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1 Walks in graphs.

Given a finite set S and integer k£ > 0, let (‘Z ) denote the set of k-element
subsets of S, and let ((;j )) denote the set of k-element multisubsets (sets
with repeated elements) on S. For instance, if S = {1,2,3} then (using
abbreviated notation),

(g) = {12,13, 23}, ((g)) = {11, 22,33,12,13, 23}.

A (finite) graph G consists of a verter set V = {v1,...,v,} and edge set
E = {e1,...,e,}, together with a function ¢ : E — ((‘2/)) We think that
if p(e) = wv (short for {u,v}), then e connects u and v or equivalently e is
incident to u and v. If there is at least one edge incident to u and v then
we say that the vertices u and v are adjacent. If p(e) = vv, then we call e a
loop at v. If several edges ey, ...,e; (j > 1) satisfy p(e1) = - = ¢(e;) = uv,
then we say that there is a multiple edge between u and v. A graph without
loops or multiple edges is called simple. In this case we can think of E as

just a subset of (1) [why?].

The adjacency matriz of the graph G is the p x p matrix A = A(G), over
the field of complex numbers, whose (7, j)-entry a;; is equal to the number of
edges incident to v; and v;. Thus A is a real symmetric matrix (and hence
has real eigenvalues) whose trace is the number of loops in G.



A walk in G of length £ from vertex u to vertex v is a sequence vy, ey, Vs, €3, . .

Vg, €g, Vgy1 such that:
e cach v; is a vertex of G
e cach e; is an edge of G
e the vertices of e; are v; and v; 1, for 1 <7 </

e vy =u and vy = v.

1.1 Theorem. For any integer £ > 1, the (i,j)-entry of the matriz
A(G)¢ is equal to the number of walks from v; to vj in G of length £.

Proof. This is an immediate consequence of the definition of matrix
multiplication. Let A = (ay;). The (i, j)-entry of A(G) is given by

(A@) )i = i iy -+ ti_ 5

where the sum ranges over all sequences (i1,...,41) with 1 < 4 < p.
But since a,; is the number of edges between v, and vy, it follows that the
summand @j;, G;,4, - - - Gi,_,; in the above sum is just the number (which may
be 0) of walks of length ¢ from v; to v; of the form

Viy €1, V41,€2, ..., Uilflﬂ €y, ’l)j

(since there are a;;, choices for ey, a;,;, choices for ey, etc.) Hence summing
over all (41,...,4p 1) just gives the total number of walks of length ¢ from v;
to v;, as desired. O

We wish to use Theorem 1.1 to obtain an explicit formula for the number
(A(G)Y);; of walks of length ¢ in G from v; to v;. The formula we give will
depend on the eigenvalues of A(G). The eigenvalues of A(G) are also called
simply the eigenvalues of G. Recall that a real symmetric p X p matrix
M has p linearly independent real eigenvectors, which can in fact be chosen
to be orthonormal (i.e., orthogonal and of unit length). Let uq,...,u, be
real orthonormal unit eigenvectors for M, with corresponding eigenvalues
A, ..., Ap. All vectors u will be regarded as p x 1 column vectors. We let
t denote transpose, so u' is a 1 x p row vector. Thus the dot (or scalar

2

b



or inner) product of the vectors u and v is given by u‘v (ordinary matrix
multiplication). In particular, ulu; = §;; (the Kronecker delta). Let U =
(uij) be the matrix whose columns are uy, ..., u,, denoted U = [uq, ..., up|.
Thus U is an orthogonal matrix and

t

Uy
Ut — Ufl — ’
t
Up
the matrix whose rows are u!,... ,u;’,. Recall from linear algebra that the

matrix U diagonalizes M, i.e.,
U'MU = diag(\i, - -+, \p),

where diag(A,...,A,) denotes the diagonal matrix with diagonal entries
Ay ooy Ape

1.2 Corollary. Given the graph G as above, fix the two vertices v; and
vj. Let A\i,..., A, be the eigenvalues of the adjacency matriz A(G). Then
there exist real numbers ci, . .., c, such that for all £ > 1, we have

(A(G)Z)U = Cl)\f + e+ CpAf;.

In fact, if U = (u,s) is a real orthogonal matriz such that Ut AU = diag(\y, - . .

then we have
Cr = uikujk.

Proof. We have [why?|
U AU = diag(N,, ..., XY).

Hence
A’ =U -diag(A{,..., AL U™

Taking the (1, j)-entry of both sides (and using U~! = U?) gives [why?]

(A% = uaXiu,
k
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as desired. O

In order for Corollary 1.2 to be of any use we must be able to compute the
eigenvalues Ay, ..., A\, as well as the diagonalizing matrix U (or eigenvectors
u;). There is one interesting special situation in which it is not necessary to
compute U. A closed walk in G is a walk that ends where it begins. The
number of closed walks in G of length £ starting at v; is therefore given by
(A(G)Y)ii, so the total number fg(¢) of closed walks of length ¢ is given by

falt) = le(A(G)f)ii
= tr(A(G)Y),

where tr denotes trace (sum of the main diagonal entries). Now recall that
the trace of a square matrix is the sum of its eigenvalues. If the matrix M
has eigenvalues A, ..., A, then [why?] M* has eigenvalues A{, ..., Al. Hence
we have proved the following.

1.3 Corollary.  Suppose A(G) has eigenvalues i, ...,\,. Then the
number of closed walks in G of length ¢ is given by

fal@) =X+ -+ AL

We now are in a position to use various tricks and techniques from linear
algebra to count walks in graphs. Conversely, it is sometimes possible to
count the walks by combinatorial reasoning and use the resulting formula to
determine the eigenvalues of G. As a first simple example, we consider the
complete graph K, with vertex set V = {vy,...,v,}, and one edge between
any two distinct vertices. Thus K, has p vertices and (}) = sp(p — 1) edges.

1.4 Lemma. Let J denote the p X p matriz of all 1’s. Then the
eigenvalues of J are p (with multiplicity one) and 0 (with multiplicity p—1).

Proof. Since all rows are equal and nonzero, we have rank(J) = 1. Since
a p X p matrix of rank p—m has at least m eigenvalues equal to 0, we conclude
that J has at least p — 1 eigenvalues equal to 0. Since tr(J) = p and the
trace is the sum of the eigenvalues, it follows that the remaining eigenvalue
of J is equal to p. O



1.5 Proposition. The eigenvalues of the complete graph K, are as
follows: an eigenvalue of —1 with multiplicity p — 1, and an eigenvalue of
p — 1 with multiplicity one.

Proof. We have A(K,) = J — I, where I denotes the p x p identity
matrix. If the eigenvalues of a matrix M are yu1, ..., yp, then the eigenvalues
of M +cI (where c is a scalar) are p; +ec, . . ., i, + ¢ [why?]. The proof follows
from Lemma 1.4. O

1.6 Corollary. The number of closed walks of length £ in K, from some
vertex v; to itself is given by

1
(A(K,) )i = ];((P -1+ (p - 1(=1)%. (1)
(Note that this is also the number of sequences (i1, .. ., i) of numbers1,2,...,p

such that iy = i, no two consecutive terms are equal, and iy # iy [why?].)

Proof. By Corollary 1.3 and Proposition 1.5, the total number of closed
walks in K, of length ¢ is equal to (p —1)*+ (p— 1)(—1)%. By the symmetry
of the graph K, the number of closed walks of length ¢ from v; to itself does
not depend on 3. (All vertices “look the same.”) Hence we can divide the
total number of closed walks by p (the number of vertices) to get the desired
answer. U

What about non-closed walks in K,? It’s not hard to diagonalize ex-
plicitly the matrix A(K,) (or equivalently, to compute its eigenvectors), but
there is an even simpler special argument. We have

-1 =Y (1) )

k=0

by the binomial theorem. Now for k > 0 we have J* = p*~1J [why?], while
J® = I. (It is not clear a priori what is the “correct” value of J°, but in
order for equation (2) to be valid we must take J° = I.) Hence

l
(J-I)f=> (-1)* <£)pk1J + (=1)*I.

k=1



Again by the binomial theorem we have

J=Df = ~((p-1)T = (=D)J)+ (-1

"V Q8=

- @—JYJ+GjV@I—J> 3)

Taking the (i, j)-entry of each side when i # j yields

(A(K,)):; = %((p — 1)t — (1)), (4)

If we take the (7, 7)-entry of (3) then we recover equation (1). Note the curious
fact that if ¢ # j then

(A(K) )is — (A(K) )i = (—1)"
We could also have deduced (4) from Corollary 1.6 using

Z . (A(Kp)z)ij =p(p - 1)£7

p
=1

i=1j

the total number of walks of length ¢ in K,,. Details are left to the reader.

We now will show how equation (1) itself determines the eigenvalues of
A(K,). Thus if (1) is proved without first computing the eigenvalues of
A(K,) (which in fact is what we did two paragraphs ago), then we have
another means to compute the eigenvalues. The argument we will give can
be applied to any graph G, not just K,. We begin with a simple lemma.

1.7 Lemma. Suppose aq,...,q, and Bi,..., s are nonzero compler
numbers such that for all positive integers £, we have

af - +af =p{+-- 4L (5)
Then r = s and the o’s are just a permutation of the [3’s.

Proof. We will use the powerful method of generating functions. Let z
be a complex number whose absolute value is close to 0. Multiply (5) by z*
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and sum on all £ > 1. The geometric series we obtain will converge, and we

get
a1xr QrT ﬂlx Bsx
- = - ) 6
1—a1x+ +1—arx l—ﬂlx+ +1—ﬁsx (6)
This is an identity valid for sufficiently small (in modulus) complex num-
bers. By clearing denominators we obtain a polynomial identity. But if
two polynomials in x agree for infinitely many values, then they are the
same polynomial [why?]. Hence equation (6) is actually valid for all complex

numbers z (ignoring values of x which give rise to a zero denominator).

Fix a complex number v # 0. Multiply (6) by 1 — vz and let x — 1/7.
The left-hand side becomes the number of «;’s which are equal to 7, while
the right-hand side becomes the number of 3;’s which are equal to v [why?].
Hence these numbers agree for all v, so the lemma is proved. O

1.8 Example. Suppose that GG is a graph with 12 vertices, and that the
number of closed walks of length £ in G is equal to 3-5¢+4¢+2(—2)¢+4. Then
it follows from Corollary 1.3 and Lemma 1.7 [why?] that the eigenvalues of
A(G) are given by 5,5,5,4,—2,—2,1,1,1,1,0,0.



2 Cubes and the Radon transform.

Let us now consider a more interesting example of a graph G, one whose
eigenvalues have come up in a variety of applications. Let Zsy denote the
cyclic group of order 2, with elements 0 and 1, and group operation being
addition modulo 2. Thus 04+0=0,0+1=1+0=1,1+4+1 = 0. Let Z3
denote the direct product of Zs with itself n times, so the elements of Z are
n-tuples (a1, ...,a,) of 0’s and 1’s, under the operation of component-wise
addition. Define a graph C),, called the n-cube, as follows: The vertex set of
C,, is given by V(C,,) = Z%, and two vertices v and v are connected by an
edge if they differ in exactly one component. Equivalently, u + v has exactly
one nonzero component. If we regard Z as consisting of real vectors, then
these vectors form the set of vertices of an n-dimensional cube. Moreover,
two vertices of the cube lie on an edge (in the usual geometric sense) if and
only if they form an edge of C),. This explains why C), is called the n-cube.
We also see that walks in C),, have a nice geometric interpretation — they
are simply walks along the edges of an n-dimensional cube.

We want to determine explicitly the eigenvalues and eigenvectors of C,.
We will do this by a somewhat indirect but extremely useful and powerful
technique, the finite Radon transform. Let ) denote the set of all func-
tions f : Z3 — R, where R denotes the field of real numbers. (NOTE: For
groups other than Z7 it is necessary to use complex numbers rather than
real numbers. We could use complex numbers here, but there is no need
to do so.) Note that V is a vector space over R of dimension 2" [why?]. If
u = (u1,...,uy) and v = (v1,...,v,) are elements of Z%, then define their
dot product by

UV = UV + -+ UpUpy,
where the computation is performed modulo 2. Thus we regard u - v as an
element of Zs. The expression (—1)“? is defined to be the real number +1
or —1, depending on whether v -v = 0 or 1, respectively. Since for integers
k the value of (—1)* depends only on k (mod 2), it follows that we can treat
u and v as integer vectors without affecting the value of (—1)**. Thus, for
instance, formulas such as

(—1)u-(v+w) — (_1)u-v—|—u-w _ (—l)u'”(—l)u'w

are well-defined and valid.



We now define two important bases of the vector space V. There will be
one basis element of each basis for each v € Z7. The first basis, denoted By,
has elements f, defined as follows:

fu(v) = 5uva (7)

the Kronecker delta. It is easy to see that B; is a basis, since any g € V

satisfies
9=">_ g(u)f. (8)

uczZy

[why?]. Hence B; spans V, so since |B;| = dimV = 2", it follows that B; is
a basis. The second basis, denoted B,, has elements x, defined as follows:

In order to show that Bs is a basis, we will use an inner product on V' (denoted
(-,-)) defined by

(f,9y=">_ f(u)g(u).

u€zy
Note that this inner product is just the usual dot product with respect to
the basis B;.
2.1 Lemma. The set By = {xy, : u € ZY} forms a basis for V.

Proof. Since |By| = dimV (= 27"), it suffices to show that B, is linearly
independent. In fact, we will show that the elements of By are orthogonal.
We have

<XuaXv> = ZXu(w)Xv(w)

wELY

e

weLY
It is left as an easy exercise to the reader to show that for any y € Z7, we

have
. 2n ify=0
_1\yw — )
Z (=1) { 0, otherwise.

weELY



where O denotes the identity element of Z% (the vector (0,0,...,0)). Thus
(Xu, Xv) = 0 if and only v + v = 0, i.e., u = v, so the elements of B, are

orthogonal (and nonzero). Hence they are linearly independent as desired.
O

We now come to the key definition of the Radon transform.

2.2 Definition. Given a subset I' of Z7 and a function f € V, define
a new function &rf € V by

Oef(v) = Y Flv+w).

wel

The function ®r f is called the (discrete or finite) Radon transform of f (on
the group Z7, with respect to the subset I').

We have defined a map ®r : V — V. It is easy to see that ®r is a linear
transformation; we want to compute its eigenvalues and eigenvectors.

2.3 Theorem. The eigenvectors of ®r are the functions x,, where
u € Z%. The eigenvalue A, corresponding to x, (i.e., Prxy = A\uXu) is given

by
Ay = (1)

wel

Proof. Let v € Z3. Then

Pryxu(v) = qu(v—i—w)



Hence
(I)FXU = (Z(_l)u-w> Xu»
weTl

as desired. O

Note that because the x,’s form a basis for ¥V by Lemma 2.1, it follows
that Theorem 2.3 yields a complete set of eigenvalues and eigenvectors for
®r. Note also that the eigenvectors y, of ®r are independent of I'; only the
eigenvalues depend on I'.

Now we come to the payoff. Let A = {dy,...,d,}, where §; is the ith
unit coordinate vector (i.e., d; has a 1 in position 7 and 0’s elsewhere). Note
that the jth coordinate of ¢; is just ¢;; (the Kronecker delta), explaining
our notation d;. Let [®a] denote the matrix of the linear transformation
®A 0V — V with respect to the basis By of V given by (7).

2.4 Lemma. We have [®a] = A(C,), the adjacency matriz of the
n-cube.

Proof. Let v € Z3. We have

aful) = D fulv+w)

wEA

= Z fu-l—w(v)a

wEA

since v = v + w if and only if u + w = v. There follows [why?]

(I)Afu = Z fu+w' (9)

wEA
Equation (9) says that the (u,v)-entry of the matrix ®, is given by

1, ifu+veA
(®a)uw = { 0, otherwise.

Now u + v € A if and only if v and v differ in exactly one coordinate. This
is just the condition for uv to be an edge of C,,, so the proof follows. O
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2.5 Corollary. The eigenvectors E, (u € Z%) of A(C,,) (regarded as
linear combinations of the vertices of Cy, i.e., of the elements of Z%) are

given by
Ey= ) (-1)""v. (10)

veEZY

The eigenvalue A\, corresponding to the eigenvector E, is given by
A =1 — 2w(u), (11)

where w(u) is the number of 1’s in u. (w(u) is called the Hamming weight or
simply the weight of u.) Hence A(C,) has (’:) eigenvalues equal to n — 21,
for each 0 <1 <n.

Proof. For any function g € V we have by (8) that
9=>Y_9)f

Applying this equation to g = x,, gives

Xu = qu(v)fv = Z(_l)u.va- (12)

v

Equation (12) expresses the eigenvector x, of & (or even &y for any I' C Z7)
as a linear combination of the functions f,. But &, has the same matrix
with respect to the basis of the f,’s as A(C,,) has with respect to the vertices
v of C,. Hence the expansion of the eigenvectors of ® in terms of the f,’s
has the same coefficients as the expansion of the eigenvectors of A(C,) in
terms of the v’s, so equation (10) follows.

According to Theorem 2.3 the eigenvalue A\, corresponding to the eigen-
vector x, of ® (or equivalently, the eigenvector E, of A(C,)) is given by

wEA

Now A = {d1,...,0,}, and 6; - w is 1 if u has a one in its ith coordinate and
is 0 otherwise. Hence the sum in (13) has n — w(u) terms equal to +1 and
w(u) terms equal to —1, s0 A\y = (n —w(u)) — w(u) =n — 2w(u), as claimed.
O

12



We have all the information needed to count walks in C),.

2.6 Corollary. Let u,v € Z%, and suppose that w(u + v) = k (i.e., u
and v disagree in exactly k coordinates). Then the number of walks of length
{ in C, between u and v is given by

T v L

=0 j=

where we set ( ) =0 14f 7 > 1. In particular,

(4%, = = : (”) (n - 2i)". (15)

Proof. Let E, and A\, be as in Corollary 2.5. In order to apply Corollary
1.2, we need the eigenvectors to be of unit length (where we regard the f,’s
as an orthonormal basis of V). By equation (10), we have

B = 3 (-1 =2

vEZLY

Hence we should replace E, by E! = 2n/2E to get an orthonormal basis.

According to Corollary 1.2, we thus have

1
(Ae)uv = 2_n Z Equvw/\ﬁ;

weZLyY

Now E,, by definition is the coefficient of f, in the expansion (10), i.e
Eyw = (—=1)*™ (and similarly for E,), while A\,, = n — 2w(w). Hence

= Z 1)@+ (n, — 2 (w))~. (16)

weZLY

The number of vectors w of Hamming weight ¢ which have j 1’s in common
with v + v is (’;) (T::Jk), since we can choose the 7 1’s in u + v which agree
with w in (’;) ways, while the remaining ¢ — j 1’s of w can be inserted in the

13



n — k remaining positions in (’::Jk) ways. Since (u+v)-w = j (mod 2),

the sum (16) reduces to (14) as desired. Clearly setting u = v in (14) yields
(15), completing the proof. O

It is possible to give a direct proof of (15) avoiding linear algebra. Thus by
Corollary 1.3 and Lemma 1.7 (exactly as was done for K,,) we have another
determination of the eigenvalues of C),. With a little more work one can
also obtain a direct proof of (14). Later in Example 9.9.12, however, we
will use the eigenvalues of C), to obtain a combinatorial result for which no
nonalgebraic proof is known.

2.7 Example. Setting k =1 in (14) yields

e = w2 | (1) - (20 o2

1 (n - 1) (n — 2i)¢H
- -~ 7 0O
=0

2n £ ) n—1t
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3 Random walks.

Let G be a finite graph. We consider a random walk on the vertices of G
of the following type. Start at a vertex u. (The vertex u could be chosen
randomly according to some probability distribution or could be specified
in advance.) Among all the edges incident to u, choose one uniformly at
random (i.e., if there are k edges incident to u, then each of these edges is
chosen with probability 1/k). Travel to the vertex v at the other end of the
chosen edge and continue as before from v. Readers with some familiarity
with probability theory will recognize this random walk as a special case of
a finite state Markov chain. Many interesting questions may be asked about
such walks; the basic one is to determine the probability of being at a given
vertex after a given number ¢ of steps.

Suppose vertex u has degree d,, i.e., there are d, edges incident to u
(counting loops at u once only). Let M = M/(G) be the matrix whose
rows and columns are indexed by the vertex set {vy,...,v,} of G, and whose

(u,v)-entry is given by
 Huw

MUU - du bl

where fi,, is the number of edges between u and v (which for simple graphs
will be 0 or 1). Thus M,, is just the probability that if one starts at u,
then the next step will be to v. An elementary probability theory argument
(equivalent to Theorem 1.1) shows that if £ is a positive integer, then (M?),,
is equal to probability that one ends up at vertex v in £ steps given that one
has started at u. Suppose now that the starting vertex is not specified, but
rather we are given probabilities p, summing to 1 and that we start at vertex
u with probability p,. Let P be the row vector P = [py,, ..., py,|. Then again
an elementary argument shows that if PM* = [o,,,..., 0y,), then o, is the
probability of ending up at v in £ steps (with the given starting distribution).
By reasoning as in Section 1, we see that if we know the eigenvalues and
eigenvectors of M, then we can compute the crucial probabilities (M¥),,
and o,.

Since the matrix M is not the same as the adjacency matrix A, what
does all this have to do with adjacency matrices? The answer is that in one
important case M is just a scalar multiple of A. We say that the graph G

15



is reqular of degree d if each d, = d, i.e., each vertex is incident to d edges.
In this case it’s easy to see that M(G) = 1 A(G). Hence the eigenvectors
E, of M(G) and A(G) are the same, and the eigenvalues are related by
Au(M) = 2A,(A). Thus random walks on a regular graph are closely related
to the adjacency matrix of the graph.

3.1 Example. Consider a random walk on the n-cube C,, which begins
at the “origin” (the vector (0,...,0)). What is the probability p, that after
{ steps one is again at the origin? Before applying any formulas, note that
after an even (respectively, odd) number of steps, one must be at a vertex
with an even (respectively, odd) number of 1’s. Hence p, = 0 if £ is odd.
Now note that C,, is regular of degree n. Thus by (11), we have

MM (C) = (= 2u(a).

By (2.6) we conclude that

Pe =

inne Z:; (?) (n — 2i)%

Note that the above expression for p, does indeed reduce to 0 when £ is odd.
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4 The Sperner property.

In this section we consider a surprising application of certain adjacency ma-
trices to some problems in extremal set theory. An important role will also
be played by finite groups. In general, extremal set theory is concerned with
finding (or estimating) the most or least number of sets satisfying given set-
theoretic or combinatorial conditions. For example, a typical easy problem
in extremal set theory is the following: What is the most number of subsets
of an n-element set with the property that any two of them intersect? (Can
you solve this problem?) The problems to be considered here are most con-
veniently formulated in terms of partially ordered sets, or posets for short.
Thus we begin with discussing some basic notions concerning posets.

4.1 Definition. A poset (short for partially ordered set) P is a finite
set, also denoted P, together with a binary relation denoted < satisfying the
following axioms:

(P1) (reflexivity) x < z for all z € P
(P2) (antisymmetry) If x <y and y < x, then z = y.

(P3) (transitivity) If x <y and y < 2, then z < 2.

One easy way to obtain a poset is the following. Let P be any collection
of sets. If x,y € P, then define x <y in P if x C y as sets. It is easy to see
that this definition of < makes P into a poset. If P consists of all subsets
of an n-element set S, then P is called a (finite) boolean algebra of rank n
and is denoted by Bgs. If S = {1,2,...,n}, then we denote Bg simply by B,.
Boolean algebras will play an important role throughout this section.

There is a simple way to represent small posets pictorially. The Hasse
diagram of a poset P is a planar drawing, with elements of P drawn as dots.
If x < yin P (le., x < y and z # y), then y is drawn “above” z (i.e.,
with a larger vertical coordinate). An edge is drawn between z and y if
y covers x, i.e., x < y and no element z is in between, i.e., no z satisfies
x < z < y. By the transitivity property (P3), all the relations of a finite
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poset are determined by the cover relations, so the Hasse diagram determines
P. (This is not true for infinite posets; for instance, the real numbers R with
their usual order is a poset with no cover relations.) The Hasse diagram of
the boolean algebra Bj looks like

N

We say that two posets P and @) are isomorphic if there is a bijection
(one-to-one and onto function) ¢ : P — @ such that z < y in P if and only
if o(x) < ¢(y) in Q. Thus one can think that two posets are isomorphic if
they differ only in the names of their elements. This is exactly analogous to
the notion of isomorphism of groups, rings, etc. It is an instructive exercise
to draw Hasse diagrams of the one poset of order (number of elements) one
(up to isomorphism), the two posets of order two, the five posets of order
three, and the sixteen posets of order four. More ambitious readers can try
the 63 posets of order five, the 318 of order six, the 2045 of order seven, the
16999 of order eight, the 183231 of order nine, the 2567284 of order ten, the
46749427 of order eleven, the 1104891746 of order twelve, the 33823827452
of order thirteen, and the 1338193159771 of order fourteen. Beyond this the
number is not currently known.

A chain C in a poset is a totally ordered subset of P, i.e., if z,y € C then
either x < y or y < z in P. A finite chain is said to have length n if it has
n + 1 elements. Such a chain thus has the form zo < 21 < --- < z,,. We say
that a finite poset is graded of rank n if every maximal chain has length n.
(A chain is mazimal if it’s contained in no larger chain.) For instance, the
boolean algebra B,, is graded of rank n [why?]. A chain yp < y; < --- <y, is
said to be saturated if each y; 1 covers y;. Such a chain need not be maximal
since there can be elements of P smaller than y, or greater than y;. If P is
graded of rank n and x € P, then we say that x has rank j, denoted p(x) = j,
if some (or equivalently, every) saturated chain of P with top element x has
length j. Thus [why?] if we let P, = {x € P : p(z) = j}, then P is a
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disjoint union P = PyU P, U---U P,, and every maximal chain of P has the
form zy < 1 < --- < x, where p(z;) = j. We write p; = |P;|, the number
of elements of P of rank j. For example, if P = B, then p(z) = |z| (the
cardinality of = as a set) and

_ n
p=#lec 2 ial == (1),
(Note that we use both |S| and #z for the cardinality of the finite set S.)

We say that a graded poset P of rank n (always assumed to be finite)
is rank-symmetric if p; = p,_; for 0 < i < n, and rank-unimodal if py <
p1 < - < pj > Pjy1 = Pjge > o > py for some 0 < 5 < n. If Pis both
rank-symmetric and rank-unimodal, then we clearly have

P0§p1§"'§pm2pm+1Z---Epn, ifn=2m

Po <1< <Dy =DPmg1 = Pmg2 = -+ > Pp, ifn=2m+1.

We also say that the sequence py, p1, ..., pn itself or the polynomial F(q) =
Po + p1g + --- + puq™ is symmetric or unimodal, as the case may be. For
instance, B,, is rank-symmetric and rank-unimodal, since it is well-known
(and easy to prove) that the sequence (g), (’1’), ..., nchoosen (the nth row of
Pascal’s triangle) is symmetric and unimodal. Thus the polynomial (1 + ¢)™

is symmetric and unimodal.

A few more definitions, and then finally some results! An antichain in
a poset P is a subset A of P for which no two elements are comparable,
i.e., we can never have z,y € A and x < y. For instance, in a graded
poset P the “levels” P; are antichains [why?]. We will be concerned with the
problem of finding the largest antichain in a poset. Consider for instance the
boolean algebra B,,. The problem of finding the largest antichain in B, is
clearly equivalent to the following problem in extremal set theory: Find the
largest collection of subsets of an n-element set such that no element of the
collection contains another. A good guess would be to take all the subsets
of cardinality |n/2] (where |z| denotes the greatest integer < x), giving a
total of ( n% ) sets in all. But how can we actually prove there is no larger
collection% Sjuch a proof was first given by Emmanuel Sperner in 1927 and
is known as Sperner’s theorem. We will give two proofs of Sperner’s theorem
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in this section; one proof uses linear algebra and will be applied to certain
other situations, while the other proof is an elegant combinatorial argument
due to David Lubell in 1966, which we present for its “cultural value.” Our
extension of Sperner’s theorem to certain other situations will involve the
following crucial definition.

4.2 Definition. Let P be a graded poset of rank n. We say that P
has the Sperner property or is a Sperner poset if

max{|A| : A is an antichain of P} = max{|P;|: 0 < i < n}.

In other words, no antichain is larger than the largest level F;.

Thus Sperner’s theorem is equivalent to saying that B, has the Sperner
property. Note that if P has the Sperner property there may still be an-
tichains of maximum cardinality other than the biggest P;; there just can’t
be any bigger antichains.

4.3 Example. A simple example of a graded poset that fails to satisfy
the Sperner property is the following:

A7

We now will discuss a simple combinatorial condition which guarantees
that certain graded posets P are Sperner. We define an order-matching from
P; to P;y1 to be a one-to-one function p : P; — P4, satisfying x < u(x)
for all x € P;. Clearly if such an order-matching exists then p; < p;yq
(since y is one-to-one). Easy examples show that the converse is false, i.e.,
if p; < p;11 then there need not exist an order-matching from P; to P;.
We similarly define an order-matching from P; to P, ; to be a one-to-one
function p : P; — P;_; satisfying u(z) < x for all z € P;.

4.4 Proposition. Let P be a graded poset of rank n. Suppose there
ezrists an integer 0 < j < n and order-matchings

Pob—P—-P—- =P+ Py Pyo -+ P, (17)

Then P is rank-unimodal and Sperner.
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Proof. Since order-matchings are one-to-one it is clear that

Po<p1 << Pj2Pjy1 2 Pjy2 = 2 Pa-

Hence P is rank-unimodal.

Define a graph G as follows. The vertices of G' are the elements of P. Two
vertices z,y are connected by an edge if one of the order-matchings p in the
statement of the proposition satisfies p(z) = y. (Thus G is a subgraph of the
Hasse diagram of P.) Drawing a picture will convince you that G consists of
a disjoint union of paths, including single-vertex paths not involved in any
of the order-matchings. The vertices of each of these paths form a chain in
P. Thus we have partitioned the elements of P into disjoint chains. Since P
is rank-unimodal with biggest level P;, all of these chains must pass through
P; [why?]. Thus the number of chains is exactly p;,. Any antichain A can
intersect each of these chains at most once, so the cardinality |A| of A cannot
exceed the number of chains, i.e., |[A| < p;. Hence by definition P is Sperner.
O

It is now finally time to bring some linear algebra into the picture. For
any (finite) set S, we let RS denote the real vector space consisting of all
formal linear combinations (with real coefficients) of elements of S. Thus S
is a basis for RS, and in fact we could have simply defined RS to be the
real vector space with basis S. The next lemma relates the combinatorics we
have just discussed to linear algebra and will allow us to prove that certain
posets are Sperner by the use of linear algebra (combined with some finite
group theory).

4.5 Lemma. Suppose there exists a linear transformation U : RP; —
RP;y1 (U stands for “up”) satisfying:

e U is one-to-one.

e For all x € P, U(x) is a linear combination of elements y € Py
satisfying x < y. (We then call U an order-raising operator.)

Then there exists an order-matching p: P; — P;yq.
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Simalarly, suppose there exists a linear transformation U : RP; — RP;
satisfying:

e U is onto.

e U is an order-raising operator.

Then there exists an order-matching p : Piyy — P;.

Proof. Suppose U : RP; — RPF;; is a one-to-one order-raising operator.
Let [U] denote the matrix of U with respect to the bases P; of RP; and P;y,
of RP;;,. Thus the rows of [U] are indexed by the elements zy, ..., z,, of P
(in some order) and the columns by the elements ¥y, ...,y , of Pii;. Since
U is one-to-one, the rank of [U] is equal to p; (the number of rows). Since
the row rank of a matrix equals its column rank, [U] must have p; linearly
independent columns. Say we have labelled the elements of F;;; so that the
first p; columns of [U] are linearly independent.

Let A = (a;;) be the p; X p; matrix whose columns are the first p; columns
of [U]. (Thus A is a square submatrix of [U].) Since the columns of A are
linearly independent, we have

det(A) = Z Fa1q(1) *** Opin(ps) £ 0,

where the sum is over all permutations 7m of 1,...,p;. Thus some term
ta17(1) - * * Ap;n(p;) Of the above sum in nonzero. Since U is order-raising, this
means that [why?] z; < yrx) for 1 <k < p;. Hence the map p: P; — Py
defined by 11(7k) = Yrx) is an order-matching, as desired.

The case when U is onto rather than one-to-one is proved by a completely
analogous argument. O

We now want to apply Proposition 4.4 and Lemma 4.5 to the boolean
algebra B,,. For each 0 < ¢ < n, we need to define a linear transformation
U; : R(Bn)i = R(By)it1, and then prove it has the desired properties. We
simply define U; to be the simplest possible order-raising operator, namely,
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for z € (By);, let

Ul = Y w (18)

Y€(Bn)it1
y>w

Note that since (B,); is a basis for R(B,,);, equation (18) does indeed define
a unique linear transformation U; : R(B,); = R(B,);+1. By definition U; is
order-raising; we want to show that U; is one-to-one for ¢ < n/2 and onto for
i > n/2. There are several ways to show this using only elementary linear
algebra; we will give what is perhaps the simplest proof, though it is quite
tricky. The idea is to introduce “dual” operators D; : R(B,); = (B,); 1 to
the U;’s (D stands for “down”), defined by

Dilyy= Y =, (19)

z€(Bn)ij—1
<y

for all y € (B,,);. Let [U;] denote the matrix of U; with respect to the bases
(B,); and (By,);+1, and similarly let [D;] denote the matrix of D; with respect
to the bases (B,,); and (B,,);—1- A key observation which we will use later is
that

[Dini] = U], (20)
i.e., the matrix [D;;1] is the transpose of the matrix [U;] [why?]. Now let
I; : R(B,); — R(B,); denote the identity transformation on R(B,);, i.e.,
Ii(u) = u for all w € R(B,);- The next lemma states (in linear algebraic
terms) the fundamental combinatorial property of B,, which we need. For
this lemma set U, = 0 and Dy = 0 (the 0 linear transformation between the
appropriate vector spaces).

4.6 Lemma. Let0<i¢<mn. Then
Di+1Ui - Uilei = (TL — QZ)IZ (21)
(Linear transformations are multiplied right-to-left, so AB(u) = A(B(u)).)

Proof. Let z € (B,);. We need to show that if we apply the left-hand
side of (21) to z, then we obtain (n — 2i)z. We have

DigUi(x) = Dia | >y

ly|=i+1
zCy
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- Yy

lyl=i+1 |z|=i
zCy zCy

If z,z € (By); satisfy |z N z| < i— 1, then there is no y € (B,);+1 such that
xz C y and z C y. Hence the coefficient of z in D;;,U;(z) when it is expanded
in terms of the basis (B,); is 0. If |z N z| =4 — 1, then there is one such y,
namely, y = U z. Finally if z = z then y can be any element of (B,);.1
containing x, and there are n — ¢ such y in all. It follows that

D Ui(z) = (n—1)z + Z 2. (22)

|z|=1
lzNz|=i—1

By exactly analogous reasoning (which the reader should check), we have for
x € (By); that

UiaDiz) =iz + » =z (23)

Subtracting (23) from (22) yields (D;1U;—U;_1 D;)(x) = (n—2i)z, as desired.
O

4.7 Theorem. The operator U; defined above is one-to-one if i < n/2
and is onto if 1 > n/2.

Proof. Recall that [D;] = [U;_1]". From linear algebra we know that
a (rectangular) matrix times its transpose is positive semidefinite (or just
semidefinite for short) and hence has nonnegative (real) eigenvalues. By
Lemma 4.6 we have

DUy =U; 1D; + (7’L - 27,)[Z

Thus the eigenvalues of D, ,U; are obtained from the eigenvalues of U;_1D;
by adding n — 2i. Since we are assuming that n — 2¢ > 0, it follows that the
eigenvalues of D;,1U; are strictly positive. Hence D;,U; is invertible (since
it has no 0 eigenvalues). But this implies that U; is one-to-one [why?], as
desired.

The case i > n/2 is done by a “dual” argument (or in fact can be deduced
directly from the i < n/2 case by using the fact that the poset B, is “self-
dual,” though we will not go into this). Namely, from the fact that

UiDit1 = DUy + (20 +2 — n) I
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we get that U;D;,, is invertible, so now U; is onto, completing the proof. O

Combining Proposition 4.4, Lemma 4.5, and Theorem 4.7, we obtain the
famous theorem of Sperner.

4.8 Corollary. The boolean algebra B, has the Sperner property.
It is natural to ask whether there is a less indirect proof of Corollary
4.8. In fact, several nice proofs are known; we give one due to David Lubell,

mentioned before Definition 4.2.

Lubell’s proof of Sperner’s theorem. First we count the total number

of maximal chains @ = xy <27 < --- <z, ={1,...,n} in B,. There are n
choices for x;, then n — 1 choices for z,, etc., so there are n! maximal chains
in all. Next we count the number of maximal chains 2o < 21 < --- < z; =

x < +++ < x, which contain a given element x of rank 7. There are % choices
for x1, then 7 — 1 choices for x5, up to one choice for x;. Similarly there are
n — ¢ choices for x;,1, then n — 2 choices for x;,5, etc., up to one choice for
xp. Hence the number of maximal chains containing z is i!(n — 7)!.

Now let A be an antichain. If x € A, then let C, be the set of maximal
chains of B, which contain x. Since A is an antichain, the sets C,, r € A
are pairwise disjoint. Hence

JCl = Y |G

T€EA T€eA

= > (p(2))}(n — p(x))!

T€EA

Since the total number of maximal chains in the C,’s cannot exceed the total
number n! of maximal chains in B,,, we have

> (p(@)(n — p(z))! < n!

T€EA

Divide both sides by n! to obtain




Since (%) is maximized when i = |n/2], we have

11
()~ (o)

for all z € A (or all z € B,,). Thus

1
I

z€A \|n/2]

45 (7o)

or equivalently,

Since (Ln72 J) is the size of the largest level of B,,, it follows that B,, is Sperner.

O

In view of the above elegant proof of Lubell, the reader may be wondering
what was the point of giving a rather complicated and indirect proof using
linear algebra. Admittedly, if all we could obtain from the linear algebra
machinery we have developed was just another proof of Sperner’s theorem,
then it would have been hardly worth the effort. But in the next section we
will show how Theorem 4.7, when combined with a little finite group theory,
can be used to obtain many interesting combinatorial results for which simple,

direct proofs are not known.
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5 Group actions on boolean algebras.

Let us begin by reviewing some facts from group theory. Suppose that X is
an n-element set and that G is a group. We say that G acts on the set X if
for every element 7 of G we associate a permutation (also denoted ) of X,
such that for all z € X and 7,0 € G we have

m(o(z)) = (o) ().

Thus [why?] an action of G on X is the same as a homomorphism ¢ : G —
Gx, where Gx denotes the symmetric group of all permutations of X. We
sometimes write 7 - = instead of 7(z).

5.1 Example. (a) Let the real number « act on the zy-plane by
rotation counterclockwise around the origin by an angle of o radians. It is
easy to check that this defines an action of the group R of real numbers
(under addition) on the zy-plane.

(b) Now let o € R act by translation by a distance « to the right (i.e.,
adding (o, 0)). This yields a completely different action of R on the zy-plane.

(c) Let X = {a,b,c,d} and G = Zy x Zs = {(0,0),(0,1),(1,0),(1,1)}.
Let G act as follows:

(0,1)-a=b, (0,1)-b=a, (0,1)-c=¢, (0,1)-d=d

(1,0)-a=a, (1,0)-b=0b, (1,0)-c=d, (1,0)-d=c.

The reader should check that this does indeed define an action. In particular,
since (1,0) and (0, 1) generate G, we don’t need to define the action of (0, 0)
and (1,1) — they are uniquely determined.

(d) Let X and G be as in (c), but now define the action by
(0,1)-a=0b, (0,1)-b=a, (0,1)-c=d, (0,1)-d=c¢
(1,0)-a=¢, (1,0)-b=d, (1,0)-c=a, (1,0)-d=0.

Again one can check that we have an action of Zy X Zs on {a, b, c,d}.
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Recall what is meant by an orbit of the action of a group G on a set X.
Namely, we say that two elements x,y of X are G-equivalent if n(z) = y
for some m € (G. The relation of G-equivalence is an equivalence relation,
and the equivalence classes are called orbits. Thus x and y are in the same
orbit if 7(z) = y for some m € G. The orbits form a partition of X, i.e,
they are pairwise-disjoint, nonempty subsets of X whose union is X. The
orbit containing x is denoted Gx; this is sensible notation since Gx consists
of all elements 7(x) where 7 € G. Thus Gz = Gy if and only if z and y are
G-equivalent (i.e., in the same G-orbit). The set of all G-orbits is denoted
X/G.

5.2 Example. (a) In Example 5.1(a), the orbits are circles with center
(0,0) (including the degenerate circle whose only point is (0, 0)).

(b) In Example 5.1(b), the orbits are horizontal lines. Note that although
in (a) and (b) the same group G acts on the same set X, the orbits are
different.

(c) In Example 5.1(c), the orbits are {a, b} and {c, d}.

(d) In Example 5.1(d), there is only one orbit {a, b, c,d}. Again we have
a situation in which a group G acts on a set X in two different ways, with
different orbits.

We wish to consider the situation where X = B,,, the boolean algebra
of rank n (so |B,| = 2"). We begin by defining an automorphism of a
poset P to be an isomorphism ¢ : P — P. (This definition is exactly
analogous to the definition of an automorphism of a group, ring, etc.) The
set of all automorphisms of P forms a group, denoted Aut(P) and called the
automorphism group of P, under the operation of composition of functions
(just as is the case for groups, rings, etc.)

Now consider the case P = B,,. Any permutation 7 of {1,...,n} acts on
B, as follows: If x = {i1,149,...,ix} € By, then

m(x) ={m(ir), 7(i2),- .., 7(ik)} (24)

This action of 7 on B, is an automorphism [why?]; in particular, if |z| = 4,
then also |7(z)| = i. Equation (24) defines an action of the symmetric group
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S, of all permutations of {1,...,n} on B, [why?]. (In fact, it is not hard
to show that every automorphism of B, is of the form (24) for 7 € &,,.) In
particular, any subgroup G of &, acts on B,, via (24) (where we restrict 7
to belong to G). In what follows this action is always meant.

5.3 Example. Let n = 3, and let G be the subgroup of &3 with
elements e and (1,2). Here e denotes the identity permutation, and (using
disjoint cycle notation) (1,2) denotes the permutation which interchanges 1
and 2, and fixes 3. There are six orbits of G (acting on Bj). Writing e.g. 13
as short for {1,3}, the six orbits are {@}, {1,2}, {3}, {12}, {13,23}, and
{123},

We now define the class of posets which will be of interest to us here.
Later we will give some special cases of particular interest.

5.4 Definition. Let G be a subgroup of G,,. Define the quotient poset
B,,/G as follows: The elements of B,,/G are the orbits of G. If O and O’ are
two orbits, then define O < @ in B, /G if there exist z € O and y € O’ such
that z <y in B,,. (It’s easy to check that this relation < is indeed a partial
order.)

5.5 Example. (a) Let n = 3 and G be the group of order two generated

by the cycle (1,2), as in Example 5.2. Then the Hasse diagram of B3/G is
shown below, where each element (orbit) is labeled by one of its elements.

123

13 12

(%

b) Let n = 5 and G be the group of order five generated by the cycle
4,5). Then B;/G has Hasse diagram

—
—_
N —
w
ot
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12345

1234
123 124
12 13
1
0]

One simple property of a quotient poset B,,/G is the following.

5.6 Proposition. The quotient poset B, /G defined above is graded of
rank n and rank-symmetric.

Proof. We leave as an exercise the easy proof that B, /G is graded of
rank n, and that the rank of an element O of B, /G is just the rank in B,, of
any of the elements = of O. Thus the number of elements p;(B,/G) of rank
i is equal to the number of orbits O € (B,);/G. If x € B, then let T denote
the set-theoretic complement of z, i.e.,

z={1,...,n}—z={1<i<n:igx}

Then {z1,...,z;} is an orbit of i-element subsets of {1,...,n} if and only if
{z1,...,z;} is an orbit of (n —i)-element subsets [why?]. Hence |(B,);/G| =
|(Bn)n—i/Gl, so B, /G is rank-symmetric. O

Let 7 € &,. We associate with 7 a linear transformation (still denoted
m)
7 : R(By); = R(B,); by the rule

7r Z | = Z c,m(x),
z€(Bn)i z€(Bn);

where each ¢, is a real number. (This defines an action of &,, or of any
subgroup G of &,, on the vector space R(B,);.) The matrix of = with
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respect to the basis (B,); is just a permutation matriz, i.e., a matrix with
one 1 in every row and column, and 0’s elsewhere. We will be interested in
elements of R(B,,); which are fixed by every element of a subgroup G of &,,.
The set of all such elements is denoted R(B,)¢, so

7

R(B,)S = {v € R(B,); : 7(v) = v for all 7 € G}.

5.7 Lemma. A basis for R(B,)S consists of the elements

Vo = E T,

z€eO

where O € (By);/G, the set of G-orbits for the action of G on (By,);.

Proof. First note that if O is an orbit and x € O, then by definition of
orbit we have 7(z) € O for all m € G (or all 7 € &,,). Since 7 permutes the
elements of (B,,);, it follows that 7 permutes the elements of O. Thus 7(vp) =
vo, S0 vo € R(B,)¥. Tt is clear that the vp’s are linearly independent since
any x € (B,); appears with nonzero coefficient in exactly one vp.

It remains to show that the vp’s span R(B,,)$, i.e., any v = > we(By); C2T €
R(B,)¢ can be written as a linear combination of vp’s. Given x € (B,);,
let G, = {m € G : 7(x) = x}, the stabilizer of z. We leave as an exercise
the standard fact that w(x) = o(z) (where 7,0 € G) if and only if 7 and
o belong to the same left coset of G, i.e., 7G, = 0G,. It follows that in
the multiset of elements 7 (z), where m ranges over all elements of G and x
is fixed, every element y in the orbit Gz appears G, times, and no other

elements appear. In other words,
Y 7(z) = |Gal - va-
TeG

(Do not confuse the orbit Gz with the subgroup G,!) Now apply 7 to v and
sum on all 7 € G. Since m(v) = v (because v € R(B,)¢), we get

Glo = ) m(v)
= Z Z e ()

7m€G \z€(Bn);
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- 3 (X))

z€(Bn)i T€EG
= E |Gz |vgs-
z€(Bn)i

Dividing by |G| expresses v as a linear combination of the elements vg, (or
Vo), as desired. O

Now let us consider the effect of applying the order-raising operator U;
to an element v of R(B,)¢.

5.8 Lemma. Ifv e R(B,), then Uj(v) € R(B,)?,,.

Proof. Note that since 7 € G is an automorphism of B,,, we have z < y
in B, if and only if 7(z) < 7(y) in B,. It follows [why?| that if z € (B,);
then
Ui(m(z)) = m(Ui(z))-

Since U; and 7 are linear transformations, it follows by linearity that U;m(u) =
7wU;(u) for all u € R(B,);. (In other words, U;m = nU;.) Then

so U;(v) € R(B,)¢ ,, as desired. O

We come to the main result of this section, and indeed our main result
on the Sperner property.

5.9 Theorem. Let G be a subgroup of G,,. Then the quotient poset
B, /G is graded of rank n, rank-symmetric, rank-unimodal, and Sperner.

Proof. Let P = B,/G. We have already seen in Proposition 5.6 that
P is graded of rank n and rank-symmetric. We want to define order-raising
operators UZ : RP; — RPFP;;; and order-lowering operators f)i :RP, —» RP,_;.
Let us first consider just U;. The idea is to identify the basis element vo of
RBE with the basis element O of RP, and to let Ui : RP;, — RP,;; correspond
to the usual order-raising operator U; : R(B,); — R(B,,):+1. More precisely,
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suppose that the order-raising operator U; for B, given by (18) satisfies

Ui(vo) = Z Co,0Vor, (25)

O’E(Bn)i+1/G

where O € (B,);/G. (Note that by Lemma 5.8, U;(vp) does indeed have
the form given by (25).) Then define the linear operator U; : R((B,);/G) —
R((Bx)i/G) by

01(0) = Z co,@:(’)'.

O’E(Bn)i+1/G

We claim that U, is order-raising. We need to show that if cp o # 0,
then O’ > O in B,,/G. Since vor = Y /. ¥', the only way co,or # 0 in (25)
is for some z' € O’ to satisfy ' > x for some x € . But this is just what it
means for O’ > O, so U; is order-raising.

Now comes the heart of the argument. We want to show that U; is one-
to-one for ¢ < n/2. Now by Theorem 4.7, U; is one-to-one for i < n/2. Thus
the restriction of U; to the subspace R(B,)¢ is one-to-one. (The restriction
of a one-to-one function is always one-to-one.) But U; and [A]Z are exactly the
same transformation, except for the names of the basis elements on which
they act. Thus Uj; is also one-to-one for i < n/2.

An exactly analogous argument can be applied to D; instead of U;. We
obtain one-to-one order-lowering operators D; : R(B,)¢ — R(B,)¢, for

i > n/2. It follows from Proposition 4.4, Lemma 4.5, and (20) that B, /G is
rank-unimodal and Sperner, completing the proof. O

We will consider two interesting applications of Theorem 5.9. For our first
application, we let n = (T;) for some m > 1, and let M = {1,...,m}. Let
X = (A;[ ), the set of all two-element subsets of M. Think of the elements of X
as (possible) edges of a graph with vertex set M. If By is the boolean algebra
of all subsets of X (so Bx and B, are isomorphic), then an element x of Bx
is a collection of edges on the vertex set M, in other words, just a simple
graph on M. Define a subgroup G of Gx as follows: Informally, G' consists
of all permutations of the edges (1\2/1) that are induced from permutations
of the vertices M. More precisely, if 7 € &,,, then define 7 € &x by
#({i,7}) = {n(i),7(§)}. Thus G is isomorphic to &,,.
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When are two graphs x,y € Bx in the same orbit of the action of G on
Bx? Since the elements of GG just permute vertices, we see that x and y are
in the same orbit if we can obtain x from y by permuting vertices. This is
just what it means for two simple graphs x and y to be isomorphic — they
are the same graph except for the names of the vertices (thinking of edges
as pairs of vertices). Thus the elements of Bx /G are isomorphism classes of
simple graphs on the vertex set M. In particular, #(Bx/G) is the number
of nonisomorphic m-vertex simple graphs, and #((Bx/G);) is the number of
nonisomorphic such graphs with 7 edges. We have z < y in Bx /G if there
is some way of labelling the vertices of z and y so that every edge of x is an
edge of y. Equivalently, some spanning subgraph of y (i.e., a subgraph of y
with all the vertices of y) is isomorphic to x. Hence by Theorem 5.9 there
follows the following result, which is by no means obvious and has no known
non-algebraic proof.

5.10 Theorem. (a) Fizm > 1. Let p; be the number of nonisomorphic
simple graphs with m vertices and i edges. Then the sequence py,py, - - - D)
2

s symmetric and unimodal.

(b) Let T be a collection of nonisomorphic simple graphs with m vertices
such that no element of T is isomorphic to a subset of another element of
T. Then |T| is mazimized by taking T to consist of all nonisomorphic simple
graphs with |1 (g‘)J edges.

Our second example of the use of Theorem 5.9 is somewhat more subtle
and will be the topic of the next section.
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6 Young diagrams and g-binomial coefficients.

A partition A of an integer n > 0 is a sequence A = (A1, Ag,...) of integers
Ai > 0 satisfying Ay > Ay > ---and > .., A\; = n. Thus all but finitely
many J\; are equal to 0. Each \; > 0 is called a part of \. We sometimes
suppress 0’s from the notation for A\, e.g., (5,2,2,1), (5,2,2,1,0,0,0), and
(5,2,2,1,0,0,...) all represent the same partition A (of 10, with four parts).
If X is a partition of n, then we denote this by A n or [A| = n.

6.1 Example. There are seven partitions of 5, namely (writing e.g.
221 as short for (2,2,1)): 5, 41, 32, 311, 221, 2111, and 11111.

The subject of partitions of integers has been extensively developed, and
we will only be concerned here with a small part related to our previous
discussion. Given positive integers m and n, let L(m,n) denote the set of all
partitions with at most m parts and with largest part at most n. For instance,
L(2,3) ={0,1,2,3,11,21,31,22,32,33}. (Note that we are denoting by O
the unique partition (0,0,...) with no parts.) If A = (A1, Ag,...) and p =
(1, pia, - - .) are partitions, then define A < p if \; < p; for all ¢. This makes
the set of all partitions into a very interesting poset, denoted Y and called
Young’s lattice (named after the British mathematician Alfred Young, 1873
1940). (It is called “Young’s lattice” rather than “Young’s poset” because it
turns out to have certain properties which define a lattice. However, these
properties are irrelevant to us here, so we will not bother to define the notion
of a lattice.) We will be looking at some properties of Y in Section 8. The
partial ordering on Y, when restricted to L(m,n), makes L(m,n) into a
poset which also has some fascinating properties. The diagrams below show
L(1,4), L(2,2), and L(2,3).
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33

4 22 32
3 21 22 31
2 11, 2 21 3
1 1 11 2
) 0] 1
0]

There is a nice geometric way of viewing partitions and the poset L(m,n).
The Young diagram (somtimes just called the diagram) of a partition A is a
left-justified array of squares, with \; squares in the ¢th row. For instance,
the Young diagram of (4,3, 1,1) looks like:

If dots are used instead of boxes, then the resulting diagram is called a
Ferrers diagram. The advantage of Young diagrams over Ferrers diagrams is
that we can put numbers in the boxes of a Young diagram, which we will do
in Section 7. Observe that L(m,n) is simply the set of Young diagrams D
fitting in an m x n rectangle (where the upper-left (northwest) corner of D is
the same as the northwest corner of the rectangle), ordered by inclusion. We
will always assume that when a Young diagram D is contained in a rectangle
R, the northwest corners agree. It is also clear from the Young diagram point
of view that L(m,n) and L(n,m) are isomorphic partially ordered sets, the
isomorphism being given by transposing the diagram (i.e., interchanging rows
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and columns). If A has Young diagram D, then the partition whose diagram
is D' (the transpose of D) is called the conjugate of A and is denoted X'. For
instance, (4,3,1,1) = (4,2,2,1), with diagram

6.2 Proposition. L(m,n) is graded of rank mn and rank-symmetric.
The rank of a partition X is just || (the sum of the parts of A or the number
of squares in its Young diagram).

Proof. As in the proof of Proposition 5.6, we leave to the reader every-
thing except rank-symmetry. To show rank-symmetry, consider the comple-
ment A of X in an m x n rectangle R, i.e., all the squares of R except for \.
(Note that A depends on m and n, and not just \.) For instance, in L(5,4),
the complement of (4,3,1,1) looks like

If we rotate the diagram of A by 180° then we obtain the diagram of a
partition A € L(m, n) satisfying |A|+|\| = mn. This correspondence between
A and A shows that L(m,n) is rank-symmetric. O

Our main goal in this section is to show that L(m,n) is rank-unimodal
and Sperner. Let us write p;(m,n) as short for p;(L(m,n)), the number of
elements of L(m,n) of rank i. Equivalently, p;(m,n) is the number of par-
titions of 7 with largest part at most n and with at most m parts, or, in
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other words, the number of distinct Young diagrams with ¢ squares which
fit inside an m x n rectangle (with the same northwest corner, as explained
previously). Though not really necessary for this goal, it is nonetheless in-
teresting to obtain some information on these numbers p;(m, n). First let us
consider the total number |L(m,n)| of elements in L(m,n).

6.3 Proposition. We have |L(m,n)| = ("'").

Proof. We will give an elegant combinatorial proof, based on the fact
that (m;:") is equal to the number of sequences a1, as, . .., Gy iy, Where each
a; is either N or E, and there are m N’s (and hence n E’s) in all. We will
associate a Young diagram D contained in an m X n rectangle R with such
a sequence as follows. Begin at the lower left-hand corner of R, and trace
out the southeast boundary of D, ending at the upper right-hand corner of
R. This is done by taking a sequence of unit steps (where each square of R
is one unit in length), each step either north or east. Record the sequence of

steps, using N for a step to the north and E for a step to the east.

Ezample. Let m =5, n =6, A = (4,3,1,1). Then R and D are given by:

The corresponding sequence of N’s and E’s is NENNEENENEE.

It is easy to see (left to the reader) that the above correspondence gives
a bijection between Young diagrams D fitting in an m X n rectangle R, and
sequences of m N’s and n E’s. Hence the number of diagrams is equal to

(m;,:"), the number of sequences. O

We now consider how many elements of L(m, n) have rank 7. To this end,
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let ¢ be an indeterminate; and given j > 1 define [j] = 1+ ¢+ ¢* +--- +
@' Thus [1] =1, 2] = 1+4¢, [3] =1+ ¢+ ¢ etc. Note that [j] is a
polynomial in ¢ whose value at ¢ = 1 is just j (denoted [j],=1 = j). Next
define [j]! = [1][2] - - - [j] for j > 1, and set [0]! = 1. Thus [1]! =1, [2]! = 1+¢,
B'=(14q)(1+qg+¢*) =1+2q+2¢*+ ¢, etc., and [j]l4=1 = j!. Finally

define for £ > 5 > 0,
[k} _ (k]!
il [k =410

The expression [’; } is called a g-binomial coefficient (or Gaussian coefficient).

Since [r]ly=1 = 7!, it is clear that

5= 0)

One sometimes says that [ ’; ] is a “g-analogue of the binomial coefficient (';) 7

6.4 Example. We have [';] = [kfj} [why?]. Moreover,

ol - [i] -

[k] :[ ' ]:[k]:1+q+q2+...+qk—1

1 k—1
1 _ By e
M TR e et

5
[ ] =1+q+2¢" +2¢° +2¢" + ¢° + &°.

In the above example, [’;] was always a polynomial in ¢ (and with non-

negative integer coefficients). It is not obvious that this is always the case,
but it will follow easily from the following lemma.

6.5 Lemma. We have

L= e ) &
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j
j >k (the same intial conditions satisfied by the binomial coefficients (’;))

whenever k > 1, with the “initial conditions” [8] =1, [k] =0147<0or

Proof. This is a straightforward computation. Specifically, we have

[k;1]+qk_j[k—1] N et PR | T

j—1 Gk —1—4 "¢ =1k — ]!

[k —1]! 1 gk
U—le—l—ﬂ!Gﬂ*ﬂk—ﬂ>

[k —1]! [k — 41+ ¢"*~[]
-1k =1—=4]t  [5llk—J]
[k — 1] []

=1tk =1 =) ][k - 5]
y
= |["].O
J
Note that if we put ¢ =1 in (26) we obtain the well-known formula

() =562

which is just the recurrence defining Pascal’s triangle. Thus equation (26)
may be regarded as a ¢g-analogue of the Pascal triangle recurrence.

We can regard equation (26) as a recurrence relation for the ¢-binomial
coefficients. Given the initial conditions of Lemma 6.5, we can use (26) induc-

tively to compute [’; ] for any k£ and j. From this it is obvious by induction

that the ¢g-binomial coefficient [’;] is a polynomial in ¢ with nonnegative inte-

ger coefficients. The following theorem gives an even stronger result, namely,
an explicit combinatorial interpretation of the coefficients.

6.6 Theorem. Let p;(m,n) denote the number of elements of L(m,n)

of rank ©. Then
> pi(m,n)q’ = rn+ﬂq- (27)

. m
>0
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(NOTE. The sum on the left-hand side is really a finite sum, since p;(m,n) =
0if i > mn.)

Proof. Let P(m,n) denote the left-hand side of (27). We will show that
P(0,0) =1, and P(m,n)=0ifm<0orn<0 (28)

P(m,n) = P(m,n—1)+¢"P(m —1,n). (29)

Note that equations (28) and (29) completely determine P(m,n). On the
other hand, substituting £ = m + n and j = m in (26) shows that [™'"]
also satisfies (29). Moreover, the initial conditions of Lemma 6.5 show that
[™"] also satisfies (28). Hence (28) and (29) imply that P(m,n) = [™"],
so to complete the proof we need only establish (28) and (29).

Equation (28) is clear, since L(0,n) consists of a single point (the empty
partition @), so Y _,5,pi(0,n)z" = 1; while L(m,n) is empty (or undefined,
if you prefer) if m < 0 or n < 0,

The crux of the proof is to show (29). Taking the coefficient of ¢* of both
sides of (29), we see [why?]| that (29) is equivalent to

pi(m,n) = pi(m,n — 1)+ pi_,(m — 1,n). (30)

Consider a partition A - ¢ whose Young diagram D fits in an m X n rectangle
R. If D does not contain the upper right-hand corner of R, then D fits in
an m X (n — 1) rectangle, so there are p;(m,n — 1) such partitions A. If on
the other hand D does contain the upper right-hand corner of R, then D
contains the whole first row of . When we remove the first row of R, we
have left a Young diagram of size i —n which fits in an (m — 1) X n rectangle.
Hence there are p;_,(m — 1,n) such A, and the proof follows [why?]. O

Note that if we set ¢ = 1in (27), then the left-hand side becomes |L(m, n)|
and the right-hand side (™*"), agreeing with Proposition 6.3.

NoOTE: There is another well-known interpretation of [f }, this time not

of its coefficients (regarded as a polynomial in g), but rather at its values for
certain ¢. Namely, suppose ¢ is the power of a prime. Recall that there is
a field F, (unique up to isomorphism) with ¢ elements. Then one can show
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that [';] is equal to the number of j-dimensional subspaces of a k-dimensional

vector space over the field F,. We will not discuss the proof here since it is
not relevant for our purposes.

As the reader may have guessed by now, the poset L(m,n) is isomorphic
to a quotient poset B,/G for a suitable integer s > 0 and finite group G
acting on By. Actually, it is clear that we must have s = mn since L(m,n)
has rank mn and in general B;/G has rank s. What is not so clear is the
right choice of G. To this end, let R = R,,, denote an m x n rectangle of
squares. For instance, Rg3s is given by the 15 squares of the diagram

We now define the group G' = G, as follows. It is a subgroup of the group
G of all permutations of the squares of R. A permutation 7 in G is allowed
to permute the elements in each row of R in any way, and then to permute the
rows themselves of R in any way. The elements of each row can be permuted
in n! ways, so since there are m rows there are a total of n!™ permutations
preserving the rows. Then the m rows can be permuted in m! ways, so it
follows that the order of G, is given by m!n!™. (The group G, is called
the wreath product of &,, and &,,, denoted 6,1 6,, or &,, wr G,,,. However,
we will not discuss the general theory of wreath products here.)

6.7 Example. Suppose m = 4 and n = 5, with the boxes of X labelled
as follows.

11213145
61781910
111213 |14|15
16 1718 119120
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Then a typical permutation 7 in G(4,5) looks like

16 (2017|1918
41115213
1213|1514 |11
719(16]10]8

ie., m(16) = 1, 7(20) = 2, etc.

We have just defined a group G,,, of permutations of the set R, of
squares of an m x n rectangle. Hence G,,, acts on the boolean algebra By of
all subsets of the set R. The next lemma describes the orbits of this action.

6.8 Lemma. Every orbit O of the action of G, on Bg contains
exactly one Young diagram D (i.e., exactly one subset D C R such that D
1s left-justified, and if A\; is the number of elements of D in row © of R, then
AL > A > > A

Proof. Let S be a subset of R, and suppose that S has «; elements in
row i. If 7 € G, and 7 - S has B; elements in row 4, then (5q,..., 3, is
just some permutation of oy, ..., a, [why?]. There is a unique permutation
Aty ooy Am of g, ... ayy, satisfying Ay > --- > A, so the only possible Young
diagram D in the orbit 7 - S is the one of shape A = (A1,..., A;,). It’s easy
to see that the Young diagram D, of shape A is indeed in the orbit 7 - S.
For by permuting the elements in the rows of R we can left-justify the rows
of S, and then by permuting the rows of R themselves we can arrange the
row sizes of S to be in weakly decreasing order. Thus we obtain the Young
diagram D, as claimed. O

We are now ready for the main result of this section.

6.9 Theorem. The quotient poset By, |Gy is isomorphic to L(m,n).

Proof. Each element of Br/G,,, contains a unique Young diagram D,
by Lemma 6.8. Moreover, two different orbits cannot contain the same Young

diagram D since orbits are disjoint. Thus the map ¢ : Br/Gmn — L(m,n)
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defined by ¢(D,) = A is a bijection (one-to-one and onto). We claim that
in fact ¢ is an isomorphism of partially ordered sets. We need to show the
following: Let O and O* be orbits of G, (i-e., elements of Br/Gpy)- Let
D, and D)~ be the unique Young diagrams in O and O*, respectively. Then
there exist D € O and D* € O* satisfying D C D* if and only if A < A\* in
L(m,n).

The “if” part of the previous sentence is clear, for if A < A* then D, C
Dy.. So assume there exist D € O and D* € O satisfying D C D*. The
lengths of the rows of D, written in decreasing order, are \q,..., A, and
similarly for D*. Since each row of D is contained in a row of D*, it follows
that for each 1 < 5 < m, D* has at least j rows of size at least ;. Thus
the length A} of the jth largest row of D* is at least as large as A;. In other
words, A; < A7, as was to be proved. O

Combining the previous theorem with Theorem 5.9 yields:

6.10 Corollary. The posets L(m,n) are rank-symmetric, rank-unimodal,
and Sperner.

Note that the rank-symmetry and rank-unimodality of L(m,n) can be
rephrased as follows: The g¢-binomial coefficient [m;"} has symmetric and
unimodal coefficients. While rank-symmetry is easy to prove (see Proposi-
tion 6.2), the unimodality of the coefficients of [m;;”} is by no means ap-
parent. It was first proved by J. Sylvester in 1878 by a proof similar to
the one above, though stated in the language of the invariant theory of bi-
nary forms. For a long time it was an open problem to find a combinato-
rial proof that the coefficients of m;"] are unimodal. Such a proof would
give an explicit injection (one-to-one function) u : L(m,n); — L(m,n);,; for
1< %mn. (One difficulty in finding such maps p is to make use of the hypoth-
esis that 7 < %mn) Finally around 1989 such a proof was found by Kathy
O’Hara. However, O’Hara’s proof has the defect that the maps u are not
order-matchings. Thus her proof does not prove that L(m,n) is Sperner, but
only that it’s rank-unimodal. It is an outstanding open problem in algebraic
combinatorics to find an explicit order-matching p : L(m,n); — L(m,n);11
for i < %mn.

Note that the Sperner property of L(m,n) (together with the fact that the
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largest level is in the middle) can be stated in the following simple terms: The
largest possible collection C of Young diagrams fitting in an m x n rectangle
such that no diagram in C is contained in another diagram in C is obtained
by taking all the diagrams of size %mn. Although the statement of this fact
requires almost no mathematics to understand, there is no known proof that
doesn’t use algebraic machinery. (The several known algebraic proofs are all
closely related, and the one we have given is the simplest.) Corollary 6.10 is
a good example of the efficacy of algebraic combinatorics.

An application to number theory. There is an interesting application
of Corollary 6.10 to a number-theoretic problem. Fix a positive integer k.
For a finite subset S of Rt = {& € R: a > 0}, and for a real number « > 0,

define
£ (S, ) =#{T € (‘Z) Y b= a}

teT

In other words, fi(S,«) is the number of k-element subsets of S whose el-
ements sum to «. For instance, f3({1,3,4,6,7},11) = 2, since 1 + 3+ 7 =
1+4+6=11.

Given positive integers k£ < n, our object is to maximize f;(S, @) subject
to the condition that #S = n. We are free to choose both S and «, but &
and n are fixed. Call this maximum value hy(n). Thus

he(n) = max fi(S, ).

SRt

#S=n
What sort of behavior can we expect of the maximizing set S? If the elements
of S are “spread out,” say S = {1,2,4,8,...,2" 1} then all the subset
sums of S are distinct. Hence for any o € Rt we have fi(S,a) = 0 or 1.
Similarly, if the elements of S are “unrelated” (e.g., linearly independent over
the rationals, such as S = {1,1/2,4/3,¢e,7}), then again all subset sums are
distinct and fi(S, @) = 0 or 1. These considerations make it plausible that
we should take S = [n] = {1,2,...,n} and then choose « appropriately. In
other words, we are led to the conjecture that for any S € (]%:r) and a € RT,
we have

fk(S’a) S fk([n]aﬁ)v (31)

for some 3 € R* to be determined.
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First let us evaluate fi([n], ) for any a. This will enable us to determine
the value of § in (31). Let S = {i1,...,ix} C [n] with

1§11<12<<zk§n, 4+ = o (32)

Let j, =4, —r. Then (since 1 +2+---+k = (k-2|-1))

. ) ) ) . k+1
n—k>j>jg1>->51 >0, 91+---+3k=0z—< 5 ) (33)

Conversely, given ji, ..., ji satisfying (33) we can recover iy, ..., i satisfying
(32). Hence fi([n], @) is equal to the number of sequences ji, . . ., ji satisfying
(33). Now let

)\(S) = (jkajk—la C ajl)-
Note that A(S) is a partition of the integer a — (*1') with at most & parts
and with largest part at most n — k. Thus

Fel[n), @) = p,,_(rany (b m = ), (34)

or equivalently,

> Al =[1].

az(k-z‘,-l)

By the rank-unimodality (and rank-symmetry) of L(n—k, k) (Corollary 6.10),
the largest coefficient of [:} is the middle one, that is, the coefficient of
|k(n — k)/2]. Tt follows that for fixed k£ and n, fx([n], @) is maximized for
a = |k(n —k)/2] + (*}') = |k(n + 1)/2]. Hence the following result is
plausible.

6.11 Theorem. Let S € (R:), a € R, and k € P. Then
fe(S, @) < fi([n], [k(n +1)/2]).

Proof. Let S = {a1,...,a,} with 0 < a; < --- < a,. Let T and U
be distinct k-element subsets of S with the same element sums, say T =
{ail,...,aik} and U = {ajl,...,ajk} with 1 <dg < < Zk and j1 < jQ <
-++ < jg. Define T* = {iy,... it} and U* = {j1,...,Jk}, so T*,U* € ([Z]).
The crucial observation is the following:
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Claim. The elements A\(7T*) and A(U*) are incomparable in L(k,n — k),
i.e., neither \(T™*) < A(U*) nor A(U*) < A(T™).

Proof of claim. Suppose not, say A(T*) < A(U)* to be definite. Thus
by definition of L(k,n — k) we have i, —r < j, —r for 1 < r < k. Hence
ip < jrforl < r <k, so also a;, < a; (since a; < -+ < a,). But
a;, +---+a;, = a;, +---+ a;, by assumption, so a;, = a;, for all r. This
contradicts the assumption that 7" and U are distinct and proves the claim.

It is now easy to complete the proof of Theorem 6.11. Suppose that
Si,...,5, are distinct k-element subsets of S with the same element sums.
By the claim, {\(ST),...,A(S})} is an antichain in L(k,n — k). Hence r
cannot exceed the size of the largest antichain in L(k,n—k). By Theorem 6.6
and Corollary 6.10, the size of the largest antichain in L(k,n — k) is given by
Pl(n—k)/2) (k,n — k). By equation (34) this number is equal to fi([n], [k(n +
1)/2]). In other words,

r < fi(ln], [k(n +1)/2]),

which is what we wanted to prove. O

Note that an equivalent statement of Theorem 6.11 is that hy(n) is equal
to the coefficient of [k(n — k)/2] in [}] [why?].
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7 Enumeration under group action.

In Sections 5 and 6 we considered the quotient poset B, /G, where G is
a subgroup of the symmetric group &,,. If p; is the number of elements
of rank ¢ of this poset, then the sequence pg,ps,...,p, is rank-symmetric
and rank-unimodal. Thus it is natural to ask whether there is some nice
formula for the numbers p;. For instance, in Theorem 5.10 p; is the number
of nonisomorphic graphs with m vertices (where n = (’;)) and 7 edges; is
there some nice formula for this number? For the group G,,, = 6,16, of
Theorem 6.6 we obtained a simple generating function for p; (i.e., a formula
for the polynomial ), p;¢*), but this was a very special situation. In this
section we will present a general theory for enumerating inequivalent objects
subject to a group symmetries, which will include a formula for the generating
function ), piq® as a special case, where p; is the number of elements of rank
i of B,,/G. The chief architect of this theory is G. Pélya (1887-1985) (though
much of it was anticipated by J. H. Redfield) and hence is often called Pdlya’s
theory of enumeration or just Polya theory.

Pélya theory is most easily understood in terms of “colorings” of some ge-
ometric or combinatorial object. For instance, consider a row of five squares:

In how many ways can we color the squares using n colors? Each square can
be colored any of the n colors, so there are n® ways in all. These colorings
can by indicated as

A|B|C|D|E

where A, B,C, D, E are the five colors. Now assume that we are allowed to
rotate the five squares 180°, and that two colorings are considered the same
if one can be obtained from the other by such a rotation. (We may think that
we have cut the row of five squares out of paper and colored them on one
side.) We say that two colorings are equivalent if they are the same or can be
transformed into one another by a 180° rotation. The first naive assumption
is that every coloring is equivalent to exactly one other (besides itself), so
the number of inequivalent colorings is n°/2. Clearly this reasoning cannot
be correct since n°/2 is not always an integer! The problem, of course, is
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that some colorings stay the same when we rotate 180°. In fact, these are
exactly the colorings

A|B|C|B|A

where A, B, C are any three colors. There are n® such colorings, so the total
number of inequivalent colorings is given by

1
E(number of colorings which don’t equal their 180° rotation)

+(number of colorings which equal their 180° rotation

1
= §(n5—n3)+n3
1 5 3

Pélya theory gives a systematic method for obtaining formulas of this sort
for any underlying symmetry group.

The general setup is the following. Let X be a finite set, and G a subgroup
of the symmetric group &x. Think of G as a group of symmetries of X. Let
C be another set (which may be infinite), which we think of as a set of
“colors.” A coloring of X is a function f : X — C. For instance, X could
be the set of four squares of a 2 x 2 chessboard, labelled as follows:

Let C = {r,b,y} (the colors red, blue, and yellow). A typical coloring of
X would then look like

b
yi|r

The above diagram thus indicates the function f : X — C given by f(1) =
r, f(2)=0b,f(3) =y, f(4) =r.
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We define two colorings f and g to be equivalent (or G-equivalent, when

it is necessary to specify the group), denoted f ~ g or f < g, if there exists
an element 7 € G such that

g(m(x)) = f(z) for all z € X.

We may write this condition more succinctly as gm = f, where gm denotes
the composition of functions (from right to left). It is easy to check, using
the fact that G is a group, that ~ is an equivalence relation. One should
think that equivalent functions are the same “up to symmetry.”

7.1 Example. Let X be the 2 x 2 chessboard and C = {r,b,y} as
above. There are many possible choices of a symmetry group G, and this will
affect when two colorings are equivalent. For instance, consider the following
groups:

e (I, consists of only the identity permutation (1)(2)(3)(4).

e (5, is the group generated by a vertical reflection. It consists of the
two elements (1)(2)(3)(4) (the identity element) and (1,2)(3,4) (the
vertical reflection).

e (53 is the group generated by a reflection in the main diagonal. It
consists of the two elements (1)(2)(3)(4) (the identity element) and
(1)(4)(2,3) (the diagonal reflection).

e (4, is the group of all rotations of X. It is a cyclic group of order four
with elements (1)(2)(3)(4), (1,2,4,3), (1,4)(2,3), and (1, 3,4,2).

e (35 is the dihedral group of all rotations and reflections of X. It has
eight elements, namely, the four elements of G4 and the four reflections

(1,2)(3,4), (1,3)(2,4), (1)(4)(2,3), and (2)(3)(1,4).

e (35 is the symmetric group of all 24 permutations of X. Although this
is a perfectly valid group of symmetries, it no longer has any connec-
tion with the geometric representation of X as the squares of a 2 x 2
chessboard.

Consider the inequivalent colorings of X with two red squares, one blue
square, and one yellow square, in each of the six cases above.
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(G1)

There are twelve colorings in all with two red squares, one blue square,
and one yellow square, and all are inequivalent under the trivial group
(the group with one element). In general, whenever G is the trivial
group then two colorings are equivalent if and only if they are the same

[why?].

There are now six inequivalent colorings, represented by

r r r b r Yy b Yy r b r Yy
b Yy T Yy T b r r Yy r b r

Each equivalence class contains two elements.

Now there are seven classes, represented by

ri|r r|r blY Yy lb r b blr

b |Y ylob r|r r|r yl|r r|yY

The first five classes contain two elements each and the last two classes
only one element. Although Gy and G3 are isomorphic as abstract
groups, as permutation groups they have a different structure. Specifi-
cally, the generator (1,2)(3,4) of G has two cycles of length two, while
the generator (1)(4)(2, 3) has two cycles of length one and one of length
two. As we will see below, it is the lengths of the cycles of the elements
of G that determine the sizes of the equivalence classes. This explains
why the number of classes for Gy and (5 are different.

There are three classes, each with four elements. The size of each
class is equal to the order of the group because none of the colorings
have any symmetry with respect to the group, i.e., for any coloring
f, the only group element 7 that fixes f (so fr = f) is the identity

(m = (1)(2)(3)(4))-
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(Gs) Under the full dihedral group there are now two classes.

ri|r r|b

b|Y y|r

The first class has eight elements and the second four elements. In
general, the size of a class is the index in G' of the subgroup fixing
some fixed coloring in that class [why?]. For instance, the subgroup
fixing the second coloring above is {(1)(2)(3)(4), (1,4)(2)(3)}, which
has index four in the dihedral group of order eight.

(Gg) Under the group &, of all permutations of the squares there is clearly
only one class, with all twelve colorings. In general, for any set X if the
group is the symmetric group G x then two colorings are equivalent if
and only if each color appears the same number of times [why?].

Our object in general is to count the number of equivalence classes of
colorings which use each color a specified number of times. We will put the
information into a generating function — a polynomial whose coefficients are
the numbers we seek. Consider for example the set X, the group G = G5 (the
dihedral group), and the set C = {r,b,y} of colors in Example 7.1 above.
Let (%, j, k) be the number of inequivalent colorings using red 7 times, blue
j times, and yellow & times. Think of the colors r, b,y as variables, and form
the polynomial

Fg(r,b,y) = Z k(i 4, k)r'by".
i+jth=4
Note that we sum only over 4, j, k satisfying 7+ 7+ k = 4 since a total of four
colors will be used to color the four-element set X. The reader should check
that

Fg(r,by) = (r*+0*+9) 4+ (30 +rb® + rdy + ry® + 0¥y + by®)
+2(r%0* + riy® + b%y?) + 2(rPby + rb*y + rby?).

For instance, the coefficient of r?by is two because, as we have seen above,
there are two inequivalent colorings using the colors r,r,b,y. Note that
Fg(r,b,y) is a symmetric function of the variables r, b,y (i.e., it stays the
same if we permute the variables in any way), because insofar as counting
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inequivalent colorings goes, it makes no difference what names we give the
colors. As a special case we may ask for the total number of inequivalent col-
orings with four colors. This obtained by setting r = b =y = 1 in Fg(r, b, y)
[why?], yielding F(1,1,1) =3+6+2-34+2-3 =21,

What happens to the generating function Fg in the above example when
we use the n colors 71,79, ..., 7, (which can be thought of as different shades
of red)? Clearly all that matters are the multiplicities of the colors, without
regard for their order. In other words, there are five cases: (a) all four colors
the same, (b) one color used three times and another used once, (c) two
colors used twice each, (d) one color used twice and two others once each,
and (e) four colors used once each. These five cases correspond to the five
partitions of 4, i.e., the five ways of writing 4 as a sum of positive integers
without regard to order: 4,3+1,2+42,24+141,14+1+4+1+1. Our generating
function becomes

Fao(ri,ro,...,1m) = Z rf—l—z T’?Tj-l-Z Z 7‘1-27“]2-4-2 Z rizrjrk—i-?) Z TiTiTET L

i i#] i<j iz i<j<k<l
i<k

where the indices in each sum lie between 1 and n. If we set all variables
equal to one (obtaining the total number of colorings with n colors), then
simple combinatorial reasoning yields

Fe(1,1,...,1) = n+n(n—1)+2<g>+2n<n;1>+3<z>

(n* + 2n® 4 3n* + 2n). (35)

o | =

Note that the polynomial (35) has the following description: The denomina-
tor 8 is the order of the group G5, and the coefficient of n’ in the numerator
is just the number of permutations in G5 with 7 cycles! For instance, the
coefficient of n? is 3, and G5 has the three elements (1,2)(3,4), (1,3)(2,4),
and (1,4)(2,3) with two cycles. We want to prove a general result of this
nature.

The basic tool which we will use is a simple result from the theory of
permutation groups known as Burnside’s lemma. It was actually first proved
by Cauchy when G is transitive (i.e., |Y/G| = 1) and by Frobenius in the
general case, and is sometimes called the Cauchy-Frobenius lemma.
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7.2 Lemma. (Burnside’slemma) Let Y be a finite set and G a subgroup
of ©y. For each m € G, let

Fix(m) ={y € Y : n(y) = y},

so |Fix(y)| is the number of cycles of length one in the permutation m. Let
Y/G be the set of orbits of G. Then

Y/G| = Fix(m
P

neG

An equivalent form of Burnside’s lemma is that statement that the aver-
age number of elements of Y fixed by an element of G is equal to the number
of orbits. Before proceeding to the proof, let us consider an example.

3

7.3 Example. LetlY = {a,b,c,d}, G = {(a)(b)(c)(d), (a,b)(c,d), (a,c)
(b, d), (@, d)(b, ¢)}, and G = {(a) (b)(¢)(d), (a,b)(c)(d), (a)(b)(c, d), (a, b) (c, d)
Both groups are isomorphic to Zy x Zy (compare Example 5.1(c) and (d)).

By Burnside’s lemma the number of orbits of G is ;(4 +0+40+0) = 1.
Indeed, given any two elements 7,5 € Y it is clear by inspection that there
is a m € G (which happens to be unique) such that 7(i) = j. On the other
hand, the number of orbits of G is i(4 +2+2+0) = 2. Indeed, the two
orbits are {a, b} and {c, d}.

Proof of Burnside’s lemma. Forye Y let G, ={re G:71-y =y}
(the set of permutations fixing y). Then

RGP IPIL

neG TEG yeEY
Y=y

- ‘Zzl

yey weG
Y=Y

- G

yey

Now (as in the proof of Lemma 5.7) the multiset of elements 7 -y, 7 € G,
contains every element in the orbit Gy the same number of times, namely
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|G|/|G,| times. Thus y occurs |G|/|G,| times among the 7 - y, so

G|
@ = |Gy|-

Thus
| , | «— [C]
— Fix(m)| = — —
EP e Dy re

How many times does a term 1/|O| appear in the above sum, where O is
a fixed orbit? We are asking for the number of y such that Gy = O. But
Gy = O if and only if y € O, so 1/|O| appears |O| times. Thus each orbit
gets counted exactly once, so the above sum is equal to the number of orbits.
O

7.4 Example. How many inequivalent colorings of the vertices of a
regular hexagon H are there using n colors, under cyclic symmetry? Let C,
be the set of all n-colorings of H. Let G be the group of all permutations
of C,, which permute the colors cyclically, so G = Zg. We are asking for the
number of orbits of G [why?]. We want to apply Burnside’s lemma, so for
each of the six elements o of G we need to compute the number of colorings
fixed by that element. Let m be a generator of G.

e o =1 (the identity): All n® colorings are fixed by o.
e o =, 7~ Only the n colorings with all colors equal are fixed.

e 0 =% 7* Any coloring of the form ababab is fixed (writing the colors

linearly in the order they appear around the hexagon, starting at any
fixed vertex). There are n choices for a and n for b, so n? colorings in
all.

e o = 73: The fixed colorings are of the form abcabc, so n? in all.

Hence by Burnside’s lemma, we have

1
number of orbits = 6(n6 +n® +2n® + 2n).
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The reader who has followed the preceding example will have no trouble
understanding the following result.

7.5 Theorem. Let G be a group of permutations of a finite set X. Then
the number of inequivalent (with respect to G) n-colorings of X is equal to

1
@ 3 nete),

where ¢(m) denotes the number of cycles of .

Proof. Let 7, denote the action of 7 € G on the set C, of n-colorings of
X. We want to determine the set Fix(m,), so that we can apply Burnside’s
lemma. Let C' be the set of n colors. If f: X — C is a coloring fixed by T,
then for all z € X we have

flz) =7, - f(z) = f(m, - x).

Thus f € Fix(m,) if and only if f(z) = f(y) whenever n(z) = y. In other
words, we must have f(z) = f(n(z)). Hence f(z) = f(7*(z)) for any k > 1
[why?]. The elements y of X of the form 7%(z) for k > 1 are just the elements
of the cycle of 7 containing z. Thus to obtain f € Fix(m,), we should take the
cycles o1,...,0.x) of m and color each element of o; the same color. There
are n choices for each o;, so n°™ colorings in all fixed by 7. In other words,
|Fix(m,)| = n™, and the proof follows by Burnside’s lemma. O

We would now like not just to count the total number of inequivalent
colorings with n-colors, but more strongly to specify the number of occurences
of each color. We will need to use not just the number ¢(7) of cycles of each
m € @, but rather the lengths of each of the cycles of m. Thus given a
permutation 7 of an n-element set X, define the type of 7 to be

type(7r) = (617 C2y .-+, Cn)7
where 7 has ¢; i-cycles. For instance, if 1 =4,7,3,8,2,10,11,1,6,9, 5, then
type(r) = type (1,4,8)(2,7,11,5)(3)(6,10,9)
= (1,0,2,1,0,0,0,0,0,0,0).
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Note that we always have ) .ic; = n [why?]. Define the cycle indicator of 7

to be the monomial

Cn

P cl c2-|-
Lp = 21" 2, 2z

(Many other notations are used for the cycle indicator. The use of Z, comes
from the German work Zyklus for cycle. The original paper of Pdélya was
written in German.) Thus for the example above, we have Z, = 21232,.

Now given a subgroup G of Gy, the cycle indicator (or cycle index poly-
nomial) of G is defined by

1
Zg=Za(z1,...,2) = @ZZW.
TeG

Thus Zg (also denoted Pg, Cyc(G), etc.) is a polynomial in the variables
RlyeeeyRp-

7.6 Example. If X consists of the vertices of a square and G is the
group of rotations of X (a cyclic group of order 4), then

1
Zg = Z(zjl + 25 + 224).

If reflections are also allowed (so G is the dihedral group of order 8), then

1
Zg = g(zil + 322 + 22225 + 224).

We are now ready to state the main result of this section.

7.7 Theorem. (Pdlya’s theorem, 1937) Let G be a group of permu-
tations of the n-element set X. Let C = {ry,ry,...} be a set of colors. Let
(i1, 92, --.) be the number of inequivalent (under the action of G) colorings
f X — C such that color r; is used i; times. Define

Fg(Tl,TQ,...) = Z K,(il,l.Q,...)TilT?"'

21,82,

(Thus Fg is a polynomial or a power series in the variables ri,7s,..., de-
pending on whether or not C' is finite or infinite.) Then

Fg(’f'l,’l“g,...) =Zg(T'1+T‘2+’I'3+'",T%+T§+T’§+'",...,T{+T%+Tg+"')-
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(In other words, substitute er for z; in Zg.)
Before giving the proof let us consider an example.

7.8 Example. Suppose that in Example 7.6 our set of colors is C' =
{a,b,c,d}, and that we take G to be the group of cyclic symmetries. Then

1
Fo(a,b,c,d) = Z((a+b+c+d)4+(a2+62+02+d2)2+2(a4+b4+c4+d4))

= (a*+--)+ (@®b+--) +2(a®b* + --+) + 3(a®bc + - - -) + 6abed.

An expression such as (a?b* + - - -) stands for the sum of all monomials in the
variables a, b, ¢, d with exponents 2,2, 0,0 (in some order). The coefficient of
all such monomials is 2, indicating two inequivalent colorings using one color
twice and another color twice. If instead G were the full dihedral group, we
would get

1
Fg(a,b,c,d) = g((a+b+c+d)4+3(a2+b2+02+d2)2

+2(a+b+c+d)?(@+b +c+d?)+2(a* + b+t +dY))
= (a*+--) 4+ (@®b+---) 4+ 2(a®® + ---) + 2(a®bc + - - -) + 3abed.

Proof of Pdlya’s theorem. Let |X| = ¢ and i1 + i + --- = t, where
each i; > 0. Let i = (iy,4,...), and let C; denote the set of all colorings
of X with color r; used %; times. The group G acts on C;, since if f €
and m € G, then 7 - f € C;. (“Rotating” a colored object does not change
how many times each color appears.) Let m; denote the action of m on C;.
We want to apply Burnside’s lemma to compute the number of orbits, so we
need to find |Fix(m;)|.

In order for f € Fix(m;), we must color X so that (a) in any cycle of 7,
all the elements get the same color, and (b) the color r; appears ¢; times.
Consider the product

H7r = H(T'{ + 7'%. + .. .)cj(ﬂ'),
J

where ¢;(7) is the number of j-cycles (cycles of length j) of 7. When we

expand this product as a sum of monomials rJ'73* - - -, we get one of these
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monomials by choosing a term ri_ from each factor of H, and multiplying
these terms together. Choosing ry, corresponds_ to coloring all the elements
of some j-cycle with 7. Since a factor { + r + -+ occurs precisely c;(m)
times in H,, choosing a term r; from every factor corresponds to coloring
X so that every cycle is monochromatlc (i.e., all the elements of that cycle
get the same color). The product of these terms ri will be the monomial

r{lréz -+ -, where we have used color 7y a total of j; times. It follows that the
coefﬁment of 77 - in H, is equal to |Fix(m;)|. Thus

H, =Y |Fix(m)|r{'r§ . (36)

Now sum both sides of (36) over all 7 € G and divide by |G|. The left-hand
side becomes

ZH7“1+7“2 (W):ZG(T1+T2+---,T%+7‘§+---,...).

ﬂ'EG j
On the other hand, the right-hand side becomes

Z |G\ Z |Fix (7 ] r?r? .-

T€G
By Burnside’s lemma, the expression in brackets is just the number of orbits
of m; acting on G, i.e., the number of inequivalent colorings using color r; a
total of 4; times, as was to be proved. O

7.9 Example. (Necklaces) A necklace of length £ is a circular arrange-
ment of £ (colored) beads. Two necklaces are considered the same if they
are cyclic rotations of one another. Let X be a set of £ (uncolored) beads,
say X = {1,2,...,¢}. Regarding the beads as being placed equidistantly on
a circle in the order 1,2...,/, let G be the cyclic group group of rotations
of X. Thus if 7 is the cycle (1,2,...,£), then G = {1,7,72,..., 7 '}. For
example, if £ = 6 then the elements of G are

™ = (1)(2)(B3)(4)(5)(6)

(123456)
™ = (1,3,5)(2,4,6)
™ = (1 )( 5)(3,6)
™ = (1,5,3)(2,6,4)
™ = (1,6,5,4,3,2).
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In general, if d is the greatest common divisor of m and ¢ (denoted d =
ged(m, £)), then 7™ has d cycles of length //d. An integer m satisfies 1 <
m < £ and ged(m, ¢) = difand only if 1 < m/d < ¢/d and ged(m/d, £/d) = 1.
Hence the number of such integers m is given by the Euler phi-function (or
totient function) ¢(¢/d), which by definition is equal to the number of integers
1 <¢ < {/d such that ged(i, £/d) = 1. Recall that ¢(k) can be computed by
the formula

plk

p prime
For instance, ¢(1000) = 1000(1 — 3)(1 — £) = 400. Putting all this together
gives the following formula for the cycle enumerator Zg(z1, - - ., 2):

1
Zg(21,- -5 20) = 7 Z ¢(£/d)zg/d,
dle
or (substituting £/d for d),
e/d
Za(z,. .2 Zdzqu

There follows from Pélya’s theorem the following result (originally proved by
P. A. MacMahon (1854-1929) before Pélya discovered his general result).

7.10 Theorem.

(a) The number Ny(n) of n-colored necklaces of length £ is given by

1
= > o(t/d)n. (37)
dt
(b) We have
Fg(ri,re,...) = Zgb (rd 4+ rd .. )2,
die
NoTE: (b) reduces to (a) if r; = 7y = --- = 1. Moreover, since clearly

Ny(1) = 1, putting n = 1 in (37) yields the famous identity

D o(t/d) =t

dje
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What if we are allowed to flip necklaces over, not just rotate them? Now
the group becomes the dihedral group of order 2/, and the corresponding
inequivalent colorings are called dihedral necklaces. We leave to the reader
to work out the cycle enumerators

1
Y] > 6(d)zdt + maA T+ may |, it €=2m
dje
1
Y] Z(ﬁ(d)zﬁ/d +lzzyt |, fl=2m+1.

dje

7.11 Example. Let G = &, the group of all permutations of {1,2,... £} =
X. Thus for instance

1
Ze,(z1,20,23) = é(zi’ + 32129 + 223)
1
Zs, (21, 22,23, 24) = ﬂ(zf + 62229 + 325 + 82123 + 624).

It is easy to count the number of inequivalent colorings in C;. If two colorings
of X use each color the same number of times, then clearly there is some
permutation of X which sends one of the colorings to the other. Hence C;
consists of a single orbit. Thus

— E 11,02
FG[(T17T2,)_ Tl 7'2 "',

i1 ig =l

the sum of all monomials of degree /.

To count the total number of inequivalent n-colorings, note that

Y Fe,(ri,ra,.. )2t = ! : (38)

>0 (1—rz)(1—rez)---

since if we expand each factor on the right-hand side into the series }_ .-, 7l
and multiply, the coefficient of 2¢ will just be the sum of all monomials of

degree £. For fixed n, let f,(¢) denote the number of inequivalent n-colorings
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of X. Since f,(¢) = Fgs,(1,1,...,1) (n I’s in all), there follows from (38)

that )
Z falf)z” = Az

£>0

The right-hand side can be expanded (e.g. by Taylor’s theorem) as

()

>0

Hence o1
n —

It is natural to ask whether there might be a more direct proof of such a
simple result. This is actually a standard result in elementary enumerative
combinatorics. For fixed ¢ and n we want the number of solutions to 7; +
iy + -+ -+ 1, = £ in nonnegative integers. Setting k; = ¢; + 1, this is the same
as the number of solutions to k; + ko + - - - + k, = £ + n in positive integers.
Place ¢/ + n dots in a horizontal line. There are £ +n — 1 spaces between
the dots. Choose n — 1 of these spaces and draw a vertical bar in them in
(”;Lf;l) = (”+§_1) ways. For example, if n = 5 and ¢ = 6, then one way of
drawing the bars is

The number of dots in each “compartment,” read from left to right, gives
the numbers &, ..., k,. For the above example we get 2+3+2+1+3 =11,
corresponding to the original solution 1+2+140+2 = 6 (i.e., one element
of X colored 1, two elements colored 74, one colored 73, and two colored 75).
Since this correspondence between solutions to i; + i + - - - +4,, = £ and sets
of bars is clearly a bijection, we get ("+f_1) solutions as claimed.

Recall (Theorem 7.5) that the number of inequivalent n-colorings of X
(with respect to any group G of permutations of X) is given by



where ¢(7) denotes the number of cycles of 7. Hence for G = &, we get the

identity
1 n+f-—1
— e(m)
7l Z n = ( i )

| £
_ l}'(n+1)(n+2)---(n+£— ).
Multiplying by ¢! yields
Y ™ =(m+1)(n+2)--(n+L-1). (39)

TES,

Equivalently [why?], if we define ¢(4, k) to be the number of permutations in
S, with k cycles (called a signless Stirling number of the first kind), then

¢
> etk z(z4+1)(x+2)---(z+£-1).

k=1

For instance, z(z + 1)(z + 2)(z + 3) = 2* + 62 + 112? + 6z, so (taking
the coefficient of z2) eleven permutations in &, have two cycles, namely,
(123)(4), (132)(4), (124)(3), (142)(3), (134)(2), (143)(2), (234)(1), (243)(1),
(12)(34), (13)(24), (14)(23).

Although it was easy to compute the generating function Fg,(ry,7,...)
directly without the necessity of computing the cycle indicator Zg, (21, - - -, 2¢),
we can still ask whether there is a formula of some kind for this polynomial.
First we determine explicitly its coefficients.

7.12 Theorem.  Let Y ic; = {. The number of permutations m €
Sy with ¢; cycles of length i (or equivalently, the coefficient of zi*25%--- in

0Zs,(z1,- .., 20)) is equal to 01/1°¢;12%¢y! - - -

Ezxample. The number of permutations in &5 with three 1-cycles, two
2-cycles, and two 4-cycles is 15!/13 - 3!.22. 2. 42. 21 = 851, 350, 500.

Proof of Theorem 7.12. Fix ¢ = (¢, ¢,...) and let X. be the set
of all permutations 7 € G, with ¢; cycles of length i. Given a permutation

0 = ajay---ag in &y, construct a permutation f(o) € X. as follows. Let
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the 1-cycles of f(o) be (a1),(az),...,(a,). Then let the 2-cycles of f(o)
be (Gey11, Cey+2)s (Qey43y Geyia)y - - oy (Qey 420515 Geyt2¢,)- Then let the 3-cycles
of f(O') be (a01+202+1’ Qcy+2¢9+25 a61+262+3)7 (a01+262+41 Qci+2co+5; a61+262+6)a R
(Gey+2e9+3c5—25 Uy +2¢p+3c5—15 Gy +2e5+3¢s ) €6C., continuing until we reach a, and
have produced a permutation in X.. For instance, if £ = 11,¢; = 3,¢ =
2,c4=1,and 0 =4,9,6,11,7,1,3,8,10,2,5, then

flo) = (4)(9)(6)(11,7)(1, 3)(8,10,2,5).
We have a defined a function f : &, — X.. Given 7 € X, what is

#f~!(7), the number of permutations sent to 7 by f? A cycle of length 4
can be written in ¢ ways, namely,

(b17627 .- 7b’L) = (b27b37 .. '7bi)b1) === (biab17b27 .. '7bi—1)-
Moreover, there are ¢;! ways to order the c; cycles of length . Hence
#f_l(ﬂ') = 61!62!03! cee 112023 ;

the same number for any 7 € X.. It follows that

_ #6,
#XC - 01!02!...101202...
2!
- 61!02!...101202...’

as was to be proved. O
As for the polynomial Zg, itself, we have the following result.
7.13 Theorem. We have
Z Zs, (21, 22, )t = R R

>0

Proof. There are some sophisticated ways to prove this theorem which
“explain” why the exponential function appears, but we will be content here
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with a “naive” proof. Write

22

artafytaiyte — g, g0y

€ -es

zl z" zgx% Z 25"
B 2”n! 3nn!
n>0 n>0
c1 _co

When we multiply this product out, the coefficient of z{'25?---x¢, where
{=cy 4 2cy+ -+, is given by

1 1 /
10101!26202!"' o E 16161!26202!"' )

By Theorem 7.12 this is just the coefficient of 2{*25% - - - in Zg, (21, 22, .. .), as
was to be proved. O

As a check of Theorem 7.13, set each z; = n to obtain

E Zs,(nyn,.. )zt = eyt

£>0
2 3
P D)

= e log(1—z)~?!

()

- Z / T

0

the last step following from the easily checked equality (_e”) = (—1)‘5(’”’5_1).
Equating coefficients of 2 in the first and last terms of the above string of

equalities gives
n+¢—1
Zs,(n,n,...) = ( / )

nn+1)---(n+£-1)
14 ’

agreeing with Theorem 7.5 and equation (39).
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Quotients of boolean algebra. We will show how to apply Pédlya
theory to the problem of counting the number of elements of given rank in a
quotient poset By /G. Here X is a finite set, Bx is the boolean algebra of all
subsets of X, and G is a group of permutations of X (with an induced action
on Bx). What do colorings of X have to do with subsets? The answer is
very simple: A 2-coloring f : X — {0, 1} corresponds to a subset S; of X by
the usual rule

se S+ f(s) =1.

Note that two 2-colorings f and g are G-equivalent if and only if Sy and S,
are in the same orbit of G (acting on Byx). Thus the number of inequivalent
2-colorings f of X with 7 values equal to 1 is just #(Bx/G);, the number of
elements of Bx /G of rank i. As an immediate application of Pélya’s theorem
(Theorem 7.7) we obtain the following result.

7.14 Corollary. We have

> #(Bx/G)id' =Zo(l+q, 1+ ¢ 1+4,..).

Proof. If ¢(i,j) denotes the number of inequivalent 2-colorings of X
with the colors 0 and 1 such that 0 is used j times and 1 is used ¢ times (so
i+ j = #X), then by Pélya’s theorem we have

> i, )ty = Za(x +y, 2> + 7,2 + 95, ).
,J

Setting z = q and y = 1 yields the desired result [why?]. O

Combining Corollary 7.14 with the rank-unimodality of Bx/G (Theo-
rem 5.9) yields the following corollary.

7.15 Corollary.  For any finite group G of permutations of a finite
set X, the polynomial Zg(1+q,1+¢* 1+ ¢, ...) has symmetric, unimodal,

integer coefficients.

7.16 Example. (a) For the poset P of Example 5.3(a) we have G =
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{(1)(2)(3), (1,2)(3)}, s0 Zg(21, 22, 23) = 3(2} + 2122). Hence

Y #P)d = % (T+a°+ (1 +q)(1+4¢%)
1

1=0

+2q+2q2+q3.

(b) For the poset P of Example 5.3(b) we have G = {(1)(2)(3)(4)(5),
(la 2a3a4a5)a (17 37 5) 274)1 (1547 2a5a3)5 (1a5a4737 2)}, SO ZG(ZhZQ; 23,2!4,25) =
£(2 + 425). Hence

. 1
> #P)d = = (1490 +4(1+¢))
= 1+q¢+2¢+2¢ +¢" + ¢

(c) Let X be the squares of a 2 x 2 chessboard, labelled as follows:

112
3|4

Let G be the wreath product G5 S,, as defined in Section 6. Then

G ={(1(2)B3)4), (1,2)(3)(4), (1)(2)(3,4), (1,2)(3,4),
(1,3)(2,4), (1,4)(2,3), (1,3,2,4), (1,4,2,3)},

S0
1
Za(21, 22, 23, 24) = g(zil + 22729 + 323 + 224).

Hence

Z(#Pi)qi = i (M+9)" +20+9°(1+¢*) +3(1 + ¢*)* +2(1 +¢"))

= 1+q+2¢°+¢ +¢'
|4
= 15

agreeing with Theorem 6.6.
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Using more sophisticated methods (such as the representation theory of
the symmetric group), the following generalization of Corollary 7.15 can be
proved: Let P(q) be any polynomial with symmetric, unimodal, nonnegative,
integer coefficients, such as 1+¢+3¢?>+3¢*>+8¢*+3¢° +3¢°+¢" +¢® or ¢+ ¢
(=04 0z + -+ 0z* + 2% + 2% + 02" + - - - + 0z'!). Then the polynomial
Zg(P(q), P(¢%), P(¢%),...) has symmetric, unimodal, nonnegative, integer
coefficients.

Graphs. A standard application of Pélya theory is to the enumeration
of nonisomorphic graphs. We saw at the end of Section 5 that if M is an
m-element vertex set, X = (1\2/1)7 and Gg%) is the group of permutations of
X induced by permutations of M, then an orbit of i-element subsets of X
may be regarded as an isomorphism class of graphs on the vertex set M with
i-edges. Thus #(Bx/ 6%)% is the number of nonisomorphic graphs (without
loops or multiple edges) on the vertex set M with 7 edges. It follows from
Corollary 7.14 that if g;(m) denotes the number of nonisomorphic graphs

with m vertices and ¢ edges, then

(5)
Y amd =Zgo(1+q,1+¢1+¢,...).
1=0

Thus we would like to compute the cycle enumerator 2 5@ (21, 22, ...). If two
permutations 7 and o of M have the same cycle type (number of cycles of each
length), then their actions on X also have the same cycle type [why?]. Thus
for each possible cycle type of a permutation of M (i.e., for each partition
of m) we need to compute the induced cycle type on X. We also know
from Theorem 7.12 the number of permutations of M of each type. For
small values of m we can pick some permutation 7 of each type and compute
directly its action on X in order to determine the induced cycle type. For
m = 4 we have:
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CYCLE INDUCED CYCLE

LENGTHS PERMUTATION LENGTHS
OF = NUMBER 7r 7 OF 7’
1,1,1,1 1 M@)B)A) (12)(13)(14)(23)24)(34) 1,1,1,1,1,1
2,1,1 6 (1,2)(3)(4)  (12)(12,23)(14,24)(34)  2,2,1,1
3,1 8 (1,2,3)(4)  (12,23,13)(14,24, 34) 3,3
2,2 3 (1,2)(3,4)  (12)(13,24)(14,23)(34)  2,2,1,1
4 6 (1,2,3,4)  (12,23,34,14)(13, 24) 4,2

It follows that

1
— (29 + 92225 + 823 + 62p24).

Z (2)(21,22,23,24,Z5,26) 24

64

If we set z; = 1 + ¢* and simplify, we obtain the polynomial

6
> gi()d =1+q+2¢ +3¢" +2¢" + ¢ + ¢
i=0
Suppose that we instead wanted to count the number ;(4) of nonisomorphic
graphs with four vertices and 7 edges, where now we allow at most two edges
between any two vertices. We can take M, X, and G = 6 as before, but
now we have three colors: red for no edges, blue for one edge, and yellow
for two edges. A monomial 7°b’y* corresponds to a coloring with i pairs of
vertices having no edges between them, j pairs having one edge, and &k pairs
having two edges. The total number e of edges is j + 2k. Hence if we let
r=1,b=gq,y = ¢ then the monomial 7*¢/y* becomes ¢/+%¢ = ¢°. It follows
that

hi(A)g = Zge(l+q+¢, 1+ +4"1+¢ +¢°,..)

1
= o7 (+a+¢)° +90+ g+ (1 +¢" +")
H8(1+¢* +¢°)? +6(1 +¢* + ¢ ) (1 +¢" +¢%))

= 14+¢+3¢"+5¢°+8¢" +9¢° + 12¢° + 9¢" + 8¢° + 5¢°
+3q10 +q11 +q12.

The total number of nonisomorphic graphs on four vertices with edge multi-
plicities at most two is ), h;(4) = 66.
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It should now be clear that if we restrict the edge multiplicity to be r,
then the corresponding generating function is Z ) (I+q+¢+--+q¢ 11+
4

@ +qt+---+¢*2 ...). In particular, to obtain the total number N(r,4) of
nonisomorphic graphs on four vertices with edge multiplicity at most r, we
simply set each z; = r, obtaining

N(r,4) = ZGf) (ryr,ryr,r,T)

1
= ﬂ(r6 + 9r* 4 14r2).

This is the same as number of inequivalent r-colorings of the set X = (]g[ )
(where #M = 4) [why?].

Of course the same sort of reasoning can be applied to any number of ver-
tices. For five vertices our table becomes the following (using such notation
as 1° to denote a sequence of five 1’s).

CYCLE INDUCED CYCLE
LENGTHS PERMUTATION LENGTHS
OF 7 NO. T ' OF =’

S N N OIEIE) [2)(13) - (35) I
2,13 10 (1,2)3)(4)(5) (12)(13,23)(14,25)(15,25)(34)(35)(45) 23,1
3,12 20 (1,2,3)(4)(5)  (12,23,13)(14, 24, 34)(15, 25, 35) (45) 33,1
921 15 (1,2)(3,4)(5) (12)(13,24)(14, 23)(15, 25)(34)(35,45) 24,12
41 30 (1,2,3,4)(5)  (12,23,34,14)(13,24)(15, 25, 35, 45) 429
3,2 20 (1,2,3)(4,5)  (12,23,13)(14, 25,34, 15,24, 35)(45) 6,3,1
5 24 (1,2,3,4,5) (12,23, 34,45, 15)(13, 24, 35, 14, 25) 52

Thus

1
ZG@” (21, -y 210) = 190 (21°4+102] 2542021 25 +1527 25 +3020 25 +2021 2326 +2427 ),

from which we compute
10
Y u()d = Zgo(l+q1+¢ ..., 1+¢")
1=0
= 1+q+2¢° +4¢° + 6¢* +6¢° + 6¢° + 4¢" + 2¢* + ¢° + ¢"°.
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For an arbitrary number m = #M of vertices there exist explicit formulas
for the cycle indicator of the induced action of 7 € &, on (1\2/[)’ thereby
obviating the need to compute 7’ explicitly as we did in the above tables,
but the overall expression for Ze,(;‘;) cannot be simplified significantly or put
into a simple generating function as we did in Theorem 7.13. For reference
we record

1
Lo = a(zi5 + 152725 + 4022 25 + 452325 + 9021 2025 + 12021 2025 2
6 .
+14423 + 152325 + 90212025 + 4025 + 1202327)

(90(6),91(6), ..., 915(6)) = (1,1,2,5,9,15,21,24,24,21,15,9,5,2, 1, 1).
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8 A glimpse of Young tableaux.

We defined in Section 6 Young’s lattice Y, the poset of all partitions of all
nonnegative integers, ordered by containment of their Young diagrams.

Young’s lattice

Here we will be concerned with the counting of certain walks in the Hasse
diagram (considered as a graph) of Y. Note that since Y is infinite, we cannot
talk about its eigenvalues and eigenvectors. We need different techniques for
counting walks. (It will be convenient to denote the length of a walk by n,
rather than by £ as in previous sections.)

Note that Y is a graded poset (of infinite rank), with Y; consisting of all
partitions of ¢. In other words, we have ¥ = Yy U Y] U --- (disjoint union),
where every maximal chain intersects each level Y; exactly once. We call Y;
the ith level of Y.

Since the Hasse diagram of Y is a simple graph (no loops or multiple
edges), a walk of length n is specified by a sequence A\’ A\!,... A" of vertices
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of Y. We will call a walk in the Hasse diagram of a poset a Hasse walk.
Each ) is a partition of some integer, and we have either (a) \' < \t!
and |\{| = [N — 1, or (b) AX¥ > A*!and |\{| = [Nt + 1. A step of
type (a) is denoted by U (for “up,” since we move up in the Hasse di-
agram), while a step of type (b) is denoted by D (for “down”). If the
walk W has steps of types Ai, Ao, ..., A,, respectively, where each A; is
either U or D, then we say that W is of type A,A,_1---AA;. Note
that the type of a walk is written in the opposite order to that of the
walk. This is because we will soon regard U and D as linear transfor-
mations, and we multiply linear transformations right-to-left (opposite to
the usual left-to-right reading order). For instance (abbreviating a partition
(M, Am) as Ay -+ - A\p), the walk @, 1,2,1,11,111,211,221,22,21, 31,41 is
of type UUDDUUUUDUU = U?D?U*DU?.

There is a nice combinatorial interpretation of walks of type U™ which
begin at @. Such walks are of course just saturated chains @ = \° < \! <
- < A" In other words, they may be regarded as sequences of Young
diagrams, beginning with the empty diagram and adding one new square at
each step. An example of a walk of type U® is given by

)

We can specify this walk by taking the final diagram and inserting an ¢ into
square s if s was added at the ith step. Thus the above walk is encoded by
the “tableau”

112
315
4

Such an object 7 is called a standard Young tableauz (or SYT). It consists
of the Young diagram D of some partition A of an integer n, together with
the numbers 1,2, ..., n inserted into the squares of D, so that each number
appears exactly once, and every row and column is increasing. We call A the
shape of the SYT 7, denoted A = sh(7). For instance, there are five SYT of
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shape (2,2,1), given by

1] 2 112 113 113 114
314 319 2|4 21595 215
) 4 5 4 3

Let f* denote the number of SYT of shape A, so for instance f2 = 5.
The numbers f* have many interesting properties; for instance, there is a
famous explicit formula for them known as the Frame-Robinson-Thrall hook
formula. We will be concerned with their connection to counting walks in
Young’s lattice. If w = A, A,,_1---A; is some word in U and D and A F n,
then let us write a(w, A) for the number of Hasse walks in Y of type w which
start at the empty partition @ and end at A. For instance, a(UDUU, 11) =
2, the corresponding walks being ©,1,2,1,11 and ©,1,11,1,11. Thus in
particular a(U™, \) = f* [why?]. In a similar fashion, since the number of
Hasse walks of type D"U™ which begin at (), go up to a partition A F n, and
then back down to @ is given by (f*)2, we have

a(D"U™, 0) = () (40)

AFn

Our object is to find an explicit formula for a(w,\) of the form f*c,,
where ¢, does not depend on A. (It is by no means a priori obvious that
such a formula should exist.) In particular, since f (/- 1, we will obtain by
setting A = ) a simple formula for the number of (closed) Hasse walks of
type w from @ to @ (thus including a simple formula for (40)).

There is an easy condition for the existence of any Hasse walks of type
w from @ to A, given by the next lemma.

8.1 Lemma. Suppose w = D**U"* ---D*?U"D*'U™ | where r; > 0 and
s; > 0. Let A+ n. Then there exists a Hasse walk of type w from @ to \ if
and only if:



j
D (ri—si)>0for1<j<k.

i=1

Proof. Since each U moves up one level and each D moves down one
level, we see that Zle (r;—s;) is the level at which a walk of type w beginning
at @ ends. Hence Y%  (r; — 5;) = |\| = n.

After Zgzl(rﬁ—si) steps we will be at level Zgzl(n —s8;). Since the lowest
level is level 0, we must have > 7_ (r; —s;) > 0for 1 < j <k.

The easy proof that the two conditions of the lemma are sufficient for
the existence of a Hasse walk of type w from @ to A is left to the reader. O

If w is a word in U and D satisfying the conditions of Lemma 8.1, then
we say that w is a valid M\-word. (Note that the condition of being a valid
A-word depends only on |A|.)

The proof of our formula for «(w, A) will be based on linear transforma-
tions analogous to those defined by (18) and (19). As in Section 4 let RY;
be the real vector space with basis Y;. Define two linear transformations
U;:RY; - RY;,; and D, : RY; — RY;_; by

Ui(A) = Z 1%

uki41
A<p

Di(\) =) v,

vki—1
<A

for all A - 4. For instance (using abbreviated notation for partitions)
Up (54422211) = 64422211 + 55422211 + 54432211 + 54422221 + 544222111

Dy;(54422211) = 44422211 + 54322211 + 54422111 + 5442221.

It is clear [why?] that if r is the number of distinct (i.e., unequal) parts of A,
then U;()) is a sum of 7 + 1 terms and D;(\) is a sum of r terms. The next
lemma is an analogue for Y of the corresponding result for B,, (Lemma 4.6).
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8.2 Lemma. For anyt > 0 we have
DiU; = Ui D; = I, (41)

the identity linear transformation on RY;.

Proof. Apply the left-hand side of (41) to a partition A of i, expand
in terms of the basis Y;, and consider the coefficient of a partition pu. If
1 # X and p can be obtained from A by adding one square s to (the Young
diagram of) ) and then removing a (necessarily different) square ¢, then there
is exactly one choice of s and t. Hence the coefficient of y in D;1U;()) is
equal to 1. But then there is exactly one way to remove a square from A and
then add a square to get p, namely, remove ¢t and add s. Hence the coefficient
of pin U;_1D;(A) is also 1, so the coefficient of 1 when the left-hand side of
(41) is applied to A is 0.

If now p # X and we cannot obtain u by adding a square and then deleting
a square from A (i.e., 4 and A differ in more than two rows), then clearly
when we apply the left-hand side of (41) to A, the coefficient of p will be 0.

Finally consider the case A = u. Let r be the number of distinct (unequal)
parts of A. Then the coefficient of A in D;1U;()) is 7+1, while the coefficient
of X in U;_1D;(\) is r, since there are 7 + 1 ways to add a square to A and
then remove it, while there are r ways to remove a square and then add it
back in. Hence when we apply the left-hand side of (41) to A, the coefficient
of A is equal to 1.

Combining the conclusions of the three cases just considered shows that
the left-hand side of (41) is just I;, as was to be proved. O

We come to one of the main results of this section.

8.3 Theorem. Let X be a partition and w = A, A,_1--- A1 a valid
A-word. Let S,, = {i : A; = D}. For eachi € Sy, let a; be the number of D’s
in w to the right of A;, and let b; be the number of U’s in w to the right of
A;. Then

a(w, ) = T (0 — a).

1€ESy
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Before proving Theorem 8.3, let us give an example. Suppose w =
U*D?*U?DU? = UUUDDUUDUUU and A = (2,2,1). Then S, = {4,7,8}
and a, =0, by =3, a7 =1, by =5, ag = 2, bg = 5. We have also seen earlier
that f?2! = 5. Thus

a(w, N) = 5(3 — 0)(5 — 1)(5 — 2) = 180.

Proof of Theorem 8.3. For notational simplicity we will omit the
subscripts from the linear transformations U; and D;. This should cause no
confusion since the subscripts will be uniquely determined by the elements
on which U and D act. For instance, the expression UDUU()\) where A F 4
must mean Uj 1 D;1,U;1U;(\); otherwise it would be undefined since U; and
D; can only act on elements of RY}, and moreover Uj; raises the level by one
while D; lowers it by one.

By (41) we can replace DU in any word y in the letters U and D by
UD + I. This replaces y by a sum of two words, one with one fewer D and
the other with one D moved one space to the right. For instance, replacing
the first DU in UUDUDDU by UD + I yields UUUDDDU +UUDDU. 1If
we begin with the word w and iterate this procedure, replacing a DU in any
word with UD + 1, eventually there will be no U’s to the right of any D’s and
the procedure will come to an end. At this point we will have expressed w
as a linear combination (with integer coefficients) of words of the form U*D’.
Since the operation of replacing DU with UD + I preserves the difference
between the number of U’s and D’s in each word, all the words U?D? which
appear will have 7 — j equal to some constant n (namely, the number of U’s
minus the number of D’s in w). Specifically, say we have

w = Z rij(w)U D7, (42)
i—j=n
where each r;j(w) € Z. (We also define r;;(w) = 0if i <0 or j < 0.) We
claim that the r;;(w)’s are uniquely determined by w. Equivalently [why?],
if we have o
Y dU'D =0 (43)
t—j=n
(as an identity of linear transformations acting on the space RY}, for any k),
where each d;; € Z (or d;j; € R, if you prefer), then each d;; = 0. Let j
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be the least integer for which djiy, j # 0. Let p = j', and apply both sides
of (43) to pu. The left-hand side has exactly one nonzero term, namely, the
term with 5 = j' [why?]. The right-hand side, on the other hand!, is 0, a
contradiction. Thus the r;;(w)’s are unique.

Now apply U on the left to (42). We get

Uw = Z rii(w) U™ D7
.7j

Hence (using uniqueness of the 7;;’s) there follows [why?]

Tij(U’U)) = Ti_l,j(’w). (44)

We next want to apply D on the left to (42). It is easily proved by
induction on i (left as an exercise) that

DU'=U'D+U"". (45)
(We interpret U~! as being 0, so that (45) is true for 7 = 0.) Hence

Dw = Y rij(w)DU'D!
2]
= 3 ry(w)UD + iU D,
2]

from which it follows [why?] that
rig(Dw) = rij—1(w) + (i + D)riga5(w). (46)

Setting j = 0 in (44) and (46) yields
rio(Uw) = ri_10(w)

TZ'()(DUJ) = (Z + 1)’/’1'4_170(’(1)).
Now let (42) operate on @. Since D?(@) = 0 for all j > 0, we get w(Q) =
Tno(w)U™(D). Thus the coefficient of A in w(Q) is given by

A
a(w, /\) = rnO(w)a(Una /\) = TnOf >
!The phrase “the right-hand side, on the other hand” does not mean the left-hand side!
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where as usual A - n. It is easy to see from (47) and (48) that

rno(w) = [ (b5 — ),

JESw

and the proof follows. O

An interesting special case of the previous theorem allows us to evaluate
equation (40).

8.4 Corollary. We have

a(D"U", Q) =Y () =nl

AFn

Proof. When w = D"U" in Theorem 8.3 we have S,, = {n + 1,n +
2,...,2n}, a; =n — i, and b; = n, from which the proof is immediate. O

NOTE (for those familiar with the representation theory of finite groups).
It can be shown that the numbers f*, for A F n, are the degrees of the irre-
ducible representations of the symmetric group S,. Given this, Corollary 8.4
is a special case of the result that the sum of the squares of the degrees of
the irreducible representations of a finite group G is equal to the order |G| of
G. There are many other intimate connections between the representation
theory of §,,, on the one hand, and the combinatorics of Young’s lattice and
Young tableaux, on the other. There is also an elegant combinatorial proof of
Corollary 8.4, known as the Robinson-Schensted correspondence, with many
fascinating properties and with deep connections with representation theory.

We now consider a variation of Theorem 8.3 in which we are not concerned
with the type w of a Hasse walk from @ to w, but only with the number
of steps. For instance, there are three Hasse walks of length three from @
to the partition 1, given by @,1,0,1; ©0,1,2,1; and @,1,11,1. Let 3(¢, \)
denote the number of Hasse walks of length / from @ to A. Note the two
following easy facts:

(F1) B(£,A) = 0 unless £ = |\| (mod 2).
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(F2) B(¢, )) is the coefficient of A in the expansion of (D + U){(Q) as a
linear combination of partitions.

Because of (F2) it is important to write (D + U)*¢ as a linear combination
of terms U’D7, just as in the proof of Theorem 8.3 we wrote a word w in U
and D in this form. Thus define integers b;;(¢) by

(D + U)* Z by (U DI (49)

Just as in the proof of Theorem 8.3, the numbers b;;(¢) exist and are well-
defined.

8.5 Lemma. We have b;jj({) =0 if{—i—j isodd. If{—i—j=2m

then
VAl

- 50
9m 4l j1m! (50)

bij (£) =

Proof. The assertion for £ — i — j odd is equivalent to (F1) above, so
assume ¢ — ¢ — j is even. The proof is by induction on £. It’s easy to check
that (50) holds for £ = 1. Now assume true for some fixed ¢ > 1. Using (49)
we obtain

N byt +)UD = (D +U)H
,J
= (D+U))_by(Q)U'D?
(]

= ) by(O)(DU'D! + U DY),

In the proof of Theorem 8.3 we saw that DU® = U'D + iU""! (see equation
(45)). Hence we get

> by(e+)UDI = Zb,j (U DI + iUt DI + U DY), (51)

ij
As mentioned after (49), the expansion of (D + U)**! in terms of U'D’ is
unique. Hence equating coefficients of U?D? on both sides of (51) yields the
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recurrence
bij(0+1) =bij—1(€) + (¢ + 1)biy1,(£) + b1, (¢). (52)

It is a routine matter to check that the function £!/2™i!j!m! satisfies the same
recurrence (52) as b;;(¢), with the same intial condition by (0) = 1. From this
the proof follows by induction. O

From Lemma 8.5 it is easy to prove the following result.

8.6 Theorem. Letl>n and A+ n, with £ —n even. Then
/

n

B2, N) = ( >(1-3-5---(€—n—1))f’\.

Proof. Apply both sides of (49) to @. Since U*D?(®) = 0 unless j = 0,
we get

(D+D)HQ) = ) b(OU (D)

Zbio(é) DN

At

Since by Lemma 8.5 we have b;q(£) (f)(l +3-5---(l—i—1)) when £ — 1 is

even, the proof follows from (F2). O

NoTE. The proof of Theorem 8.6 only required knowing the value of
bio(¢). However, in Lemma 8.5 we computed b;;(¢) for all j. We could have
carried out the proof so as only to compute b;y(¢), but the general value of
bi;(¢) is so simple that we have included it too.

8.7 Corollary. The total number of Hasse walks in' Y of length 2m
from @ to @ is given by

B(2m, D) =1-3-5---(2m — 1).
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Proof. Simply substitute A = @ (so n = 0) and ¢ = 2m in Theorem 8.6.
O

The fact that we can count various kinds of Hasse walks in Y suggests
that there may be some finite graphs related to Y whose eigenvalues we
can also compute. This is indeed the case, and we will discuss the simplest
case here. Let Y;_;; denote the restriction of Young’s lattice ¥ to ranks
j—1and j. Identify Y;_; ; with its Hasse diagram, regarded as a (bipartite)
graph. Let p(i) = |Y;|, the number of partitions of 7. (The function p(i) has
been extensively studied, beginning with Euler, though we will not discuss
its fascinating properties here.)

8.8 Theorem. The eigenvalues of Y;_1 ; are given as follows: 0 is an
eigenvalue of multiplicity p(j) — p(j — 1); and for 1 < s < j, the numbers
++/s are eigenvalues of multiplicity p(j —s) —p(j —s —1).

Proof. Let A denote the adjacency matrix of Y;_; ;. Since RY;_;; =
RY;_1 ®@RY (vector space direct sum), any vector v € RY;_ ; can be written
uniquely as v = v;_; + v;, where v; € RY;. The matrix A acts on the vector
space RY;_; ; as follows [why?]:

A(v) = D(v) + Ulvj-1). (53)

Just as Theorem 4.7 followed from Lemma 4.6, we deduce from Lemma 8.2
that for any ¢ we have that U; : RY; — RY;,; is one-to-one and D; : RY; —
RY;_; is onto. It follows in particular that

dim(ker(D;)) = dimRY; — dimRY;_,;
= p(i) —p(i 1),

where ker denotes kernel.

Case 1. Let v € ker(D;), so v = vj. Then Av = Dv = 0. Thus ker(D,) is
an eigenspace of A for the eigenvalue 0, so 0 is an eigenvalue of multiplicity

at least p(j) —p(j — 1).
Case 2. Let v € ker(Ds) for some 0 < s < j— 1. Let

v* = 4+4/j — sUTTI 78 (v) + UT (v).
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Note that v* € RYj_ 1, with v} | = £/ —sU’"'"*(v) and vj = U7~*(v).
Using equation (45), we compute

A(w") = U(vj_)+ D(v})
imUJ *(v) + DU (v)
= +/j—sU5(v) + U'*D(v) + (j — s)U? 5"} (v)
= +/j—sU*(w) + (j — s)U " (v)
— i(\/jfs) *

(54)

It’s easy to verify (using the fact that U is one-to-one) that if v(1), ..., v(t)
is a basis for ker(Dj), then v(1)*,...,v(¢)* are linearly independent. Hence
by (54) we have that ++/7 — s is an eigenvalue of A of multiplicity at least
t = dim(ker(D;)) = p(s) — p(s — 1).

We have found a total of
j—1

p(G) = p(G = 1) +2) (p(s) —p(s — 1)) = p(j — 1) + p(4)

s=0

eigenvalues of A. (The factor 2 above arises from the fact that both ++/j — s
and —y/j — s are eigenvalues.) Since the graph Y;_;; has p(j — 1) + p(j)
vertices, we have found all its eigenvalues. O

An elegant combinatorial consequence of Theorem 8.8 is the following.

8.9 Corollary. Fix j > 1. The number of ways to choose a partition A
of j, then delete a square from X\ (keeping it a partition), then insert a square,
then delete a square, etc., for a total of m insertions and m deletions, ending
back at A, is given by

J
> Ip(G =) —pi —s—1)]s™, m>0. (55)

s=1

Proof. Exactly half the closed walks in Y;_;; of length 2m begin at
an element of Y; [why?]. Hence if Y;_; ; has eigenvalues 64,...,0,, then by
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Corollary 1.3 the desired number of walks is given by £(67™ + --- + 62™).
Using the values of 6y,...,0, given by Theorem 8.8 yields (55). O

For instance, when j = 7, equation (55) becomes 4 + 2 - 2™ + 2 - 3™ +

4™+ 5™ 47" When m = 1 we get 30, the number of edges of the graph Y57
[why?].
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THE MATRIX-TREE THEOREM
AND RELATED RESULTS

9 The Matrix-Tree Theorem.

The Matrix-Tree Theorem is a formula for the number of spanning trees of
a graph in terms of the determinant of a certain matrix. We begin with the
necessary graph-theoretical background. Let G be a finite graph, allowing
multiple edges but not loops. (Loops could be allowed, but they turn out to
be completely irrelevant.) We say that G is connected if there exists a walk
between any two vertices of G. A cycle is a closed walk with no repeated
vertices or edges, except for the the first and last vertex. A tree is a connected
graph with no cycles. In particular, a tree cannot have multiple edges, since
a double edge is equivalent to a cycle of length two. The three nonisomorphic
trees with five vertices are given by:

A basic theorem of graph theory (whose easy proof we leave as an exercise)
is the following.

9.1 Proposition. Let G be a graph with p vertices. The following
conditions are equivalent.

(a) G is a tree.
(b) G is connected and has p — 1 edges.
(c) G is has no cycles and has p — 1 edges.

(d) There is a unique path (= walk with no repeated vertices) between any
two wvertices.
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A spanning subgraph of a graph G is a graph H with the same vertex set
as (G, and such that every edge of H is an edge of G. If G has g edges, then the
number of spanning subgraphs of G is equal to 29, since we can choose any
subset of the edges of G to be the set of edges of H. (Note that multiple edges
between the same two vertices are regarded as distinguishable, in accordance
with the definition of a graph in Section 1.) A spanning subgraph which is
a tree is called a spanning tree. Clearly G has a spanning tree if and only if
it is connected [why?]. An important invariant of a graph G is its number of
spanning trees, called the complezity of G and denoted x(G).

9.2 Example. Let G be the graph illustrated below, with edges a, b,
c, d, e.

d

Then G has eight spanning trees, namely, abc, abd, acd, bed, abe, ace, bde, and
cde (where, e.g., abc denotes the spanning subgraph with edge set {a, b, c}).

9.3 Example. Let G = Kj, the complete graph on five vertices. A
simple counting argument shows that K5 has 60 spanning trees isomorphic
to the first tree in the above illustration of all nonisomorphic trees with five
vertices, 60 isomorphic to the second tree, and 5 isomorphic to the third tree.
Hence k(Kj5) = 125. It is even easier to verify that x(K;) = 1, k(Ky) = 1,
k(K3) = 3, and k(K,) = 16. Can the reader make a conjecture about the
value of k(K,) for any p > 17

Our object is to obtain a “determinantal formula” for x(G). For this we
need an important result from matrix theory which is often omitted from a
beginning linear algebra course. (Later (Theorem 10.4) we will prove a more
general determinantal formula without the use of the Binet-Cauchy theorem.
However, the use of the Binet-Cauchy theorem does afford some additional
algebraic insight.) This result, known as the Binet-Cauchy theorem (or some-
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times as the Cauchy-Binet theorem), is a generalization of the familiar fact
that if A and B are n x n matrices, then det(AB) = det(A) det(B) (where
det denotes determinant). We want to extend this formula to the case where
A and B are rectangular matrices whose product is a square matrix (so that
det(AB) is defined). In other words, A will be an m x n matrix and B an
n X m matrix, for some m,n > 1.

We will use the following notation involving submatrices. Suppose A =
(a;;) is an m x n matrix, with 1 <i¢<m, 1 < j <n, and m < n. Given an
m-element subset S of {1,2,...,n}, let A[S] denote the m xm submatrix of A
obtained by taking the columns indexed by the elements of S. In other words,
if the elements of S are given by ji < jo < -+ < jm, then A[S] = (a;j,),
where 1 <7 < m and 1 < k < m. For instance, if

1 2 3 4 5
A= 6 7 8 9 10
11 12 13 14 15

and S = {2, 3,5}, then

2 3 5
AlS]=1| 7 8 10
12 13 15

Similarly, let B = (b;;) be an n x m matrix with 1 <i <n, 1 <j <m and
m < n. Let S be an m-element subset of {1,2,...,n} as above. Then B[S]
denotes the m x m matrix obtained by taking the rows of B indexed by S.
Note that A*[S] = A[S]*, where * denotes transpose.

9.4 Theorem. (the Binet-Cauchy Theorem) Let A = (a;;) be an m xn
matriz, with 1 <i<m and1 < j <n. Let B = (b;;) be an n x m matric
with1 <i<nand1<j<m. (Thus AB is an m x m matriz.) If m > n,
then det(AB) = 0. If m < n, then

det(AB) =) _(det A[S])(det B[S]),

where S ranges over all m-element subsets of {1,2,...,n}.
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Before proceeding to the proof, let us give an example. We write |a;;| for
the determinant of the matrix (a;;). Suppose

c di

A=yl b=la |,
by by by |’
1 2 3 [ 3 d3 J
Then
a1 ag (&1 d1 a; as C1 d1 o as Co dg
det(AB) a b1 b2 Co dg b1 b3 C3 d3 bg b3 C3 d3 ’

Proof of Theorem 9.4 (sketch). First suppose m > n. Since from
linear algebra we know that rank(AB) < rank(A) and that the rank of an
m X n matrix cannot exceed n (or m), we have that rank(AB) < n < m.
But AB is an m X m matrix, so det(AB) = 0, as claimed.

Now assume m < n. We use notation such as M, to denote an » X s
matrix M. It is an immediate consequence of the definition of matrix multi-
plication (which the reader should check) that

[Rmm Smn} [an Wmm}_[RV-I—SX RW + SY

Tom  Unn Xon Yom TV +UX TW +UY |- (56)

In other words, we can multiply “block” matrices of suitable dimensions as
if their entries were numbers. Note that the entries of the right-hand side
of (56) all have well-defined dimensions (sizes), e.g., RV + SX is an m x n
matrix since both RV and SX are m X n matrices.

Now in equation (56) let R = I, (the m x m identity matrix), S = A,

T = Opm (the n X m matrix of 0’s), U = I,, V = A, W = Opym, X = —1,
and Y = B. We get
I, A A Omm | _ | Omn AB
| R e B

Take the determinant of both sides of (57). The first matrix on the left-hand
side is an upper triangular matrix with 1’s on the main diagonal. Hence its
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determinant is one. Since the determinant of a product of square matrices is
the product of the determinants of the factors, we get

‘ A Opm (58)

I, B I, B

_‘Omn AB‘

It is easy to see [why?] that the determinant on the right-hand side of
(58) is equal to + det(AB). So consider the left-hand side. A nonzero term in
the expansion of the determinant on the left-hand side is obtained by taking
the product (with a certain sign) of m + n nonzero entries, no two in the
same row and column (so one in each row and each column). In particular,
we must choose m entries from the last m columns. These entries belong to
m of the bottom n rows [why?], say rows m + s1,m + S, ..., m + Sp,. Let
S ={s1,89,.-.,8m} € {1,2,...,n}. We must choose n — m further entries
from the last n rows, and we have no choice but to choose the —1’s in those
rows m-+1 for which 2 € S. Thus every term in the expansion of the left-hand
side of (58) uses exactly n — m of the —1’s in the bottom left block —1,.

What is the contribution to the expansion of the left-hand side of (58)
from those terms which use exactly the —1’s from rows m + i where 7 & S?
We obtain this contribution by deleting all rows and columns to which these
—1’s belong (in other words, delete row m + ¢ and column ¢ whenever i €
{1,2,...,n} — 5), taking the determinant of the 2m x 2m matrix Mg that
remains, and multiplying by an appropriate sign [why?]. But the matrix Mg
is in block-diagonal form, with the first block just the matrix A[S] and the
second block just B[S]. Hence det Mg = (det A[S])(det B[S]) [why?]. Taking
all possible subsets S gives

det AB= ) £(det A[S])(det B[S]).
SC{1,2,.., n}
|S|=m
It is straightforward but somewhat tedious to verify that all the signs are +;
we omit the details. This completes the proof. O

In Section 1 we defined the adjacency matrix A(G) of a graph G with
vertex set V = {vy,...,v,} and edge set £ = {ey,...,e,}. We now define
two related matrices. Assume for simplicity that G has no loops. (This
assumption is harmless since loops have no effect on k(G).)
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9.5 Definition. Let GG be as above. Give GG an orientation o, i.e, for
every edge e with vertices u, v, choose one of the ordered pairs (u, v) or (v, u).
(If we choose (u,v), say, then we think of putting an arrow on e pointing from
u to v; and we say that e is directed from u to v, that u is the initial vertex
and v the final vertez of e, etc.)

(a) The incidence matriz M(G) of G (with respect to the orientation o)
is the p X ¢ matrix whose (¢, j)-entry M,; is given by

1,  if the edge e; has initial vertex v;
M;; = ¢ —1, if the edge ¢; has final vertex v;
0, otherwise.

(b) The laplacian matriz L(G) of G is the p X p matrix whose (i, j)-entry
L;; is given by

L. — 1 —maj if 7 # j and there are m;; edges between v; and v;
Y deg(vz) if i =7,

where deg(v;) is the number of edges incident to v;. (Thus L(G) is symmetric
and does not depend on the orientation o.)

Note that every column of M(G) contains one 1, one —1, and ¢ — 2 0’s;
and hence the sum of the entries in each column is 0. Thus all the rows sum to
the 0 vector, a linear dependence relation which shows that rank(M(G)) < p.
Two further properties of M(G) and L(G) are given by the following lemma.

9.6 Lemma. (a) We have MM' = L.

(b) If G is regular of degree d, then L(G) = dI — A(G), where A(G)
denotes the adjacency matriz of G. Hence if G (or A(G)) has eigenvalues
M, ..., Ap, then L(G) has eigenvalues d — Ay, ...,d — ).

Proof. (a) Thisis immediate from the definition of matrix multiplication.
Specifically, for v;,v; € V(G) we have

(MM');; = > MMy,

e, €E(G)
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If 7 # j, then in order for M;;M;; # 0, we must have that the edge e
connects the vertices v; and v;. If this is the case, then one of M, and My

will be 1 and the other —1 [why?], so their product is always —1. Hence
(MM?);; = —m,j, as claimed.

There remains the case ¢ = j. Then M;;M;, will be 1 if e, is an edge
with v; as one of its vertices and will be 0 otherwise [why?]. So now we get
(MM);; = deg(v;), as claimed. This proves (a).

(b) Clear by (a), since the diagonal elements of MM are all equal to d.
O

Now assume that G is connected, and let My(G) be M(G) with its last
row removed. Thus My(G) has p — 1 rows and g columns. Note that the
number of rows is equal to the number of edges in a spanning tree of G. We
call My(G) the reduced incidence matriz of G. The next result tells us the
determinants (up to sign) of all (p —1) x (p — 1) submatrices N of My. Such
submatrices are obtained by choosing a set S of p — 1 edges of G, and taking
all columns of M, indexed by the edges in S. Thus this submatrix is just

M,[S].

9.7 Lemma. Let S be a set of p—1 edges of G. If S does not form the
set of edges of a spanning tree, then det My[S] = 0. If, on the other hand, S
is the set of edges of a spanning tree of G, then det My[S] = £1.

Proof. If S is not the set of edges of a spanning tree, then some subset
R of S forms the edges of a cycle C in G. Consider the submatrix My[R]
of M[S] obtained by taking the columns indexed by edges in R. Suppose
that the cycle C defined by R has edges fi,..., fs in that order. Multiply
the column of M[R] indexed by f; by 1 if in going around C' we traverse
f; in the direction of its arrow; otherwise multiply the column by —1. These
column multiplications will multiply the determinant of My[R] by £1. It is
easy to see (check a few small examples to convince yourself) that every row
of this modified M[R] has the sum of its elements equal to 0. Hence the
sum of all the columns is 0. Thus in M[S] we have a set of columns for
which a linear combination with coefficients +1 is 0 (the column vector of all
0’s). Hence the columns of M [S] are linearly dependent, so det M[S] = 0,
as claimed.
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Now suppose that S is the set of edges of a spanning tree 7. Let e be an
edge of T which is connected to v, (the vertex which indexed the bottom row
of M, i.e., the row removed to get My). The column of M[S] indexed by e
contains exactly one nonzero entry [why?], which is £1. Remove from M|S]
the row and column containing the nonzero entry of column e, obtaining a
(p—2) x (p—2) matrix M. Note that det(M[S]) = £ det(My) [why?]. Let
T’ be the tree obtained from 7T by contracting the edge e to a single vertex
(so that v, and the remaining vertex of e are merged into a single vertex u).
Then M is just the matrix obtained from the incidence matrix M(7") by
removing the row indexed by u [why?]. Hence by induction on the number
p of vertices (the case p = 1 being trivial), we have det(M|) = +1. Thus
det(M,[S]) = £1, and the proof follows. O

We have now assembled all the ingredients for the main result of this
section (due originally to Borchardt). Recall that x(G) denotes the number
of spanning trees of G.

9.8 Theorem. (the Matrix-Tree Theorem) Let G be a finite connected
graph without loops, with laplacian matriz L = L(G). Let Ly denote L with
the last row and column removed (or with the ith row and column removed

for any i). Then
det(Ly) = k(G).

Proof. Since L = MM!' (Lemma 9.6(a)), it follows immediately that Ly =
MM} Hence by the Binet-Cauchy theorem (Theorem 9.4), we have

det(Lo) =) _(det Mo[S])(det M[S]), (59)

where S ranges over all (p—1)-element subsets of {1,2..., ¢} (or equivalently,
over all (p — 1)-element subsets of the set of edges of GG). Since in general
AY[S] = A[S]', equation (59) becomes

det(Lo) = ) _(det Mo[S])>. (60)

According to Lemma 9.7, det(M[S]) is +1 if S forms the set of edges of a
spanning tree of G, and is 0 otherwise. Therefore the term indexed by S in
the sum on the right-hand side of (60) is 1 if S forms the set of edges of a
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spanning tree of G, and is 0 otherwise. Hence the sum is equal to k(G), as
desired. O

The operation of removing a row and column from L(G) may seem some-
what contrived. We would prefer a description of x(G) directly in terms of
L(G). Such a description will follow from the next lemma.

9.9 Lemma. Let M be a px p matriz (with entries in a field) such that
the sum of the entries in every row and column is 0. Let My be the matrix
obtained from M by removing the last row and last column (or more generally,
any row and any column). Then the coefficient of = in the characteristic
polynomial det(M — xI) of M is equal to —p - det(My). (Moreover, the
constant term of det(M — zI) is 0.)

Proof. The constant term of det(M — zI) is det(M), which is 0 since
the rows of M sum to 0.

For simplicity we prove the rest of the lemma only for removing the last
row and column, though the proof works just as well for any row and column.
Add all the rows of M — I except the last row to the last row. This doesn’t
effect the determinant, and will change the entries of the last row all to —z
(since the rows of M sum to 0). Factor out —z from the last row, yielding a
matrix N (z) satisfying det(M —xI) = —z det(N(x)). Hence the coefficient of
z in det(M — zI) is given by — det(/N(0)). Now add all the columns of N(0)
except the last column to the last column. This does not effect det(N(0)).
Because the columns of M sum to 0, the last column of N(0) becomes the
column vector [0, 0, ..., 0,p]". Expanding the determinant by the last column
shows that det(N(0)) = p - det(My), and the proof follows. O

9.10 Corollary. (a) Let G be a connected (loopless) graph with p
vertices. Suppose that the eigenvalues of L(G) are p, . .., fip—1, bp, With p, =

0. Then
1

K(G) = 5#1#2 C Hp-1-

(b) Suppose that G is also regular of degree d, and that the eigenvalues of
A(G) are \y,..., p_1,Ap, with N\, = d. Then

K(G) = —(d = A)(d = Ag) -~ (d = Ap-1)-

1
p
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Proof. (a) We have

det(L —zl) = (1 — ) (p-1— 2)(1p — 2)
= —(m—2)(p2 — ) (p—1 — 2)2.

Hence the coefficient of x is —p1 g - - - pp—1. By Lemma 9.9, we get —pipio - -+ pp—1 =
p - det(Lg). By Theorem 9.8 we have det(Lj) = x(G), and the proof follows.

(b) Immediate from (a) and Lemma 9.6(b). O
Let us look at a couple of examples of the use of the Matrix-Tree Theorem.

9.11 Example. Let G = K, the complete graph on p vertices. Now
K, is regular of degree d = p — 1, and by Proposition 1.5 its eigenvalues are
—1 (p — 1 times) and p — 1 = d. Hence from Corollary 8.10(b) there follows

K(I) = (= 1) = (<)y =

This surprising result is often attributed to Cayley, who stated it without
proof in 1889 (and even cited Borchardt explicitly). However, it was in fact
stated by Sylvester in 1857, while a proof was published by Borchardt in
1860. It is clear that Cayley and Sylvester could have produced a proof
if asked to do so. There are many other proofs known, including elegant
combinatorial arguments due to Priifer, Joyal, and others.

9.12 Example. Let G = C,,, the n-cube discussed in Section 2. Now
C, is regular of degree n, and by Corollary 2.5 its eigenvalues are n — 27 with
multiplicity (7) for 0 < i < n. Hence from Corollary 8.10(b) there follows
the amazing result

n

K(Cr) = %H(?i)m

n
— 22"—77,—1 HZ(T:)
i=1

To my knowledge a direct combinatorial proof is not known.
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10 Eulerian digraphs and oriented trees.

A famous problem which goes back to Euler asks for what graphs G is there
a closed walk which uses every edge exactly once. (There is also a version for
non-closed walks.) Such a walk is called an Eulerian tour (also known as an
FEulerian cycle). A graph which has an Eulerian tour is called an Eulerian
graph. Euler’s famous theorem (the first real theorem of graph theory) states
that G is Eulerian if and only if it is connected and every vertex has even
degree. Here we will be concerned with the analogous theorem for directed
graphs. We want to know not just whether an Eulerian tour exists, but
how many there are. We will prove an elegant determinantal formula for
this number closely related to the Matrix-Tree Theorem. For the case of
undirected graphs no analogous formula is known, explaining why we consider
only the directed case.

A (finite) directed graph or digraph D consists of a wverter set V =
{v1,...,v,} and edge set E = {ey, ..., €.}, together with a function ¢ : £ —
V' x V (the set of ordered pairs (u,v) of elements of V). If p(e) = (u,v),
then we think of e as an arrow from u to v. We then call u the initial ver-
tex and v the final verter of e. (These concepts arose in the definition of
an orientation in Definition 8.5.) A tour in D is a sequence ey, es, . .., e, of
distinct edges such that the final vertex of e; is the initial vertex of e;,; for
all 1 < ¢ < r—1, and the final vertex of e, is the initial vertex of e;. A
tour is Fulerian if every edge of D occurs at least once (and hence exactly
once). A digraph which has no isolated vertices and contains an Eulerian
tour is called an Eulerian digraph. Clearly an Eulerian digraph is connected.
The outdegree of a vertex v, denoted outdeg(v), is the number of edges of
G with initial vertex v. Similarly the indegree of v, denoted indeg(v), is the
number of edges of D with final vertex v. A loop (edge of the form (v,v))
contributes one to both the indegree and outdegree. A digraph is balanced if
indeg(v) = outdeg(v) for all vertices v.

10.1 Theorem. A digraph D is Eulerian if and only if it is connected
and balanced.

Proof. Assume D is Eulerian, and let e;,...,e;, be an Eulerian tour.
As we move along the tour, whenever we enter a vertex v we must exit it,
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except at the very end we enter the final vertex v of e, without exiting it.
However, at the beginning we exited v without having entered it. Hence
every vertex is entered as often as it is exited and so must have the same
outdegree as indegree. Therefore D is balanced, and as noted above D is
clearly connected.

Now assume that D is balanced and connected. We may assume that D
has at least one edge. We first claim that for any edge e of D, D has a tour
for which e = e;. If e; is a loop we are done. Otherwise we have entered
the vertex fin(e;) for the first time, so since D is balanced there is some exit
edge ey. Either fin(ey) = init(e;) and we are done, or else we have entered
the vertex fin(ey) once more than we have exited it. Since D is balanced
there is new edge es with fin(ey) = init(e3). Continuing in this way, either
we complete a tour or else we have entered the current vertex once more than
we have exited it, in which case we can exit along a new edge. Since D has
finitely many edges, eventually we must complete a tour. Thus D does have
a tour which uses e;.

Now let e1,...,e. be a tour C of maximum length. We must show that
r = ¢, the number of edges of D. Assume to the contrary that » < ¢. Since in
moving along C' every vertex is entered as often as it is exited (with init(e;)
exited at the beginning and entered at the end), when we remove the edges
of C' from D we obtain a digraph H which is still balanced, though it need
not be connected. However, since D is connected, at least one connected
component H; of H contains at least one edge and has a vertex v in common
with C' [why?]. Since H; is balanced, there is an edge e of H; with initial
vertex v. The argument of the previous paragraph shows that H; has a tour
C' of positive length beginning with the edge e. But then when moving along
C', when we reach v we can take the “detour” C’ before continuing with C.
This gives a tour of length longer than r, a contradiction. Hence r = ¢, and
the theorem is proved. O

Our primary goal is to count the number of Eulerian tours of a connected
balanced digraph. A key concept in doing so is that of an oriented tree.
An oriented tree with root v is a (finite) digraph 7" with v as one of its
vertices, such that there is a unique directed path from any vertex u to v.
In other words, there is a unique sequence of edges ey, ..., e, such that (a)
init(e;) = u, (b) fin(e,) = v, and (c) fin(e;) = init(e;5 1) for 1 <7 < r — 1.
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It’s easy to see that this means that the underlying undirected graph (i.e.,
“erase” all the arrows from the edges of T') is a tree, and that all arrows
in T" “point toward” v. There is a surprising connection between Eulerian
tours and oriented trees, given by the next result (due to de Bruijn and van
Aardenne-Ehrenfest). This result is sometimes called the BEST Theorem,
after de Bruijn, van Aardenne-Ehrenfest, Smith, and Tutte. However, Smith
and Tutte were not involved in the original discovery.

10.2 Theorem. Let D be a connected balanced digraph with vertexr set
V. Fiz an edge e of D, and let v = init(e). Let 7(D,v) denote the number
of oriented (spanning) subtrees of D with root v, and let €(D,e) denote the
number of Eulerian tours of D starting with the edge e. Then

e(D,e) = 7(D,v) | [ (outdeg(u) — 1)". (61)
ueV
Proof. Let e = e, ¢€9,...,¢, be an Eulerian tour £ in D. For each vertex

u # v, let e(u) be the “last exit” from w in the tour, i.e., let e(u) = e; where
init(e(v)) = v and init(ex) # u for any k > j.

Claim #1. The vertices of D, together with the edges e(u) for all vertices
u # v, form an oriented subtree of D with root v.

Proof of Claim #1. This is a straightforward verification. Let 7" be the
spanning subgraph of D with edges e(u), u # v. Thus if |V| = p, then T has
p vertices and p — 1 edges [why?]. There are three items to check to insure
that 7" is an oriented tree with root v:

(a) T does not have two edges f and f' satisfying init(f) = init(f’). This
is clear since both f and f’ can’t be last exits from the same vertex.

(b) T does not have an edge f with init(f) = v. This is clear since by
definition the edges of T consist only of last exits from vertices other
than v, so no edge of T can exit from v.

(c) T does not have a (directed) cycle C. For suppose C' were such a cycle.
Let f be that edge of C which occurs after all the other edges of C' in
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the Eulerian tour F. Let f’ be the edge of C satisfying fin(f) = init(f’)
(= u, say). We can’t have u = v by (b). Thus when we enter u via
f, we must exit u. We can’t exit u via f’' since f occurs after f' in FE.
Hence f’ is not the last exit from u, contradicting the definition of 7.

It’s easy to see that conditions (a)—(c) imply that 7 is an oriented tree with
root v, proving the claim.

Claim #2. We claim that the following converse to Claim #1 is true.
Given a connected balanced digraph D and a vertex v, let T' be an oriented
(spanning) subtree of D with root v. Then we can construct an Eulerian tour
E as follows. Choose an edge e; with init(e;) = v. Then continue to choose
any edge possible to continue the tour, except we never choose an edge f
of FE unless we have to, i.e., unless it’s the only remaining edge exiting the
vertex at which we stand. Then we never get stuck until all edges are used,
so we have constructed an Eulerian tour E. Moreover, the set of last exits
of E from vertices u # v of D coincides with the set of edges of the oriented
tree 7.

Proof of Claim #2. Since D is balanced, the only way to get stuck is to
end up at v with no further exits available, but with an edge still unused.
Suppose this is the case. At least one unused edge must be a last exit edge,
i.e., an edge of T' [why?]. Let u be a vertex of T closest to v in T such that
the unique edge f of T with init(f) = w is not in the tour. Let y = fin(f).
Suppose y # v. Since we enter y as often as we leave it, we don’t use the
last exit from y. Thus y = v. But then we can leave v, a contradiction. This
proves Claim #2.

We have shown that every Eulerian tour E beginning with the edge e
has associated with it a “last exit” oriented subtree T = T(F) with root
v = init(e). Conversely, given an oriented subtree T" with root v, we can
obtain all Eulerian tours E beginning with e and satisfying 7" = T(FE) by
choosing for each vertex u # v the order in which the edges from u, except
the edge of T', appear in E; as well as choosing the order in which all the
edges from v except for e appear in E. Thus for each vertex u we have
(outdeg(u) — 1)! choices, so for each 7" we have [[,(outdeg(u) — 1)! choices.
Since there are 7(G, v) choices for T', the proof is complete. O
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10.3 Corollary. Let D be a connected balanced digraph, and let v be
a vertex of D. Then the number (D, v) of oriented subtrees with root v is
independent of v.

Proof. Let e be an edge with initial vertex v. By equation (61), we
need to show that the number ¢(G,e) of Eulerian tours beginning with
e is independent of e. But ejey---e, is an Eulerian tour if and only if
€i€it1- - €q€1€g - - - €;_1 is also an Eulerian tour, and the proof follows [why?].
|

What we obviously need to do next is find a formula for 7(G,v). Such a
formula is due to W. Tutte in 1948. This result is very similar to the Matrix-
Tree Theorem, and indeed we will show (Example 10.6) that the Matrix-Tree
Theorem is a simple corollary to Theorem 10.4.

10.4 Theorem. Let D be a loopless connected digraph with vertexr set
V =A{vi,...,vp}. Let L(D) be the p X p matriz defined by

—m;j, if 1 # j and there are m;; edges with
L = inatial vertex v; and final vertex v;
outdeg(v;), ifi=7j.

(Thus L is the directed analogue of the laplacian matriz of an undirected
graph.) Let Ly denote L with the last row and column deleted. Then

det Ly = 7(D, vp). (62)

NoOTE. If we remove the ith row and column from L instead of the last row
and column, then equation (62) still holds with v, replaced with v;.

Proof (sketch). Induction on g, the number of edges of D. The fewest
number of edges which D can have is p — 1 (since D is connected). Suppose
then that D has p — 1 edges, so that as an undirected graph D is a tree. If
D is not an oriented tree with root v,, then some vertex v; # v, of D has
outdegree 0 [why?]. Then Ly has a zero row, so detLy = 0 = 7(D,vp). If
on the other hand D is an oriented tree with root v,, then an argument like
that used to prove Lemma 9.7 (in the case when S is the set of edges of a
spanning tree) shows that det Lo =1 = 7(D, v,).
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Now assume that D has ¢ > p — 1 edges, and assume the theorem for
digraphs with at most ¢ — 1 edges. We may assume that no edge f of D
has initial vertex v, since such an edge belongs to no oriented tree with root
v and also makes no contribution to Lg. It then follows, since D has at
least p edges, that there exists a vertex u # v of D of outdegree at least
two. Let e be an edge with init(e) = u. Let D; be D with the edge e
removed. Let Dy be D with all edges €’ removed such that init(e) = init(e’)
and e’ # e. (Note that D, is strictly smaller than D since outdeg(u) > 2.)
By induction, we have det Lo(D;) = 7(Dy,v,) and det Lo(D2) = 7(D2, v,).
Clearly 7(D,v,) = 7(D1,vp) + 7(D2,v,), since in an oriented tree 7" with
root vy, there is exactly one edge whose initial vertex coincides with that of
e. On the other hand, it follows immediately from the multilinearity of the
determinant [why?] that

det L()(D) = det Lo(Dl) + det LO (Dz)

From this the proof follows by induction. O

10.5 Corollary. Let D be a connected balanced digraph with vertex
set V.= {v1,...,v,}. Let e be an edge of D. Then the number e(D,e) of
FEulerian tours of D with first edge e is given by

e(D,e) = (det Ly(D)) [ [ (outdeg(u) — 1)!.

uev

Equivalently (using Lemma 9.9), if L(D) has eigenvalues .y, . . ., fi, with p, =
0, then

1
€(D,e) = —pq -+ flp1 H(outdeg(u) — 1)L
p ueV

Proof. Combine Theorems 10.2 and 10.4. O

10.6 Example. (the Matrix-Tree Theorem revisited) Let G be a con-
nected loopless undirected graph. Let G be the digraph obtained from G by
replacing each edge e = uv of G with a pair of directed edges u — v and
v — u. Clearly G is balanced and connected. Choose a vertex v of G. There
is an obvious one-to-one correspondence between spanning trees 7" of G and
oriented spanning trees T of G with root v, namely, direct each edge of T
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toward v. Moreover, L(G) = L(G) [why?]. Hence the Matrix-Tree Theorem
is an immediate consequence of the Theorem 10.4.

10.7 Example. (the efficient mail carrier) A mail carrier’ has an
itinerary of city blocks to which he (or she) must deliver mail. He wants to
accomplish this by walking along each block twice, once in each direction,
thus passing along houses on each side of the street. The blocks form the
edges of a graph G, whose vertices are the intersections. The mail carrier
wants simply to walk along an Eulerian tour in the digraph G of the previous
example. Making the plausible assumption that the graph is connected, not
only does an Eulerian tour always exist, but we can tell the mail carrier how
many there are. Thus he will know how many different routes he can take to
avoid boredom. For instance, suppose G is the 3 x 3 grid illustrated below.

This graph has 128 spanning trees. Hence the number of mail carrier
routes beginning with a fixed edge (in a given direction) is 128 - 11*2!3! =
12288. The total number of routes is thus 12288 times twice the number of
edges [why?], viz., 12288 x 24 = 294912. Assuming the mail carrier delivered
mail 250 days a year, it would be 1179 years before he would have to repeat
a route!

10.8 Example. (binary de Bruijn sequences) A binary sequence is
just a sequence of 0’s and 1’s. A binary de Bruijn sequence of degree n is a
binary sequence A = ajas - - - ag» such that every binary sequence by - - - b, of
length n occurs exactly once as a “circular factor” of A, i.e., as a sequence
@11 *** Giyn—1, Where the subscripts are taken modulo n if necessary. For
instance, some circular factors of the sequence abcdefg are a, bede, fgab,
and defga. Note that there are exactly 2" binary sequences of length n,
so the only possible length of a binary de Bruijn sequence of degree n is 2"
[why?]. Clearly any cyclic shift a;a;,1 - - - agnajas - - - a;_1 of a binary de Bruijn
sequence a;as - - - Gon 1S also a binary de Bruijn sequence, and we call two such

2postperson?
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sequences equivalent. This relation of equivalence is obviously an equivalence
relation, and every equivalence class contains exactly one sequence beginning
with n 0’s [why?]. Up to equivalence, there is one binary de Bruijn sequence
of degree two, namely, 0011. It’s easy to check that there are two inequivalent
binary de Bruijn sequences of degree three, namely, 00010111 and 00011101.
However, it’s not clear at this point whether binary de Bruijn sequences exist
for all n. By a clever application of Theorems 10.2 and 10.4, we will not only
show that such sequences exist for all positive integers n, but we will also
count the number of them. It turns out that there are lots of them. For
instance, the number of inequivalent binary de Bruijn sequences of degree
eight is equal to

1329227995784915872903807060280344576.

The reader with some extra time on his or her hands is invited to write down
these sequences. De Bruijn sequences are named after Nicolaas Govert de
Bruijn, who published his work on this subject in 1946. However, it was
discovered in 1975 that de Bruijn sequences had been earlier created and
enumerated by C. Flye Sainte-Marie in 1894. De Bruijn sequences have a
number of interesting applications to the design of switching networks and
related topics.

Our method of enumerating binary de Bruijn sequence will be to set up a
correspondence between them and Eulerian tours in a certain directed graph
D,,, the de Bruijn graph of degree n. The graph D, has 2" ! vertices, which
we will take to consist of the 2"! binary sequences of length n — 1. A
pair (ayag - - - ap—1,b1by - - - b,—1) of vertices forms an edge of D,, if and only if
203 -+ Gp—1 = b1bg - - - by_o, i.e., € is an edge if the last n — 2 terms of init(e)
agree with the first n — 2 terms of fin(e). Thus every vertex has indegree two
and outdegree two [why?], so D, is balanced. The number of edges of D, is
2™. Moreover, it’s easy to see that D,, is connected (see Lemma 10.9). The
graphs D3 and D, look as follows:
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Suppose that F = ejey - - - e9n is an Eulerian tour in D,,. If fin(e;) is the
binary sequence a; a2 - - - @, ,—1, then replace e; in E' by the last bit a;,—;. It
is easy to see that the resulting sequence S(E) = a1,_102—1 - Qon n—1 IS &
binary de Bruijn sequence, and conversely every binary de Bruijn sequence
arises in this way. In particular, since D, is balanced and connected there
exists at least one binary de Bruijn sequence. In order to count the total
number of such sequences, we need to compute det L(D,). One way to
do this is by a clever but messy sequence of elementary row and column
operations which transforms the determinant into triangular form. We will
give instead an elegant computation of the eigenvalues of L(D,) based on
the following simple lemma.

10.9 Lemma. Let u and v be any two vertices of D,,. Then there is a
unique (directed) walk from u to v of length n — 1.

Proof. Suppose v = aqas---a,_1 and v = b1by - - - b,_1. Then the unique
path of length n — 1 from v to v has vertices

a1az - - Qp—1,0203 - 'an—lbla asayq - - 'an—lblb27 R Ap—1b1 - - 'bn—Qa bibg---byp_q.

10.10 Theorem.  The eigenvalues of L(D,,) are 0 (with multiplicity
one) and 2 (with multiplicity 2" — 1).
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Proof. Let A(D,) denote the directed adjacency matrix of D,, i.e., the
rows and columns are indexed by the vertices, with

A - 1, if (u,v) is an edge
“ 1 0, otherwise.

Now Lemma 10.9 is equivalent to the assertion that A"~! = J, the 2"~ ! x 27!
matrix of all 1’s [why?]. If the eigenvalues of A are Aj,...Agn-1, then the
eigenvalues of J = A" ' are A7, ..., )\;‘;_11. By Lemma 1.4, the eigenvalues
of J are 2"~! (once) and 0 (27! — 1 times). Hence the eigenvalues of A are
2¢ (once, where ¢ is an (n — 1)-st root of unity to be determined), and 0
(271 —1 times). Since the trace of A is 2, it follows that ( = 1, and we have
found all the eigenvalues of A.

Now L(D,) = 2I — A(D,,) [why?]. Hence the eigenvalues of L are 2 —
A, ...,2 — Agn-1, and the proof follows from the above determination of
Al,...,AQn—l. I:I

10.11 Corollary. The number By(n) of binary de Bruijn sequences of
degree n beginning with n 0’s is equal to 22"~ '~™. The total number B(n) of
binary de Bruijn sequences of degree n is equal to 22"

Proof. By the above discussion, By(n) is the number of Eulerian tours
in D,, whose first edge the loop at vertex 00---0. Moreover, the outdegree
of every vertex of D, is two. Hence by Corollary 10.5 and Theorem 10.10 we

have
1

BO (n) = on—1

Finally, B(n) is obtained from By(n) by multiplying by the number 2" of
edges, and the proof follows. O

92" 1=1 _ 92""1-n

Note that the total number of binary sequences of length 2" is N = 22",
By the previous corollary, the number of these which are de Bruijn sequences
is just v/N. This suggests the following unsolved problem. Let A, be the set
of all binary sequences of length 2". Let B,, be the set of binary de Bruijn
sequences of degree n. Find an explicit bijection ¢ : B, x B, — A,, thereby
giving a combinatorial proof of Corollary 10.11.

104



11 Cycles, bonds, and electrical networks.

NoTE. This section is in a preliminary form.

11.1 The cycle space and bond space.

In this section we will deal with some interesting linear algebra related to
the structure of a directed graph. Let D = (V| E) be a digraph. A function
f i+ E — Ris called a circulation if for every vertex v € V', we have

Y fleo= > fle. (63)

ecE ecE
init(e)=v fin(e)=v

Thus if we think of the edges as pipes and f as measuring the flow (quantity
per unit of time) of some commodity (such as oil) through the pipe in the
specified direction (so that a negative value of f(e) means a flow of |f(e)| in
the direction opposite the direction of ), then equation (63) simply says that
the amount flowing into each vertex equals the amount flowing out. In other
words, the flow is conservative. The figure below illustrates a circulation in
a digraph D.

Let C = Cp denote the set of all circulations on D. Clearly if f,g € C
and «, 5 € R then af 4+ Sg € C. Hence C is a (real) vector space, called the
cycle space of D. Thus if ¢ = |E|, then Cp is a subspace of the g-dimensional
vector space R¥ of all functions f : E — R.

What do circulations have do with something “circulating,” and what

does the cycle space have to do with actual cycles? To see this, define a
circuit or elementary cycle in D to be a set of edges of a closed walk, ignoring
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the direction of the arrows, with no repeated vertices except the first and
last. Suppose that C' has been assigned an orientation (direction of travel)
0. (Note that this meaning of orientation is not the same as that appearing
in Definition 9.5.)

O

Define a function fc : E — R (which also depends on the orientation o,
though we suppress it from the notation) by

—_

, if e € C and e agrees with o
fc(e) = ¢ =1, ife € C and e is opposite to o
0, otherwise.

It is easy to see that fg is a circulation. Later we will see that the circu-
lations fc span the cycle space C, explaining the terminology “circulation”
and “cycle space.” The figure below shows a circuit C' with an orientation o,
and the corresponding circulation f¢.

Given a function p : V' — R, define a new function dp : F — R, called
the coboundary® by

dp(e) = p(v) — p(u), if u = init(e) and v = fin(e).

3The term “coboundary” arises from algebraic topology, but we will not explain the
connection here.
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Figure 1: A function and its coboundary

Figure 1 shows a digraph D with the value p(v) of some function p: V' — R
indicated at each vertex v, and the corresponding values dp(e) shown at each
edge e.

One should regard ¢ as an operator which takes an element p of the vector
space RV of all functions V' — R and produces an element of the vector space
RE of all functions £ — R. It is immediate from the definition of § that ¢ is
linear, i.e.,

6(ap+ Bq) = a-dp+ B dq,

for all p,g € RV and o, 3 € R. Thus § is simply a linear transformation
§: RV — RP between two finite-dimensional vector spaces.

A function g : E — R is called a potential difference on D if g = ép for
some p : V — R. (Later we will see the connection with electrical networks
that accounts for the terminology “potential difference.”) Let B = B be the
set of all potential differences on D. Thus B is just the image of the linear

transformation 6 and is hence a real vector space, called the bond space of
D.

Let us explain the reason behind the terminology “bond space.” A bond in
a digraph D is a set B of edges such that (a) removing B from D disconnects
some (undirected) component of D (that is, removing B creates a digraph
which has more connected components, as an undirected graph, than D), and
(b) no proper subset of B has this property. A subset of edges satisfying (a)
is called a cutset, so a bond is just a minimal cutset. Suppose, for example,
that D is given as follows (with no arrows drawn since they are irrelevant to
the definition of bond):
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a

Then the bonds are the six subsets ab, de, acd, bece, ace, bed.

Let B be a bond. Suppose B disconnects the component (V’, E') into two
pieces (a bond always disconnects some component into exactly two pieces
[why?]) with vertex set S in one piece and S in the other. Thus SUS = V'
and SN S = @. Define

[S,S] = {e € E : exactly one vertex of e lies in S and one lies in S}.

Clearly B = [S,S]. It is often convenient to use the notation [S,S] for a
bond.

Given a bond B =[S, S] of D, define a function g : E — R by
1, if init(e) € S, fin(e) € S
gp(e) =< —1, ifinit(e) € S, fin(e) € S

0, otherwise.

Note that gg really depends not just on B, but on whether we write B as
[S, 5] or [S,S]. Writing B in the reverse way simply changes the sign of gp.
Whenever we deal with gz we will assume that some choice B = [S, S] has
been made.

Now note that gg = dp, where
(v) = 1, ifves
PW= 0, ifves.

Hence gg € B, the bond space of D. We will later see that B is in fact
spanned by the functions gp, explaining the termininology “bond space.”

11.1 Example. In the digraph below, open (white) vertices indicate an
element of S and closed (black) vertices an element of S for a certain bond
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B =[S, S]. The elements of B are drawn darker than the other edges. The
edges are labelled by the values of gg, and the vertices by the function p for

which g = dp.
]b——%-l 0 O
o<>> 0 1>/> 0
1 O 1 '1

Recall that in Definition 9.5 we defined the incidence matrix M (G) of a
loopless undirected graph G with respect to an orientation 0. We may just
as well think of G together with its orientation o as a directed graph. We
also will allow loops. Thus if D = (V, E) is any (finite) digraph, define the
incidence matric M = M (D) to be the p X ¢ matrix whose rows are indexed
by V and columns by E, as follows. The entry in row v € V and column
e € E is denoted m,(e) and is given by*

—1, if v = init(e) and e is not a loop
my(e) = 1, if v = fin(e) and e is not a loop

0, otherwise.

For instance, if D is given by

1

2

4 Actually, this definition gives the negative of the matrix defined in Definition 9.5,
though it makes no difference here. We will fix this inconsistency of notation in a later
version of these notes.
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then

M(D)=| -

O =
|

o =

R

— = O

o OO

11.2 Theorem. The row space of M (D) is the bond space Bp. Equiv-
alently, the functions m, : E — R, where v ranges over all vertices of D,
span B.

Proof. Let g = dp be a potential difference on D, so

g(e) = p(fin(e)) — p(init(e))
= Zp(v)m,,(e).

vEV

Thus g =), .y p(v)m,, so g belongs to the row space of M.

Conversely, if g = »°, ., ¢(v)m, is in the row space of M, where ¢ : V —
R, then g =dg € B. O

We now define a scalar product (or inner product) on the space R” by

(f,9) = f(e)g(e),

eck

for any f, g € RE. If we think of the numbers f(e) and g(e) as the coordinates
of f and g with respect to the basis E, then (f, g) is just the usual dot product
of f and g. Because we have a scalar product, we have a notion of what it
means for f and g to be orthogonal, viz., {f,g) = 0. If V is any subspace of
RP . then define the orthogonal complement V*+ of V by

VE={feRF :(f,g) =0forall g c R}
Recall from linear algebra that
dimV + dim V* = dimR” = #E. (64)

Furthermore, (VL)L =V.
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Intuitively there is a kind of “duality” between elementary cycles and
bonds. Cycles “hold vertices together,” while bonds “tear them apart.” The
precise statement of this duality is given by the next result.

11.3 Theorem. The cycle and bond spaces of D are related by C = B+.
(Equivalently, B = C*.)

Proof. Let f: E — R. Then f is a circulation if and only if
> my(e)f(e) =0
ecE

for all v € V [why?]. But this is exactly the condition that f € B+. O

11.2 Bases for the cycle space and bond space.

We want to examine the incidence matrix M (D) in more detail. In particu-
lar, we would like to determine which rows and columns of M (D) are linearly
independent, and which span the row and column spaces. As a corollary, we
will determine the dimension of the spaces B and C. We begin by defining
the support || f|| of f : E — R to be the set of edges e € E for which f(e) # 0.

11.4 Lemma. If0# f €C, then ||f|| contains an undirected circuit.

Proof. If not, then || f|| has a vertex of degree one [why?], which is clearly
impossible. O

11.5 Lemma. If0# g € B, then ||g|| contains a bond.

Proof. Let 0 # g € B, so g = dp for some p: V — R. Choose a vertex v
which is incident to an edge of ||g||, and set

U={ueV:pu)=pw)}

Let U = V — U. Note that U # @, since otherwise p is constant so g = 0.
Since g(e) # 0 for all e € [U, U] [why?], we have that ||g|| contains the cutset
[U,U]. Since a bond is by definition a minimal cutset, it follows that ||g|
contains a bond. 0O
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11.6 Definition. A matrix B is called a basis matriz of B if the rows
of B form a basis for B. Similary define a basis matrix C of C.

Recall the notation of Theorem 9.4: Let A be a matrix with at least as
many columns as rows, whose columns are indexed by the elements of a set
T. If S CT, then A[S] denotes the submatrix of A consisting of the columns
indexed by the elements of S. In particular, Ale] (short for A[{e}]) denotes
the column of A indexed by e. We come to our first significant result about
bases for the vector spaces B and C.

11.7 Theorem. Let B be a basis matriz of B, and C a basis matrix
of C. (Thus the columns of B and C are indezed by the edges e € E of D.)
Let S C E, Then:

(i) The columns of B[S] are linearly independent if and only if S is acyclic
(i.e., contains no circuit as an undirected graph).

(ii) The columns of C[S] are linearly independent if and only if S contains
no bond.

Proof. The columns of B[S] are linearly dependent if and only if there exists
a function f : EF — R such that

f(e) # 0 for some e € S

fle)=0foralle¢g S
Z f(e)BJe] = 0 the column vector of 0’s. (65)

ecE

The last condition is equivalent to (f,m,) = 0 for all v € V, ie., fis a
circulation. Thus the columns of B[S] are linearly dependent if and only if
there exists a nonzero circulation f such that ||f|| € S. By Lemma 11.4,
||| (and therefore S) contains a circuit. Conversely, if S contains a circuit
C then 0 # fc € C and ||f¢|| = C C S, so fc defines a linear dependence
relation (65) among the columns. Hence the columns of B[S] are linearly
independent if and only if S is acyclic, proving (i). (Part (i) can also be
deduced from Lemma 9.7.)
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The proof of (ii) is similar and is left as an exercise. O

11.8 Corollary. Let D = (V, E) be a digraph with p vertices, q edges,
and k connected components (as an undirected graph). Then

dmB = p—k
dimC = ¢—p+Ek.

Proof. For any matrix X, the rank of X is equal to the maximum number
of linearly independent columns. Now let B be a basis matrix of B. By The-
orem 11.7(i), the rank of B is then the maximum size (number of elements)
of an acyclic subset of E. In each connected component D; of D, the largest
acyclic subsets are the spanning trees, whose number of edges is p(D;) — 1,
where p(D;) is the number of vertices of D;. Hence

rank B = Z(p(Dz-)—l)
— ik

Since dim B + dimC = dim R = ¢ by equation (64) and Theorem 11.3, we
have
dmC=q—-(p—k)=q—p+k.

(It is also possible to determine dimC by a direct argument similar to our
determination of dim B.) O

The number ¢ — p + k& (which should be thought of as the number of
independent cycles in D) is called the cyclomatic number of D (or of its
undirected version G, since the direction of the edges have no effect).

Our next goal is to describe explicit bases of C and B. We begin by
defining a forest to be an undirected graph without circuits. Thus a forest
is a disjoint union of trees. We extend the definition of forest to directed
graphs by ignoring the arrows, i.e., a directed graph is a forest if it has no
circuits as an undirected graph. Equivalently [why?], dimC = 0.

Pick a maximal forest T of D = (V, E). Thus T restricted to each com-
ponent of D is a spanning tree. If e is an edge of D not in 7', then it is easy
to see that 7'U e contains a unique circuit Cl.
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11.9 Theorem. Let T be as above. Then the set S of circulations f¢,,
as e ranges over all edges of D not in T, is a basis for the cycle space C.

Proof. The circulations f¢, are linearly independent, since for each e €
E(D) — E(T) only fc, doesn’t vanish on e. Moreover,

#S =#E(D)—-#E(T)=q—p+k=dimC,
so S is a basis. O

11.10 Example. Let D be the digraph shown below, with the edges
a, b, c of T shown by dotted lines.

Orient each circuit C; in the direction of the added edge, i.e., f¢,(t) = 1.

Then the basis matrix C of C corresponding to the basis fc,, fc., fc, 18
given by

0 -1 -1 100

cC=|-1 -1 -1010

0 0 -1 001

We next want to find a basis for the bond space B analogous to that of
Theorem 11.9.

(66)

11.11 Lemma. Let T be a mazimal forest of D = (V, E). Let T* =
D — E(T) (the digraph obtained from D by removing the edges of T'), called
a cotree if D is connected. Let e be an edge of T. Then E(T*) U e contains
a unique bond.

Proof. Removing E(T*) from D leaves a maximal forest 7', so removing

one further edge e disconnects some component of D. Hence E(T*) Ue
contains a bond B. It remains to show that B is unique. Removing e from
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T breaks some component of T into two connected graphs T} angl T5 with
vertex sets S and S. It follows [why?] that we must have B =[S, S], so B is
unique. O

Let T' be a maximal forest of the digraph D, and let e be an edge of 7'
By the previous lemma, E(T*)Ue contains a unique bond B,. Let gp, be the
corresponding element of the bond space B, chosen for definiteness so that

gp.(e) = 1.

11.12 Theorem. The set of functions gg,, as e ranges over all edges
of T', is a basis for the bond space B.

Proof. The functions gp, are linearly independent, since only gg, is
nonzero on e € E(T). Since

#E(T) =p—k =dimB,
it follows that the gp ’s are a basis for B. O

11.13 Example. Let D and T be as in the previous diagram. Thus
a basis for B is given by the functions gg,, gB,, 95, The corresponding basis
matrix is given by
100010
B=|010110

001 111

Note that the rows of B are orthogonal to the rows of the matrix C of
equation (66), in accordance with Theorem 11.3. Equivalently, BC' = 0,
the 3 x 3 zero matrix. (In general, BC" will have ¢ — p + k rows and p — k
columns. Here it is just a coincidence that these two numbers are equal.)

The basis matrices Cp and By of C and B obtained from a maximal
forest T" have an important property. A real matrix m x n matrix A with
m < n is said to be unimodular if every m x m submatrix has determinant
0, 1, or —1. For instance, the adjacency matrix M (D) of a digraph D is
unimodular, as proved in Lemma 9.7 (by showing that the expansion of the
determinant of a full submatrix has at most one nonzero term).

11.14 Theorem. Let T be a maximal forest of D. Then the basis
matrices Cr of C and Br of B are unimodular.
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Proof. First consider the case Cr. Let P be a full submatrix of C
(so P has ¢ — p + k rows and columns). Assume det P # 0. We need to
show det P = +1. Since det P # 0, it follows from Theorem 11.7(ii) that
P = Cp[T7] for the complement 77 of some maximal forest 7;. Note that
the rows of the matrix Cr[T7}] are indexed by T* and the columns by T7.
Similarly the rows of the basis matrix Cr, are indexed by 77 and the columns
by E (the set of all edges of D). Hence it makes sense to define the matrix
product

Z = Cr[T7|Cry,

a matrix whose rows are indexed by 7™ and columns by E.

Note that the matrix Z is a basis matrix for the cycle space C since its
rows are linear combinations of the rows of the basis matrix C7,, and it has
full rank since the matrix Cr[T}] is invertible. Now Cr,[T}] = I+ (the
identity matrix indexed by T7), so Z[T}]| = Cr[T}]. Thus Z agrees with the
basis matrix C'r in columns 77. Hence the rows of Z — Cr are circulations
supported on a subset of T7. Since T is acyclic, it follows from Lemma 11.4
that the only such circulation is identically 0, so Z = C'r.

We have just shown that
Cr[T}|Cr, = Cr.
Restricting both sides to 7, we obtain
C1[T;1Cn[T") = Cr[T"] = Ir-.
Taking determinants yields
det(Cr[TY]) det(Cr,[T7]) = 1.

Since all the matrices we have been considering have integer entries, the
above determinants are integers. Hence

det CT[T1*] = :i:l,
as was to be proved. (This proof is due to Tutte in 1965.)

A similar proof works for By. O
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11.3 Electrical networks.

We will give a brief indication of the connection between the above discus-
sion and the theory of electrical networks. Let D be a digraph, which for
convenience we assume is connected and loopless. Suppose that at each edge
e there is a voltage (potential difference) V, from init(e) to fin(e), and a cur-
rent I, in the direction of e (so a negative current I, indicates a current of
|I.| in the direction opposite to e). Think of V' and I as functions on the
edges, i.e., as elements of the vector space R”. There are three fundamental
laws relating the quantities V, and I,.

Kirchhoff’s First Law. I € Cp. In other words, the current flowing
into a verter equals the current flowing out. In symbols,

Z I. = Z I,

e
init(e)=v fin(e)=v

for all vertices v € V.

Kirchhoff’s Second Law. V € C} = B. In other words, the sum of the
voltages around any circuit (called loops by electrical engineers), taking into
account orientations, is 0.

Ohm’s Law. If edge e has resistance R, > 0, then V, = I, R,.

The central problem of electrical network theory dealing with the above
three laws® is the following: Which of the 3¢ quantities V,, I., R. need to
be specified to uniquely determine all the others, and how can we find or
stipulate the solution in a fast and elegant way? We will be concerned here
only with a special case, perhaps the most important special case in practical
applications. Namely, suppose we apply a voltage V, at edge e,, with resis-
tances Ri,..., R, 1 at the other edges ey, ...,e,1. Let V;, I; be the voltage
and current at edge e;. We would like to express each V; and I; in terms
of V, and Ry,...,R,—1. (By “physical intuition” there should be a unique
solution, since we can actually build a network meeting the specifications of

50f course the situation becomes much more complicated when one introduces dynamic
network elements like capacitors, alternating current, etc.
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the problem.) Note that if we have quantities V;, I;, R; satisfying the three
network laws above, then for any scalar o the quantities oV}, al;, R; are also
a solution. This means that we might as well assume that V, = 1, since we
can always multiply all voltages and currents afterwards by whatever value
we want V; to be.

As an illustration of a simple method of computing the total resistance of
a network, the following diagram illustrates the notion of a series connection
D, + D, and a parallel connection Dy || Dy of two networks D; and Dy with
a distinguished edge e at which a voltage is applied.

If R(D) denotes the total resistance —V,/I. of the network D together
with the distinguished edge e, then it is well-known and easy to deduce from
the three network Laws that

R(Dy + Dy) = R(D1)+ R(Ds)

1 _1 o,
R(Dy || D2) — R(Dy)  R(Ds)

A network that is built up from a single edge by a sequence of series and
parallel connections is called a series-parallel network. An example is the
following, with the distinguished edge e shown by a broken line from bottom
to top.
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The simplest network which is not a series-parallel network and has no mul-
tiple edges (as an undirected graph) is called the Wheatstone bridge and is
illustrated below. (The direction of the arrows has been chosen arbitrarily.)
We will use this network as our main example in the discussion that follows.

We now return to an arbitrary connected loopless digraph D, with cur-
rents I;, voltages V;, and resistances R; at the edges e;. Recall that we are
fixing V, =1 and Ry,...,R,—1. Let T be a spanning tree of D. Since [ is a
current if and only if it is orthogonal to the bond space B (Theorem 11.3 and
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Kirchhoff’s First Law), it follows that any basis for B defines a complete and
minimal set of linear relations satisfied by the I;’s (namely, the relation that
I is orthogonal to the basis elements). In particular, the basis matrix Cr
defines such a set of relations. For example, if D is the Wheatstone bridge
shown above and if 7' = {e1, €9, e5}, then we obtain the following relations
by adding the edges e;, es, e5 of T in turn to 7.

L —13-14
L+L+1,+1Ig = 0 (67)
I4+I5+16 =0

These three (= p — 1) equations give all the relations satisfied by the I;’s
alone, and the equations are linearly independent.

Similary if V' is a voltage then it is orthogonal to the cycle space C. Thus
any basis for C defines a complete and minimal set of linear relations satisfied
by the V;’s (namely, the relation that V' is orthogonal to the basis elements).
In particular, the basis matrix C'r defines such a set of relations. Continuing
our example, we obtain the following relations by adding the edges e3, €4, €4
of T% in turn to T

Vi—-Vo+Vs =
Vi-Va+Vi=Vs = 0 (68)
Vot Vs = 1,

These three (= ¢ — p+ k) equations give all the relations satisfied by the V;’s
alone, and the equations are linearly independent.

In addition, Ohm’s Law gives the ¢ —1 equations V; = R;[;, 1 <1 < ¢g—1.
We have a total of (p — k) + (¢ —p+ k) + (¢ — 1) = 2¢g — 1 equations in the
2¢g—1 unknowns I; (1 <i<g¢g)and V; (1 <i < qg—1). Moreover, it is easy to
see that these 2¢ — 1 equations are linearly independent, using the fact that
we already know that just the equations involving the I;’s alone are linearly
independent, and similarly the V;’s. Hence this system of 2¢ — 1 equations in
2q — 1 unknowns has a unique solution. We have now reduced the problem
to straightforward linear algebra. However, it is possible to describe the
solution explicitly. We will be content here with giving a formula just for the
total resistance R(D) = =V, /I, = —1/1,.
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Write the 2¢ — 1 equations in the form of a (2¢ — 1) x 2¢ matrix K. The
columns of the matrix are indexed by Iy, Iy, ..., I, V4, Va,...,V,. The last
column V; of the matrix keeps track of the constant terms of the equations.
The rows of K are given first by the equations among the I;’s, then the
Vi’s, and finally Ohm’s Law. For our example of the Wheatstone bridge, we
obtain the matrix

L L L L L[| Vi Vo Vs Vi V5|V
1 0 -1 -1 0,0 O O O O 0] O
o 1 1 1 O0of1) 0 O O O OO
o o0 o0 1 1,1, 0 O O O OO
o o o0 o o0j0, 1 -1 1 0 0O

K — o o o0 o0 o0j0, 1 -1 0 1 =10

o o o0 o 0j0 O0-1 0 0 -1|1

R O O 0 O0/,0/-1 0 0 O 0O
0O R, 0 O OjO, O -1 O O 00
0 0 Rz O O[O, O O -1 0 00
o 0 0 Ry, OO O O O -1 00
o 0 0 0 R|O, O O O 0 -=10

We want to solve for I, by Cramer’s rule. Call the submatrix consisting of
all but the last column X. Let Y be the result of replacing the I, column of
X by the last column of K. Cramer’s rule then asserts that

I detY
7 det X

We evaluate det X by taking a Laplace expansion along the first p — 1 rows.
In other words,

det X = " +det(X[[p — 1], 8]) - det(X[[p — 1]%, S]), (69)

where (a) S indexes all (p—1)-element subsets of the columns, (b) X[[p—1], 5]
denotes the submatrix of X consisting of entries in the first p — 1 rows and
in the columns S, (c) X[[p — 1]¢, 5] denotes the submatrix of X consisting
of entries in the last 2¢ — p rows and in the columns other than S. In
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order for det(X([[p — 1], 5]) # 0, we must choose S = {I;,...,I;,_, }, where
{€i,-..,€i,_,} is a spanning tree T; (by Theorem 11.7(i)). In this case,
det(X[[p — 1], 5]) = £1 by Theorem 11.14. If I, ¢ S, then the I, column
of X[[p — 1]¢, S] will be zero. Hence to get a nonzero term in (69), we must
have e, € S. The matrix X|[[p — 1]¢, 5] will have one nonzero entry in each
of the first ¢ — p + 1 columns, namely, the resistances IZ; where e; is not an
edge of 7. This accounts for ¢ — p + 1 entries from the last ¢ — 1 rows of
X[[p — 1], S]. The remaining p — 2 of the last ¢ — 1 rows have available only
one nonzero entry each, a —1 in the columns indexed by V; where e; is an
edge of T other than e,. Hence we need to choose ¢ —p~+1 remaining entries
from rows p through ¢ and columns indexed by V; for e; not edge of T7. By
Theorems 11.7(ii) and 11.14, this remaining submatrix has determinant +1.
It follows that

det(X[[p - 11, 5]) - det(X[[p—11,5) == [ R

e;¢E(T1)

Hence by (69), we get

detX=> x| ] B, (70)
T

e;¢E(T1)

where T} ranges over all spanning trees of D containing e,. A careful analysis
of the signs® shows that all signs in (70) are plus, so we finally arrive at the
remarkable formula

detX = I =&

spanning trees T7 ¢ QE(T1)
containing eq J

For example, if D is the Wheatstone bridge as above, and if we abbreviate
R1 = a, RQ b R3 C, R4 d, R5 =€, then

det X = abc + abd + abe + ace + ade + bed + bde + cde.

Now suppose we replace column I, in X by column V in the matrix K,
obtaining the matrix Y. There is a unique nonzero entry in the new column,

5To be inserted.
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so it must be chosen in any nonzero term in the expansion of detY. The
argument now goes just as it did for det X, except we have to choose S to
correspond to a spanning tree T that doesn’t contain e;. We therefore obtain

detY = Z H Rj.

spanning trees 717 ej ZE(Ty)
not containing eq ej #eq

For example, for the Wheatstone bridge we get

detY = ac+ ad + ae + bc + bd + be + cd + ce.

Recall that I, = det(Y)/det(X) and that the total resistance of the
network is —1/I,. Putting everything together gives our main result on
electrical networks.

11.15 Theorem. In the situation described above, the total resistance
of the network is given by

> Il &

spanning trees T4 ej ZE(Ty)
]_ not containing eq ej;éeq

. > IT &

spanning trees 77 eEE(Tl)
containing egq J

11.16 Corollary. If the resistances Ry,..., R, 1 are all equal to one,
then the total resistance of the network is given by

R(D) = 1 number of spanning trees containing e,
N 1, ~ number of spanning trees not containing eq
In particular, if Ry = .-+ = R,_; = 1, then the total resistance, when

reduced to lowest terms a/b, has the curious property that the number k(D)
of spanning trees of D is divisible by a + b.
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11.4 Planar graphs (sketch).

A graph G is planar if it can be drawn in the plane R? without crossing
edges. A drawing of GG in this way is called a planar embedding.

If the vertices and edges of a planar embedding of G are removed from R?,
then we obtain a disjoint union of open sets, called the regions (or faces) of
G. (More precisely, these open sets are the regions of the planar embedding
of G. Often we will not bother to distinguish between a planar graph and a
planar embedding if no confusion should result.) Let R = R(G) be the set
of regions of G, and as usual V(G) and E(G) denote the set of vertices and
edges of G, respectively.

NoTE. If G is simple (no loops or multiple edges) then it can be shown
that there exists a planar embedding with edges as straight lines and with
regions (regarding as the sequence of vertices and edges obtained by walking
around the boundaries of the regions) preserved.

The dual G* of the planar embedded graph G has vertex set R(G) and
edge set E*(G) = {e* : e € E(G)}. If e is an edge of G, then let  and 7’ be
the regions on its two sides. (Possibly r = 7’; there are five such edges in the
example above.) Then define e* to connect r and r’. We can always draw
G* to be planar, letting e and e* intersect once. If G is connected then every
region of G* contains exactly one nonisolated vertex of G and G** = G.
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11.17 Example. Let G consist of two disjoint edges. Then G* has
one vertex and two loops, while G** is a three-vertex path. The unbounded
region of G* contains two vertices of G, and G** 2 G.

Orient the edges of the planar graph G in any way to get a digraph D.
Let r be an interior (i.e., bounded) region of D. An outside edge of r is an
edge e such that r lies on one side of the edge, and a different region lies on
the other side. The outside edges of any interior region r define a circulation
(shown as solid edges in the diagram below), and these circulations (as r
ranges over all interior regions of D) form a basis for the cycle space Cg of

G.
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Given the orientation D of G, orient the edges of G* as follows: as we
walk along e in the direction of its orientation, e* points to our right

11.18 Theorem. Let f : E(G) — R. Define f* : E(G*) — R by
f*(e*) = f(e). Then

f € Bg

& f* € Co
f€Cq

& f* € Bgx.
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11.19 Proposition. S is the set of edges of a spanning tree T of G if
and only if S* = {e* : e € S} is the set of edges of a cotree T* of G*.

11.20 Corollary. k(G) = k(G*)
For nonplanar graphs there is still a notion of a “dual” object, but it is
no longer a graph but rather something called a matroid. Matroid theory is

a flourishing subject which may be regarded as a combinatorial abstraction
of linear algebra.

11.5 Squaring the square.

To be inserted.
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