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This sketch is intended as a summary of my thoughts during the fall of
2005, attempting to understand a conversation with Kontsevich that summer
as well as a little bit of his preprint [1]. The theme is to explore further the
geometric meaning of the p-curvature, which can provide an analogy to the
characteristic variety in microlocal analysis.

Let S be a scheme and let X/S be a smooth S-scheme. We shall be
interested in integrable systems of linear partial differential equations on
X/S. These can be described in several ways. Let Ω1

X/S be the sheaf of
Kahler differentials on X/S and let TX/S be its dual, which can be identified
with the sheaf of derivation OX → OX relative to S. Recall that a connection
on a sheaf E of OX-modules is an OS-linear map

∇:E → Ω1
X/S ⊗ E

satisfying the Leibnitz rule: ∇(fe) = df ⊗ e + f(∇e) for f ∈ OX , e ∈ E.
Equivalently, ∇ can be viewed as an OX-linear map

TX/S → EndOS
(E)

such that ∇D(fe) = D(f)e + f∇D(e) for f ∈ OX , e ∈ E. The curvature
of such a connection is the (OX-linear) map κ:E → Ω2

X/S ⊗ E defined by
composing ∇ with itself and projecting. If this map is zero, the connection
is said to be integrable. Finding sections of E annihilated by ∇ amounts
to solving a system of linear partial differential equations. In the complex
analytic context, the integrability of ∇ guarantees the local existence of a
basis of E annihilated by ∇.
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Modules with integrable connection can also be viewed as modules over
a suitable ring D of differential operators. Beware that there are many such
rings, all of which coincide if OX is a sheaf of Q-algebras, but in general, and
especially in characteristic p, more care is required.

Suppose first that Y/T is smooth and that T is flat over Z. Let DY/T

denote the subsheaf of the sheaf of OT -linear endomorphisms of OY gen-
erated by the sheaf of derivations TY/T . Thus, if T = SpecR and Y =
SpecR[t1, . . . tn], DY/T is generated by D1, . . . Dn, where Di := ∂/∂ti. Note
that the operators Dn

i /n!, allowed in [EGA IV], are not included in this ring
in general. Now suppose that OS is annihilated by a power of p. Then one
finds in [2] a geometric construction of the ring of “PD-differential opera-
tors.” This is a quasi-coherent sheaf of OX-modules, endowed with injective
maps OX → DX/S and TX/S, as well as an action of DX/S on OX compatible
with the standard action of TX/S. Beware, however, that the action is not
faithful in general. For example, if X := SpecFp[t], then (∂/∂t)p is a nonzero
element of DX/Fp whose action on OX is identically zero. In general the sheaf
DX/S of PD-differential operators of X/S is generated by TX/S, and if Y/T
is a lift of X/S with T flat over Z, then DX/S

∼= DY/T ⊗ OS. (This should
follow from the explicit formulas in [2], but I haven’t checked it carefully.
Is there a better way, involving a geometric description of DY/T itself?). If
X = SpecS OS[t1, . . . tn], andDi := ∂/∂ti, thenDX/S is freely generated as an

OX-module by the monomials DI := DI1
1 · · ·DIn

n . As an OS-algebra, it is the
quotient of the free noncommutative polynomial algebra OX < D1, . . . Dn >
by the ideal generated by the elements Ditj − tjDi − δi,j, 1 ≤ i, j ≤ n.

Now let E be a sheaf of OX-modules with a connection ∇. For each
sectionD of TX/S, ∇D is OS-linear endomorphism∇D of E. If∇ is integrable
then the mappingD 7→ ∇D extends uniquely to an action of the sheaf of rings
DX/S on E. In this way we get an equivalence between the category of left
DX/S-modules and the category of OX-modules with integrable connection.

The equivalence between D-modules and connections has a simple and
useful linear analog. A Higgs field on a sheaf of OX-modules E is an OX-
linear map

θ:E → Ω1
X/S ⊗ E

such that the composite E → E ⊗Ω2
X/S vanishes. For each section ξ of TX/S

one gets an OX-linear endomorphism θξ of E, and for any other ξ′ ∈ TX/S,
θξ and θξ′ commute. Thus θ extends uniquely to an action of the symmetric
algebra S·TX/S on E, and we obtain an equivalence between the category
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of S·TX/S-modules and the category of OX-modules equipped with a Higgs
field. If E is quasi-coherent on X one gets from the action of S·TX/S a
quasi-coherent sheaf on SpecX S

·TX/S, which is non other than the cotangent
bundle T∗

X/S.
When X has characteristic p there are two related special phenomena

that we want to exploit. The first is the existence of the Frobenius map
FX :X → X. This is just the identity on the space X, but F ∗

X takes a
function f to its pth power. Since p = 0 in OX , F ∗

X is actually a ring
homomorphism. Note also that dF ∗

X(f) = pfp−1df = 0 for all f ∈ OX . The
second phenomenon is the fact that the pth iterate of a derivation OX → OX

in characteristic p is again a derivation. For example, when X is affine n-
space, the pth derivative of any function with respect to any coordinate is
zero. Thus the pth iterative of Di as a derivation is zero, although Dp

i is
not zero in the ring DX/S. This phenomenon underlies the notion of the
p-curvature of an integrable connection ∇. This is the map ψ which sends a
derivation D of X/S to the endomorphism (∇D)p −∇D(p) of E, which turns
out to be OX-linear. Alternatively, we can write

ψD := ∇Dp−D(p) , (1)

where here Dp −D(p) is computed in the ring DX/S.
To express this in a convenient and coordinate-free way, consider the

relative Frobenius diagram:

X
FX/S - X ′ π

- X

S
? FS -

-

S
?

Here πF is the absolute Frobenius endomorphism FX of X and the square
is Cartesian, so that locally each element of OX′ is a sum of elements of the
form gfp, where g is pulled back from S and f ∈ OX .

Theorem 1 The map D 7→ Dp−D(p) above induces an injective homomor-
phism

c:S·TX′/S → FX/S∗DX/S

whose image is the center of FX/S∗DX/S, and FX/S∗DX/S is an Azumaya
algebra over its center.
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We should remark that the proof of the OX-linearity of this map is non
trivial. Now suppose that E is a quasi-coherent sheaf of OX-modules with
connection, or equivalently, a DX/S-module structure. Then c∗E is a quasi-
coherent sheaf of S·TX′/S-modules, and hence defines a quasi-coherent sheaf
Ψ′(E) on SpecX′ S·TX′/S, i.e., the cotangent space T∗

X′/S of X ′. Equivalently,
one can note that the p-curvature mapping defines an OX′-linear map

TX′/S → FX/S∗ EndOX
E.

Just as in the case of a Higgs field, this map induces an S·TX′/S module
structure on E, and Ψ′(E) is just sheaf corresponding to the induced sheaf of
S·F ∗Ω1

X′/S-modules. Thus in this way we have associated to the D-module

E some linear data on the cotangent space of X ′/S. Let IE ⊆ S·TX′/S

denote the annihilator of Ψ′(E) and let
√
IE be its radical. This is the ideal

defining the (support) of Ψ′(E), and can perhaps be viewed as an analog
of the characteristic variety of E used in microlocal analysis. Let us note
that the actions of OX′ on E via the action of S·TX′/S and via the map
F ∗

X/SOX′ → OX agree. Thus in fact E has a natural structure of a module

over OX ⊗O′
X
S·TX′/S. This is the sheaf of functions on the pullback T∗′

X/S

of T∗X ′/S to X via FX/S. If Ψ(E) is the corresponding quasi-coherent sheaf
on T∗′X/S, then

Ψ′(E) ∼= FT∗/XΨ(E).

Example 2 Let us consider the case of a connection ∇ on E := OX . In
this case ∇ is determined by ∇(1), which just an arbitrary one-form ω. The
curvature of the connection is d∇, so the connection is integrable if and only
if ω is closed. It follows from some tricky formulas due to Jacobson [3] that
the p-curvature of such a connection corresponds to the F -Higgs field sending
1 to F ∗(C(ω)− π∗(ω)), where C:Z1

X/S → Ω1
X′/S is the Cartier operator [4].

In characteristic zero, a key role in microlocal analysis is played by the
Poisson bracket structure { , } on the ring S·TX/S = OT∗

X/S
. This can be

expressed in many ways; probably the one most relevant for us involves
commutators in DX/S. Let VnDX/S denote the sheaf of differential operators
of order less than or equal to n. Then there is a natural isomorphism (the
symbol map)

σ: GrV
n DX/S

∼= SnTX/S,
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and if α ∈ VmDX/S, β ∈ VnDX/S, then [α, β] ∈ Vn+m−1DX/S and

σ[α, β] = {σ(α), σ(β)} (2)

Belov-Kanel and Kontsevich have noted a p-adic expression for the Poisson
bracket [1].

Proposition 3 Let D̃ be a ring, flat over Z/p2Z, let D be its reduction
modulo p, and let Z denote the center of D. Let α̃ and β̃ be elements of D
whose images α and β in D lie in Z. Then there is a unique element γ of Z
such that [p]γ = [α̃, β̃]. Furthermore, γ depends only on α and β, and the
paring {α, β} 7→ γ, defines a Poisson bracket structure on Z.

Proof: Since α and β lie in the center of D, [α̃, β̃] is divisible by p, so there
is a γ̃ ∈ D̃ such that pγ̃ = [α̃, β̃]. Since D is flat over Z/p2Z, the image γ of
γ̃ in D is independent of the choice of γ̃. By definition, [p]γ = pγ̃.

To see that γ is central, note that the Jacobi identity says that for any
δ̃ ∈ D̃,

[̃δ, [̃α, β̃]] = [δ̃, α̃], β̃] + [α̃, [δ̃, β̃]].

Since α̃ and β̃ are central mod p, [δ̃, α̃] = pη̃ for some η and [δ̃, β̃] = pζ̃. Thus

[δ̃, pγ̃] = [pη̃, β̃] + [γ̃, pζ̃].

Since α and β are central, the right side is divisible by p2, and so δ, γ] = 0.
For the independence of γ on the choice of the lifting, note that if δ̃ ∈ D,

[α̃ + pδ̃, β̃] = [α̃, β̃] + p[δ̃, β̃]. Now [δ̃, β̃] is divisible by p since β̃ belongs to
the center of D modulo p, so the last term vanishes.

It is clear from the definition that the expression {ξ1, ξ2} is antisymmet-
ric and that it satisfies the Jacobi identity. Let us also check that it is a
derivation, i.e., that

{ξ1, ξ2ξ3} = {ξ1, ξ2}ξ3 + ξ2{ξ1, ξ3}.

Choosing appropriate lifts, we have

p{ξ1, ξ2ξ3} = [D1, D2D3]

= D1D2D3 −D2D3D1

= D2D1D3 + [D1, D2]D3 −D2D3D1

= D2[D1, D3] + [D1, D2]D3

= pD2{ξ1, ξ3}+ p{ξ1, ξ2}D3

= pξ2{ξ1, ξ3}+ p{ξ1, ξ2}ξ3.
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Proposition 4 The Poisson structure defined above is the negative of the
standard one defined in 2.

Proof: It suffices to check this locally on X, so we may assume that we are
given a set of coordinates, i.e., an étale map X → An/S. Since the Poisson
bracket defined above and the standard one both satisfy the derivation rule,
it suffices to check the proposition on affine space itself. Thus we may assume
that X = An/S, with standard coordinates (x1, . . . xn). Let Di := ∂

∂xi
. Then

the above formula follows from the following calculation.

Lemma 5 In the ring of differential operators of A1/Z, one has the relation

[Dp, xp] ≡ −p (mod p)2,

where D := d
dx

.

Proof: Use the formula:

Dp(fg) =
∑

i+j=p

(
p

i

)
DjfDig.

Apply this with f = xp to see that

Dp(xpg) =
∑

i+j=p

(
p

i

)
p!

(p− j)!
xp−jDig =

∑
i+j=p

(
p

i

)
p!

i!
xiDig

Hence as endomorphisms of the ring of polynomials,

[Dp, xp] = p!
p−1∑
i=0

(
p

i

)
xi

i!
Di.

This shows that in the ring of differential operators over Z, the commutator
[Dp, xp] is divisible by p, and

p−1[Dp, xp] = (p− 1)!
p−1∑
i=0

(
p

i

)
xi

i!
Di = (p− 1)! +

p−1∑
i=1

(
p

i

)
xi

i!
Di.
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Reducing modulo p and using Wilson’s theorem, we see the desired formula.

A key property of the characteristic variety of a D-module in characteristic
zero is that it is involutive, that is, that the ideal defining it is closed under
Poisson bracket. This is not true of the annihilator ideal I (or of its radical)
in general, as the following example shows.

Example 6 Let X/S := SpecFp[x1, x2], let ω := xp
1x

p−1
2 dx2. and let ∇

be the unique connection on OX sending 1 to ω. Since ω is closed, this
connection is integrable. Now as we saw in 2, the p-curvature of ∇ sends
1 to F ∗(C(ω) − π∗(ω)) = F ∗(x′1dx

′
2). Since the form x1dx2 is not closed,

the corresponding ideal is not closed under Poisson bracket. Explicitly, the
F ∗S·TX′/S-module Ψ(E) is given by the section of F ∗T∗

X′/S corresponding
to the one-form x′1dx

′
2. In terms of coordinates, this is given by the ideal

(ξ′2 − x′1, ξ
′
1), which is evidently not closed under Poisson bracket.

In this example, ω is closed in characteristic p but cannot be lifted to a
closed form in characteristic zero.

Proposition 7 Let X/S be smooth, where S has characteristic p > 0, and
let E be a DX/S-module on X/S. Suppose that X̃/S̃ is a lifting of X/S,

where S̃ is flat over Z/p2Z, and that Ẽ is a lifting of E to a DX̃/S̃-module,

also flat over Z/p2Z. Then the annihilator IE of Ψ′(E) in S·TX′/S is closed
under Poisson bracket.

Proof: Since ∇̃ is integrable, it extends uniquely to a ring homomorphism
DX̃/S̃ → EndOS̃

Ẽ, which we also denote by ∇̃. Let ξ2 and ξ2 be elements of

S·TX′/S which annihilate E. We view them as central differential operators,

so that ∇ξi
acts as zero on E. Hence if we choose lifting D̃i of ξi to DX̃/S̃,

∇̃D̃i
is divisible by p, say ∇̃D̃i

= pηi, where ηi is an endomorphism of Ẽ. Now

by 3, [D̃1, D̃2] = pξ, where

ξ = {ξi, ξ2} ∈ S·TX′/S ⊂ FX/S∗DX/S.

Hence we can write

∇̃pξ = [∇D̃1
,∇D̃2

] = [pη1, pη2] = p2[η1, η2].

Since this is zero modulo p2, it follows that ∇ξ is zero modulo p.
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Question 8 With the previous hypotheses, is it also true that the radical of
IE is closed under Poisson bracket?

In the case of connections on OX we can give a partial converse to 7. If
ω := ∇(1) is closed, then ψ(1) = F ∗(C(ω) − π∗ω)). This Higgs field is
involutive if and only if C(ω)− π∗ω is closed, i.e., if and only if C(ω) is also
closed. The following results are special cases of results about indefinitely
closed one-forms in the de Rham Witt complex; see [].

Proposition 9 Let ω be a closed i-form on X/S. If lifts to a closed i-form
on X̃/S̃, then CX/S(ω) is also closed. Conversely, if CX/S(ω) is closed, then
locally on X, ω is homologus to a closed form which lifts to Zi

X̃/S̃
.

Here is a more precise statement

Proposition 10 Let ω̃ be an i-form on X̃/S̃ whose reduction modulo p ω
is closed, and write dω̃ = [p]γ, where γ ∈ Ωi+1

X/S. Then in fact γ is closed, and

dCX/S(ω) = CX/S(γ) ∈ Ωi+1
X′/S.

Proof: This statement is local on X/S, so we may assume that X is affine
and choose a lifting F̃ : X̃ → X̃ ′ of F :X → S. Let ω′ := CX′/S(ω). Recall
that the inverse Cartier isomorphism is an isomorphism

C−1
X/S: Ωi

X′/S → F∗Hi(Ω·X/S)

and that C−1
X/S◦CX/S is the natural projection F∗Z

i
X/S → F∗Hi

X/S. According

to Mazur’s formula, if ω′ ∈ Ωi
X′/S and ω̃′ ∈ Ωi

X̃′/S̃
lifts ω′, then C−1

X/S(ω′) is

the reduction of p−iF̃ ∗ω̃′ mod p. Hence there exist α and β such that

ω̃ = p−iF̃ ∗(ω̃′) + pα + dβ.

Since dω̃ = pγ,
γ = p−i−iF̃ ∗(dω̃′) + dα,

so C(γ) = dω′, as claimed.

In particular, if ω̃ is exact, CX/S(ω) = 0. Conversely, suppose that ω ∈
F∗Z

i
X/S and dCX/S(ω) = 0. The formula implies that CX/S(γ) = 0, and

hence that the class of γ in Hi(Ω·X/S) vanishes. Hence locally on X, γ = dδ.
Replacing ω̃ by ω̃−pdδ, we see that ω is homologous to a liftably exact form.
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Question 11 Is there a generalization of this result to the case of general
modules with connection? When can a module with integrable connection in
characteristic p be lifted to a module with integrable connection modulo p2?

Remark 12 If S is anything and X/S is smooth, I expect that DX/S is
quasi-coherent as a sheaf of OX-modules I also expect that DX/S is coherent,
probably even left noetherian, as a sheaf of rings, If X has characteristic p
and E is a coherent DX/S-module, I hope E has a good filtration F , and then
GrF E will become an S·TX/S-module. I do not expect the annihilator of this
module, or its radical, to be closed under Poisson bracket. But I do expect
the dimension of the support of this module to be the same as the dimension
of the p-curvature module Ψ′(E). All these should be fairly straightforward
to verify.

Let me now turn to one of the conjectures of [1] that has especially caught
my interest. The conjecture relates connections in characteristic zero to
their reductions modulo almost all primes p. To make sense of this, let
us introduce the following notation. Let R be an integral domain which is
finitely generated and flat as an algebra over Z—for example, Z[n−1] for some
n. Let K be the fraction field of R, a field of characteristic zero—for example
just the field Q. Let S := SpecR, let σ := SpecK, and let X/S be a smooth
morphism, of relative dimension d. Its generic fiber Xσ is thus a smooth
K-scheme of dimension d. Let E be a sheaf of DX/S-modules on X which is
coherent as a sheaf of DX/S-modules. For each closed point s of S, the residue
field k(s) is a finite field. In particular, if E is a DX/S-modules, its restriction
Es to the fiber Xs of X over k(s) has an associated S·TX′

s
-module Ψ′(Es).

In general, the dependence of Ψ′(Es) on s is quite complicated. However,
Belov-Kanel and Kontsevich have made the following conjecture [1]. (I have
changed the statement slightly.)

Conjecture 13 Let Y ⊆ T∗
Xσ

be a smooth and Lagrangian subvariety. As-
sume that the de Rham cohomology H1

DR(Y/K) vanishes. Then (after re-
placing S by a Zariski open subset) there exists a coherent DX/S-module E
with the following properties:

1. Eσ is holonomic

2. For all closed points s of S, the action of S·TX′
s

on Es factors through
OY ′

s
, and in fact Ψ′(Es) is locally free over OY ′

s
of rank pd.
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Furthermore, Eσ is uniquely characterized (up to isomorphism) by the above
properties.

Remark 14 The characterization “up to isomorphism” is annoyingly vague,
in particular I don’t see why E can’t have automorphisms. Can this be made
more precise by saying something more rigid about the action of OY ′

s
on Es?

It might be tempting to fix an OY -structure on E ahead of time which is
somehow used in (2) above. However, see the example 16 below.

Let me also remark that condition (2) above says that Es is a splitting
module for the Azumaya algebraDXs⊗OY ′ . (Here the tensor product is taken
over the center of DXs .) It follows from results of [5] that it is equivalent to
the statement that Ψ(E) is becomes an invertible sheaf over Xs ×X′

s
Y ′

s .

Example 15 Let us consider the case in which Y is given by a section of
T∗

Xσ
. Such a section is in turn given by a global section θ of π∗Ω1

Xσ/σ on Y ,

and the condition that Y be Lagrangian says that the image of θ in Ω1
Yσ/σ

should be closed. The hypothesis on the de Rham cohomology of Y = X
then implies θ is exact. After shrinking S, this can be achieved on X/S.
Consider the connection on OX sending 1 to θ. It follows from the formula
2 for the p-curvature of this connection (in characteristic p sends 1 to F ∗θ,
as desired.

Example 16 Let X := SpecZ[x], and let ξ be the coordinate of T∗
X cor-

responding to d/dx, and let Y be the closed subscheme of T∗
X defined by

ξ2 − x. In this case, the DX-module DX/(DX(D2 − x) works in 13. This
module corresponds to the module with connection E with basis (e0, e1) and
∇(e0) = e1, ∇(e1) = xdx⊗ e0.

To see that this works, one can use the Fourier transform (Kontsevich) or
compute directly, using Jacobson’s identity. Let us note that the restriction
of the universal one-form ξdx to Y is 2ξ2dξ = (2/3)dξ3, which is exact as
soon as we invert 3. Note also that things look suspicious at 2.

It is instructive to look at some explicit formulas for small primes p. Here
we list the p-curvature matrix (in the above basis) as well as its square.
(These were calculated using Macintosh Common Lisp.)

p Ψ Ψ2
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2
(
X1 1
0 X1

) (
X2 0
0 X2

)
3

(
1 X2

X1 2

) (
1 +X3 0

0 1 +X3

)
5

(
4X1 4 +X3

X2 X1

) (
X5 0
0 X5

)
7

(
2X2 X4

3 +X3 5X2

) (
X7 0
0 X7

)
11

(
5X1 + 3X4 5 + 7X3 +X6

6X2 +X5 6X1 + 8X4

) (
X11 0
0 X11

)
13

(
2X2 + 10X5 X4 +X7

9 + 3X3 +X6 11X2 + 3X5

) (
X13 0
0 X13

)
17

(
15X1 + 2X4 + 13X7 15 + 10X3 + 12X6 +X9

2X2 + 6X5 +X8 2X1 + 15X4 + 4X7

) (
X17 0
0 X17

)

When p = 3, the answer is incorrect, as we predicted, and if p > 3, it
is correct. However for p = 2, the matrix is not generically semisimple, and
again gives the wrong answer.

Question 17 With the notation of Conjecture 13, let us replace the hy-
pothesis on H1

DR(Y/K) by the condition that the universal one-form Θ on
T∗

Xσ/K be exact when restricted to Y . (Note that this implies that Y/K is
Lagrangian.)

1. Is this hypothesis sufficient to insure the existence of a module E with
connection as in 13.1?

2. If so, can we classify all such (E,∇)?

Example 18 The answer to question 17.1 is yes if Y/X is étale. Namely,
consider the connection on OY (viewed as an OY -module) sending 1 to the
restriction ΘY of the universal one-form to Y . Since Θ|Y is exact, the p-
curvature of this connection is the F-Higgs field sending 1 to F ∗

Y Θ|Y . Now
since Y/S is étale, π∗Ω

1
Y/S

∼= π∗(OY )⊗Ω1
X/S, and our connection on the OY -

module OY gives us a connection on the OX-module π∗OX . The p-curvature
of this connection is still the OY -linear map π∗OY → F ∗

XΩ1
X/S⊗π∗OY sending

1 to Θ|Y and hence the action of F ∗
XS
·TX/S it induces is exactly the action

of OY on itself.
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However, it seems difficult to classify all such E. For example, suppose
that X := Gm, with coordinate x, and let Y ⊆ T∗

X be the closed subscheme
defined by ξ2 − x. The above construction gives one such connection on
π∗OY :

1 7→ ξdx

ξ 7→ dξ1 + ξξdx =
ξ

2x
dx+ xdx

Note that this connection has a regular singularity at the origin. On the
other hand, we saw above a connection on a free OX-module of rank two
with no such singularity and which also has the right p-curvature. In the
basis (e0, e1) discussed above, we have

e0 7→ e1dx

e1 7→ xe0dx

Is there some “standard” way to see a relationship between these (noni-
somorphic) connections?

Let us remark that although the category of coherent sheaves with in-
tegrable connections over a formal power series ring over C is trivial, this
is not the case over Z. Thus it seems reasonable to ask question 17 with
X := SpecR[[x1, . . . xn]], for example. The uniqueness in this case seems
especially problematic, however, since the Katz Grothendieck conjecture [4]
fails for such X, as the following example shows.

Example 19 The Katz Grothendieck conjecture asserts that if X/S is as in
13 and (E,∇) is a coherent sheaf on X with integrable connection such that
for the p-curvature of each Es vanishes, then Eσ has a full set of horizontal
sections, after replacing X by a finite étale cover. This seems to be false with
X replaced by Z[[x]]. Let

ω :=
∑

anx
n dlog x, where an :=

∑
p

{p : p2|n}.

Evidently ω ∈ Z[[x]]dx, and in fact

ω :=
∑
p

ωp, where ωp :=
∑

p(xp2

+ x2p2

+ x3p2

+ · · ·) dlog x.
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In fact,
ωp = dlog gp, where gp := (1− xp2

)−1/p.

Note that gp ∈ Z[p−1][[x]], and g :=
∏
gp ∈ Q[[x]] satisfies dlog g = ω.

Remark 20 It might be useful to investigate some higher p-curvature op-
erators. Let us suppose that S is flat over Z and p-adically complete and
that (E,∇) is a module with integrable connection on X/S. Suppose that
the p-curvature of the reduction modulo p of E vanishes, and suppose we
are given a coordinate system for X/S. Then each ∇p

Di
is divisible by p;

write ∇p
Di

= pηi Note that Dp2

i is divisible by p2! and hence by pp+1, whereas

∇p2

Di
= ppηp

i is a priori only divisble by pp. In fact, ηp
i /p

p mod p is anOX-linear
and horizontal endomorphism of E/pE, which is an obstruction to solving
the differential equations of (E,∇). Some obvious things to investigate:

1. a coordinate free treatment of this map

2. its relationship to Frobenius descent, in particular to the p-curvature
of the F-descent of (E,∇).

3. its relationship to Berthelot’s higher level differential operators.
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