
Math 29: Complete Sets

May 6th, 2022

1 Completeness

A set M is complete for a class of sets {Xi}i∈ω and a reducibility ≤ if
Xi ≤ M for all i. We’ve already seen some examples of complete sets: a c.e. set
A is 1-complete if We ≤1 A for all e. In other words, all c.e. sets are 1-reducible
to A. We proved before the midterm that the 1-complete sets are exactly the
creative sets.

Theorem 1. (The Index Set Theorem) If A is a nontrivial index set, then either
K ≤1 A or K ≤1 Ac.

Proof: Note that it suffices to prove K ≤1 A or K ≤1 Ac, as We ≤1 K
for all e and ≤1 is transitive.

Let e be an index for the machine which never converges on any input,
which is either in A or Ac, and let k be in the opposite. (Which exists
since A is nontrivial.) By the s-m-n, there is a total computable injection
f such that

φf(n)(m) =

{
φk(m) if φn(n) ↓
↑ otherwise

Thus φf(n) = φk if n ∈ K and φf(n) = φe if n ̸∈ K. As A, and by
extension its complement, are index sets, f 1-reduces K to whichever
of A or Ac does not contain e.

Notice that this gives an alternate proof of Rice’s theorem, as A ≤1 B and
B being computable implies that A is computable.

In particular, any non-trivial c.e. index set is 1-complete, and hence creative.
C.e. index sets exist, but describing exactly which ones are c.e. we will not do.
All c.e. sets are still 1-reducible to those which are not c.e., however. Many of
these provide interesting examples of problems which the halting problem can
be 1-reduced to.

1



• Nem = {e : We ̸= ∅}

• Fin = {e : We is finite}

• Inf = {e : We is infinite}

• Tot = {e : We = ω}

• Con = {e : W c
e is finite}

• Rec = {e : We is computable}

• Ext = {e : We can be extended to a total computable function.}

All of these are nontrivial, so K is 1-reducible to either them or their com-
plements. For some of them, it is 1-reducible to both.

We shall see that not all of the above are at the same level. While the exact
definitions necessar to formalize this idea will be covered over the coming weeks
by Ben in the X-hours, the number and order of quantifiers it takes to state
something relates directly to how hard it is to solve. Notice that Nem only
takes a single existential quantifier to state:

Nem = {e : ∃m m = ⟨n, s⟩ and φe,s(n) ↓}

Conversely, Tot requires two quantifiers:

Tot = {e : ∀n ∃s φe,s(n) ↓}

It is possible to artificially add quantifiers, but it turns out that there is some
minimum number of quantifiers (and specific order/type of them!) which is
optimal for a given statement. In the above examples, a single existential quan-
tifier is optimal for Nem and ∀∃ is optimal for Tot. In the X-hours, you will see
that quantifiers correspond to the arithmetical hierarchy, which are closely
related to the Borel hierarchy from topology and analysis. We will get a
sequence of collections of sets

∆0
1,∆

0
2,∆

0
3, . . .

Σ0
1,Σ

0
2,Σ

0
3 . . .

Π0
1,Π

0
2,Π

0
3 . . .

The above index sets will be complete for some level of this hierarchy. Nem is
Σ0

1 complete (and 1-complete by the Index Set Theorem), Tot is Π0
2 complete,

etc.

However, to be able to fully describe this phenomenon, we first need to
define Turing reducibility, which is the “right” notion of reducibility to capture
our intuition. To do this, we need the concept of oracles and oracle machines.

2



2 Oracle Machines

An oracle Turing machine is a Turing machine which has a second input
tape and a second head. The second head can be moved along the second input
tape, but it cannot write to it. Instructions now act based on the current cell
on both tapes, and valid actions are writing to the first tape, or moving along
either tape. Machines are still required to come with finitely many instructions,
and we can still use the same principles for coding machines as we did with
standard Turing machines.

Alternatively, we can define oracle register machines. These contain a
countable, one-way input tape containing either 0’s or 1’s, with cells indexed
by natural numbers. For each register Ri, we have a new instruction Ro

i , which
reads the cell indexed by the current value contained in Ri and has two output
nodes: a 0 node and a 1 node based on the value on the tape. As in the previous
case, we can extend our existing coding without issue.

An oracle is then just a set whose characteristic function is fed into the
oracle tape. For the same reasons as before, there is a universal oracle machine
O. It is very important to specify that this is only universal in that it can
simulate the run of any oracle machine - it cannot simulate all oracles. There
are uncountably many oracles, but only countably many oracle machines which
the universal machine can run.

We use Φe(n) to denote running e-th oracle machine on input n, i.e. Φe(n) =
O(⟨e, n⟩). Given a set X ⊆ ω, ΦX

e (n) denotes the run of the e-th oracle machine
on input n with the characteristic function of X on the oracle tape. All of our
notation for φe carries over - ΦX

e,s(n) is time bounded computation, ΦX
e (n) ↑

and ΦX
e (n) ↓ mean that the machine diverges or converges respectively, etc.

In terms of the Church-Turing thesis, one should think of oracles as a library
function which we could not code ourselves, but which we can nonetheless call.
We can ask questions about membership of a number in our oracle and make
decisions based on that value. If our oracle is computable, then it is clear that
our process is computable: it is just an example of the “black box” nodes we
used in our original register machines. However, when X is NOT computable,
then there is something interesting to be said. This is the foundation for Turing
reducibility, which we will define formally in the next class.

3


	Completeness
	Oracle Machines

