Math 6010 - Assignment 8

Due March 15, 2021

Disjoint sets A, B are computably separable if there exists a computable set C such that $A \subseteq C$ and $B \cap C=\emptyset$; else A, B are computably inseparable.
(1) Show that the Σ_{1}^{0} sets

$$
A:=\left\{x: \varphi_{x}(x)=0\right\} \text { and } B:=\left\{x: \varphi_{x}(x)=1\right\}
$$

are computably inseparable.
Hint: Show that no φ_{e} is the characteristic function of a separating set C.
(2) Show the Π_{1}^{0}-Separation Principle: If $A, B \subseteq \mathbb{N}$ are Π_{1}^{0} and disjoint, then they are computably separable.
Hint: Use the Σ_{1}^{0} Reduction Principle.
(3) Show that there exists $e \in \mathbb{N}$ such that

$$
W_{e}=\{e\} .
$$

Hint: Argue that there exists a computable $f(x, y)$ such that $W_{f(x, y)}=\{x\}$. Then apply the Uniform Recursion Theorem to find a fixed point of f.
(4) Show that a set A is productive iff $\bar{K} \leq_{m} A$.

Hint for \Leftarrow : Use that \bar{K} is productive.

