On Relativizations of the P \(\frac{2}{2} \) NP Question

for Several Structures

Christine Gaßner
Greifswald

Hagen 2008

On Relativizations of the P ? NP Question for Several Structures

Our goal:

Construct several oracles with
PA ≠ NPA

with respect to the uniform model of computation.

- Evaluate known constructions
 - using knowledge
 - of the mathematical logic,
 - about the ring over the real numbers.
- Show difficulties in deriving a structure with

$$P = NP$$

from an oracle with $P^A = NP^A$.

On Relativizations of the P = NP Question for Several Structures

- 1. The uniform model of computation
- 2. Diagonalization techniques and halting problems
- 3. Structures and oracles with $P^A \neq NP^A$

4. Structures and an oracle with $P^A = NP^A$

The uniform model of computation

A structure:
$$\Sigma = (U; c_1, ..., c_u; f_1, ..., f_v; R_1, ..., R_w, =)$$

 $\Sigma = (U; (c_i)_{i \in F}; (f_i)_{i \in G}; (R_i)_{i \in H}, =)$

Computation:
$$l: Z_k := f_j(Z_{k_1},...,Z_{k_{m_j}});$$
 $l: Z_k := c_i;$

Branching:
$$l: \text{ if } R_j(Z_{k_1}, \dots, Z_{k_{n_j}}) \text{ then goto } l_1 \text{ else goto } l_2;$$
 $l: \text{ if } Z_k = Z_j \text{ then goto } l_1 \text{ else goto } l_2;$

Copy:
$$l: Z_{I_k} = Z_{I_j};$$

Index computation: $I_k = 1$; $I_k = I_k + 1$; if $I_k = I_j$ then goto l_1 else goto l_2 ;

Examples for several structures

```
\mathbb{Z}_2 = (\{0, 1\}; 0, 1; +, \cdot; =)
                                                   (⇒ Turing machines)
            = (\mathbb{R}; \mathbb{R}; +, -, \cdot; \leq)
 \mathbb{R}
                                                             (⇒ BSS model)
            = (\{0,1\}^*; \varepsilon, 0, 1; add, sub_1, sub_r; =)
\Sigma_{
m string}
             = (tree(\mathbb{R}); nil; concat, root, sub<sub>1</sub>, sub<sub>r</sub>; = )
\Sigma_{\rm tree}
                                    \operatorname{concat}(a, t_1, t_2) = a
```

The machine and the input

The input:
$$(Z_1,...,Z_n) := (x_1,...,x_n); I_1 := n; I_2 := 1;...; I_{k_M} := 1;$$

Computation in polynomial time

For any machine M there is some polynomial p_M such that

$$M$$
 halts for $x = (x_1, ..., x_n)$ within $p_M(n)$ steps.

One operation is executed within one time unit.

$$\Rightarrow$$
 P_{Σ} \subseteq DEC_{Σ} (P_{Σ} $ext{$\triangle$ problems are decidable in polynomial time)}$

Why do we consider the uniform model of computation?

In describing algorithms (for instance, in the computational geometry) we often use

- models over algebraic structures with several costs for operations,
- the BSS model with unit cost measure.

Important:

to investigate

- common properties
- differences

of several models, in order to answer:

- When can we use a model over an algebraic structure?
- Which simplification can imply problems?
- Which properties are necessary in order to get a special complexity for a problem?

The non-deterministic instructions

The non-determinism:

guess(
$$Z_k$$
); Arbitrary elements can be guessed!

$$\Rightarrow$$
 $P_{\Sigma} \subseteq NP_{\Sigma}$

Some $P_{\Sigma} \stackrel{?}{=} NP_{\Sigma}$ problems for several structures

Σ	$P_{\Sigma} = NP_{\Sigma}$?
$(\mathbb{C};\mathbb{C};+,-,\cdot\;;=)$?
$(\mathbb{R};\mathbb{R};+,-,\cdot\;;\leq)$?
$(\mathbb{R};\mathbb{R};+,-,\cdot\;;\;=)$	no (≤)
$(\mathbb{R};\mathbb{R};+,-;\leq)$?
$(\mathbb{R};\mathbb{R};+,-;=)$	no (Meer / Koiran)
$(\mathbb{Z};\mathbb{Z};+,-;\leq)$	no (even integers)
$(\mathbb{Z};\mathbb{Z};+,-;=)$	no (even integers)
$(\mathbb{Z}; 1; (\varphi_s)_{s \in \mathbb{Z}}; =)$ $\varphi_s(x) = sx$	no (no NP-complete problem)

Halting problems for Σ

$$H_{\Sigma} = \{(x_1, \dots, x_n, Code(M)) \mid$$
 $x \in U^{\infty} \& M \text{ is a deterministic } \Sigma\text{-machine}$ $\& M \text{ halts on } x\}$

$$H_{\Sigma}^{\text{spec}} = \{Code(M) \mid M \text{ is a deterministic } \Sigma\text{-machine} \}$$
 & M halts on $Code(M)$

Diagonalization techniques

The undecidability of the Halting problem H_{Σ} (for Turing machines)

1. The set of machines is countable. Assume that H_{Σ}^{spec} is decidable.

Halt?	bin(1)	•••	bin(i)	•••	bin(<i>j</i>)	•••	•••
M_1	yes / no						
1		•••					
M_{i}			yes				
1				•••			
M_{j}					no		
1						•••	
1							
M	no / yes	•••	no	•••	yes	•••	•••

 \Rightarrow There is an M recognizing the complement of H_{Σ}^{spec} .

Diagonalization techniques

The undecidability of the Halting problem H_{Σ} (for $(\mathbb{R}; \mathbb{R}; +, -, \cdot; \leq)$)

The codes of machines are ordered. Assume that H_{Σ}^{spec} is decidable.

Halt?	•••	•••	$Code(M_i)$	•••	$Code(M_j)$	•••	•••
1	•••						
1		•••					
M_{i}			yes				
1				•••			
M_{j}					no		
1						•••	
1							
M	999	•••	no	•••	yes	900	•••

 \Rightarrow There is an M recognizing the complement of H_{Σ}^{spec} . \checkmark

Diagonalization techniques

The undecidability of the Halting problem H_{Σ} (for any structure)

3. Σ arbitrary (We can generalize the result.)

Assume: H_{Σ} is decidable.

 $\Rightarrow H_{\Sigma}^{\text{spec}}$ is decidable.

 \Rightarrow The complement of H_{Σ}^{spec}

is semi-decidable by a Σ -machine M.

 $\Rightarrow M$ halts on Code(M)

 $\Leftrightarrow M$ does not halt on Code(M).

Oracle machines

Oracle query:

$$l: \text{ if } (Z_1, \dots, Z_{I_1}) \in B \text{ then goto } l_1 \text{ else goto } l_2;$$

The length can be computed by $I_1 = 1$; $I_1 = I_1 + 1$;

B oracle, $B \subseteq U^{\infty} = \bigcup_{n \ge 1} U^n$

We will define oracles such that

$$P_{\Sigma}^{Q} \neq NP_{\Sigma}^{Q}$$

$$P_{\Sigma}^{O} = NP_{\Sigma}^{O}$$
.

(cp. also Baker, Gill, and Solovay; Emerson; ... for Turing machines...)

Diagonalization techniques by Baker, Gill, and Solovay

1. If the set of programs is countable, for any oracle $B \subseteq U^{\infty}$,

let N_i^B be the P_{γ}^B -machine

executing $p_i(n)$ instructions of program P_i for any $x \in U^n$. $a, b \in U$.

Proposition: $\{y \mid (\exists i \ge 1) (y \in U^{n_i} \& V_i \ne \emptyset)\} \in \mathbb{NP}_{\Sigma}^{Q} \setminus \mathbb{P}_{\Sigma}^{Q}$

Diagonalization techniques by Baker, Gill, and Solovay

The set of programs is countable. $a, b \in U$.

P_i	p_i	n_i	Length in a query	$(a,,a) \in U^{n_i}$	$\mathbf{Q} = \mathbf{Q}_{\Sigma} = \cup_{i \ge 1} W_i$
P_1	p_1	$p_1(n_1) + n_1 < 2^{n_1}$	$\leq p_1(n_1) + n_1$	rejected	$W_1 = \{ \boldsymbol{x} \mid \boldsymbol{x} \in U^{n_1} \& \boldsymbol{x} \text{ not queried} \}$
			< n ₂	accepted	$W_1 = \emptyset$
1	ŧ				
P_{i}	p_i	$2^{n_{i-1}} < n_i$	$\leq p_i(n_i) + n_i$	rejected	$W_{i+1} = W_i \cup \{ \boldsymbol{x} \mid \boldsymbol{x} \in U^{n_i} \& \boldsymbol{x} \text{ not }$
		$2^{n_{i-1}} < n_{i}$ $p_{i}(n_{i}) + n_{i} < 2^{n_{i}}$	$< n_{i+1}$		queried by $N_i^{W_i}$ on $(a,,a) \in U^{n_i}$
1	ŧ				
P_{j}	p_{j}	$2^{n_{j-1}} < n_j$	$\leq p_j(n_j) + n_j$	accepted	$W_{j+1} = W_j$
		$p_j(n_j) + n_j < 2^{n_j}$	$< n_{j+1}$		
1	I				

$$\Rightarrow N_u^{W_i}$$
 rejects $(a,...,a) \Leftrightarrow N_u^{W_{i+1}}$ rejects $(a,...,a) \Leftrightarrow N_u^Q$ rejects $(a,...,a)$.

Diagonalization techniques by Baker, Gill, and Solovay

1. If the set of programs is countable, for any oracle $B \subseteq U^{\infty}$,

let N_i^B be the P_{γ}^B -machine

executing $p_i(n)$ instructions of program P_i for any $x \in U^n$. $a, b \in U$.

$$\begin{split} &V_0 = \varnothing, \ m_0 = 0. \\ &\text{Stage } i \geq 1 \colon \text{ Let } n_i > m_{i-1}, \ m_i = 2^{n_i}, \ p_i(n_i) + n_i < m_i. \\ &W_i = \cup_{j < i} V_j \\ &V_i = \{ \boldsymbol{x} \in U^{n_i} \mid \boldsymbol{N_i}^{W_i} \text{ rejects } (a,...,a) \in U^{n_i} \\ &\& \boldsymbol{x} \text{ is not queried by } \boldsymbol{N_i}^{W_i} \text{ on } (a,...,a) \in U^{n_i} \} \end{split}$$

$$Q = Q_{\Sigma} = \bigcup_{i \geq 1} W_i$$

Proposition: $\{y \mid (\exists i \ge 1) (y \in U^{n_i} \& V_i \ne \emptyset)\} \in NP_{\Sigma}^{Q} \setminus P_{\Sigma}^{Q}$.

Diagonalization techniques by Emerson

2. If U is ordered, for suitable codes $u \in U \subseteq U^{\infty}$ and any oracle $B \subseteq U^{\infty}$,

let N_{μ}^{B} be the P_{Σ}^{B} -machine

executing $p_n(n)$ instructions of program P_n for any $x \in U^n$.

 $\mathbb{N} \subseteq U$.

Proposition: $\{y \mid (\exists n \ge 2) ((n, y) \in Q_{\Sigma})\} \in NP_{\Sigma}^{Q} \setminus P_{\Sigma}^{Q}$.

Diagonalization techniques by Emerson

U ordered and $\mathbb{N} \subseteq U$.

K_i	elements in a query on $u \in K_i$ within a time period bounded by $p_u(u)$	$\mathbf{Q} = \mathbf{Q}_{\Sigma} = \cup_{i \ge 1} W_i$
K_1	≤ 1	$W_1 = \emptyset$
:		
K_i	$\leq i$	$W_{i+1} = W_i \cup \{(i+1, u) \mid u \in K_i \& N_u^{W_i} \text{ rejects } u\}$
1		

$$\Rightarrow N_u^{W_i}$$
 rejects $u \Leftrightarrow N_u^Q$ rejects u .

Diagonalization techniques by Emerson

2. If U is ordered, for suitable codes $u \in U \subseteq U^{\infty}$ and any oracle $B \subseteq U^{\infty}$,

let N_u^B be the P_{Σ}^B -machine

executing $p_u(n)$ instructions of program P_u for any $x \in U^n$.

 $\mathbb{N} \subseteq U$.

$$V_0 = \emptyset$$
.
Stage $i \ge 1$:
 $K_i = \{ u \in U \mid (\forall j > i)(\forall B \subseteq U^{\infty}) \}$
 $\{ j \in U \text{ is not queried by } N_u^B \text{ on } u \}$

$$W_{i+1} = W_i \cup \{(i+1, u) \mid u \in K_i \& N_u^{W_i} \text{ rejects } u\}$$

$$\mathbf{Q} = \mathbf{Q}_{\Sigma} = \cup_{i \geq 1} W_i$$

Proposition:
$$\{y \mid (\exists n \ge 2) ((n, y) \in Q_{\Sigma})\} \in NP_{\Sigma}^{Q} \setminus P_{\Sigma}^{Q}$$
.

Diagonalization techniques (a generalization)

3. If U is infinite, for suitable codes $u \in U \subseteq U^{\infty}$ and any oracle $B \subseteq U^{\infty}$,

let N_{μ}^{B} be the P_{Σ}^{B} -machine

executing $p_n(n)$ instructions of program P_n for any $x \in U^n$.

 $\overline{\alpha_1, \alpha_2, \alpha_3, ...} \in U$

Proposition: $\{y \mid (\exists n \ge 2) ((\alpha_n, y) \in Q_{\Sigma})\} \in \mathbb{NP}_{\Sigma}^{Q} \setminus \mathbb{P}_{\Sigma}^{Q}$

Diagonalization techniques (a generalization)

Σ arbitrary, $\alpha_1, \alpha_2, \alpha_3, ... \in U$.

K_i	elements in a query on $u \in K_i$ within a time period bounded by $p_u(u)$	$\mathbf{Q} = \mathbf{Q}_{\Sigma} = \cup_{i \ge 1} W_i$
K_1	$\notin \{\alpha_1, \alpha_2, \alpha_3, \ldots\}$	$W_1 = \emptyset$
÷		
K_i	$\notin \{\alpha_{i+1}, \alpha_{i+2}, \alpha_{i+3}, \ldots\}$	$W_{i+1} = W_i \cup \{(\mathbf{\alpha}_{i+1}, \mathbf{u}) \mid \mathbf{u} \in K_i & N_{\mathbf{u}}^{W_i} \text{ rejects } \mathbf{u}\}$
1		

$$\Rightarrow N_u^{W_i}$$
 rejects $u \Leftrightarrow N_u^Q$ rejects u .

Diagonalization techniques (a generalization)

3. If U is infinite, for suitable codes $u \in U \subseteq U^{\infty}$ and any oracle $B \subseteq U^{\infty}$, let N_{u}^{B} be the P_{Σ}^{B} -machine

executing $p_{u}(n)$ instructions of program P_{u} for any $x \in U^{n}$.

$$\alpha_1, \alpha_2, \alpha_3, \dots \in U$$
.

$$V_0 = \emptyset$$

Stage
$$i \ge 1$$
:

$$K_i = \{ \boldsymbol{u} \in \boldsymbol{U} \mid (\forall j > i) (\forall \boldsymbol{B} \subseteq U^{\infty}) \}$$

$$(N_{\boldsymbol{u}}^{B} \text{ does not compute or use the value } \alpha_i \text{ on } \boldsymbol{u}) \}$$

$$W_{i+1} = W_i \cup \{(\alpha_{i+1}, u) \mid u \in K_i \& N_u^{W_i} \text{ rejects } u\}$$

$$Q = Q_{\Sigma} = \bigcup_{i \ge 1} W_i$$

Proposition:
$$\{y \mid (\exists n \ge 2) ((\alpha_n, y) \in Q_{\Sigma})\} \in NP_{\Sigma}^{Q} \setminus P_{\Sigma}^{Q}$$
.

Using the undecidability of the Halting problem H_{Σ}

4. U infinite, a finite number of operations and relations,

 $\{\alpha_1, \alpha_2, \alpha_3,...\} \subseteq U$ enumerable and decidable.

$$Q = Q_{\Sigma} = \{ (\alpha_t, x, Code(M)) \mid$$

 $x \in U^{\infty}$ & M is a deterministic Σ -machine

&
$$M(x)\downarrow^t$$

M accepts $\mathbf{x} = (x_1, ..., x_n) \in U^{\infty}$ within t steps.

Proposition:
$$H_{\Sigma} \in \mathbb{NP}_{\Sigma}^{\mathbb{Q}} \setminus \mathbb{P}_{\Sigma}^{\mathbb{Q}}$$
. $(\mathbb{P}_{\Sigma}^{\mathbb{Q}} \subseteq \mathrm{DEC}_{\Sigma})$

An oracle O_{Σ} with $P_{\Sigma}^{O_{\Sigma}} = NP_{\Sigma}^{O_{\Sigma}}$

A universal oracle:

$$O = O_{\Sigma} = \{ (b, ..., b, x, Code(M)) \mid$$
 $x \in U^{\infty} \& M \text{ is a non-deterministic } \Sigma\text{-machine using } O$
 $\& M(x) \downarrow^{t} \}$

Proposition:
$$P_{\Sigma}^{O} = NP_{\Sigma}^{O}$$
.

An oracle O_{Σ} containing only tuples of length 1 with $P_{\Sigma}^{O_{\Sigma}} = NP_{\Sigma}^{O_{\Sigma}}$?

Structures over strings

$$\Sigma = (U^*; \varepsilon, a, b, c_3, ..., c_u; \text{ add, sub}_1, \text{ sub}_r, f_1, ..., f_v; R_1, ..., R_w, =)$$

$$(d_1,...,d_k) \in U^k \subset U^\infty$$

stored in k registers

$$s = d_1 \cdots d_k \in U^*$$

 $d \in U$

stored in one register

$$add(s, d) = sd$$

$$sub_1(sd) = s$$

$$sub_{r}(sd) = d$$

An oracle O_{Σ} containing only tuples of length 1 with $P_{\Sigma}^{O_{\Sigma}} = NP_{\Sigma}^{O_{\Sigma}}$?

Recall:
$$P_{\Sigma}^{O_{\Sigma}} = NP_{\Sigma}^{O_{\Sigma}}$$
 and $P_{\Sigma}^{Q_{\Sigma}} \neq NP_{\Sigma}^{Q_{\Sigma}}$ for $O_{\Sigma} = \{ (b, ..., b, x, Code(M)) \mid x \in (U^*)^{\infty} \\ & \& M \text{ is a non-deterministic } \Sigma\text{-machine using } O_{\Sigma} \& M(x)\downarrow^t \}$ $Q_{\Sigma} = \{ (b \cdot b, x, Code(M)) \mid x \in (U^*)^{\infty} \\ & \& M \text{ is a deterministic } \Sigma\text{-machine } \& M(x)\downarrow^t \}$

Theorem: There is not an oracle O with

$b \cdots b \cdot \operatorname{string}(x) \cdot \operatorname{string}(Code(M)) \in O$

$$\Leftrightarrow x \in (U^*)^{\infty}$$

No set!

&
$$M(x)\downarrow^t$$
.

CCA 2008

Structures with P = NP

An additional relation R on padded codes of the members of a universal oracle O with $P_{\Sigma}{}^{O} = NP_{\Sigma}{}^{O}$

Binary trees
with decidable identity
relation
(Gaßner, Dagstuhl 2004)

Strings
with operations for adding and deleting the last character
(Gaßner, CiE 2007)

\mathbb{Z} as oracle with $\mathbf{P}_{\mathbb{R}}^{\mathbb{Z}} \neq \mathbf{N}\mathbf{P}_{\mathbb{R}}^{\mathbb{Z}}$

Using the properties of $(\mathbb{R}; \mathbb{R}; +, -, \cdot; \leq)$

5.
$$\Sigma = (\mathbb{R}; \mathbb{R}; +, -, \cdot; \leq)$$
 or $\Sigma = (\mathbb{R}; \mathbb{R}; +, -, \cdot; =)$

$$\mathbb{Q} \in NP_{\mathbb{R}}^{\mathbb{Z}}$$
.

Program: guess (y_1) ; guess (y_2) ; if $y_1, y_2 \in \mathbb{Z}$, $y_1 \neq 0$ and $y_1x = y_2$ then output 1.

Proposition: $P_{\mathbb{R}}^{\mathbb{Z}} \neq NP_{\mathbb{R}}^{\mathbb{Z}}$.

\mathbb{Z} as oracle with $\mathbf{P}_{\mathbb{R}}^{\mathbb{Z}} \neq \mathbf{N}\mathbf{P}_{\mathbb{R}}^{\mathbb{Z}}$

Using the properties of $(\mathbb{R}; \mathbb{R}; +, -, \cdot; \leq)$

5.
$$\Sigma = (\mathbb{R}; \mathbb{R}; +, -, \cdot; \leq)$$
 or $\Sigma = (\mathbb{R}; \mathbb{R}; +, -, \cdot; =)$

$$\mathbb{Q} \in NP_{\mathbb{R}}^{\mathbb{Z}}$$
.

Program: guess (y_1) ; guess (y_2) ; if $y_1, y_2 \in \mathbb{Z}$, $y_1 \neq 0$ and $y_1x = y_2$ then output 1.

Assume that \mathbb{Q} is decidable by a machine M.

Description of any computation path by a system of conditions of the form $p_k(x) \in \mathbb{Z}$ $p_k(x) \notin \mathbb{Z}$ $p_k(x) \le 0$ $p_k(x) < 0$ $(k \le m)$.

- \Rightarrow There are $r \notin \mathbb{Q} \cup \{x \mid p_k(x) \in \mathbb{Z}\}$ and $(q_i)_{i \in \mathbb{N}}$ such that $q_i \in \mathbb{Q}$ and $q_i \to r$.
- \Rightarrow r and some q_i satisfy the same conditions $p_k(x) \notin \mathbb{Z}$ and $p_k(x) < 0$.
- $\Rightarrow r$ and q_i are rejected. $\Rightarrow \checkmark$

Proposition: $P_{\mathbb{R}}^{\mathbb{Z}} \neq NP_{\mathbb{R}}^{\mathbb{Z}}$.

On Relativizations of the P ? NP Question for Several Structures

Thank you for your attention!

Christine Gaßner Greifswald.

Thanks also to

Robert Bialowons, Volkmar Liebscher, Rainer Schimming.