Computable and computably enumerable languages

Peter Mayr

Computability Theory, September 13, 2023

Definition

- A DTM M with input alphabet Σ is halting if M halts on every $w \in \Sigma^{*}$.
- If M is halting, it decides its language $L(M)$.
- L is computable (also decidable, recursive) if there exists a halting DTM M such that $L=L(M)$.
- L is computable enumerable (c.e.) (also semi-decidable, recursively enumerable) if there exists a DTM M such that $L=L(M)$.

Note

- Even if M is not halting, $L(M)$ may still be computable by a different, DTM.

Theorem
L is computable iff L and its complement \bar{L} is c.e.
Proof.
\Rightarrow : Let $L=L(M)$ for a halting DTM M.

- Then L is c.e. by definition.
- Also $\bar{L}=L\left(M^{\prime}\right)$ is c.e. with M^{\prime} like M but with accept and reject state flipped.
\Leftarrow : Let $M_{1}=\left(Q_{1}, \ldots, \delta_{1}\right), M_{2}=\left(Q_{2}, \ldots, \delta_{2}\right)$ be DTMs with $L=L\left(M_{1}\right), \bar{L}=L\left(M_{2}\right)$.
Construct M to run M_{1}, M_{2} in parallel on input w :
- states $Q_{1} \times Q_{2}$
- tape alphabet $\Gamma_{1} \times \Gamma_{2}$
- transition function $\delta_{1} \times \delta_{2}$ acking on 2 bapus
- accept states $\left\{t_{1}\right\} \times Q_{2}$ (M_{1} accepts)
- reject states $Q_{1} \times\left\{t_{2}\right\}$ (M_{2} accepts)

Then M is halting and $L(M)=L$.
Sina pach $w \in \bar{\Sigma}^{k}$ is either im L on L, eidher Π, outtr accepts infis manjesbop.

Closure properties of computable languages

Theorem
The class of computable languages is closed under complements, union, intersection, concatenation, *.

Proof.
Construct the corresponding DTMs.
Question
Which operations preserve c.e. languages?

Why "enumerable"?

Definition

An enumerator is a DTM M with $\sharp \in \Gamma$,

- a working tape and
- an output tape on which M moves only right (or stays) and writes only symbols from $\Gamma \backslash\lrcorner\}$.

The generated language $\operatorname{Gen}(M)$ of M is the set of all words that M writes on the output tape when starting with empty tapes.
Consecutive words are separated by \sharp.
Example
If M writes $\sharp 1 \sharp 11 \sharp 111 \sharp \ldots$, then $\operatorname{Gen}(M)=L(\epsilon, 1,11, \ldots)$.

Theorem

L is c.e. iff there exists an enumerator with $L=\operatorname{Gen}(M)$.
Proof.
\Rightarrow : Let $L=L(N)$ for a DTM N.
Idea: Construct an enumerator M that runs through all $w \in \Sigma^{*}$ and prints w if N accepts it.
M loops through all pairs $(m, n) \in \mathbb{N}^{2}$ (countable!):

- For $(m, n), M$ construct the m-th word w_{m} over Σ in length-lex order. (liusac o- Σ^{*})
- Then N runs $\leq n$ steps with input w_{m}. If N accepts, then M prints w_{m}.
Then $\operatorname{Gen}(M)=L(N)$.

Proof.

\Leftarrow : Let $L=\operatorname{Gen}(M)$ for an enumerator M.
The following DTM N accepts L :

- On input w, N starts M to enumerate L.
- If w appears in output of M, N accepts w.
- Else, N loops.

Note

- Being able to generate a language L is equivalent to being able to accept L (but not necessarily to reject its non-elements).
- Generating L is "easier" than deciding L.

Why "computable"?

For sets $X \subseteq A$ and B we call $f: X \rightarrow B$ a partial function from A to B with domain $(f)=X$, denoted $f: A \rightarrow_{p} B$.
Example
\sqrt{x} can be viewed as partial function $\mathbb{R} \rightarrow_{p} \mathbb{R}$ with domain \mathbb{R}_{0}^{+}.

Definition

A partial function $f: \Sigma^{*} \rightarrow_{p} \Sigma^{*}$ is computable if there exists a DTM M such that $\forall x, y \in \Sigma^{*}:\left(s, x_{\llcorner } \ldots, 0\right) \vdash_{M}^{*}\left(t, y_{\llcorner } \ldots, 0\right)$ iff $x \in \operatorname{domain}(f)$ and $f(x)=y$.

Theorem
$f: \Sigma^{*} \rightarrow_{p} \Sigma^{*}$ is computable iff its graph

$$
L_{f}:=\left\{(x, y) \in\left(\Sigma^{*}\right)^{2}: x \in \operatorname{domain}(f), f(x)=y\right\}
$$

is c.e.
Proof.
\Rightarrow : HW
\Leftarrow : Assume $L_{f}=\operatorname{Gen}(N)$ for some enumerator N.
Construct M that computes $f(x)$ as follows:

- M starts N to enumerate all pairs $(a, b) \in L_{f}$.
- If (x, y) appears for some y, then M returns y.
- Else M loops.

Note
Computing a function is the same as accepting its graph.

