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Sections of the talk

1. Warm up by looking at very familiar objects having L-functions.
Define analytic conductor A = RN for general rank n L-functions.
Work also with the analytic root conductor α = A1/n. Call an
L-function lightly ramified if A < 1 or equivalently α < 1.
Speculatively conjecture that there are only finitely many lightly
ramified L-functions.

2ABCD. Collect lightly ramified L-functions from four less familiar
sources, in roughly increasing ranks n. Observe a general increase in
the smallest α encountered as n increases.

3. Discuss how the Guinand-Weil-Mestre explicit formula gives a
special role to α = 1, and gives some theoretical plausibility to the
finiteness conjecture.



1. Conductors as measures of complexity

It is standard to order number fields of a given type by increasing
absolute discriminant.

Real quadratic fields: 5, 8, 12, 13, 17, 21, 24, 28, 29, 33 . . .

Imag. quadratic fields: 3, 4, 7, 8, 11, 15, 19, 20, 23, 24 . . .

Totally real cubic fields: 49 , 81 , 148, 169 , 229, 257, 316, 321, 361 , 404 . . .

Remaining cubic fields: 23, 31, 44, 59, 76, 83, 87, 104, 107, 108 . . .

In fact, one can order all number fields this way, in the sense that
there are only finitely many number fields with discriminant less than
any given bound.

Absolute discriminants are a special type of conductor and one can
similarly order other objects by conductor, e.g.,

Isogeny classes
of elliptic curves:

11, 14, 15, 17, 19, 20, 21, 24, 26, 26, . . .



Conductors as an insufficient measure

The number of newforms of weight k on Γ0(N) is

k \ N 1 2 3 4 5 6 7 8 9 10 11 12
2 1
4 1 1 1 1 1 2 1
6 1 1 1 1 3 1 1 3 4
8 1 1 3 1 3 2 3 1 6 2

10 1 2 1 3 1 5 2 3 3 8 1
12 1 1 1 3 3 5 3 4 5 8 2

For general (k ,N), the number of newforms is approximately
(k − 1)ψ(N)/12 where ψ(N) is a simple function agreeing with φ(N)
for N square-free.

So while conductor has the “height property” in each row, it doesn’t
have this property overall. So one would like to incorporate k
somehow into the measure of overall complexity.



The uniform context of L-functions

Let Ln be the set of standard L-functions L(s, π) associated to
unitary cuspidal automorphic representations π of the adelic group
GLn(AQ). Put L = ∪∞n=1Ln. An L-function L(s, π) ∈ L comes with
an infinity factor L∞(s) and a conductor N ∈ Z≥1.

Let
Λ(s, π) = N s/2L∞(s)L(s, π)

be the completed L-function. One has the functional equation

Λ(s, π) = εΛ(1− s, π).

for some ε on the unit circle.

Objects on the previous slides give rise to L-functions of rank 1 or 2.
We will assume throughout this talk the general expectation that all
irreducible rank n motives likewise give rise to L-functions in Ln.



R as a twin to N

Let L ∈ L and assume that L(1/2) 6= 0. Then L(1/2) is mysterious
and L′(1/2) is more mysterious still. But the real part of their ratio is
simple!:

Λ(s) = εΛ(1− s)

N s/2L∞(s)L(s) = εN (1−s)/2L∞(1− s)L(1− s)

1
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For general L(s), we define its archimedean conductor to be

R = exp

(
2Re

(
L′∞(1/2)

L∞(1/2)

))
.

This is a variant of the original [Iwaniec-Sarnak] notion.



Hodge numbers and signature

Corresponding to normalizing L-functions to have central point 1/2,
it is best to write standard Hodge numbers of motives via
single-indexing: hp−q := hp,q. Moreover, it is convenient to package
the hj into a Hodge vector,

h = (h−w , h−w+2, . . . , hw−2, hw ).

Familiar examples:

Rank n Artin L-function: h = (n),
H1 of genus g curve: h = (g , g),
H2

trans of K3 surface: h = (1, a, 1).

Also important is the decomposition h0 = h0+ + h0− according to the
eigenvalues of complex conjugation. The difference σ := h0+ − h0− is
called the signature.



Formula for R in the motivic case

For j + it ∈ C define ||j + it|| = 2 exp

(
Re

Γ′((1 + |j |+ it)/2)

Γ((1 + |j |+ it)/2)

)
. The

function || · || is asymptotic to the absolute value function | · |. On R:
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Some special values: ||0|| = e−γ/2 ≈ 0.28 and ||1|| = 2e−γ ≈ 1.12.

From the recipe for L∞(s) as a product of shifted Gamma functions,
the archimedean conductor of an L-function coming from a motive is

R =

∏
||j ||hj

(4π)n
e−σπ/2.

For transcendental L-functions, there is a similar formula.



A = RN as a height function

Let Ln,B be the set of rank n L-functions with analytic conductor at
most B . An important justification of the notion of analytic
conductor is the following:

Theorem. [Brumley]. |Ln,B | is always finite.

Follow-up work [Brumley-Milicevic] has made substantial progress
towards estimating the size of |Ln,B | as B tends to ∞.

There are different ways to measure complexity when one changes
ranks. Today we will focus not on conductors but their corresponding
root conductors, (α, ρ, ν) = (A1/n,R1/n,N1/n). Let L(β) be the set
of all L-functions with analytic root conductor at most β.

Conjecture. |L(1)| is finite.

Note that from towers of number fields [Hajir-Maire], |L(1.84)| is
infinite.



Lightly ramified L-functions

Say that an L-function is lightly ramified if its conductor A or
equivalently its root conductor α is less than 1.

In very low ranks, it is easy to find lightly ramified L-functions. The
most extreme case is the Riemann zeta function ζ(s) which has

A = α = 1/(8πeγ+π/2) ≈ 1/215.333 ≈ 0.004644.

In higher ranks, it gets harder. For example, for SymjH1(X0(11)):

j h σ ρ ν = α

1 (1, 1) 0 0.089 111/2 ≈ 0.296
2 (1, 1, 1) −1 0.143 112/3 ≈ 0.708
3 (1, 1, 1, 1) 0 0.147 113/4 ≈ 0.890
4 (1, 1, 1, 1, 1) 1 0.106 114/5 ≈ 0.719
5 (1, 1, 1, 1, 1, 1) 0 0.206 115/6 ≈ 1.517
6 (1, 1, 1, 1, 1, 1, 1) −1 0.255 116/7 ≈ 1.989



The case of large degree number fields

For a number field with no real places, the archimedean root
conductor is 1/Ω, where Ω = 8πeγ ≈ 44.7632 is the famous
Odylzko-Serre constant. Nonsolvable Galois fields on [Jones-R 2014]
with root discriminant 2a3b correspond to points in this plane:

1 2 3 4
a0

1

2

3

b

The diagonal line is α = 1. Putting this into our context, lightly
ramified large rank Artin L-functions [Jones-R 2017] are also rare.



2A. Rank four symplectic motives

By working with the universal rank four system V = H1(A) over the
moduli space A2 and decomposing cohomology via Hecke operators,
[Bergström-Faber-van der Geer] found many motives with

h = (1,

k−3︷ ︸︸ ︷
0, . . . , 0, 1,

j︷ ︸︸ ︷
0, . . . , 0, 1,

k−3︷ ︸︸ ︷
0, . . . , 0, 1),

Sato-Tate group all of Sp4, and conductor N = 1.

For those motives appearing in isolation, [B-F-vdG] give 210 terms of
the L-function. This allows many high precision analytic calculations,
using the Magma implementation of [Dokchitser].

The smallest analytic root conductor is α ≈ 0.5130 from
(j , k) = (0, 20) and thus Hodge vector

(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).

Its L-function is



L(s,M) =
1
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+
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The number of Sp4 motives with a given h and N = 1 is indicated on
the next slide. Here

The number of motives at (j , k) is proportional to the square of
the area of the printed disk.

Three curves αn = 1 are given in black

n = 4 : (dotted) Symplectic L-function L(s,M)
n = 5 : (dashed) Orthogonal L-function L(s, (Λ2M)′)
n = 10 : (solid) Adjoint L-function L(s, Sym2M)

Three corresponding curves αn = 0.9 are given in gray.

(A few dots are present because I forgot to discard lifts. These include the

dots at (0, k) for k < 20.)
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By adding a full-level 2 structure and working over A2[2] instead,
[B,F,vdG] get similar data for conductors N |16. For N = 1, 2, 4, 8,
16, the smallest α appearing are 0.5130, 0.5401, 0.5199, 0.5849,
0.6084 from (0, j) with j = 20, 16, 11, 10, and 8.

For various h, the known Sp4 motives with smallest conductor N and
their α from [LMFDB] and [Ibukiyama-Kitayama] are

h N α
(2, 2) 249 0.3550

(1, 1, 1, 1) 61 0.4117
(1, 0, 1, 1, 0, 1) 31 0.4464

(1, 0, 0, 1, 1, 0, 0, 1) 19 0.4666

For smaller Sato-Tate groups, one can get slightly smaller α. E.g.
the four-dimensional Artin representation from Q[x ]/(x5 − 2) has
h = (4), σ = 0, and N = 50000 for α ≈ 0.3341.

The comparability of the various α gives a sense that the concept of
analytic root conductor properly captures both the archimedean and
ultrametric contributions to complexity.



2B. Some exotic rank 7 and 8 motives with N = 1

Bergström, Faber, and van der Geer also work with the rank six local
system H1(A) over A3 to get orthogonal rank eight motives with
Hodge vectors depending on three parameters j , k , `. The Sato-Tate
group is always contained in the subgroup Spin7 of SO8. From
one-dimensional spaces, they get 126 motives, each with 26 terms of
the L-series. Root analytic conductors:

i αi i αi i αi

1 0.3742 12 0.5491 42 0.9931

2 0.3993 13 0.5640 43 1.0001
... 14 0.7616

...

10 0.4941 15 0.7878 125 5.3289

11 0.5247
... 126 5.4482

The first thirteen αi look strikingly small!



If M has Sato-Tate group G2 ⊂ Spin7, then it is reducible in the form
M7 ⊕M1. A necessary condition for reduction to G2, satisfied exactly
for i ≤ 13, is that ` = j + 4. In this case the rank 8 Hodge vector is

(1,

j︷ ︸︸ ︷
0, . . . , 0, 1,

k︷ ︸︸ ︷
0, . . . , 0, 1,

j︷ ︸︸ ︷
0, . . . , 0, 2,

j︷ ︸︸ ︷
0, . . . , 0, 1,

k︷ ︸︸ ︷
0, . . . , 0, 1,

j︷ ︸︸ ︷
0, . . . , 0, 1).

In the case of reduction to G2, replacing the 2 by a 1 gives the rank 7
Hodge vector.

Another necessary condition for reduction to G2 is that the local
factor at every p has the right shape. This condition is satisfied at
p = 2 exactly for i ≤ 11 and i = 42.

Analytic computations give strong evidence that indeed the
Sato-Tate group is G2 for all i ≤ 11. Removing the trivial piece M1

inflates the previous numbers to analytic root conductors of the
expected M7’s: (α1, . . . , α10, α11) = (0.7009, ....., 0.9626, 1.0308).



For the least ramified of the presumed G2 motives, with analytic root
conductor α1 ≈ 0.7009, the rank seven Hodge vector is

(1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1).

It would be interesting to compare with G2 motives in the literature
with Hodge vectors (1, 1, 1, 1, 1, 1, 1, 1) and (2, 3, 2), where
conductors have not yet been computed.

For the Spin7 motive with analytic root conductor α12 = 0.5491, the
rank eight Hodge vector is

(1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1).

For the closely related group Sp6 and Hodge vector (3, 3), the
smallest conductor appearing in [Sutherland] is 4727 = 29 · 163, with
corresponding α = 0.3660.



2C. Hypergeometric motives

Let A and B be collections of positive integers with∑
a∈A

φ(a) =
∑
b∈B

φ(b) =: n.

Let t ∈ Q× − {1}. Then one has a rank n hypergeometric motive

H(A,B ; t)

almost always with Sato-Tate group Spn or On. Hodge vectors
coming from this setting are extremely varied.

Each family also has a particularly interesting degenerate member
H(A,B ; 1). Here the central Hodge number decreases by 1 in the
orthogonal case and the two central Hodge numbers decrease by 1 in
the symplectic case,increasing archimedean root conductors. However
ultrametric root conductors are particularly low at t = 1.



The orthogonal sequence of motives H([4, 22j−1], [12j+1]; 1) with rank
2j , conductor 2c , and local factor L2(s) = f2(2−s)−s :

j h c f2(x) ρ ν = α
1 (1, 0, 1) 3 1 0.17 2.83 ≈ 0.47
2 (1, 1, 0, 1, 1) 9 1 0.23 4.76 ≈ 1.10
3 (1, 1, 1, 0, 1, 1, 1) 9 1 0.29 2.83 ≈ 0.83
4 (1, 1, 1, 1, 0, 1, 1, 1, 1) 13 1 0.36 3.08 ≈ 1.10
5 (1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) 11 1 + 32x 0.42 2.14 ≈ 0.90
6 ...

19 1 0.48 3.00 ≈ 1.44
7 19 1 0.54 2.56 ≈ 1.39

The root conductor ν likely stabilizes, but the archimedean root
conductor definitely grows without bound.

In conformity with the Finiteness Conjecture, we have only found
lightly ramified L-series in rank ≤ 10. The symplectic rank ten
example H([4, 4, 4, 4, 2, 2, 2, 2], [8, 8, 1, 1, 1, 1]; 1), has Hodge vector
(1, 1, 2, 1, 1, 2, 1, 1), conductor 218, and still α ≈ 0.90.



Small N make computations require few terms and run quickly:

H1 := HypergeometricData([4,2,2,2,2,2,2,2,2,2],

[1,1,1,1,1,1,1,1,1,1,1]);

L1 := LSeries(H1,1: BadPrimes:=[<2,11,1+32*x>],

Precision:=10);

time <LCfRequired(L1), CFENew(L1), Evaluate(L1,11/2)>;

<1315, 0.0000000000, 0.5444095362> Time:2.770

H1 := HypergeometricData([4,4,4,4,2,2,2,2],

[8,8,1,1,1,1]);

L2 := LSeries(H2,1:BadPrimes:=[<2,18,1+2^2*x+3*2^5*x^2

+ 2^9*x^3 + 2^14*x^4>], Precision:=10);

time <LCfRequired(L2),CFENew(L2), Evaluate(L2,4)>;

<7528, 0.0000000000, 0.0000000000> Time:40.940

The fact that the second L-function vanishes at its central point is
unusual given its light ramification.



2D. Large rank motives with N = 1

A number of recent papers have used the trace formula to count
motives with N = 1 and other specified invariants. For example
[Täıbi] considers, among many other similar cases, motives with
Sato-Tate group Sp12, weight ≤ 27, and h consisting of all 1 and 0’s
with no adjacent 1’s except perhaps the middle two. Some counts:

h α12 #
(1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1) 0.63 0

(1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1) 0.76 1
(1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1) 0.92 1

(1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1) 1.01 25
(1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1) 1.23 9

In these cases, one has existence of L-functions, but not yet
computation of any coefficients an past a1 = 1.



Each Hodge vector h corresponds to a point at (α12, α78), with
coordinates the analytic root conductor of a standard rank 12 motive
M and its the rank 78 adjoint motive Sym2M .
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An + represents no motives. A • represents from 1 to 25 motives,
with the number proportional to the area.

The figure illustrates typical behavior in two ranges. In modest rank,
around 10 to 25, there is a transition from very few motives with
α < 1 to many motives with α > 1. In high rank, there are no
motives from discrete series at all with α < 1, since already ρ > 1.



3. The role of 1 and support for the conjecture

Our heuristic argument for the conjecture is based on the
Guinand-Weil-[Mestre] explicit formula, and the optimistic hope that
the prime-power terms are too small to matter.

To simplify, we present the argument only for motivic L-functions
with σ = 0.

As test functions we need only a family of Gaussians parameterized
by v ∈ R>0,

Fv (x) = exp(−πx2/v),

F̂v (t) = v exp(−πvt2).

As v increases, Fv tends to the constant function 1, and F̂v tends to
the Dirac delta measure supported at 0.



The explicit formula

Let M be an irreducible rank n motive with Hodge vector h,
signature σ = 0, and conductor N . Assume its L-function
L(s,M) =

∑
n ann

−s satisfies the Riemann hypothesis, and let γ run
over the ordinates of the zeros, including multiplicities. Define cpe by

−L′(s,M)

L(s,M)
=
∑
pe

cpe log(p)

pes
.

so that cp = ap. Then∫ ∞
−∞

F̂v (t) log

(
N

(4π)n

∏
j

||j + it||hj
)
dt =

2π
∑
γ

F̂v (γ) +
∑
pe

Re(cpe )
log(p)

pe/2
Fv

(
log p

2π

)
.

Clearly as v →∞, the left side tends to log(A). So when A < 1 and
v is sufficiently large, the left side is negative.



Some of the finiteness conjecture from positivity

In the explicit formula,∫ ∞
−∞

F̂v (t) log

(
N

(4π)n

∏
j

||j + it||hj
)
dt =

2π
∑
γ

F̂v (γ) +
∑
pe

Re(cpe )
log(p)

pe/2
Fv

(
log p

2π

)
,

the spectral sum is clearly positive for all v .

There are many irreducible M for which one has universally cpe ≥ −1,
namely M = M1 ⊗M1 − C for any irreducible non-self-conjugate
motive M1. For these M , the prime power sum is bounded below.

[Chenevier] recently proved under GRH that α ≥ 1 for all but finitely
many of these M .



?!A scaling distinction gives sufficient positivity?!

For motives with a fixed α < 1, the three parts scale differently for
fixed v under the replacement (n, h,N) 7→ (kn, kh,Nk):∫ ∞

−∞
F̂v (t) log

(
N

(4π)n

∏
j

||j + it||hj
)
dt =

2π
∑
γ

F̂v (γ) +
∑
pe

Re(cpe )
log(p)

pe/2
Fv

(
log p

2π

)
.

The negative analytic conductor term decreases linearly with k
The positive spectral sum should increase linearly with k:

(2π)−1 log
(

N
(4π)n

∏
j ||j + it||hj

)
is the expected density of γ.

But the mixed-sign prime-power sum should behave
independently of k , as the Sato-Tate conjecture says that the cp
always have variance 1. So one always has a statistical version of
the key condition cpe ≥ −1 used by Chenevier.
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