boundary conditions for F vanishing as * — +o00, we choose initial data
f(0,2,v) = fp(0,z,v) for x € [, and f(0,z,v) = u({(v) FP(x)) for = € I, where
[ is a big interval near —oo. Now we use the fact that & — 0 as + — —o0,
together with the causality, to prove that fi(¢,z,v) — ps({v) F ®(z)) becomes
large within the triangle of dependence of I.

The same proof works for a collisionless shock (a kink), which corresponds

to a heteroclinic orbit.

6. Stability: the homogeneous state

If a state is stable, all of the spectrum of the linearized problem is marginal (e™!
with w real). Therefore the linear problem cannot help determine the stability
of the nonlinear problem. Every known proof of nonlinear stability depends

primarily on the nonlinear invariants.

Theorem 3. Consider a homogeneous state [us((v)), £ = 0] and consider
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perturbations of a given x-period. If both py and p_ are strictly decreasing,
then the full nonlinear system is stable with respect to L* norms.

The idea of the proof goes back to [Ga]. We use the nonlinear invariant

1.8) = [ S1BPde - [ [[0)(Fs + 1)+ 7a(fa) 49 ()] dode

with 1 to be chosen. Then
1(£(0), B(0) = (1, 0) = I(f(1), E(1)) = 1(2,0)
= [ Sl + 3 [ Jlelfe0) = 2 (aa) + () (a(0) = )] dodo

We choose v (p+((v))) = —(v). Then 44 and ~_ are strictly convex, so that

v{ > ¢ > 0 for bounded arguments. Hence

T((0), B(0) ~ 1(1,0) > [ LB dr + X [ [(fet) = pa)? drdo

If the left side is small, so is the right side for all ¢.
Here is an important open problem. If there are little bumps in the graphs
of 14 and p_ (small deviations from monotonicity), is the homogeneous equi-

librium nonlinearly stable or unstable?

7. Magnetic equilibria

Of course, a magnetic field can exist only in more than one dimension. The
simplest case is the so-called I%D Vlasov-Maxwell system with coordinates
(2,0,0), (v1,v2,0), (K1, Fa,0) and (0,0, B). Besides the energy (v)F®(z), where
FE; = ®'(x), there is another invariant if Fy = 0, namely vy + ¥(z) where

B =V'(z). If F3 =0, the equilibria have the form
fe=ps((v) FO(x),v2 £ V(x)), B=V,, k=0, F,=0.

Guo and Ragazzo [GR] observe that ® and W then satisfy the coupled pair of
ODE’s

<I>m=p=/(u+—u—)dv, \I’mz—jzz—/ﬁz(m—u—)dv
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where py = pa((v) F @(x),v2 £ V(x)). In this way they found many interesting
magnetic equilibria.

In the saddle-saddle case they found the "flat-tail” equilibria for which the
magnetic field is asymptotic to different constants at 400 and —oc. Under
some conditions Guo [G] proves their stabilily. In the center-saddle case they
found the "oscillatory-tail” equilibria, for which the electric field is asymptotic
to a periodic solution as * — —oc and to a constant as * — +oc and whose
magnetic field is asymptotic to different constants at +o00 and —oco. Under some
conditions we [GS4] prove their instability.

Major mathematical/scientific problems in the kinetic theory of plasmas
include: equilibria (existence and properties), stability and instability, 3D ge-
ometry and boundary effects, singularity creation and propagation, numerical
computations (particle methods), the interaction of electromagnetic and colli-

sional effects, and fluid limits (MHD, Navier-Stokes, Euler).
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