Math 185 Fall 2015, Sample Midterm 1

50 minutes, no textbook or notes. 3-5 are 10 points each.

1. (5 points) Find all solutions to $z^{10}=|z| \bar{z}^{10}$.
2. (15 points) True or false, (no need for justification):
(a) If f is continuous on a domain D, then f must be differentiable at at least one point in D.
(b) If D_{1} is a domain, D_{2} is a domain, and $D_{1} \cap D_{2} \neq \varnothing$, then $D_{1} \cup D_{2}$ is a domain.
(c) The function

$$
f(z)= \begin{cases}\frac{1}{z} & z \neq 0 \\ 0 & z=0\end{cases}
$$

is entire.
(d) $\overline{\exp (\log (\bar{z}))}=z$ for all z.
(e) If f and f^{\prime} are analytic on D and $f^{\prime \prime}(z)=0$ for all $z \in D$ then f must be constant on D.
3. Find all points of differentiability of the function $f(z)=z+|z|^{2}$ defined on \mathbb{C}, and explain why f is differentiable at those points.
4. Suppose f is analytic on a domain $D,|f(z)| \leq 1$, and $e^{f(z)} \in \mathbb{R}$ for all $z \in D$. Show that f must be constant on D.
5. Evaluate the integral:

$$
\oint_{C} \frac{1}{\bar{z}^{n}} d z
$$

where n is an integer and C is a circle of radius π centered at the origin, oriented positively. For which n does $f(z)=\frac{1}{\bar{z}^{n}}$ have an antiderivative in $\mathbb{C} \backslash\{0\}$?

