Collecting lightly ramified *L*-functions

David P. Roberts University of Minnesota, Morris

August 21, 2018

Sections of the talk

- 1. Warm up by looking at very familiar objects having L-functions. Define analytic conductor A=RN for general rank n L-functions. Work also with the analytic root conductor $\alpha=A^{1/n}$. Call an L-function lightly ramified if A<1 or equivalently $\alpha<1$. Speculatively conjecture that there are only finitely many lightly ramified L-functions.
- 2ABCD. Collect lightly ramified L-functions from four less familiar sources, in roughly increasing ranks n. Observe a general increase in the smallest α encountered as n increases.
- 3. Discuss how the Guinand-Weil-Mestre explicit formula gives a special role to $\alpha=1$, and gives some theoretical plausibility to the finiteness conjecture.

1. Conductors as measures of complexity

It is standard to order number fields of a given type by increasing absolute discriminant.

Real quadratic fields: 5, 8, 12, 13, 17, 21, 24, 28, 29, 33 . . .

```
Imag. quadratic fields: 3, 4, 7, 8, 11, 15, 19, 20, 23, 24...
```

Totally real cubic fields: *49*, *81*, 148, *169*, 229, 257, 316, 321, *361*, 404 . . . Remaining cubic fields: 23, 31, 44, 59, 76, 83, 87, 104, 107, 108 . . .

In fact, one can order all number fields this way, in the sense that there are only finitely many number fields with discriminant less than any given bound.

Absolute discriminants are a special type of conductor and one can similarly order other objects by conductor, e.g.,

Isogeny classes of elliptic curves: 11, 14, 15, 17, 19, 20, 21, 24, 26, 26, . . .

Conductors as an insufficient measure

The number of newforms of weight k on $\Gamma_0(N)$ is

k	\ N	1	2	3	4	5	6	7	8	9	10	11	12	
	2											1		-
	4						1	1	1	1	1	2	1	
	6			1	1	1	1	3	1	1	3	4		
	8		1	1		3	1	3	2	3	1	6	2	
	10		1	2	1	3	1	5	2	3	3	8	1	
	12	1		1	1	3	3	5	3	4	5	8	2	

For general (k,N), the number of newforms is approximately $(k-1)\psi(N)/12$ where $\psi(N)$ is a simple function agreeing with $\phi(N)$ for N square-free.

So while conductor has the "height property" in each row, it doesn't have this property overall. So one would like to incorporate k somehow into the measure of overall complexity.

The uniform context of *L*-functions

Let \mathcal{L}_n be the set of standard L-functions $L(s,\pi)$ associated to unitary cuspidal automorphic representations π of the adelic group $GL_n(\mathbb{A}_\mathbb{Q})$. Put $\mathcal{L} = \cup_{n=1}^\infty \mathcal{L}_n$. An L-function $L(s,\pi) \in \mathcal{L}$ comes with an infinity factor $L_\infty(s)$ and a conductor $N \in \mathbb{Z}_{\geq 1}$.

Let

$$\Lambda(s,\pi)=N^{s/2}L_{\infty}(s)L(s,\pi)$$

be the completed L-function. One has the functional equation

$$\Lambda(s,\pi)=\epsilon\overline{\Lambda}(1-s,\pi).$$

for some ϵ on the unit circle.

Objects on the previous slides give rise to L-functions of rank 1 or 2. We will assume throughout this talk the general expectation that all irreducible rank n motives likewise give rise to L-functions in \mathcal{L}_n .

R as a twin to N

Let $L \in \mathcal{L}$ and assume that $L(1/2) \neq 0$. Then L(1/2) is mysterious and L'(1/2) is more mysterious still. But the real part of their ratio is simple!:

simple!:
$$\Lambda(s) = \epsilon \overline{\Lambda}(1-s)$$

$$N^{s/2} L_{\infty}(s) L(s) = \epsilon N^{(1-s)/2} \overline{L}_{\infty}(1-s) \overline{L}(1-s)$$

$$\frac{1}{2} \log(N) + \frac{L_{\infty}'(s)}{L_{\infty}(s)} + \frac{L'(s)}{L(s)} = -\frac{1}{2} \log(N) - \frac{\overline{L}_{\infty}'(1-s)}{L_{\infty}(1-s)} - \frac{\overline{L}'(1-s)}{\overline{L}(1-s)}$$

$$2\operatorname{Re}\left(\frac{L'(1/2)}{L(1/2)}\right) = -\log(N) - 2\operatorname{Re}\left(\frac{L'_{\infty}(1/2)}{L_{\infty}(1/2)}\right).$$
 For general $L(s)$, we define its *archimedean conductor* to be

$$R = \mathsf{exp}\left(2\mathsf{Re}\left(rac{L_\infty'(1/2)}{L_\infty(1/2)}
ight)
ight).$$

This is a variant of the original [Iwaniec-Sarnak] notion.

Hodge numbers and signature

Corresponding to normalizing L-functions to have central point 1/2, it is best to write standard Hodge numbers of motives via single-indexing: $h^{p-q} := h^{p,q}$. Moreover, it is convenient to package the h^j into a $Hodge\ vector$,

$$h = (h^{-w}, h^{-w+2}, \dots, h^{w-2}, h^w).$$

Familiar examples:

Rank *n* Artin *L*-function:
$$h = (n)$$
, H^1 of genus *g* curve: $h = (g,g)$, H^2_{trans} of K3 surface: $h = (1,a,1)$.

Also important is the decomposition $h^0=h^0_++h^0_-$ according to the eigenvalues of complex conjugation. The difference $\sigma:=h^0_+-h^0_-$ is called the *signature*.

Formula for *R* in the motivic case

For $j+it\in\mathbb{C}$ define $||j+it||=2\exp\left(\mathrm{Re}\frac{\Gamma'((1+|j|+it)/2)}{\Gamma((1+|j|+it)/2)}\right)$. The function $||\cdot||$ is asymptotic to the absolute value function $|\cdot|$. On \mathbb{R} :

Some special values: $||0||=e^{-\gamma}/2\approx 0.28$ and $||1||=2e^{-\gamma}\approx 1.12.$

From the recipe for $L_{\infty}(s)$ as a product of shifted Gamma functions, the archimedean conductor of an L-function coming from a motive is

$$R = \frac{\prod ||j||^{h^j}}{(4\pi)^n} e^{-\sigma\pi/2}.$$

For transcendental *L*-functions, there is a similar formula.

A = RN as a height function

Let $\mathcal{L}_{n,B}$ be the set of rank n L-functions with analytic conductor at most B. An important justification of the notion of analytic conductor is the following:

Theorem. [Brumley]. $|\mathcal{L}_{n,B}|$ is always finite.

Follow-up work [Brumley-Milicevic] has made substantial progress towards estimating the size of $|\mathcal{L}_{n,B}|$ as B tends to ∞ .

There are different ways to measure complexity when one changes ranks. Today we will focus not on conductors but their corresponding root conductors, $(\alpha, \rho, \nu) = (A^{1/n}, R^{1/n}, N^{1/n})$. Let $\mathcal{L}(\beta)$ be the set of all L-functions with analytic root conductor at most β .

Conjecture. $|\mathcal{L}(1)|$ is finite.

Note that from towers of number fields [Hajir-Maire], $|\mathcal{L}(1.84)|$ is infinite.

Lightly ramified *L*-functions

Say that an *L*-function is *lightly ramified* if its conductor *A* or equivalently its root conductor α is less than 1.

In very low ranks, it is easy to find lightly ramified L-functions. The most extreme case is the Riemann zeta function $\zeta(s)$ which has

$$A = \alpha = 1/(8\pi e^{\gamma + \pi/2}) \approx 1/215.333 \approx 0.004644.$$

In higher ranks, it gets harder. For example, for $\operatorname{Sym}^j H^1(X_0(11))$:

j	h		ρ		=	α
1	(1, 1)		0.089		\approx	0.296
2	(1, 1, 1)		0.143		\approx	0.708
3	(1, 1, 1, 1)		0.147		\approx	0.890
4	(1,1,1,1,1)	1	0.106	$11^{4/5}$	\approx	0.719
5	(1,1,1,1,1,1)		0.206		\approx	1.517
6	(1,1,1,1,1,1,1)	-1	0.255	$11^{6/7}$	\approx	1.989

The case of large degree number fields

For a number field with no real places, the archimedean root conductor is $1/\Omega$, where $\Omega=8\pi e^{\gamma}\approx 44.7632$ is the famous Odylzko-Serre constant. Nonsolvable Galois fields on [Jones-R 2014] with root discriminant 2^a3^b correspond to points in this plane:

The diagonal line is $\alpha = 1$. Putting this into our context, lightly ramified large rank Artin *L*-functions [Jones-R 2017] are also rare.

2A. Rank four symplectic motives

By working with the universal rank four system $V = H^1(A)$ over the moduli space A_2 and decomposing cohomology via Hecke operators, [Bergström-Faber-van der Geer] found many motives with

$$h = (1, \overbrace{0, \dots, 0}^{k-3}, 1, \overbrace{0, \dots, 0}^{j}, 1, \overbrace{0, \dots, 0}^{k-3}, 1),$$

Sato-Tate group all of Sp_4 , and conductor N=1.

For those motives appearing in isolation, [B-F-vdG] give 210 terms of the L-function. This allows many high precision analytic calculations, using the Magma implementation of [Dokchitser].

The smallest analytic root conductor is $\alpha \approx 0.5130$ from (j, k) = (0, 20) and thus Hodge vector

$$(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1).$$

Its L-function is

$$L(s, M) = \frac{1}{1^{s}} - \frac{840960}{2^{18.5+s}} + \frac{346935960}{3^{18.5+s}} - \frac{5232247240500}{4^{18.5+s}} - \cdots$$

$$\approx \frac{1}{1^{s}} - \frac{2.27}{2^{s}} + \frac{0.52}{3^{s}} + \frac{2.31}{4^{s}} + \frac{0.61}{5^{s}} - \frac{1.17}{6^{s}} + \frac{0.61}{7^{s}} - \cdots$$

Its Z-function $Z(t) = \operatorname{phase}(L(\frac{1}{2} + it, M))L(\frac{1}{2} + it, M)$ graphs to

The number of Sp_4 motives with a given h and N=1 is indicated on the next slide. Here

- The number of motives at (j, k) is proportional to the square of the area of the printed disk.
- Three curves $\alpha_n = 1$ are given in black

$$n=4$$
: (dotted) Symplectic L-function $L(s, M)$
 $n=5$: (dashed) Orthogonal L-function $L(s, (\Lambda^2 M)')$
 $n=10$: (solid) Adjoint L-function $L(s, Sym^2 M)$

• Three corresponding curves $\alpha_n = 0.9$ are given in gray.

(A few dots are present because I forgot to discard lifts. These include the dots at (0, k) for k < 20.)

0.6084 from (0,j) with $j=20,\ 16,\ 11,\ 10,\$ and 8. For various h, the known Sp_4 motives with smallest conductor N and their α from [LMFDB] and [Ibukiyama-Kitayama] are $h \qquad \qquad N \qquad \alpha$

By adding a full-level 2 structure and working over $A_2[2]$ instead, [B,F,vdG] get similar data for conductors N|16. For N=1, 2, 4, 8, 16, the smallest α appearing are 0.5130, 0.5401, 0.5199, 0.5849,

the four-dimensional Artin representation from $\mathbb{Q}[x]/(x^5-2)$ has

h=(4), $\sigma=0$, and N=50000 for $\alpha\approx0.3341$. The comparability of the various α gives a sense that the concept of analytic root conductor properly captures both the archimedean and ultrametric contributions to complexity.

2B. Some exotic rank 7 and 8 motives with N=1

Bergström, Faber, and van der Geer also work with the rank six local system $H^1(A)$ over A_3 to get orthogonal rank eight motives with Hodge vectors depending on three parameters j, k, ℓ . The Sato-Tate group is always contained in the subgroup Spin_7 of SO_8 . From one-dimensional spaces, they get 126 motives, each with 26 terms of the L-series. Root analytic conductors:

i	α_i	i	α_i	i	α_i
1	0.3742	12	0.5491	42	0.9931
2	0.3993	13	0.5640	43	1.0001
:		14	0.7616	:	
10	0.4941	15	0.7878	125	5.3289
11	0.5247	:		126	5.4482

The first thirteen α_i look strikingly small!

If M has Sato-Tate group $G_2\subset {\rm Spin}_7$, then it is reducible in the form $M_7\oplus M_1$. A necessary condition for reduction to G_2 , satisfied exactly for $i\leq 13$, is that $\ell=j+4$. In this case the rank 8 Hodge vector is

$$(1,\overbrace{0,\ldots,0}^j,1,\overbrace{0,\ldots,0}^k,1,\overbrace{0,\ldots,0}^j,2,\overbrace{0,\ldots,0}^j,1,\overbrace{0,\ldots,0}^k,1,\overbrace{0,\ldots,0}^j,1).$$

In the case of reduction to G_2 , replacing the 2 by a 1 gives the rank 7 Hodge vector.

Another necessary condition for reduction to G_2 is that the local factor at every p has the right shape. This condition is satisfied at p=2 exactly for $i\leq 11$ and i=42.

Analytic computations give strong evidence that indeed the Sato-Tate group is G_2 for all $i \leq 11$. Removing the trivial piece M_1 inflates the previous numbers to analytic root conductors of the expected M_7 's: $(\alpha_1, \ldots, \alpha_{10}, \alpha_{11}) = (0.7009, \ldots, 0.9626, 1.0308)$.

For the least ramified of the presumed G_2 motives, with analytic root conductor $\alpha_1 \approx 0.7009$, the rank seven Hodge vector is

$$(1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1).$$

It would be interesting to compare with G_2 motives in the literature with Hodge vectors (1,1,1,1,1,1,1) and (2,3,2), where conductors have not yet been computed.

For the ${\sf Spin_7}$ motive with analytic root conductor $\alpha_{12}=0.5491$, the rank eight Hodge vector is

For the closely related group Sp_6 and Hodge vector (3,3), the smallest conductor appearing in [Sutherland] is $4727 = 29 \cdot 163$, with corresponding $\alpha = 0.3660$.

2C. Hypergeometric motives

Let A and B be collections of positive integers with

$$\sum_{a\in A}\phi(a)=\sum_{b\in B}\phi(b)=:n.$$

Let $t \in \mathbb{Q}^{\times} - \{1\}$. Then one has a rank *n* hypergeometric motive

almost always with Sato-Tate group Sp_n or O_n . Hodge vectors coming from this setting are extremely varied.

Each family also has a particularly interesting degenerate member H(A,B;1). Here the central Hodge number decreases by 1 in the orthogonal case and the two central Hodge numbers decrease by 1 in the symplectic case,increasing archimedean root conductors. However ultrametric root conductors are particularly low at t=1.

13 1

 $0.36 \ 3.08 \approx 1.10$

The orthogonal sequence of motives $H([4, 2^{2j-1}], [1^{2j+1}]; 1)$ with rank

(1, 1, 1, 1, 0, 1, 1, 1, 1)

In conformity with the Finiteness Conjecture, we have only found lightly ramified L-series in rank ≤ 10 . The symplectic rank ten example H([4,4,4,4,2,2,2,2],[8,8,1,1,1,1];1), has Hodge vector (1,1,2,1,1,2,1,1), conductor 2^{18} , and still $\alpha \approx 0.90$.

Small *N* make computations require few terms and run quickly:

+ 2^9*x^3 + 2^14*x^4>], Precision:=10); time <LCfRequired(L2), CFENew(L2), Evaluate(L2,4)>; <7528, 0.0000000000, 0.0000000000> Time:40.940

The fact that the second L-function vanishes at its central point is unusual given its light ramification.

2D. Large rank motives with N=1

A number of recent papers have used the trace formula to count motives with N=1 and other specified invariants. For example [Taïbi] considers, among many other similar cases, motives with Sato-Tate group Sp_{12} , weight ≤ 27 , and h consisting of all 1 and 0's with no adjacent 1's except perhaps the middle two. Some counts:

h	α_{12}	#
(1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0	0.63	0
(1,0,1,0,1,0,0,0,1,0,0,1,0,1,1,0,1,0,0,1,0,0,1,0,0,1,0,1)	0.76	1
(1,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,1)	0.92	1
(1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1)	1.01	25
(1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,1,0,1	1.23	9

In these cases, one has existence of L-functions, but not yet computation of any coefficients a_n past $a_1 = 1$.

Each Hodge vector h corresponds to a point at $(\alpha_{12}, \alpha_{78})$, with coordinates the analytic root conductor of a standard rank 12 motive M and its the rank 78 adjoint motive $\operatorname{Sym}^2 M$.

An + represents no motives. A \bullet represents from 1 to 25 motives, with the number proportional to the area.

The figure illustrates typical behavior in two ranges. In modest rank, around 10 to 25, there is a transition from very few motives with $\alpha < 1$ to many motives with $\alpha > 1$. In high rank, there are no motives from discrete series at all with $\alpha < 1$, since already $\rho > 1$.

3. The role of 1 and support for the conjecture

Our heuristic argument for the conjecture is based on the Guinand-Weil-[Mestre] explicit formula, and the optimistic hope that the prime-power terms are too small to matter.

To simplify, we present the argument only for motivic *L*-functions with $\sigma=0$.

As test functions we need only a family of Gaussians parameterized by $v \in \mathbb{R}_{>0}$,

$$F_{\nu}(x) = \exp(-\pi x^2/\nu),$$

$$\hat{F}_{\nu}(t) = \nu \exp(-\pi \nu t^2).$$

As v increases, F_v tends to the constant function 1, and \hat{F}_v tends to the Dirac delta measure supported at 0.

The explicit formula

Let M be an irreducible rank n motive with Hodge vector h, signature $\sigma=0$, and conductor N. Assume its L-function $L(s,M)=\sum_n a_n n^{-s}$ satisfies the Riemann hypothesis, and let γ run over the ordinates of the zeros, including multiplicities. Define c_{p^e} by

$$-\frac{L'(s,M)}{L(s,M)} = \sum_{p^e} \frac{c_{p^e} \log(p)}{p^{es}}.$$

so that $c_p = a_p$. Then

$$\int_{-\infty}^{\infty} \hat{F}_{
u}(t) \log \left(rac{ extstyle N}{(4\pi)^n} \prod_{j} ||j+it||^{h^j}
ight) dt =
onumber \ 2\pi \sum_{\gamma} \hat{F}_{
u}(\gamma) + \sum_{oldsymbol{p}^e} \operatorname{Re}(oldsymbol{c}_{oldsymbol{p}^e}) rac{\log(oldsymbol{p})}{oldsymbol{p}^{e/2}} F_{
u}\left(rac{\log oldsymbol{p}}{2\pi}
ight).$$

Clearly as $v \to \infty$, the left side tends to $\log(A)$. So when A < 1 and v is sufficiently large, the left side is **negative**.

Some of the finiteness conjecture from positivity

In the explicit formula,

$$\int_{-\infty}^{\infty} \hat{F}_{\nu}(t) \log \left(\frac{N}{(4\pi)^n} \prod_{j} ||j+it||^{h^j} \right) dt =$$

$$2\pi \sum_{\gamma} \hat{F}_{\nu}(\gamma) + \sum_{p^e} \operatorname{Re}(c_{p^e}) \frac{\log(p)}{p^{e/2}} F_{\nu}\left(\frac{\log p}{2\pi}\right),$$

the spectral sum is clearly **positive** for all v.

There are many irreducible M for which one has universally $c_{p^e} \geq -1$, namely $M = M_1 \otimes \overline{M}_1 - \mathbb{C}$ for any irreducible non-self-conjugate motive M_1 . For these M, the prime power sum is **bounded below**.

[Chenevier] recently proved under GRH that $\alpha \geq 1$ for all but finitely many of these M.

?!A scaling distinction gives sufficient positivity?!

For motives with a fixed $\alpha < 1$, the three parts scale differently for fixed v under the replacement $(n, h, N) \mapsto (kn, kh, N^k)$:

$$\int_{-\infty}^{\infty} \hat{F}_{\nu}(t) \log \left(\frac{N}{(4\pi)^n} \prod_{j} ||j+it||^{h^j} \right) dt =$$

$$2\pi \sum_{j} \hat{F}_{\nu}(\gamma) + \sum_{p^e} \operatorname{Re}(c_{p^e}) \frac{\log(p)}{p^{e/2}} F_{\nu}\left(\frac{\log p}{2\pi} \right).$$

- The negative analytic conductor term decreases linearly with k
- The positive spectral sum should increase linearly with k: $(2\pi)^{-1} \log \left(\frac{N}{(4\pi)^n} \prod_j ||j+it||^{h^j} \right)$ is the expected density of γ .
- But the mixed-sign prime-power sum should behave independently of k, as the Sato-Tate conjecture says that the c_p always have variance 1. So one always has a statistical version of the key condition $c_{p^e} \geq -1$ used by Chenevier.

Selected References

Farrell Brumley. Effective Multiplicity one on GL_n and narrow zero-free regions for Rankin-Selberg L-functions. Amer. J. Math 128 (2006) 1455-1474 (see Cor. 9).

Farrell Brumley and Djordje Milicevic. *Counting cusp forms by analytic conductor.* arXiv 1805.00633 (2018)

Jonas Bergström, Carel Faber, and Gerard van der Geer. Siegel modular forms of degree 2 and 3. Online database at http://smf.compositio.nl, based on many papers.

Gaëtan Chenevier. *An automorphic generalization of the Hermite-Minkowski theorem*, arXiv 1802.05066 (2018).

Tim Dokchitser. *Computing special values of motivic L-functions*. Experiment. Math. 13 (2004), no. 2, 137–149 (see also *Magma* implementation)

Farshid Hajir and Christian Maire. *Tamely ramified towers and discriminant bounds for number fields. II.* J. Symbolic Comput. 33 (2002), no. 4, 415–423.

Tomoyoshi Ibukiyama and Hidetaka Kitayama. *Dimension formulas of paramodular forms of squarefree level and comparison with inner twist.* J. Math. Soc. Japan 69 (2017), no. 2, 597-671.

- Henryk Iwaniec and Peter Sarnak. *Perspectives on the analytic theory of L-functions*, (2000). (see Equation 31)
- John W. Jones and DPR. A database of number fields, LMS J. Comput. Math. 17 (2014), no 1, 595-618 (see Figure 9.1)
- John W. Jones and DPR. *Artin L-functions of small conductor*. Res. Number Theory 3 (2017) Art. 16, 33 pages.
- The LMFDB Collaboration. The L-functions and modular forms database. www.lmfdb.org
- Jean-François Mestre. Formules explicites et minorations de conducteurs de variétés algébriques. Compositio Math. 58 (1986), no. 2, 209-232.
- DPR, Fernando Rodriguez Villegas, and Mark Watkins. Hypergeometric motives, in progress (see various talks and the Magma implementation).
- Andrew Sutherland. A database of nonhyperelliptic genus 3 curves over $\mathbb Q$ of small discriminant, arXiv 1806.06289 (2018).
- Oliver Taïbi. Dimensions of spaces of level one automorphic forms for split classical groups using the trace formula. Ann. Sci. Éc. Norm. Supér. (4) 50 (2017), no. 2, 269-344.