From the Inside, the Unique Non-Computable Computably Enumerable Set

Leo A. Harrington

University of California, Berkeley

May 14, 2011

$$\mathcal{E} = \{ W \subseteq \omega; W \text{ c.e} \}$$
 For A c.e:
$$\mathcal{E}(A) = \{ W \subseteq A; W \text{ c.e} \}$$

$$\mathcal{R}(A) = \{ R \subseteq A; R \text{ computable} \}$$

Theorem (Soare)

The structures $< \mathcal{E}(A), \subseteq, \mathcal{R}(A) >$, for A non-computable c.e, are all isomorphic.

The c.e. sets under inclusion

$$\mathcal{E} = \{ W \subseteq \omega; W \text{ is c.e } \}.$$

The study of the c.e sets as sets is the study of the structure $\langle \mathcal{E}. \subseteq \rangle$:

This ignores the dynamic features of c.e. sets, like the computable enumerations $W=\cup_s W_s$,

and only looks at static features of c.e sets.

Soare changed the nature of this study with his discover of a technique for building non-trivial automorphisms.

The key theorem was Soare's extension theorem, which, given an effective enough isomorphism from the "outside" of a c.e. set A,

extended the isomorphism to an automorhism on all of \mathcal{E} by effectively producing the part on the "inside" of A, namely on $\mathcal{E}(A) = \{W \subseteq A; W \in \mathcal{E}\}.$

As part of this Soare encountered what seems to be the key to understanding the relationship between the "outside" of a c.e. set A and its "inside" $(\mathcal{E}(A))$, namely the computable subsets of A

$$\mathcal{R}(A) = \{ R \subseteq A; R \text{ is computable } \}.$$

And Soare discovered the remarkable theorem:

Theorem (Soare)

The structures $< \mathcal{E}(A), \subseteq, \mathcal{R}(A) >$, for A non-computable c.e, are all isomorphic.

This talk will be organized around the question: what is the isomorphism type of this structure

$$<\mathcal{E}(A),\subseteq,\mathcal{R}(A)>$$
?

This talk will in no way come close to answering this question; but this will allow for a presentation of some of the developements steming from Soare's automorphism technique. In particular, these will include why $\mathcal{R}(A)$ is the key to the connection between the "outside" and "inside" of a c.e. set A.

The structures $<\mathcal{E}(A),\subseteq>$ for A an infinite c.e. set are all easily isomorphic, in particular they are isomorphic to $<\mathcal{E}(\omega),\subseteq>$ or $<\mathcal{E},\subseteq>$.

So our isomorphism type

$$<\mathcal{E}(A),\subseteq,\mathcal{R}(A)>$$

has representatives of the form

$$<\mathcal{E},\subseteq,\mathcal{R}>$$

where R must be a collection of computable sets.

Looked at this way, we are now looking at a c.e. set (ω) that has no outside, and trying to ask what plays the counterpart to its "recursive" subsets, where "recursive" refers to having a complement all the way through that "outside" (an "outside" that is no longer there).

It is known (Cholak-H) that the structure $<\mathcal{E},\subseteq>$ has complicated isomorphism type, having Scott rank as high as possible. So let's reformulate our question by concentrating on the $\mathcal{R}(A)$ part:

What can be said about:

```
\mathcal{F}= \{\mathcal{R}; \text{ such that there is an isomorphism between } <\mathcal{E},\subseteq,\mathcal{R}>\text{ and } <\mathcal{E}(A),\subseteq,\mathcal{R}(A)> (for any non-computable c.e. A)}
```

The current state of knowledge about automorphisms gives:

(Lachlan) if $\mathcal{R} \in \mathcal{F}$, then \mathcal{R} is a Σ^0_3 set of recursive sets

(Cholak-H) if $\mathcal{R} \in \mathcal{F}$, then there is an arithmetic (Δ_6^0) isomorphism between $<\mathcal{E},\subseteq,\mathcal{R}>$ and $<\mathcal{E}(A),\subseteq,\mathcal{R}(A)>$ (for any non-computable c.e. A)

(Cholak-H) there is an infinitary $(\mathcal{L}_{\omega_1,\omega})$ sentence φ of rank $<\omega+\omega$ such that $\mathcal{R}\in\mathcal{F}$ iff $<\mathcal{E},\subseteq,\mathcal{R}>$ satisfies φ

Comment:

These results fall far short of actually understanding \mathcal{F} for what it is, since it is an orbit under $Aut(<\mathcal{E},\subseteq>)$.

The remarkable thing about Soare's Theorem is that it shows that many apparently disparate things (the non-computable c.e. sets *A*) are seen as the same when we ignore their "outsides", retaining only their essential "inside" connection to their "outsides".

Yet, by Soare, they're all the same.

The orbit \mathcal{F} is just a way of pointing out the remarkableness of all this: when, for each non-computable c.e. set A, we look at $\mathcal{R}(A)$, there is an essential reference to the "outside" of A, and that reference points to something that depends on what A ("inside" and "outside") actual is, as distinct from the other possible A's. And yet they are the same.

This situation seems related to a poem that Ted Slaman once shared:

Flower in the crannied wall

By Alfred, Lord Tennyson

Flower in the crannied wall,
I pluck you out of the crannies;
Hold you here, root and all, in my hand,
Little flower- but if I could understand
What you are, root and all, and all in all,
I should know what God and man is.

This talk (so far) has been an attempt to take what Soare plucked and hold it in the hand.

Definition

For $A \in \mathcal{E}$, $S(A) = \{S \in \mathcal{E}(A); (A \sim S) \in \mathcal{E}(A)\}$

Definition (Lachlan)

For A, B in \mathcal{E} , $B \subseteq A$,

B is a major subset of A iff $R \in \mathcal{R}(A)$ implies $R \subseteq B$.

B is a small subset of A iff $\mathcal{E}(B) \cap \mathcal{S}(A) \subseteq \mathcal{R}(A)$.

For B a small major subset of a non-computable c.e. set A, $\mathcal{R}(A)$ is B-definable over $<\mathcal{E}(A),\subseteq>$:

 $R \in \mathcal{R}(A)$ iff $R \in \mathcal{S}(A)$ and $R \subseteq B$.

The same then holds for an $\mathcal{R} \in \mathcal{F}$: for some B in $\mathcal{E} = \mathcal{E}(\omega)$

 $R \in \mathcal{R}$ iff $R \in \mathcal{S}(\omega)$ and $R \subseteq B$.

Given B, this is a Σ_3^0 property.

Let \mathcal{R}_B be this collection.

Then $\mathcal{R} \in \mathcal{F}$ iff for some $B \in \mathcal{E}$ $\mathcal{R} = \mathcal{R}_B$ and there is an isomorphism of $\langle \mathcal{E}, \subseteq \rangle$ to $\langle \mathcal{E}(A), \subseteq \rangle$ (for some non-computable c.e. A) such that B is sent to a small major subset of A.

This is now easily is a question about automorphism of $\langle \mathcal{E}, \subseteq \rangle$ itself (since $\mathcal{E}(A)$ is easily identifyable with \mathcal{E}), and so falls under known results.

Definition

 $B \in \mathcal{E}$ is simple iff there is no infinite c.e. set disjoint from B.

Theorem (Cholak-H)

For B simple, the Aut(\mathcal{E}) orbit of B is Σ_7^0 .

In fact, for B_1, \ldots, B_n all simple, the orbit of B_1, \ldots, B_n under $Aut(\mathcal{E})$ is Σ_7^0 .

And similarly there are $\mathcal{L}_{\omega_1,\omega}$ descriptions of orbits. For B simple, (or for B_1,\ldots,B_n all simple) there is a rank $<\omega+\omega$ formula describing the orbit.

The static way of viewing the flow from "outside":

Definition

For A non-computable c.e., $\Lambda(A) = \{W \in \mathcal{E}; (W \cap A) \in \mathcal{S}(A)\}$

 \mathcal{E} is a distributive lattice with reduction (for A, V there are $A_0 \subseteq A, V_0 \subseteq V$ such that $A_0 \cap V_0$ is empty, and $(A \cup V) = (A_0 \cup V_0)$)
So from $\Lambda(A)$ and $\mathcal{E}(A)$, one can recover \mathcal{E} ($V \in \mathcal{E}$ is recovered from V_0 (which reduction ensures is in $\mathcal{S}(A)$, and from $(W \cap A)$ which is in $\mathcal{E}(A)$.)

But one does not need all of $\Lambda(A)$ for this. The common part between $\Lambda(A)$ and $\mathcal{E}(A)$ is $\mathcal{S}(A)$. This is a boolean algebra and $\mathcal{R}(A)$ is an ideal of this boolean algebra. \mathcal{E} can be recovered from $\Lambda(A)/\mathcal{R}(A)$ and $\mathcal{E}(A)$.

Theorem (Cholak-H)

For B simple, for F an automorphism of $<\mathcal{E},\subseteq>$, F restricted to $\Lambda(B)/\mathcal{R}(B)$ is Δ_6^0

Definition

For $B \in \mathcal{E}$, $\mathcal{L}(B) = \{W \in \mathcal{E}; B \subseteq W\}$

Theorem

For B, C in \mathcal{E} , If F is an isomorphism between $\Lambda(B)/\mathcal{R}(B)$ and $\Lambda(C)/\mathcal{R}(C)$ then F restricted to $\mathcal{L}(B)$ extends to an automorphism of \mathcal{E} .

$\mathsf{Theorem}$

For B simple, for F an automorphism of $<\mathcal{E},\subseteq>$, F restricted to $\Lambda(B)/\mathcal{R}(B)$ is Δ_6^0 .

If F is an isomorphism between $\Lambda(B)/\mathcal{R}(B)$ and $\Lambda(C)/\mathcal{R}(C)$ then F restricted to $\mathcal{L}(B)$ extends to an automorphism of \mathcal{E} .

About the orbits of tuples B_1, \ldots, B_n where all B_i are simple:

By the reduction property of \mathcal{E} , there is a simple B such that all the B_i are in $\Lambda(B)$.

Theorem

For B, C in \mathcal{E} , If F is an isomorphism between $\Lambda(B)/\mathcal{R}(B)$ and $\Lambda(C)/\mathcal{R}(C)$ then F restricted to $\mathcal{L}(B)$ extends to an automorphism of \mathcal{E} .

This Theorem's proof is essentially the Soare Extension Theorem, with a needed connection provided by

Theorem (Cholal-H)

For F an automorphism of \mathcal{E} , for $B \in \mathcal{E}$ F restricted to $\mathcal{S}(A)/\mathcal{R}(A)$ is Δ^0_3