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i) ) oty B -("xz ﬁz)
(321 522)7(/}[ _flp)+I,ﬁz — oy,
for oy, a, € R, Bi, B, eC.
(iii) The Lie algebra su(2) of skew-Hermitian matrices of trace 0,

X:('_E‘ _{i) xeR, feC

is obviously a real form of sl(2, C). Since the Killing form of a real form is
in general obtained by restriction we see from (4) §3-1 that

B(X, X) =4 Trace (XX) = —8(z2 + |?)

$0 su(2) is a compact real form of sl(2, C).
The following two results are of fundamental importance.

Theorem 2.2. Every semisimple Lie algebra g over C contains a Cartan sub-
algebra b.

Theorem 2.3. Every semisimple Lie algebra g over C has a real form u which is
compact.

Ordinarily Theorem 2.2 is proved first using theorems on solvable Lie
algebras (Lie’s theorem that a solvable Lie algebra of complex matrices has
a common eigenvector). The simultaneous diagonalization of the endomor-
phisms ad b leads to a detailed structure theory for g by which the compact
real form u is constructed. The details are as follows:

Assume b is a Cartan subalgebra of g. Given a linear form « # 0 on
b let

9" ={Xeglad H(X) = a(H)X for all H € b}

This linear form « is called a roor if g* #{0}. Let A denote the set of all
roots. Then

g=h+3> ¢ (direct sum) (1)

xe A
and it can be proved that
dim g* = 1 (xe A) 2)
Let b* denote the subset (real-linear subspace) of b, where all the roots have

real values. Then for a suitable choice of vectors X, € g* the set

u=i*+ Y} R(X,— X_)+ ¥ R(i(X.+ X_) 3)
axeA

aeA

is a compact real form of g.

f, ~ /{‘f
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Example

Consider again the Lie algebra g = sl(n, C) and its Cartan subalgebra
b of diagonal matrices of trace 0. Let again E;; denote the matrix

(dui 5bj)1 <a,bsn
and for each H el let ¢,(H) denote the ith diagonal element in H. Then
[H, E;] = (e(H) — e,(H))E;

for all H €} so the linear form «;(H) = e,(H) — e,(H) is a root for i # j and
by (1) this does give all the roots. The space b* consists of all real diagonal
matrices of trace 0. Let us put X, = E;;(i #j). Then it is easily seen that
the space (3) is the set su(n) of all skew-Hermitian #» x n matrices, which is
indeed a compact real form of sl (n, C) (¢f. example above).

It is tempting to try to prove Theorem 2.3 directly, because then
Theorem 2.2 would be an immediate corollary. In fact, for each X € u,
ad X can be diagonalized, so if t = u is any maximal Abelian subalgebra, the
space h = t + it is a Cartan subalgebra of g.

A direct and elementary proof of Theorem 2.3 (without the use of
Theorem 2.2) does not seem to be available. However, Cartan has proposed
an idea for this purpose (J. Math. Pures Appl. 8 (1929), p. 23), which I shall
describe here.

Since the Killing form of g is nondegenerate, there exists a basis ey, ...,
e, of g such that

n n
B(Z,Z)= -} z? if L=y 2.0 (4)
1

1

Let the structural constants ¢;;, € C be determined by

n
Le;s i’j] - Z Cijk €k
1

Then
B(Z,Z)=Tr(ad Zad 2) =} (Z ik (.'j,,k):-,:j
iL,J \h, k
so by (4)
fzk Cikh Cjnke = _‘Sfj (5)
Also, '
B([X;, X;], X,) + B(X,;,[X;, X,])=0
SO
Cijk + ;=0
and by (5)

Z Cl%lk bl L

ivh k
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The space

is a real form of g if and only if all the ¢ are real.
Consider now the set § of all bases (e;, ..., ¢,) of g such that (4) holds.
Consider the function f on § given by

s 2
Teil ey = Z ]C.‘M
i, j, k
Then we have seen that
& 2
Z J‘Ijkl 2'
iy Ty

and the equality sign holds if and only if all the ¢; are real, that is, if and only
if

:AZ f’fjk:rr (6)

iy tik

i

Z Cii
sibs

k

n
=Y " Re
i

1

is a real form. In this case it is a compact real form in view of (4) and
Prop. 2.1.

Thus Theorem 2.3 follows if one can prove: (I) The function f on § has
a minimum value; and (I1) this minimum value is attained at a pointiley i
e,’) € § for which the structural constants are real. Note that (II) is equiv-
alent to (1I'): The minimum of £ is n.

3-3 Cartan Decompositions

We now go back to considering a semisimple Lie algebra g over R and 1
as usual we denote by B the Killing form of g. There are of course many 5\
possible ways to find a direct vector space decomposition g = g + g~ such
that B is positive definite on g* and negative definite on g~. However, we

should like to find a decomposition which is directly related to the Lie
algebra structure of g.

Definition. A Cartan decomposition of q is a direct decomposition g = + p
such that (i) B<0onf, B> 0on p;and (ii) The mapping@: T+ X->T— X
(T'ef, Xep)is an automorphism of g.

In this case 0 is called a Cartan involution of g and the positive definite
bilinear form (X, ¥)— — B(X, 0Y) is denoted by B,. We shall now establish
the existence of Cartan decompositions, using compact real forms for semi-
simple Lie algebras over C.
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Theorem 3.1. Suppose 0 is a Cartan involution of a semisimple Lie algebra g
over R and ¢ an arbitrary involutive automorphism of g. There then exists
an automorphism ¢ of g such that the Cartan involution ¢f¢~' commutes
with .

ProoF. The product N = a0 is an automorphism of g and if X, Yeg,

—B,(NX, Y)= B(NX, 6Y) = B(X, N"'0Y) = B(X, 6NY)
SO
By(NX, Y) = B(X, NY)

that is, N is symmetric with respect to the positive definite bilinear form B, .
Let X,, ..., X, be a basis of g diagonalizing N. Then P = N? has a positive
diagonal, say, with elements 4, ..., 4,. Take P' (r € R) with diagonal ele-
ments 4,', ..., 4," and define the structural constants c;;, by

[X;, Xj] =AZ Ciijk
=y

Since P is an automorphism, we conclude
AidjCip = AyCipn
which implies
AA e = Ao (teR)
so P'is an automorphism. Put @, = P'OP~". Since ONO™' = N™!, we have

OGP0~ ' = P~', that is 6P = P '0. In matrix terms (using still the basis
X, ..., X,) this means (since 0 is symmetric with respect to By)
0,4, =476,
SO
Oij/\..jr o l{i_'()u
thatis,.0P'971 = P % Herce,
o0, = oP'OP™' = g0P % = NP™*
0,0 =(08) ! = P*N~1=N"'p*

so it suffices to put ¢ = PV* (=va0). (cf. [3], p. 100, [31], p. 156, [47],
p. 884). The following result is given in Mostow [54].

Corollary 3.2. Let g be a semisimple Lie algebra over R, g.=g +1ig its
complexification, u any compact real form of g., ¢ and 7 the conjugations of
g, with respect to g and u, respectively. Then there exists an automorphism ¢
of g, such that ¢ - u is invariant under o.
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Proor. Let g.® denote the Lie algebra g, considered as a Lie algebra over
R, B® the Killing form. Itisnot hard to show that BR(X, ¥) = 2Re (B(X, Y))
if B, is the Killing form of g.. Thus ¢ and t are Cartan involutions of g.®
and the corollary follows (note that since o7 is a (complex) automorphism of
g., ¢ is one as well).

Corollary 3.3. Each semisimple Lie algebra g over R has Cartan decomposi-
tions and any two such are conjugate under an automorphism of g.

ProOF. Let g, denote the complexification of g, ¢ the corresponding conju-
gation, and u a compact real form of g, invariant under ¢ (Theorem 2.3 and
Cor. 3.2). Then put f=gnu, p=gn . Then B<0onf A>0on
p,andsince 0 : T+ X - T — X (T ef, X € p)is an automorphism, B (I, p) = 0.
It follows that g =T + p is a Cartan decomposition.

Consider now two Cartan decompositions,

a=1I +p, g=H0+p,

Then w; =%, 4+ ip; and u, =1, + ip, are compact real forms of g.. Let
7; and 1, denote the corresponding conjugations. By Cor. 3.2 there exists
an automorphism ¢ of g. such that ¢ -u, is invariant under 7,. Thus
@ 1, is equal to the direct sum of its intersections with u, and iu,. Now
B>0oniuand B<Oon¢-u,. Henceiu; n¢-u,=1{0}sou, =¢-u,.
But 7, and 1, both leave g invariant and ¢ can (according to the proof of
Theorem 3.1) be taken as a power of 1,1, so it also leaves g invariant. Thus
¢(g N uy) =g N uy so ¢ gives the desired automorphism of g.

Examples

Let g = sl (n, R), the Lie algebra of the group SL(n, R). The group
§0(n) of orthogonal matrices is a closed subgroup, hence a Lie subgroup,
and by (8) §2-2, its Lie algebra, denoted so(n), consists of those matrices
X e sl(n, R) for which exp tX € SO(n) for all te R, But

exp tX € SO(n)<>exp tX exp t('X) = 1 det (exptX) =1
50 I
so(n)={X esl(n,R)| X +'X =0}

the set of skew-symmetric n x n matrices (which are automatically of trace 0).
The mapping 0: X — —'X is an automorphism of sl(n, R) and 0* = 1.
Since B(X, X) = 2n Tr (X X), B(X, 0X) < 0so 0 is a Cartan involution and

sl(n, R) = so(n) + p (1)

where p is the set of n x n symmetric matrices of trace 0, is the corresponding
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Cartan decomposition. Now it is known that every positive definite matrix
can be written uniquely e* (X = symmetric) and every nonsingular matrix g
can be written uniquely g = op (0 = orthogonal, p = positive definite). Thus
we have a global analog of (1),

SL(n, R) = SO(n)P (2)

where P = exp p, the set of positive definite matrices of determinant 1.
We shall now state a generalization of (2).

Theorem 3.4. Let G be a connected semisimple Lie group with Lie algebra g.
Let g = [ + p be a Cartan decomposition (I the algebra), K the analytic sub-
group of G with Lie algebra f. Then the mapping

(X, k) — (exp X)k

is a diffeomorphism of p x K onto G.

In Theorem 3.4, the center 3 of g is {0}, (immediate from the definition)
so the center Z of G is discrete. One can prove Z < K and that K is compact
if and only if Z is finite. In this case K is a maximal compact subgroup of G,
and every compact subgroup is conjugate to a subgroup of K.

Proposition 3.5. In terms of the notation of Theorem 3.4, the mapping
(exp X)k —exp (—X)k (3)

is an automorphism of G.

In fact let G be the universal covering group of G. Since all simply
connected Lie groups with the same Lie algebra are isomorphic (¢f. (v) §2-2)
the automorphism 0 of g induces an automorphism @ of G such that df, = 0.
By the remarks above, the center Z of G is contained in the analytic subgroup
R of G corresponding to I. But G = G/N, where N < Z so 0 induces an
automorphism of G which is (3).

Consider now the set G/K of left cosets gK (g € G). This set has a
unique manifold structure such that the map X — (exp X)K is a diffeomor-
phism of p onto G/K. (More generally if K is a closed subgroup of a Lie
group G, G/K is a manifold in a natural way.) The group G operates on
G/K: each ge G gives rise to a diffeomorphism t(g) : xK — gxK of G/K.
Since Z = K we have G/K = (G/Z)/(K/Z) and G/Z = Int (g) so the space G/K is
independent of the choice of the Lie group G with Lie algebra g. 1In view of
Cor. 3.3 the different possibilities for K are all conjugate so the space G/K is
in a canonical way associated with g. Let o denote the point {K} in G/K
(the origin) and (G/K), the tangent space. The mapping 7 :g— gK has a
differential dr mapping g onto (G/K), with a kernel which contains f. By
reasons of dimensionality, we see therefore that the mapping

dn:p—(G/K), (4)
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is an isomorphism and if k € K we have for Xep,re R
m(exp Ad (k)tX) = n(k exp tX k™') = 1(k)n(exp tX)
S0
dr (Ad (k)X) = dt(k) dn(X). (3)

Now the form B is > 0 on p so by (4) and (5) we obtain a positive definite
quadratic form Q, on (G/K), invariant under dt(k) (ke K). If pe G/K is
arbitrary there exists a g € G such that p = gK and di(g) : (GIK), = (G/K), is
an isomorphism giving rise to a quadratic form Q, on (G/K),. If g e(;
satisfies 'K = gK, dr(g’) gives the same quadratic form 0, on (GJK) because
of the K-invariance of Q,. Thus we have a Riemannian structure Q on G/K

induced by B.

Proposition 3.6. The manifold G/K with the Riemannian structure induced
by B is a symmetric space.

ProOOF. Let 0 denote the automorphism (3) and &5 rthe mapping gK —
0(g)K of G/K onto itself. Then s, is a diffeomorphism and s,2 = 1, (ds,), =
—1. To see that s, is an isometry let p = gK (g € G) and X e (G;l\) Then
the vector X, = dt(g~") X belongs to (G/K),. Butif xeG we have

So(gxK) = 0(gx)K = 1(0(9))(5,(xK))
0 5,5 %(g) = 2(0(g)) - s, and therefore
Q(dsy(X), ds,(X)) = Q(ds, o de(g)(X,), ds, = de(g)(X,)
= Q(dx(0(g)) - ds,(X,), dx(0(g)) - ds,(X,))
= (X, Y) = 0(X, )

Thus s, is an isometry and since (ds,), = — I, it reverses the geodesics through
0. The geodesic symmetry with respect to p = gK is given by

5, =1(g)os,0t(g™")

which is an isometry, so the proposition follows.

Proposition 3.7. The geodesics through the origin in G/K are the curves
t—exptX-o(Xep).

Although the proof is not difficult we shall omit it. Instead let us take
a second look at the example G = SU(1, 1). The decomposition

(5 -)=(c &)+ 0) ®
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gives a Cartan decomposition of su(l, 1). We have also if

0
%s=(3 o)
exp (1X,) = cosh (1 B + - sinh ()X,
SO
exp (1Xy) - o = (tanh 1 |f]) 2
, A

verifying the proposition in this case.

3-4 Discussion of Symmetric Spaces

We shall now summarize some basic results in the general theory of
symmetric spaces and indicate how the coset spaces G/K from the last section
fit into this general theory.

Let M be a symmetric space as defined in Ch. 1. The group /(M) of
all isometries of M is transitive on M. (In fact, if p, ¢ € M they can be joined
by a broken geodesic and the product of the symmetries in the midpoints of
these geodesics gives the desired isometry.) One can now parametrize the
group /(M) in a natural way turning it into a Lie group. The identity compo-
nent G = I,(M) is still transitive on M. Fix a point o € M and let K be the
group of elements in G which leaves o fixed. Then the mapping gK —g- o
is a diffeomorphism of G/K onto M. If s, is the geodesic symmetry with
respect to o the mapping o : g — s, gs, is an involutive automorphism of G
and (K,), =« K< K,, where K, is the set of fixed points of ¢ and (K,), its
identity component. In order to verify these inclusions let k € K. Then the
maps k and s, ks, are isometries leaving o fixed and inducing the same linear
map of the tangent space M,. Considering the geodesics starting at o we see
that k and s,ks, must coincide so K< K,. On the other hand, suppose
X in the Lie algebra g of G is fixed under the differential (dg),. Then s,
exp tX s, = exp tX for all € R, so applying both sides to the point 0 we see
that exp X - o is fixed under 5s,. But o is an isolated fixed point of s, so
exp tX - o = o for all sufficiently small 7. But then X € 1, the Lie algebra of K|
whence (K,), € K. Note finally that the group Ad;(K) is compact, being a
continuous image of the compact group K.

Conversely, let G be a connected Lie group, K a closed subgroup,
Adg (K)compact. Suppose there exists an involutive automorphism ¢ of G
such that (K,), = K= K,. Then there exists a Riemannian structure on G/K
invariant under G, and for every such Riemannian structure, G/K is a sym-
metric space. i
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Consider now M as above and G = I,(M); M is said to be of the non-
compact type if G.is noncompact, semisimple without a compact normal
subgroup # {e}, and of the compact type if G is compact and semisimple.

Proposition 4.1. Let M be a symmetric space, which is simply connected.
Then M is a product

M=M,x M, x M,

where M, is a Euclidean space and M_ and M, are symmetric spaces of the
compact type and the noncompact type, respectively.

Proposition 4.2. A symmetric space of the compact type (noncompact type)
has sectional curvature everywhere > 0 (respectively < 0).

There is a very interesting duality between the compact type and the
noncompact type. Let M = G/K be a symmetric space of the noncompact
type where G = I,(M). Let g and f denote the Lie algebras of G and K,
respectively. Let g =+ p be the corresponding Cartan decomposition of
g and g, = g + ig the complexification of g. Since [p, p] = I, the subspace
u =T+ ip of g, is actually a Lie algebra and another real form of g,. Since
the Killing form of g.is <0 on f, and >0 on p, it is <0 on u, so u is a
compact real form. If U is a connected Lie group with Lie algebra u and K’
is the connected Lie subgroup with Lie algebra {, the space U/K' is a sym-
metric space of the compact type. This process can be reversed, that is,
G/K can be constructed with U/K as a starting point.

Examples
(i) Consider the symmetric space G/K, where G = SU(1, 1) and K the
subgroup of matrices ((!) ?,1), [t| =1. In this case the Cartan decomposi-

tion (6) in §3-3 shows that u is the set of all matrices of the form

80 u = su(2), the algebra of all 2 x 2 skew symmetric matrices of trace 0.
For the space U/K’ we can therefore take the space SU(2)/K. [SU(n) denotes
the special unitary group.] It is not hard to show that when the unit sphere
52 is projected stereographically onto the complex plane the rotations of the
sphere correspond to the transformations

az+ b

2 2
Z—— al*+ |b|* =1
—)—bz+ﬁ lal 1b]

that is, to the members of SU(2). In this manner SU(2) acts transitively on
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S? and the subgroup leaving the point z =0 fixed is K. Thus U/K = §? so
the non-Euclidean disk D (Ch. 1) and the sphere $? correspond under the
general duality indicated. The formulas g =f+p and u=1f+ ip can be
regarded as an explanation of the phenomenon that the triangle formulas in
non-Euclidean trigonometry are obtained from the triangle formulas in
spherical trigonometry by replacing the sides a, b, ¢ by ia, ib, ic and using the
relations sinh (ia) = i sina, cosh (ia) = cos a. Lobatschevsky did indeed
speak of his non-Euclidean trigonometry as spherical trigonometry on a
sphere of imaginary radius.

(i) Let U be a connected, compact Lie group with Lie algebra u. If
Q is any positive definite quadratic form on u, we obtain by left translations
such quadratic forms on each tangent space to U and therefore a Riemannian
metric on U which is invariant under all left translations. If Q is chosen
invariant under Ad (U) then the Riemannian metric is invariant under right
translations as well. One can prove that the geodesics through e are the
one-parameter subgroups and the symmetry s,:x —x~' is an isometry so
U is a symmetric space. If U* denotes the diagonal in U x U one has a
diffeomorphism (uy, u,)U* - w,u; ' of (U x U)/U* onto U. The group
involution (uy, u,) = (i, , u;) of U x U leaves U* pointwise fixed and induces
the symmetry s, of U, via the diffeomorphism indicated.

If U is in addition semisimple, the symmetric space (U x U)/U* has in
the above sense a noncompact dual G/U’, where U’ has Lie algebra u and the
Lie algebra g of G is a certain real form of the complexification of the product
algebra u x u. One can prove that as u runs through the compact semisimple
Lie algebras, g runs through the complex semisimple Lie algebras (regarded
as Lie algebras over R).

3-5 The Iwasawa Decomposition

Let g be a semisimple Lie algebra, g = f + p a Cartan decomposition.
The operators ad X (X e p) are all symmetric with respect to the positive
definite form B; and each of them can therefore be diagonalized, and a com-
mutative family can be simultaneously diagonalized. Hence let a denote a
maximal Abelian subspace of p and if « is a real-valued linear function on a
put

g, = {X eg|[H, X] = a(H)X for all H € a} (1)

If g, # {0}, @ #0, a is called a restricted root. Clearly, if £ denotes the set
of restricted roots,

g=>3 8. +9, ()]

ae X

The dimension dim (g,) is called the multiplicity of «. Let a’ denote the set
of elements in a, where all roots are # 0. The connected components of a’
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are intersections of half spaces; hence they are convex open sets. They are
called Weyl chambers. Fix any Weyl chamber a* and call a restricted root
positive if its values on a™ are positive.

Let £* denote the set of positive restricted roots and put

1 ;

n=3% g, p== Y (dmg)x (3)
a>0 2 a>0

Then n is a nilpotent Lie algebra. The following result is called the Iwasawa

decomposition.

Theorem 5.1. g =t + a + n (direct vector space sum). Let G be any connec-
ted Lie group with Lie algebra g, and let K, 4, N denote the analytic subgroups
corresponding to f, a, and n, respectively. Then the mapping

(k. a, n) — kan

is a diffeomorphism of K x 4 x N onto G.
Rather than give the proof we consider some examples. Consider the
Cartan decomposition (1) §3-3,

sl(n, R) = so(n) + p 4)

The diagonal matrices of trace 0 form a maximal Abelian subspace a of p
and as in §3-2 we find that the corresponding restricted roots are the linear
forms o;; (H) = e, (H) — €;(H1) (H € a), e;(H) being the ith diagonal element
in H. Hence a’ consists of those H for which all e;(H ) are different. The set

{Heale(H) > e;(H) > > e,(H)} (5)

is clearly a connected component of a’ and we take this as the Weyl chamber
a*. Then Z* consists of the roots ;; (i < j) and n is easily found to be the
set of upper triangular matrices with 0 in the diagonal. An Iwasawa decom-
position of the group SL(n, R) is therefore g = oan, where o0 € SO(n), a is a
diagonal matrix of determinant 1 and diagonal > 0, and » is an upper tri-
angular matrix with all diagonal elements 1.

For another example consider the Cartan decomposition of su(l, 1)
given by

- TR N 0 0y
(5 )=(o i)+ (5 o)

where x e R, ye C. As the space a we can take
: S F
i o)
iy ix Y\l _(F—y =2ix
kol A3 minddi \2in 0 pos

and since
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we see that the decomposition (2) equals
P =i i i 0 1
= N
o e
and the restricted roots are o« and —«, where
el
:z(] 0’) =2
Thus a’ consists of the nonzero elements in a and for a™ we take for example
04
R+
1)
"= R(t i r)
0=
and N = exp n equals the group of matrices

(1+m —r'n) eSUW, 1)

in I —in

SO

The Iwasawa decomposition of a semisimple Lie algebra g involves
some free choices, namely, that of , a, and a*. We have seen that f is unique
up to conjugacy, and now we shall see that a and a* are uniquely determined
up to conjugacy by elements of K. We begin with a result which goes back
to Weyl and Cartan with a proof given by Hunt [41].

Theorem 5.2. Let a and o' be two maximal Abelian subspaces of p. Then
there exists an element k € K such that Ad ;(k) a=a’. Also

p=J)Ad (k) a
ke K

Proo¥r. Select H € a such that its centralizer in p equals a. (It suffices to
take H such that «(H) # 0 for all restricted roots «.) Put K* = Ad 4(K) and
let X € p be arbitrary. The function

k*—B(H, k*-X) (K*eK®

has a minimum, say, for k* = k,. If Tet we have therefore
d
— B(H, Ad (exp tT)k, - X) =
dt =0

SO

B(H,[T,k,-X])=0 Tef
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Thus
B(E.[H k,  X])=0 for all Tet

and since [H, ko+ X]eT we deduce [H, k,- X]=0 so by the choice of
H ko Xea.

In particular, there exists a k, € K such that H € Ad (k,)a’. Thus each
element in Ad (k;)a’ commutes with H so Ad (k,)a’ = a. This proves the

theorem.

3-6 The Weyl Group

Let g be a semisimple Lie algebra, g = f + p a Cartan decomposition, G
any connected Lie group with Lie algebra g, K the analytic subgroup with
Lie algebra I = g. Consider as before a maximal Abelian subspace a < p
and let M" and M denote, respectively, the normalizer and centralizer of
a in K; that is,

M’ = {ke K|Ad (k)a < a}
M = {k e K|Ad (k)H = H for all H € a}

Clearly M is a normal subgroup of M’ and the factor group M'/M can
obviously be viewed as a group of linear transformations of a. It is called
the Weyl group and denoted W. In view of Theorem 5.2 it is (up to isomor-
phism) independent of the choice of a,

Now M and M’ are Lie subgroups of K and their Lie algebras m and
m’ are given by (¢f. (8) §2-2, (7) §3-1),

m={Tel|[H, T] =0 forall Hea}
m’' = {Tet|[H, T] < aforall Hea)
Note, however, that if Te m’ then for H € a,
B([H,T],[H, T])= —B([H,[H,T]], T)=0

so Tem, whence m =m’. Thus M'/M is a discrete group and being also

compact, must be finite.
If 4 is a complex-valued linear function on a let H, denote the vector

in a + ia determined by B(H, H,) = A(H) for all Hea. For aeX let 5.
denote the symmetry in the hyperplane a(H) = 0:

Ll i SR (1)
a(H) ° e

s(H)=H -2
(Remember p and hence a have a Euclidean metric given by B.)

Theorem 6.1. s, e W for each a € X.
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PrROOF. Pick Z,eg such that [H, Z,] = a(H)Z,. Decomposing Z, =
T,+ X, (T,ef, X,ep) the relations [t, p]<yp, [p, pl=t imply that
(ad H)*T,=T,. Multiplying Z, by a real factor if necessary we may assume
B(T,,T,) = —1. Now if a(H{) =0 we have [H, T,] =0 so

Ad (exp IT)H = ¢ T (H) = H if a(H) =0
A simple computation shows that

P (Inlz)Ha o _Ha

provided 1,(x(H,))'/? =n. Thus s, coincides with the restriction of
Ad (exp t,T,) to a.

If s € Wand a e Z it is clear from the definitions that the linear function
o : H—a(s 'H) on a is a restricted root. Consequently, s permutes the
Weyl chambers. Now let C; and C, be two Weyl chambers and let H, € C,,
H, e C,. If the segment -FITI_{; intersects a hyperplane «(H) =0 (x e X)
then clearly the norm | | in a satisfies

|Hy — Hy| > |Hy — 5, H,| (2)

As s runs through the finite group W the function |H, — sH,| takes a mini-
mum, say for s =s,. By (2) the segment from H, to s, H, intersects no
hyperplane 2(H) =0 (x € ) so H, and s, H, lie in the same Weyl chamber
and thus C; =s,C,. This proves:

Corollary 6.2. Any two Weyl chambers in a are conjugate under some
element of Ad ;(K) which leaves a invariant.

For orientation we state without proof a somewhat deeper result on
the Weyl group.

Theorem 6.3. The Weyl group W is generated by the symmetries s, (x € )
and it is simply transitive on the set of Weyl chambers in a.

3.7 Boundary and Polar Coordinates on the Symmetric
Space G/K

For the non-Euclidean disk D we have a natural notion of boundary,
namely, the unit circle |z| = 1. However, this boundary notion refers to
the position of D in R*. In order to make this definition more intrinsic we
can define the boundary of D as the set of all rays (half-lines) from the origin
in D. This motivates the following definition of the boundary of the sym-
metric space G/K. First, we recall the isomorphism dr : p - (G/K), from §3-3,
which permits us to think of p as the tangent space to G/K at 0. Then we
understand by a Weyl chamber in p a Weyl chamber in some maximal Abelian
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subspace pf p. The boundary of G/K is now defined as the set of all Weyl
chambers in p. Now fix a = p and a™ a Weyl chamber in a. Then accord-
ing to Theorem 5.2 and Cor. 6.2, Ad (k)a™ (k € K) runs through the boundary
and if Ad (k)a™ = a™*, then ke M’ so Ad (k) on e is a member of the Weyl
group. Using Theorem 6.3 we see that k e M. Thus the mapping

kM — Ad (k)a*

identifies K/M with the boundary of G/K. In view of the Iwasawa decompo-
sition G = KAN and the fact that M normalizes AN we have a diffeomorphism

kM — kMAN

of K/M onto G/MAN. In his paper [19], Furstenberg defines a boundary
of G to be a compact coset space G/H of G such that for each probability
measure u on G/H there exists a sequence (g,) = G such that the transformed
measures g, - p converge weakly to the delta function on G/H. It was proved
by Furstenberg [19] and Moore [53] that a * maximal* boundary of this sort
is given by G/ M AN which, as we saw, coincides with the geometrically defined
boundary above. The relation K/M = G/MAN shows in particular that G
acts as a transformation group on the boundary; in an explicit manner

g(kM) = k(gk)M

if for x € G, k(x) € K is given by x € k(x)AN.
Now let A" =expa*. Then we have the following * polar coordinate
representation’ of the symmetric space G/X.

Theorem 7.1. The mapping (kM, a)— kaK is a diffeomorphism of K/M
x A" onto an open submanifold of G/K whose complement in G/K has lower
dimension.

Without spelling out the proof in detail we remark that it is a fairly
direct consequence of Theorems 3.4, 5.2, and 6.3.

CHAPTER 4: FUNCTIONS ON SYMMETRIC SPACES

4-1 Invariant Differential Operators

Let M be a manifold and D a differential operator on M, that is, a
linear mapping of C,*(M) into itself which in an arbitrary coordinate system
is expressed by partial derivatives in the coordinates. Let ¢: M- M be a
diffeomorphism, and if f is a function on M put f*=f. ¢~ and let D*
denote the operator

Df = (Df*"'y?
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Then D? is another differential operator, and we say D is incariant under ¢
if D% =D,

Examples

Let us find all differential operators D on R" which are invariant under
all rigid motions. Since D is invariant under all translations it has constant
coeflicients so D = P(¢/dx,, ..., 0/dx,), where P is a polynomial. But D is
also invariant under all rotations around 0 so P is rotation-invariant, and
since the rotations are transitive on each sphere |x| = r, we find P is constant
on each such sphere so P(x,, ..., x,) is a function of x;? + -+ + x,2, hence
a polynomial in x,% + -+ 4+ x,%.

Proposition 1.1. The differential operators on R" which are invariant under
all isometries are the operators Za, A" (a, € C), where A is the Laplacian.

This result holds also if R" is replaced by a symmetric space of rank |
(and A by the Laplace-Beltrami operator) and also if we replace the isometries
of R" by the inhomogeneous Lorentz group, in which case the Laplacian is
replaced (¢f. [29], p. 271) by the operator

A2 - A2
o° 0* ik
VR N A T e e g
0x; ax, ox,

Now if M is a Riemannian manifold the Laplace-Beltrami operator
A on M is invariant under all isometries of M. The examples above have a
high degree of mobility, that is, a large group of isometries, so essentially
only A is invariant. The following interesting generalization is essentially
a combination of results of Harish-Chandra and Chevalley (see [31] p. 432).
It expresses in a precise way how higher rank of the space, that is, lower
degree of mobility, leads to more invariant operators.

Theorem 1.2. Let G/K be a symmetric space of rank /. Then the algebra of
all G-invariant differential operators on G/K is a commutative algebra with
I algebraically independent generators.

It will now be convenient to assume that G has finite center so K is
compact. As pointed out in §3-3, this is no restriction on the symmetric
space G/K. Let L(g) and R(g) denote left and right translations on G by
the group element g and let D(G) denote the set of all differential operators
on G invariant under all L(g). If X e g the operator

X : F(g)— {(d/d)F(g exp tX)},_0

belongs to D(G). Let Dy(G) denote the set of elements in D(G) which are
invariant under all R(k) (ke K). For D e D(G) we put

D' = J DR® dk (1)

K
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where dk denotes the normalized Haar measure on K. The integral makes
sense since all the operators D*® (k € K)) belong to a fixed finite-dimensional
vector space, so D" is a differential operator on G. Clearly D% e Dg(G),
and we have

(D*F)(e) = (DF)(e) (2)

for every Fe C®(G) which is bi-invariant under K (that is, F(k,gk,) =
F(g)ngG-, /\’11 szK). In fac!,

Il

(DbF)(P) J.K(DR(HF)((_,) dk = J‘K((DFRM* l))R{k))(g) dk

II

[ (DF)(k™") dk = [ (DFY“®(e) dk
) J

il J (DF)(e) dk = (DF)(e)

Let 7 denote the natural projection g — gK of G onto G/K; if fis a
function on G/K we put f = f- n. Then the mapping f — f'is an isomorphism
of C*(G/K) onto the space Cx™(G) of functions Fe C*(G) satisfying
F(gk) = F(g). Similarly, we would like to “lift’’ the operators in D(G/K)
to the group G. If D e Dy(G) let n(D) denote the operator on C*(G/K)
determined by (n(D)f)~ = Df (fe C*(G/K)). It is easy to see (cf. [31],
p. 390) that the map D — n(D) maps D (G) onto D(G/K).

' As before let t(g) denote the diffeomorphism iK — ghK of G/K onto
itself. We shall often denote the symmetric space G/K by X.

4-2 Harmonic Functions on Symmetric Spaces
In view of Prop. 1.1 it is natural to make the following definition.
Definition. A function ue C*(G/K) is called harmonic if Du=0 for all

D e D(G/K) which annihilate the constants (that is, “without constant
term”’).

Godement made this definition in [22] (even for nonsymmetric spaces
G/K), where he proved also the mean value theorem below.
Theorem 2.1. A function u € C*(G/K) is harmonic if and only if
Lu(gkh 0)dk=u(g-0) forallg,heG (1)
This result is most easily interpreted if rank (G/K)=1. Then the

orbit K - (h - 0) is a sphere and gK - (/ - 0) is a sphere with center g - 0. Thus
the theorem states in this case that u is harmonic if and only if the mean value
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of u over an arbitrary sphere is equal to the value of u in the center (¢/. Gauss’
mean value theorem for harmonic functions in R").

PROOF. Suppose first that u is harmonic and for a fixed g € G consider the
function

Fiho J i(gkh)dk  (heG)
K

Let D be an operator in D(G) annihilating the constants. Then using (2)
in §4-1,

(DF)(e) = (D*F)(e) = {(Dm (J’Ka(gkh) a‘k)}

h=e

which by the left invariance of D? equals
[ (D*a)(gk) dk = (D*a)(g)
YK

(the last relation coming from the right invariance of D%i under K). However,
(D) = (n(D?*)u)”~ = 0 since n(D%) annihilates the constants. Thus(DF)(e) =
0 for all D € D(G) which annihilate the constants.

Since u satisfies the elliptic equation Au =0 and since A has analytic
coefficients, it follows from a theorem of Bernstein (John [44], p. 142) that u
is also analytic. Hence @i and F are also analytic so from Taylor’s formula
(§2-2) we can conclude that F is constant. But the relation F(h) = F(e) is (1).

On the other hand, suppose (1) holds. Let D e D(G/K) annihilate the
constants. Writing (1) as

'- w* ' Nx)dk =u(g-o) geG,xeX

YK
we deduce by applying D to both sides (considered as functions of x),

| (Du)(gk-x) dk =0
K
Taking x = 0 we conclude Du = 0, so u is harmonic.
Now we intend to study bounded harmonic functions « on the symmetric

space G/K and prove a Poisson integral representation formula due to Furs-
tenberg [19]71 Let Q, denote the set of all functions y € L*(G) (the space of

bounded measurable functions on &) such that the supnorm [|[/|| , = sup [y/(h)]
satisfies Y|, < |u|,, and such that heG

u(g-0) = [ W(gkhydk  forallg, heG
*K

According to Godement’s theorem ii € Q,, so Q, is not empty. In addition

X hf.ee{«f?- b9 1'n npfeg
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it is a convex set and closed in the weak* topology of L*(G) (the weakest
topology for which all the maps ¥ — [ f(g)y(g) dg of L*(G) into C are con-
tinuous, / being an integrable function on G and dg being a Haar measure).
Since the unit ball in L*(G) is compact in the weak* topology (see, for exam-
ple, [50]) it follows that Q, is compact. Now if i € O, we have y*? € Q,
for all g € G so G acts as a transformation group of Q, by right translations.
We would like to find a fixed point under the sugbroup M AN, which then
would give us a function on the boundary G/MAN.

Definition. A group has the fixed point property if whenever it acts contin-
uously on a locally convex topological vector space by linear transformations
leaving a compact convex set Q # (f invariant it has a fixed point in the set.

Lemma 2.2. Connected solvable Lie groups have the fixed point property
(cf. [6], p. 113).

PrOOF. Let ¥ be a locally convex topological vector space and G any
Abelian group of linear transformations of V. For each ge G let

o=/ +g+---+g" ") let G denote the set of all products g,, ... g,
(n;eZ”,geG). All elements of G commute. Let Q = V be a nonempty
compact convex subset of V. By convexity, 1Q = Qforhe G. Leth,, ...,

h,eG. Then foreachi,1<i<r,
By O=hhi e By kO hD
whence
hy ...k, Qe (YR Q
i=1
so this intersection is # ¢J. By compactness of Q (expressed by the finite

intersection property), we have

(hQ # &

hedG

Let x an element in this intersection and let g€ G. Then x e g, O, so for a
suitable element y € Q,

1
X =;(_}; +gy+c+ gﬂ—l},)
SO

1 1
gr~xi=={g'y =y}~ (0 +(~0)
n n

for each n. Using again the compactness of Q we conclude g - x = x.
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Now assume G is a connected solvable Lie group of linear transform-

ations of V. Let g be its Lie algebra and let
8=002812"""28x=1{0}  gu-1 #10}

be the sequence of derived algebras, g;,= D'g. Let G=G,>G, > >
G,, = {e} be the corresponding series of analytic subgroups of G. Suppose
now the lemma holds for all connected solvable Lie groups whose series (as
defined above) has length < m. Let A denote the set of points in Q fixed under
all ge G,. By the induction assumption, 4 is # ¢ and, of course, A4 is
convex and compact. Let yeG. If geG, then ygy '€ Gy, so if x€ A,
ygy 'x=x so gy 'x =y 'x. Thus y 'x is fixed by all elements in G,;
being in O, 7 'x belongs to A. Thus G maps A into itself. The closed sub-
space ¥V, of V' generated by A is locally convex and since G, acts trivially on
it, G acts on ¥, as an Abelian group. By the first part of the proof there
exists a v € A4 fixed under allge G. Q.E.D.

Lemma 2.3. The group MAN has the fixed point property.

ProOF. Let MAN act on a locally convex space V and let Q< V be a
compact convex subset # ¢ invariant under MAN. Since AN is solvable
and connected there exists a point ¢ € Q fixed under AN. If dm denotes the
normalized Haar measure on the compact group M the integral

f m-qdm
M

(defined by means of approximating sums) represents, because of the com-
pactness and convexity, a point ¢* in Q. Since m(AN)m ' < AN we have
for se AN
3q° = [ sm - gdm = J. m(m~'sm)q dm = f m-q dm
M M

M

so g* is fixed under MAN.

We recall now that the boundary B of the symmetric space is given by
the coset space representations B = K/M, B= G/MAN. The latter shows
that G acts on B; this action will be denoted (g, &) — g(b) in order to distin-
guish it from the action (g, x) > ¢ x of G on X = G/K, which we have
already used. Let db denote the unique K-invariant measure on B satisfying

fdb:l
B

Theorem 2.4. If u is a bounded harmonic function on X then there exists a
bounded measurable function i on B such that

u(g-0) = [ lg(®)) db )
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On the other hand, if @ is a bounded measurable function on B then u as
defined by (2) is a bounded harmonic function on X.

PROOF. As shown above (Lemma 2.3) the set Q, has a fixed point under
MAN, say u,. Define # on G/MAN by (gMAN) = u,(g). Then by the
definition of Q,, we have

u(g - 0) = J'Ka(gkhMAN) dk

Take i = e and recall that gkMAN is g(b) if b= kM. Then (2) follows
because if F is any continuous function on B,

[ F(b) db = f F(kM) dk
“B K
On the other hand, if @ is a function in L*(B), define u by (2). Then
u(gkh - 0) = f f(gkh(b)) db (3)
B

Now let b = kK’ M AN ; then gkh(b) = gkhk’ MAN = gkkyMAN if hk' = k,a;n,
(Theorem 5.1, Ch. 3). Hence,

fu(gkh'o) dk = f (j fi(gkhk’MAN) dk’) dk
K K K
:f (f 0(gkhk’ MAN) dk) dk’ =f (f fi(gkk,MAN) dk) dk’
K K K K

:J- (f a(gkM AN) dk) dk’ = [a(ngAN) dk = u(g o).
K\"K 35

By Theorem 2.1, u is harmonic, so the theorem is proved.
Now define the Poisson kernel P(x, b) on the product space X x B by
the Jacobian

-1
_dig” () @)
db
As we saw in Ch. 1. (11) §1-3 this does indeed give the classical Poisson

kernel in the case when G/K is the non-Euclidean disk. We shall give the
general formula for (4) later. But at any rate formula (2) can be written

P(g o, b)

u(x) = fHP(x, b)a(b) db (5)

giving a Poisson integral representation of an arbitrary bounded harmonic
function on X, Furstenberg showed in [19], p. 366, that in the weak topology
of measures the values of fi can be regarded as boundary values of u. We
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shall now see that this is also the case, when we approach the boundary in a
more geometric fashion.
Let n denote the subalgebra of g given by

n=3%g,

a<0

where the g, are given by (2) §3-5. Let N denote the corresponding analytic
subgroup of G. As an immediate consequence of the Bruhat lemma (see
Harish-Chandra [26]) we have that the subset NMAN < G is an open subset
whose complement has lower dimension. As a result the mapping T: i1 —
k()M maps N onto a subset of K/M whose complement has lower dimension
[Here k(1) is the K-component of i1 according to the decomposition G = KAN.]
One can also prove that the mapping T is one-to-one.

Lemma 2.5. For a certain positive integrable function  on N, we have
[ feM) diy = j fkEMW(R) di  fe C*(K/M)
*K/M N
Here dk,, is the normalized K-invariant measure on K/M and dii is a Haar

measure on N.

PrROOF. Let dky o T denote the measure on N given by
(dky s TYC) = j dk,,  Ccompactin N
T(C)

Let (i) denote the Radon-Nikodym derivative (see, for example, [24],
p. 128). Then the lemma follows at once from the properties of T given above.

ReEmMARK. This lemma is given in Harish-Chandra [27], p. 287, with an ex-
plicit formula for y(7) which will be derived later (Proposition 2.10).

The mapping T is particularly useful for studying the action of 4 on
the boundary. In fact, if ae 4, i e N we have

alk(n)M) = ak(n)MAN = k(an)MAN = k(ana™ WMAN
k(w] By
a(k(A)M) = k(F)M (6)

¥

that is,

the superscript denoting conjugation.

Theorem 2.6. Let F be a continuous function on B and u its Poisson integral

u(x) = LP(x, b)F(b)db  xeX




