Math 6010 - Assignment 7

Due October 23, 2023
(1) Read Section 2.2.1-2.2.6 on the Recursion Theorem in [1].
(2) [1, Ex 2.2.9] Define the following set of minimal indices of partial computable functions

$$
M:=\left\{x: \neg(\exists y<x)\left[\varphi_{x}=\varphi_{y}\right]\right\} .
$$

Prove that M is infinite but contains no infinite c.e. set. Hint: Use the Recursion Theorem.
Disjoint sets A, B are computably separable if there exists a computable set C such that $A \subseteq C$ and $B \cap C=\emptyset$; else A, B are computably inseparable.
(3) Show that the Σ_{1}^{0} sets

$$
A:=\left\{x: \varphi_{x}(x)=0\right\} \text { and } B:=\left\{x: \varphi_{x}(x)=1\right\}
$$

are computably inseparable.
Hint: Show that no φ_{e} is the characteristic function of a separating set C.
(4) Show the Π_{1}^{0}-Separation Principle: If $A, B \subseteq \mathbb{N}$ are Π_{1}^{0} and disjoint, then they are computably separable.
Hint: Use the Σ_{1}^{0} Reduction Principle.

References

[1] Soare, Robert I. Turing computability : theory and applications. Springer, Berlin, 2016.

