Computable and computably enumerable
languages

Peter Mayr

Computability Theory, September 13, 2023



Definition
> A DTM M with input alphabet ¥ is halting if M halts on
every w € ¥,
» If M is halting, it decides its language L(M).

» L is computable (also decidable, recursive) if there exists a
halting DTM M such that L = L(M).

» L is computably enumerable (c.e.) (also semi-decidable,
recursively enumerable) if there exists a DTM M such that
L=L(M).

Note
» Even if M is not halting, L(M) may still be computable by a
different, DTM. cocL c.e.
‘mﬁau&
» regular = computable = c.e.
&
(PR

Co -——-(lM,LnL(-



Theorem
L is computable iff L and its complement L is c.e.

Proof.
= Let L = L(M) for a halting DTM M.

» Then L is c.e. by definition.

» Also L = L(M') is c.e. with M’ like M but with accept and
reject state flipped.

<: Let My = (Ql, ce ,51), M, = (QQ, ce ,52) be DTMs with
L=L(M),L=L(M,).
Construct M to run My, My in parallel on input w:

> states Q1 X @

> tape alphabet 1 x I

> transition function §; X Jy @cding o 2 bar

> accept states {t1} x Q> (M; accepts)

> reject states @ x {t2} (M, accepts)

Then M is halting and L(M) = L. O
CSivamdrweT* wealy. o Lo L . L(Mh|ovh1ﬁcch5m£u-_\ =..c-«7squ==.



Closure properties of computable languages

Theorem
The class of computable languages is closed under complements,
union, intersection, concatenation, *.

Proof.
Construct the corresponding DTMs.

Question
Which operations preserve c.e. languages?



Why “enumerable”?

Definition
An enumerator is a DTM M with f € T,
» a working tape and

» an output tape on which M moves only right (or stays) and
writes only symbols from I\ {_}. Porinbe
The generated language Gen(M) of M is the set of all words
that M writes on the output tape when starting with empty tapes.
Consecutive words are separated by {.

Example
If M writes #14114111%. .., then Gen(M) = L(e, 1,11,...).



Theorem
L is c.e. iff there exists an enumerator with L =Gen(M).

Proof.
= Let L = L(N) fora DTM N.

Idea: Construct an enumerator M that runs through all w € ¥*
and prints w if N accepts it.

M loops through all pairs (m, n) € N? (countable!):

o
Ol'\‘

o 1o e
» For (m, n), M construct the m-th word w,, over ¥ in
length-lex order. ( (iear o= 3

» Then N runs < n steps with input w,,. If N accepts, then M
prints wi,.

Then Gen(M) = L(N).



Proof.
<: Let L =Gen(M) for an enumerator M.

The following DTM N accepts L:
» On input w, N starts M to enumerate L.
» If w appears in output of M, N accepts w.
» Else, N loops.

Note
» Being able to generate a language L is equivalent to being able
to accept L (but not necessarily to reject its non-elements).

» Generating L is “easier” than deciding L.



Why “computable”?

For sets X C A and B we call f: X — B a partial function from
A to B with domain(f) = X, denoted f: A —, B.

Example
V/X can be viewed as partial function R —, R with domain R

Definition

A partial function f: ¥* —, ¥* is computable if there exists a
DTM M such that Vx,y € ¥*: (s,x....,0) 3, (t,yo...,0) iff
x € domain(f) and f(x) = y.



Theorem
f:¥* —p, X" is computable iff its graph

Lr:={(x,y) € (Z*)2 : x € domain(f), f(x) =y}

is c.e.

Proof.

=: HW

<: Assume Ly =Gen(N) for some enumerator N.
Construct M that computes f(x) as follows:

» M starts N to enumerate all pairs (a, b) € L¢.
» If (x,y) appears for some y, then M returns y.
> Else M loops.

Note
Computing a function is the same as accepting its graph.



