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1 Introduction

In this note, we explore the notion of homological dimension. After introducing
the basic concepts, our two main goals are to give a proof of the Hilbert syzygy
theorem and to apply the theory of homological dimension to the study of local
rings.

2 Elementary results from homological algebra

Assume throughout that R is a commutative ring with identity. We assume
some familiarity with the basic concepts from homological algebra, including but
not limited to the following: chain complexes and double complexes, projective
modules and resolutions, Tor, and Ext. We state a number of elementary results
without proof, all of which can be found in [4], that will be useful in the duration.

The first result gives a method for constructing projective resolutions:

Lemma 2.1. Let
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be a diagram of R-modules where the column is exact and the rows are projective
resolutions. We can complete this diagram to give the commutative diagram
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��

0

��

· · · // P
′

1
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i1

��

P
′

0
//

i0

��
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′ //

i

��

0

· · · // P1
//

π1

��

P0
//

π0

��

M //

π

��

0

· · · // P
′′

1
//

��

P
′′

0
//

��

M
′′ //

��

0

0 0 0

where Pi = P
′

i ⊕P
′′

i give a projective resolution of M and the columns are exact
with the canonical inclusion and projection maps.

Our next result, which follows directly from the long exact sequence for
ExtiR(M,−) associated to a short exact sequence of R-modules, characterizes
projective R-modules.

Proposition 2.2. Let M be an R-module, then the following are equivalent:

1. M is projective.

2. ExtiR(M,N) = 0 for all i > 0 and all R-modules N .

3. Ext1R(M,N) = 0 for all R-modules N .

3 Basic concepts

Let M be an R-module. The projective dimension of M , denoted pdR(M)
is the smallest natural number n so that there exists an R-module projective
resolution

0 // Pn // · · · // P0
// M // 0.

IfM does not admit a projective resolution of finite length, then we set pdR(M) =
∞.

Our first result gives several useful conditions characterizing projective di-
mension:

Lemma 3.1. Let M be an R-module, then the following are equivalent:
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1. pdR(M) ≤ n.

2. ExtiR(M,N) = 0 for all i > n and all R-modules N .

3. Extn+1
R (M,N) = 0 for all R-modules N .

4. Whenever

0 // K // Pn−1
// · · · // P0

// M // 0

is an exact sequence with each Pi projective, K is projective.

Proof. Since ExtiR(−, N) is the right derived functor of HomR(−, N), we have
that item 4 implies item 1 implies item 2 implies item 3.

Now, if

0 // A // P // B // 0

is an exact sequence with P projective, the long exact sequence for ExtiR(−, N)
gives that

ExtiR(A,N) ∼= Exti+1
R (B,N)

for i ≥ 1. By interlacing long exact sequences with short exact sequences, this
in turn implies that if

0 // K // Pn−1
// · · · // P0

// M // 0

is exact with each Pi projective, then

Extn+1
R (M,N) ∼= Ext1R(K,N).

Thus, if item 3 holds then Ext1R(K,N) = 0 for all R-modules N . Proposition
2.2 then gives that K is projective.

In particular, item 2 gives that if pdR(M) <∞ then

pdR(M) = min{i : Exti+1
R (M,N) = 0 for all R-modules N}.

Proposition 3.1 now gives that for a ring R the following numbers are the
same

1. sup{i : ExtiR(M,N) 6= 0 for some R-modules M and N}

2. sup{pdR(M) : M ∈ R-mod}

Definition 3.2. This common number is the global dimension of the ring R,
denoted gldim(R).
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4 The Hilbert syzygy theorem

Our goal in this section is to give a proof of the Hilbert syzygy theorem. The
strongest form of this statement is the following:

Theorem 4.1. Let k be a field and suppose that M is a finitely generated
k[x1, . . . , xn]-module. If

0 // K // Fn−1
// · · · // F0

// M // 0 (4.1)

is an exact sequence with each Fi free and finitely generated, then K is free.

Our approach is as follows: We will first deduce that

gldim(k[x1, . . . , xn]) = n. (4.2)

Since each Fi is projective, Lemma 3.1 implies that K is projective, and K is
finitely generated as k[x1, . . . , xn] is noetherian. The result then follows from
the Quillen-Suslin theorem [3, Chapter XXI, §4, Theorem 3.7]:

Theorem 4.2. Any finitely generated projective k[x1, . . . , xn]-module is free.

We now aim to show (4.2). We follow the presentation given in [4, Section
4.3], elaborating on the proofs given there. The result will follow from a sequence
of “change of rings” results. In order to prove the first of these results, we need
the following preparatory lemma.

Lemma 4.3. Let {Mi}i∈I be a collection of R-modules, then

pdR

(

⊕

i∈I

Mi

)

= sup
i∈I

{pdR(Mi)} .

Proof. Since the direct sum of a family of projective modules is projective, given
projective resolutions P∗,i ։ Mi for each Mi we have a projective resolution
⊕P∗,i ։ ⊕Mi which gives

pdR

(

⊕

i∈I

Mi

)

≤ sup
i∈I

{pdR(Mi)} .

Next, if pdR(⊕Mi) = ∞ then the result follows, so suppose pdR(⊕Mi) =
n <∞. For each i, consider an exact sequence

0 // Ki
// Pn−1,i // · · · // P0,i // Mi

// 0

with each Pm,i projective. This gives an exact sequence

0 //
⊕

i∈I Ki //
⊕

i∈I Pn−1,i // · · · //
⊕

i∈I P0,i //
⊕

i∈IMi // 0

and Lemma 3.1 gives that ⊕Ki is projective. Since direct summands of projec-
tive modules are projective, it follows that each Ki is projective. Lemma 3.1
then gives pdR(Mi) ≤ n and the result follows.
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Given a morphism of rings R → S, the first result relates the projective
dimension of an S-module M over S to its projective dimension over R.

Theorem 4.4. If R → S is a morphism of rings and M is an S-module, then

pdR(M) ≤ pdR(S) + pdS(M).

Proof. We can assume that pdS(M) = n < ∞ and pdR(S) = d < ∞ or else
there is nothing to prove. Let

0 // Qn
fn // · · ·

f1 // Q0
f0 // M // 0

be an S-module projective resolution.
Choose R-module projective resolutions of M = im f0 and ker f0 and use

Lemma 2.1 to construct an R-module projective resolution P ′

∗,0 of Q0. Now
construct R-module projective resolutions for each Qi via the same procedure,
using the resolution of im fi = ker fi−1 used to construct the projective res-
olution of Qi−1 and choosing a projective resolution of ker fi. We can then
patch these short exact sequences of projective resolutions together to obtain
the commutative diagram:

0

��

0

��

0

��

0 Qnoo

��

P ′

0,n
oo

��

P ′

1,n
oo

��

· · ·oo

...

��

...

��

...

��

0 Q1
oo

��

P ′

0,1
oo

��

P ′

1,1
oo

��

· · ·oo

0 Q0
oo

��

P ′

0,0
oo

��

P ′

1,0
oo

��

· · ·oo

0 0 0

where the columns are chain complexes and the rows are R-module projective
resolutions.

Now, since each Qi is a projective S-module, it follows that for each i there
exists an S-module Ni so that Qi ⊕ Ni is a free S-module Fi(S). Lemma 4.3
then implies that

pdR(Qi) ≤ pdR(Fi(S)) = pdR(S) = d.
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We hence may construct the commutative diagram

0

��

0

��

0

��

0 Qnoo

��

P0,noo

��

· · ·oo Pd,noo

��

0oo

...

��

...

��

...

��

0 Q0
oo

��

P0,0oo

��

· · ·oo Pd,0oo

��

0oo

0 0 0

(4.3)

where the columns are chain complexes and the rows are R-module projective
resolutions by taking Pm,i = P ′

m,i for m 6= d and Pd,i = P ′

d,i/ ker(P ′

d,i → P ′

d−1,i)
and using Lemma 3.1.

A standard argument now gives that the complexes Q∗ and Tot(P∗,∗)∗, the
total complex associated the double complex P∗,∗ obtained from truncating the
Qi’s in the rows of (4.3), are quasi-isomorphic (i.e. have the same homology).
Since Tot(P∗,∗)∗ is a complex of projective R-modules of length at most n+ d,
the result follows.

The proofs of the next two change of rings theorems proceed via induction
on pdR(M), so the following lemma aids in these considerations.

Lemma 4.5. If the sequence of R-modules

0 // A // B // C // 0

is exact, then pdR(B) ≤ max{pdR(A), pdR(C)}. Moreover, if we have strict
inequality, then pdR(C) = pdR(A) + 1.

Proof. The first statement follows from Lemma 2.1. The second follows con-
sidering the characterization provided in Lemma 3.1. Indeed suppose that
pdB(B) = n < max{pdR(A), pdR(C)}. The long exact sequence for ExtiR(−, N)
gives that

ExtiR(A,N) ∼= Exti+1
R (C,N)

for i ≥ n + 1 and all R-modules N . This gives the result provided pdR(A) ≥
n + 1 or pdR(C) ≥ n + 2. The remaining case is when pdR(C) = n + 1
and pdR(A) < n + 1. If pdR(A) = n then the result holds and otherwise
the ExtiR(−, N) long exact sequence implies that Extn+1

R (C,N) = 0 for all R-
modules N , contradicting the fact that pdR(C) = n+ 1.
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Given a ring R and an element r ∈ R that is not a zero divisor, consider
an R/rR-module M . Such a module is an R-module that is annihilated by r.
The next result gives the projective dimension of M over R/rR in terms of the
projective dimension of M over R. This is particularly relevant to our present
consideration, since taking R = S[x] for some ring S and r = x, we will be able
to deduce information about gldim(S[x]) from gldim(S).

Theorem 4.6. Let r ∈ R be a non-zerodivisor, M be a non-zero R/rR-module,
and suppose that pdR/rR(M) <∞, then

pdR(M) = 1 + pdR/rR(M).

Proof. First, note that pdR(M) 6= 0. Indeed, this would mean that M is a
projective R-module, implying that M is a direct summand of a free R-module
and contradicting the fact that M is annihilated by r. We hence have that
pdR(M) ≥ 1.

Next, suppose that M is a projective R/rR-module, then since

0 // R
·r // R // R/rR // 0 (4.4)

gives a projective resolution of R/rR of minimal length, Theorem 4.4 gives

pdR(M) ≤ pdR(R/rR) + pdR/rR(M) = 1

so the result holds.
It now suffices to consider the case when pdR(M), pdR/rR(M) ≥ 1 and we

proceed via induction on n = pdR/rR(M) < ∞. Consider an R/rR-module
projective resolution

0 // Pn
fn

// · · ·
f1

// P0
f0

// A // 0

of minimal length. Taking K = ker f0, we have that

0 // K // P0
// M // 0

is exact and pdR/rR(M) = 1 + pdR/rR(K). Lemma 4.5 implies that either

1 = pdR(P0) = max{pdR(K), pdR(M)} (4.5)

or
pdR(M) = 1 + pdR(K). (4.6)

Since the induction hypothesis gives that

pdR(K) = 1 + pdR/rR(K)

provided pdR(K) ≥ 1, we are done if (4.6) holds or if (4.5) holds and pdR(K) =
0, since pdR(M) ≥ 1.
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It remains to consider the case when pdR(M) = 1 = pdR/rR(M) and we
shall now see that this cannot happen. Let

0 // P1
// P0

// M // 0

be an R-module projective resolution of M . Applying the functor − ⊗R R/rR
gives the exact sequence

0 // TorR1 (M,R/rR) // P1 ⊗R R/rR // P0 ⊗R R/rR // M // 0

of R/rR-modules. Since P1 ⊗R R/rR and P0 ⊗R R/rR are projective R/rR-
modules, Lemma 3.1 implies that TorR1 (M,R/rR) is projective.

Computing TorR1 (M,R/rR) by applyingM⊗R− to the R-module projective
resolution (4.4), we find that

TorR1 (M,R/rR) ∼= M

which implies pdR/rR(M) = 0, a contradiction.

The next result examines the case where r ∈ R is neither a zero divisor on
R nor on M .

Theorem 4.7. Let M be an R-module and r ∈ R be neither a zero divisor on
R nor on M , then

pdR/rR(M/rM) ≤ pdR(M).

Proof. Since the result is trivial if pdR(M) = ∞, we proceed via induction
on pdR(M) < ∞. If pdR(M) = 0 then M is projective, hence M/rM ∼=
R/rR⊗RM is projective, i.e. pdR/rR(M/rM) = 0 and the result holds.

Now suppose n = pdR(M) ≥ 1 and let

0 // K // F // M // 0 (4.7)

be an exact sequence ofR-modules with F free. Lemma 3.1 gives that pdR(K) =
n− 1 and the induction hypothesis gives

pdR/rR(K/rK) ≤ n− 1.

Applying − ⊗R R/rR to (4.7) gives

0 // TorR1 (M,R/rR) // K/rK // F/rF // M/rM // 0

and a calculation gives that TorR1 (M,R/rR) = 0, so

0 // K/rK // F/rF // M/rM // 0

is exact. Lemma 4.5 now gives that either

0 = pdR/rR(F/rF ) = max{pdR/rR(K/rK), pdR/rR(M/rM)}
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so pdR/rR(M/rM) = 0 or that

pdR/rR(M/rM) = pdR/rR(K/rK) + 1

≤ (n− 1) + 1 = n

which gives the result.

Corollary 4.8. Let M be an R-module, then

pdR(M) = pdR[x](R[x] ⊗RM).

Proof. Since x is a non-zerodivisor on R[x] and R[x] ⊗RM , Theorem 4.7 gives

pdR(M) ≤ pdR[x](R[x] ⊗RM).

Now, if P∗ ։ M is an R-module projective resolution, then applying R[x]⊗R−
gives an R[x]-module projective resolution R[x]⊗R P∗ ։ R[x]⊗RM since R[x]
is a flat R-module. This gives

pdR(M) ≥ pdR[x](R[x] ⊗RM).

We now arrive at the main theorem in this section.

Theorem 4.9. Let R be a ring, then gldim(R[x]) = gldim(R) + 1.

Proof. If gldim(R) = ∞ then Corollary 4.8 implies that gldim(R[x]) = ∞ and
the result holds.

We now assume that gldim(R) = n < ∞. If N is an R-module, then N is
an R[x]-module (let x act trivially) and Theorem 4.6 gives

pdR[x](N) = 1 + pdR(N)

and hence gldim(R[x]) ≥ n+ 1.
Now, let M be an R[x]-module. A computation shows that the sequence of

R[x]-modules

0 // R[x] ⊗RM
ϕ

// R[x] ⊗RM
ψ

// M // 0

with

ϕ(f ⊗m) = xf ⊗m− f ⊗ xm

ψ(f ⊗m) = fm
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is exact. Lemma 4.5 then gives that either pdR[x](M) = 1 + pdR[x](R[x]⊗RM)
or pdR[x](M) ≤ pdR[x](R[x] ⊗RM). This gives

pdR[x](M) ≤ 1 + pdR[x](R[x] ⊗RM)

= 1 + pdR(M)

≤ 1 + n

where we have used Corollary 4.8. This implies gldim(R[x]) ≤ n + 1 which
completes the proof.

This result immediately implies the following corollary.

Corollary 4.10. Let R be a ring, then gldim(R[x1, . . . , xn]) = gldim(R) + n.

Our proof of the Hilbert syzygy theorem follows directly from this result,
noting that if k is a field, then gldim(k) = 0 since all k-modules are free.

5 Local Rings

For the duration, we consider a noetherian local ring R with maximal ideal m.
Recall that such a ring is called a regular local ring provided

dim(R) = dimk(m/m
2)

where k = R/m is the residue field, dim(−) denotes Krull dimension, and
dimk(−) denotes vector space dimension. Such rings arise naturally in alge-
braic geometry, where they characterize nonsingularity of varieties. It is a stan-
dard fact that if R is a noetherian local ring then dim(R) is finite and in fact
dim(R) ≤ dimk(m/m

2) [1, Chapter 11].
In this section we aim to prove the following result [4, Corollary 4.4.18]:

Theorem 5.1. If R is a regular local ring and p ⊆ R is a prime ideal, then Rp

is a regular local ring.

It is interesting to note that from the statement of this theorem, one would
not suspect that homological algebra would play any role in its proof. As in the
last section, we will prove this result using a sequence of preliminary results.
We again follow the presentation given in [4, Section 4.4].

We begin with an additional change of rings theorem, a strengthening of
Theorem 4.7 in the case that M is finitely generated.

Theorem 5.2. Let R a noetherian local ring with maximal ideal m. If M is a
finitely generated R-module and r ∈ m is neither a zero divisor on R nor on M ,
then

pdR/rR(M/rM) = pdR(M).
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Proof. We have pdR/rR(M/rM) ≤ pdR(M) by Theorem 4.7 so we are done
if pdR/rR(M/rM) = ∞. Otherwise, we may proceed via induction on n =
pdR/rR(M/rM).

If n = 0 then M/rM is projective and it follows that M/rM is free since
R/rR is local and projective modules over local rings are free. We now claim
that this implies that M is free, i.e. pdR(M) = 0.

Indeed, let x1, . . . , xm ∈ M be elements mapping to a basis for M/rM and
let (x1, . . . , xm) denote the R-submodule they generate. We have

M = (x1, . . . , xm) + rM

= (x1, . . . , xm) + mM

so Nakayama’s lemma implies (x1, . . . , xm) = M .
To see that these elements are independent, suppose there exist s1, . . . , sm ∈

R so that
∑

sixi = 0. This gives that
∑

six̄i = 0 in M/rM where x̄i denotes
the image of xi under the canonical quotient map. For each i we have, si = r ·s′i,
so r ·(

∑

s′ixi) = 0 and since r is not a zero divisor on M this implies
∑

s′ixi = 0.
We may iterate this procedure and obtain an increasing sequence of ideals

siR ⊆ s′iR ⊆ · · · ⊆ s
(j)
i R ⊆ · · ·

where s
(j)
i = rs

(j+1)
i , which must stabilize since R is noetherian. This gives that

s
(l)
i R = s

(l+1)
i R for some l and hence there exists a ∈ R so that ars

(l+1)
i = s

(l+1)
i .

Rearranging, this gives (1 − ar)s
(l+1)
i = 0 and since r ∈ m we have that 1 − ar

is a unit [1, Proposition 1.9]. This implies s
(l+1)
i = 0 so si = rl+1s

(l+1)
i = 0 for

all i.
Having handled the n = 0 case, we now easily finish the proof. Let

0 // K // F // M // 0

be an exact sequence of R-modules with F free, so pdR(K) = pdR(M) − 1.
Applying the functor −⊗R R/R gives the exact sequence

0 // K/rK // F/rF // M/rM // 0

since TorR1 (M,R/rR) = 0 if r is not a zero divisor on M . Since F/rF is free,
pdR/rR(K/rK) = n − 1, and since M is finitely generated, we can suppose
that F is as well. As R is noetherian, this implies that K is finitely generated.
The induction hypothesis then gives that pdR(K) = n − 1 and so pdR(M) =
pdR(K) + 1 = n.

We now need to introduce further machinery for analyzing local rings. LetM
be an R-module, then a regular sequence on M is a sequence r1, . . . rd ∈ m so
that r1 is not a zero divisor onM and ri is not a zero divisor onM/(r1, . . . , ri−1)M .
We let G(M) denote the length of the longest regular sequence on M . Now re-
call the following result from the dimension theory of noetherian local rings [1,
Corollary 11.18]:
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Proposition 5.3. Let R be a noetherian local ring and r ∈ m not a zero divisor,
then dimR/rR = dimR− 1.

This shows that G(R) ≤ dim(R) and R is called Cohen-Macaulay if we
have G(R) = dim(R).

Proposition 5.4. A regular local ring R is Cohen-Macaulay. Moreover, any
set r1, . . . , rd ∈ m mapping to a basis of m/m2 is a regular sequence on R.

Proof. It suffices to show that dim(R) = dimk(m/m
2) ≤ G(R), and we proceed

via induction on d = dim(R). The case d = 0 is trivial, so assume d ≥ 1 and
let r1, . . . , rd ∈ m map to a basis of m/m2. Since regular local rings are integral
domains [1, Lemma 11.23], r1 is not a zero divisor and hence, by Proposition
5.3, dim(R/r1R) = d − 1. Let r̄2, . . . , r̄d denote the images in R̄ = R/r1R of
r2, . . . , rd and note that r̄2, . . . , r̄d map to a basis of m̄/m̄2 where m̄ = mR̄, hence
R̄ is regular.

The induction hypothesis implies that r̄2, . . . , r̄d is a regular sequence on R̄,
and thus r1, . . . , rd is a regular sequence on R.

We now consider a result describing noetherian local rings R with G(R) = 0.
Note that this condition is equivalent to all elements of m being zerodivisors.

Lemma 5.5. Let R be a noetherian local ring with G(R) = 0, then if M is a
finitely generated R-module either pdR(M) = 0 or pdR(M) = ∞.

Proof. Suppose G(R) = 0 and that pdR(M) = n 6= 0,∞. There then exists an
exact sequence

0 // Pn
fn // · · · // P0

f0 // M // 0

with each Pi projective and finitely generated. Let K = im fn−1, which is a
finitely generated syzygy of M with pdR(K) = 1. Let m1, . . . ,mt ∈ M be
elements which map to a basis for M/mM and hence generate M . We now have
an exact sequence

0 // P // Rt // K // 0

where Rt → K is the obvious map, and Lemma 3.1 gives that P is projective,
hence free. Since mRt is the kernel of the map Rt → K → K/mK, it follows
that P →֒ mRt.

Now, since m consists only of zerodivisors, it is contained in the union of the
associated primes of R and as it is maximal, it must be one of the associated
primes (by prime avoidance). By definition, this gives that there exists s 6= 0 ∈
R so that m = {r ∈ R|rs = 0}. This gives that sP = 0, contradicting the fact
that P is free.

We state the next two results, Theorem 4.2.2 and Corollary 4.4.12 from [4]
without proof, as the proofs would necessitate the introduction of a number
of additional concepts (in particular injective dimension, flat dimension, and
Tor-dimension [4, Section 4.1]).
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Proposition 5.6. A ring R is semisimple (i.e. every ideal is a direct summand)
iff gldim(R) = 0.

Proposition 5.7. Let R be a noetherian local ring with residue field k, then
gldim(R) = pdR(k).

We now arrive at our main theorem, which characterizes regular local rings
via their global dimension. Theorem 5.1 will follow as an easy corollary.

Theorem 5.8. A noetherian local ring R is regular iff gldim(R) ≤ ∞. More-
over, if R is regular then dim(R) = gldim(R).

Proof. We first assume that R is regular and show gldim(R) < ∞, proceeding
via induction on d = dim(R). If d = 0 then m = m2 so Nakayama’s lemma im-
plies that R is a field and the result holds. Now suppose d > 0, then Proposition
5.4 gives G(R) = d so there exists r ∈ m so that r is not a zero divisor on R.
Since R̄ = R/rR is regular and dim(R̄) = d− 1, we have that gldim(R̄) = d− 1
by the induction hypothesis. Now, we compute

gldim(R) = pdR(R/m)

= pdR(R̄) + pdR̄(R/m)

= 1 + pdR̄(R̄/m̄)

= 1 + gldim(R̄) = d

where m̄ = mR̄ is the maximal ideal of R̄ and we have used Proposition 5.7 and
Theorem 4.4.

We now assume that gldim(R) <∞ and deduce that R is regular; again, we
proceed via induction. Suppose that gldim(R) = 0, then R is local and semisim-
ple (by Proposition 5.6) so R is a field, hence regular. Now, let gldim(R) 6= 0,∞
so by Lemma 5.5 there exists r ∈ m which is not a zerodivisor. Infact, we can
even choose r ∈ m r m2; indeed, if m r m2 consists only of zero divisors, then

m r m
2 ⊆ p1 ∪ · · · ∪ pm

where p1, . . . , pm are the associated primes of R (it is a standard fact that the
union of these ideals precisely equals the zero divisors in R). This gives

m ⊆ m
2 ∪ p1 ∪ · · · ∪ pm

and the strong form of prime avoidance [2, Lemma 3.3] shows that either m ⊆ pj

for some j or m = 0. This implies that all elements of m are zero divisors.
Hence let r ∈ m r m2 be a non-zerodivisor. Consider R̄ = R/rR, which we

now aim to show is regular. We have exact sequences

0 //
mR̄ // R̄ // k // 0 (5.1)

and

0 // rR/rm // m/rm
α //

mR̄ // 0 . (5.2)
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The Tor long exact sequence associated to (5.1) gives that rR/rm ∼= TorR1 (R/rR, k),
and a standard computation shows that TorR1 (R/rR, k) ∼= k.

Now let r2, . . . , rn ∈ m be such that the images of r, r2, . . . , rn in m/m2 form
a basis (this is possible since r /∈ m2). Let n = (r2, . . . , rn)R+ rm and note that
n/rm surjects onto mR̄ via α. Since kerα = rR/rm is isomorphic to a field and
contains r + rm (which is not in n/rm) we have that

(rR/rm) ∩ (n/rm) = 0

which implies n/rm ∼= mR̄. It then follows that m/rm ∼= k ⊕mR̄ as R̄-modules.
We now compute

gldim(R̄) = pdR̄(k)

≤ pdR̄(m/rm)

= pdR(m)

= pdR(k) − 1

= gldim(R) − 1

where we have used Proposition 5.7, Lemma 4.3, and Theorem 5.2. The induc-
tion hypothesis now implies that R̄ is regular.

This in turn implies that R is regular. Indeed, let d = dim(R) and note
that dim(R̄) = d− 1. Since R̄ is regular, Proposition 5.4 gives that there exist
elements r2, . . . , rd ∈ m whose images r̄2, . . . , r̄d ∈ mR̄ generate mR̄ and give
an R̄-regular sequence. It follows that r, r2, . . . , rd give an R-regular sequence
and generate m. This shows dimk(m/m

2) ≤ G(R) and since we always have
G(R) ≤ dim(R) ≤ dimk(m/m

2), this implies R is regular.

We now explain how this result implies Theorem 5.1. Suppose R is a regular
local ring and p ⊆ R is a prime ideal. Let M be an Rp module, then viewing
M as an R-module, there is a projective resolution

0 // Pn // · · · // P0
// M // 0

where n ≤ gldim(R) < ∞. Applying the functor Rp ⊗R − then gives an exact
sequence

0 // Rp ⊗R Pn // · · · // Rp ⊗R P0 // M // 0

of Rp modules, since Rp is a flat R-module and Rp ⊗RM ∼= M . Each Rp ⊗R Pi
is a projective Rp-module, so this implies gldim(Rp) ≤ gldim(R) < ∞. By
Theorem 5.8, Rp is regular.
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