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E = {W ⊆ ω; W c.e}
For A c.e:
E(A) = {W ⊆ A; W c.e}
R(A) = {R ⊆ A; R computable}

Theorem (Soare)

The structures < E(A),⊆,R(A) >, for A non-computable c.e,
are all isomorphic.



The c.e. sets under inclusion

E = {W ⊆ ω; W is c.e }.

The study of the c.e sets as sets is the study of the structure
< E . ⊆>:
This ignores the dynamic features of c.e. sets, like the computable
enumerations W = ∪sWs ,
and only looks at static features of c.e sets.

Soare changed the nature of this study with his discover of a
technique for building non-trivial automorphisms.
The key theorem was Soare’s extension theorem, which,
given an effective enough isomorphism from the “outside” of a c.e.
set A,
extended the isomorphism to an automorhism on all of E
by effectively producing the part on the “inside” of A,
namely on E(A) = {W ⊆ A; W ∈ E}.



As part of this Soare encountered what seems to be the key to
understanding the relationship between the “outside” of a c.e. set
A and its “inside” (E(A)),
namely the computable subsets of A

R(A) = {R ⊆ A; R is computable }.

And Soare discovered the remarkable theorem:

Theorem (Soare)

The structures < E(A),⊆,R(A) >, for A non-computable c.e,
are all isomorphic.



This talk will be organized around the question:
what is the isomorphism type of this structure

< E(A),⊆,R(A) > ?

This talk will in no way come close to answering this question; but
this will allow for a presentation of some of the developements
steming from Soare’s automorphism technique. In particular, these
will include why R(A) is the key to the connection between the
“outside” and “inside” of a c.e. set A.



The structures < E(A),⊆> for A an infinite c.e. set are all easily
isomorphic, in particular they are isomorphic to < E(ω),⊆> or
< E ,⊆>.
So our isomorphism type

< E(A),⊆,R(A) >

has representatives of the form

< E ,⊆,R >

where R must be a collection of computable sets.

Looked at this way, we are now looking at a c.e. set (ω) that has
no outside, and trying to ask what plays the counterpart to its
“recursive” subsets, where “recursive” refers to having a
complement all the way through that “outside” (an “outside” that
is no longer there).



It is known (Cholak-H) that the structure < E ,⊆> has complicated
isomorphism type, having Scott rank as high as possible.
So let’s reformulate our question by concentrating on the R(A)
part:

What can be said about:

F =
{R; such that there is an isomorphism between
< E ,⊆,R > and < E(A),⊆,R(A) >
(for any non-computable c.e. A)}



The current state of knowledge about automorphisms gives:

(Lachlan) if R ∈ F , then
R is a Σ0

3 set of recursive sets

(Cholak-H) if R ∈ F , then there is an arithmetic (∆0
6)

isomorphism between < E ,⊆,R > and < E(A),⊆,R(A) > (for
any non-computable c.e. A)

(Cholak-H) there is an infinitary (Lω1,ω) sentence ϕ of rank
< ω + ω such that
R ∈ F iff < E ,⊆,R > satisfies ϕ



Comment:
These results fall far short of actually understanding F for what it
is, since it is an orbit under Aut(< E ,⊆>).
The remarkable thing about Soare’s Theorem is that it shows that
many apparently disparate things (the non-computable c.e. sets A)
are seen as the same when we ignore their “outsides”, retaining
only their essential “inside” connection to their “outsides”.
Yet, by Soare, they’re all the same.
The orbit F is just a way of pointing out the remarkableness of all
this: when, for each non-computable c.e. set A, we look at R(A),
there is an essential reference to the “outside” of A, and that
reference points to something that depends on what A (“inside”
and “outside”) actual is, as distinct from the other possible A’s.
And yet they are the same.



This situation seems related to a poem that Ted Slaman once
shared:

Flower in the crannied wall

By Alfred, Lord Tennyson

Flower in the crannied wall,
I pluck you out of the crannies;
Hold you here, root and all, in my hand,
Little flower- but if I could understand
What you are, root and all, and all in all,
I should know what God and man is.

This talk (so far) has been an attempt to take what Soare plucked
and hold it in the hand.



Definition

For A ∈ E ,
S(A) = {S ∈ E(A); (A ∼ S) ∈ E(A)}

Definition (Lachlan)

For A, B in E , B ⊆ A,
B is a major subset of A iff R ∈ R(A) implies R⊆∗B.
B is a small subset of A iff E(B) ∩ S(A) ⊆ R(A).

For B a small major subset of a non-computable c.e. set A, R(A)
is B-definable over < E(A),⊆>:

R ∈ R(A) iff R ∈ S(A) and R⊆∗B.



The same then holds for an R ∈ F :
for some B in E = E(ω)

R ∈ R iff R ∈ S(ω) and R⊆∗B.

Given B, this is a Σ0
3 property.

Let RB be this collection.

Then R ∈ F iff for some B ∈ E
R = RB and there is an isomorphism of < E . ⊆> to < E(A),⊆>
(for some non-computable c.e. A) such that B is sent to a small
major subset of A.

This is now easily is a question about automorphism of < E ,⊆>
itself (since E(A) is easily identifyable with E), and so falls under
known results.



Definition

B ∈ E is simple iff there is no infinite c.e. set disjoint from B.

Theorem (Cholak-H)

For B simple, the Aut(E) orbit of B is Σ0
7.

In fact, for B1, . . . ,Bn all simple, the orbit of B1, . . . ,Bn under
Aut(E) is Σ0

7.

And similarly there are Lω1,ω descriptions of orbits.
For B simple, (or for B1, . . . ,Bn all simple) there is a rank
< ω + ω formula describing the orbit.



The static way of viewing the flow from “outside”:

Definition

For A non-computable c.e., Λ(A) = {W ∈ E ; (W ∩ A) ∈ S(A)}

E is a distributive lattice with reduction
(for A, V there are A0 ⊆ A, V0 ⊆ V such that A0 ∩ V0 is empty,
and (A ∪ V ) = (A0 ∪ V0))
So from Λ(A) and E(A), one can recover E
( V ∈ E is recovered from V0 (which reduction ensures is in S(A),
and from (W ∩ A) which is in E(A).)

But one does not need all of Λ(A) for this. The common part
between Λ(A) and E(A) is S(A). This is a boolean algebra and
R(A) is an ideal of this boolean algebra.
E can be recovered from Λ(A)/R(A) and E(A).



Theorem (Cholak-H)

For B simple,
for F an automorphism of < E ,⊆>,
F restricted to Λ(B)/R(B) is ∆0

6

Definition

For B ∈ E , L(B) = {W ∈ E ; B ⊆W }

Theorem

For B, C in E ,
If F is an isomorphism between
Λ(B)/R(B) and Λ(C )/R(C )
then F restricted to L(B) extends to an automorphism of E .



Theorem

For B simple,
for F an automorphism of < E ,⊆>,
F restricted to Λ(B)/R(B) is ∆0

6.

If F is an isomorphism between
Λ(B)/R(B) and Λ(C )/R(C )
then F restricted to L(B) extends to an automorphism of E .

About the orbits of tuples B1, . . . ,Bn where all Bi are simple:

By the reduction property of E , there is a simple B such that all
the Bi are in Λ(B).



Theorem

For B, C in E ,
If F is an isomorphism between
Λ(B)/R(B) and Λ(C )/R(C )
then F restricted to L(B) extends to an automorphism of E .

This Theorem’s proof is essentially the Soare Extension Theorem,
with a needed connection provided by

Theorem (Cholal-H)

For F an automorphism of E , for B ∈ E
F restricted to S(A)/R(A) is ∆0
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