we can write (since $z_{22} = -z_{11}$)

$$\begin{pmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{pmatrix} = \begin{pmatrix} i\alpha_1 & \beta_1 \\ \overline{\beta}_1 & -i\alpha_1 \end{pmatrix} + i \begin{pmatrix} i\alpha_2 & \beta_2 \\ \overline{\beta}_2 & -i\alpha_2 \end{pmatrix}$$

for α_1 , $\alpha_2 \in \mathbb{R}$, β_1 , $\beta_2 \in \mathbb{C}$.

(iii) The Lie algebra su(2) of skew-Hermitian matrices of trace 0,

$$X = \begin{pmatrix} i\alpha & \beta \\ -\overline{\beta} & -i\alpha \end{pmatrix} \qquad \alpha \in \mathbf{R}, \ \beta \in \mathbf{C}$$

is obviously a real form of $\mathfrak{sl}(2, \mathbb{C})$. Since the Killing form of a real form is in general obtained by restriction we see from (4) §3-1 that

$$B(X, X) = 4 \operatorname{Trace}(XX) = -8(\alpha^2 + |\beta|^2)$$

so $\mathfrak{su}(2)$ is a compact real form of $\mathfrak{sl}(2, \mathbb{C})$.

The following two results are of fundamental importance.

Theorem 2.2. Every semisimple Lie algebra $\mathfrak g$ over C contains a Cartan subalgebra $\mathfrak h$.

Theorem 2.3. Every semisimple Lie algebra g over C has a real form u which is compact.

Ordinarily Theorem 2.2 is proved first using theorems on solvable Lie algebras (Lie's theorem that a solvable Lie algebra of complex matrices has a common eigenvector). The simultaneous diagonalization of the endomorphisms ad h leads to a detailed structure theory for g by which the compact real form u is constructed. The details are as follows:

Assume h is a Cartan subalgebra of g. Given a linear form $\alpha \neq 0$ on h let

$$g^{\alpha} = \{X \in g \mid \text{ad } H(X) = \alpha(H)X \text{ for all } H \in \mathfrak{h}\}$$

This linear form α is called a *root* if $g^{\alpha} \neq \{0\}$. Let Δ denote the set of all roots. Then

$$\mathcal{E} \mathcal{O} \Longrightarrow -\mathcal{A} \mathcal{E} \mathcal{O}$$
 $g = \mathfrak{h} + \sum_{\alpha \in \Delta} g^{\alpha}$ (direct sum) (1)

and it can be proved that

$$\dim \mathfrak{g}^{\alpha} = 1 \qquad (\alpha \in \Delta) \tag{2}$$

Let \mathfrak{h}^* denote the subset (real-linear subspace) of \mathfrak{h} , where all the roots have real values. Then for a suitable choice of vectors $X_{\alpha} \in \mathfrak{g}^{\alpha}$ the set

$$\mathfrak{u} = i\mathfrak{h}^* + \sum_{\alpha \in \Delta} R(X_{\alpha} - X_{-\alpha}) + \sum_{\alpha \in \Delta} R(i(X_{\alpha} + X_{-\alpha}))$$
 (3)

is a compact real form of g.

Example

Consider again the Lie algebra $g = \mathfrak{sl}(n, C)$ and its Cartan subalgebra \mathfrak{h} of diagonal matrices of trace 0. Let again E_{ij} denote the matrix

$$(\delta_{ai} \, \delta_{bj})_{1 \leq a, \, b \leq n}$$

and for each $H \in \mathfrak{h}$ let $e_i(H)$ denote the *i*th diagonal element in H. Then

$$[H, E_{ij}] = (e_i(H) - e_j(H))E_{ij}$$

for all $H \in \mathfrak{h}$ so the linear form $\alpha_{ij}(H) = e_i(H) - e_j(H)$ is a root for $i \neq j$ and by (1) this does give all the roots. The space \mathfrak{h}^* consists of all real diagonal matrices of trace 0. Let us put $X_{\alpha_{ij}} = E_{ij}$ $(i \neq j)$. Then it is easily seen that the space (3) is the set $\mathfrak{su}(n)$ of all skew-Hermitian $n \times n$ matrices, which is indeed a compact real form of $\mathfrak{sl}(n, C)$ (cf. example above).

It is tempting to try to prove Theorem 2.3 directly, because then Theorem 2.2 would be an immediate corollary. In fact, for each $X \in \mathfrak{u}$, ad X can be diagonalized, so if $t \subset \mathfrak{u}$ is any maximal Abelian subalgebra, the space $\mathfrak{h} = \mathfrak{t} + i\mathfrak{t}$ is a Cartan subalgebra of \mathfrak{g} .

A direct and elementary proof of Theorem 2.3 (without the use of Theorem 2.2) does not seem to be available. However, Cartan has proposed an idea for this purpose (*J. Math. Pures Appl.* 8 (1929), p. 23), which I shall describe here.

Since the Killing form of g is nondegenerate, there exists a basis e_1, \ldots, e_n of g such that

$$B(Z, Z) = -\sum_{i=1}^{n} z_{i}^{2}$$
 if $Z = \sum_{i=1}^{n} z_{i} e_{i}$ (4)

Let the structural constants $c_{ijk} \in C$ be determined by

$$[e_i, e_j] = \sum_{1}^{n} c_{ijk} e_k$$

Then

$$B(Z, Z) = \text{Tr} (\text{ad } Z \text{ ad } Z) = \sum_{i,j} \left(\sum_{h,k} c_{ikh} c_{jhk} \right) z_i z_j$$

so by (4)

$$\sum_{h,k} c_{ikh} c_{jhk} = -\delta_{ij} \tag{5}$$

Also,

$$B([X_i, X_j], X_k) + B(X_j, [X_i, X_k]) = 0$$

so

$$c_{ijk} + c_{ikj} = 0$$

and by (5)

$$\sum_{i,h,k} c_{ihk}^2 = n$$

The space

$$\mathfrak{u} = \sum_{i=1}^{n} Re_{i}$$

is a real form of g if and only if all the c_{ijk} are real.

Consider now the set \mathfrak{F} of all bases (e_1, \ldots, e_n) of \mathfrak{g} such that (4) holds. Consider the function f on \mathfrak{F} given by

$$f(e_1, \ldots, e_n) = \sum_{i, j, k} |c_{ijk}|^2$$

Then we have seen that

$$\sum_{i,j,k} |c_{ijk}|^2 \ge \left| \sum_{i,j,k} c_{ijk}^2 \right| = \sum_{i,j,k} c_{ijk}^2 = n \tag{6}$$

and the equality sign holds if and only if all the c_{ijk} are real, that is, if and only if

$$u = \sum_{i=1}^{n} Re_{i}$$

is a real form. In this case it is a compact real form in view of (4) and Prop. 2.1.

Thus Theorem 2.3 follows if one can prove: (I) The function f on \mathfrak{F} has a minimum value; and (II) this minimum value is attained at a point $(e_1^0, \ldots, e_n^0) \in \mathfrak{F}$ for which the structural constants are real. Note that (II) is equivalent to (II'): The minimum of f is n.

3-3 Cartan Decompositions

We now go back to considering a semisimple Lie algebra g over R and as usual we denote by B the Killing form of g. There are of course many possible ways to find a direct vector space decomposition $g = g^+ + g^-$ such that B is positive definite on g^+ and negative definite on g^- . However, we should like to find a decomposition which is directly related to the Lie algebra structure of g.

Definition. A Cartan decomposition of g is a direct decomposition g = f + p such that (i) B < 0 on f, B > 0 on p; and (ii) The mapping $\theta : T + X \to T - X$ $(T \in f, X \in p)$ is an automorphism of g.

In this case θ is called a *Cartan involution* of g and the positive definite bilinear form $(X, Y) \to -B(X, \theta Y)$ is denoted by B_{θ} . We shall now establish the existence of Cartan decompositions, using compact real forms for semi-simple Lie algebras over C.

Theorem 3.1. Suppose θ is a Cartan involution of a semisimple Lie algebra g over R and σ an arbitrary involutive automorphism of g. There then exists an automorphism ϕ of g such that the Cartan involution $\phi\theta\phi^{-1}$ commutes with σ .

PROOF. The product $N = \sigma \theta$ is an automorphism of g and if $X, Y \in g$,

$$-B_{\theta}(NX, Y) = B(NX, \theta Y) = B(X, N^{-1}\theta Y) = B(X, \theta N Y)$$

SO

$$B_{\theta}(NX, Y) = B_{\theta}(X, NY)$$

that is, N is symmetric with respect to the positive definite bilinear form B_{θ} . Let X_1, \ldots, X_n be a basis of g diagonalizing N. Then $P = N^2$ has a positive diagonal, say, with elements $\lambda_1, \ldots, \lambda_n$. Take P^t $(t \in \mathbf{R})$ with diagonal elements $\lambda_1^t, \ldots, \lambda_n^t$ and define the structural constants c_{ijk} by

$$[X_i, X_j] = \sum_{k=1}^n c_{ijk} X_k$$

Since P is an automorphism, we conclude

$$\lambda_i \, \lambda_j \, c_{ijk} = \lambda_k \, c_{ijk}$$

which implies

$$\lambda_i^t \lambda_j^t c_{ijk} = \lambda_k^t c_{ijk} \qquad (t \in \mathbf{R})$$

so P^t is an automorphism. Put $\theta_t = P^t \theta P^{-t}$. Since $\theta N \theta^{-1} = N^{-1}$, we have $\theta P \theta^{-1} = P^{-1}$, that is $\theta P = P^{-1}\theta$. In matrix terms (using still the basis X_1, \ldots, X_n) this means (since θ is symmetric with respect to B_{θ})

$$\theta_{ij}\,\lambda_j=\lambda_i^{-1}\theta_{ij}$$

SO

$$\theta_{ij}\,\lambda_j^{\ t}=\lambda_i^{-t}\theta_{ij}$$

that is, $\theta P^t \theta^{-1} = P^{-t}$. Hence,

$$\sigma \theta_t = \sigma P^t \theta P^{-t} = \sigma \theta P^{-2t} = N P^{-2t}$$

$$\theta_t \sigma = (\sigma \theta_t)^{-1} = P^{2t} N^{-1} = N^{-1} P^{2t}$$

so it suffices to put $\phi = P^{1/4}$ (= $\sqrt{\sigma\theta}$). (cf. [3], p. 100, [31], p. 156, [47], p. 884). The following result is given in Mostow [54].

Corollary 3.2. Let g be a semisimple Lie algebra over R, $g_c = g + ig$ its complexification, u any compact real form of g_c , σ and τ the conjugations of g_c with respect to g and u, respectively. Then there exists an automorphism ϕ of g_c such that $\phi \cdot u$ is invariant under σ .

PROOF. Let g_c^R denote the Lie algebra g_c considered as a Lie algebra over R, B^R the Killing form. It is not hard to show that $B^R(X, Y) = 2 \operatorname{Re} (B_c(X, Y))$ if B_c is the Killing form of g_c . Thus σ and τ are Cartan involutions of g_c^R and the corollary follows (note that since $\sigma\tau$ is a (complex) automorphism of g_c , ϕ is one as well).

Corollary 3.3. Each semisimple Lie algebra \mathfrak{g} over R has Cartan decompositions and any two such are conjugate under an automorphism of \mathfrak{g} .

PROOF. Let g_c denote the complexification of g, σ the corresponding conjugation, and u a compact real form of g_c invariant under σ (Theorem 2.3 and Cor. 3.2). Then put $f = g \cap u$, $p = g \cap iu$. Then B < 0 on f, B > 0 on g, and since $g : T + X \to T - X$ ($T \in f$, $f \in g$) is an automorphism, $f : g \in g$. It follows that g = f + g is a Cartan decomposition.

Consider now two Cartan decompositions,

$$g = f_1 + p_1$$
 $g = f_2 + p_2$

Then $\mathfrak{u}_1=\mathfrak{k}_1+i\mathfrak{p}_1$ and $\mathfrak{u}_2=\mathfrak{k}_2+i\mathfrak{p}_2$ are compact real forms of \mathfrak{g}_c . Let τ_1 and τ_2 denote the corresponding conjugations. By Cor. 3.2 there exists an automorphism ϕ of \mathfrak{g}_c such that $\phi\cdot\mathfrak{u}_2$ is invariant under τ_1 . Thus $\phi\cdot\mathfrak{u}_2$ is equal to the direct sum of its intersections with \mathfrak{u}_1 and $i\mathfrak{u}_1$. Now B>0 on $i\mathfrak{u}_1$ and B<0 on $\phi\cdot\mathfrak{u}_2$. Hence $i\mathfrak{u}_1\cap\phi\cdot\mathfrak{u}_2=\{0\}$ so $\mathfrak{u}_1=\phi\cdot\mathfrak{u}_2$. But τ_1 and τ_2 both leave \mathfrak{g} invariant and ϕ can (according to the proof of Theorem 3.1) be taken as a power of $\tau_1\tau_2$ so it also leaves \mathfrak{g} invariant. Thus $\phi(\mathfrak{g}\cap\mathfrak{u}_2)=\mathfrak{g}\cap\mathfrak{u}_1$ so ϕ gives the desired automorphism of \mathfrak{g} .

Examples

Let $g = \mathfrak{sl}(n, R)$, the Lie algebra of the group SL(n, R). The group SO(n) of orthogonal matrices is a closed subgroup, hence a Lie subgroup, and by (8) §2-2, its Lie algebra, denoted $\mathfrak{so}(n)$, consists of those matrices $X \in \mathfrak{sl}(n, R)$ for which $\exp tX \in SO(n)$ for all $t \in R$. But

$$\exp tX \in SO(n) \Leftrightarrow \exp tX \exp t(^tX) = 1$$
 $\det (\exp tX) = 1$

so

$$\mathfrak{so}(n) = \{ X \in \mathfrak{sl}(n, \mathbf{R}) \mid X + {}^t X = 0 \}$$

the set of skew-symmetric $n \times n$ matrices (which are automatically of trace 0). The mapping $\theta: X \to -^t X$ is an automorphism of $\mathfrak{sl}(n, \mathbf{R})$ and $\theta^2 = 1$. Since $B(X, X) = 2n \operatorname{Tr}(XX), B(X, \theta X) < 0$ so θ is a Cartan involution and

$$\mathfrak{sl}(n, \mathbf{R}) = \mathfrak{so}(n) + \mathfrak{p}$$
 (1)

where p is the set of $n \times n$ symmetric matrices of trace 0, is the corresponding

Cartan decomposition. Now it is known that every positive definite matrix can be written uniquely e^X (X = symmetric) and every nonsingular matrix g can be written uniquely g = op (o = orthogonal, p = positive definite). Thus we have a global analog of (1),

$$SL(n, R) = SO(n)P$$
 (2)

where $P = \exp \mathfrak{p}$, the set of positive definite matrices of determinant 1. We shall now state a generalization of (2).

Theorem 3.4. Let G be a connected semisimple Lie group with Lie algebra g. Let g = f + p be a Cartan decomposition (f the algebra), K the analytic subgroup of G with Lie algebra f. Then the mapping

$$(X, k) \rightarrow (\exp X)k$$

is a diffeomorphism of $p \times K$ onto G.

In Theorem 3.4, the center 3 of g is $\{0\}$, (immediate from the definition) so the center Z of G is discrete. One can prove $Z \subset K$ and that K is compact if and only if Z is finite. In this case K is a maximal compact subgroup of G, and every compact subgroup is conjugate to a subgroup of K.

Proposition 3.5. In terms of the notation of Theorem 3.4, the mapping

$$(\exp X)k \to \exp(-X)k \tag{3}$$

is an automorphism of G.

In fact let \widetilde{G} be the universal covering group of G. Since all simply connected Lie groups with the same Lie algebra are isomorphic $(cf. (v) \S 2-2)$ the automorphism θ of g induces an automorphism $\widetilde{\theta}$ of \widetilde{G} such that $d\widetilde{\theta}_e = \theta$. By the remarks above, the center \widetilde{Z} of \widetilde{G} is contained in the analytic subgroup \widetilde{K} of \widetilde{G} corresponding to f. But $G = \widetilde{G}/N$, where $N \subset \widetilde{Z}$ so $\widetilde{\theta}$ induces an automorphism of G which is (3).

Consider now the set G/K of left cosets gK ($g \in G$). This set has a unique manifold structure such that the map $X \to (\exp X)K$ is a diffeomorphism of $\mathfrak p$ onto G/K. (More generally if K is a closed subgroup of a Lie group G, G/K is a manifold in a natural way.) The group G operates on G/K: each $g \in G$ gives rise to a diffeomorphism $\tau(g): xK \to gxK$ of G/K. Since $Z \subset K$ we have G/K = (G/Z)/(K/Z) and $G/Z = \operatorname{Int}(\mathfrak g)$ so the space G/K is independent of the choice of the Lie group G with Lie algebra $\mathfrak g$. In view of Cor. 3.3 the different possibilities for K are all conjugate so the space G/K is in a canonical way associated with $\mathfrak g$. Let $\mathfrak o$ denote the point $\{K\}$ in G/K (the origin) and $(G/K)_{\mathfrak o}$ the tangent space. The mapping $\pi: g \to gK$ has a differential $d\pi$ mapping $\mathfrak g$ onto $(G/K)_{\mathfrak o}$ with a kernel which contains $\mathfrak f$. By reasons of dimensionality, we see therefore that the mapping

$$d\pi: \mathfrak{p} \to (G/K)_o \tag{4}$$

is an isomorphism and if $k \in K$ we have for $X \in \mathfrak{p}$, $t \in R$

$$\pi(\exp \operatorname{Ad}(k)tX) = \pi(k \exp tX \ k^{-1}) = \tau(k)\pi(\exp tX)$$

SO

$$d\pi \left(\operatorname{Ad} \left(k \right) X \right) = d\tau(k) \ d\pi(X). \tag{5}$$

Now the form B is > 0 on $\mathfrak p$ so by (4) and (5) we obtain a positive definite quadratic form Q_o on $(G/K)_o$ invariant under $d\tau(k)$ $(k \in K)$. If $p \in G/K$ is arbitrary there exists a $g \in G$ such that p = gK and $d\tau(g) : (G/K)_o \to (G/K)_p$ is an isomorphism giving rise to a quadratic form Q_p on $(G/K)_p$. If $g' \in G$ satisfies g'K = gK, $d\tau(g')$ gives the same quadratic form Q_p on $(G/K)_p$ because of the K-invariance of Q_o . Thus we have a Riemannian structure Q on G/K induced by B.

Proposition 3.6. The manifold G/K with the Riemannian structure induced by B is a symmetric space.

PROOF. Let θ denote the automorphism (3) and s_o the mapping $gK \to \theta(g)K$ of G/K onto itself. Then s_o is a diffeomorphism and $s_o^2 = I$, $(ds_o)_o = -I$. To see that s_o is an isometry let $p = gK(g \in G)$ and $X \in (G/K)_p$. Then the vector $X_o = d\tau(g^{-1})X$ belongs to $(G/K)_o$. But if $x \in G$ we have

$$s_o(gxK) = \theta(gx)K = \tau(\theta(g))(s_o(xK))$$

so $s_o \circ \tau(g) = \tau(\theta(g)) \circ s_o$ and therefore

$$\begin{split} Q(ds_o(X),\,ds_o(X)) &= Q(ds_o\circ d\tau(g)(X_o),\,ds_o\circ d\tau(g)(X_o)) \\ &= Q(d\tau(\theta(g))\circ ds_o(X_o),\,d\tau(\theta(g))\circ ds_o(X_o)) \\ &= Q(X_o\,,\,Y_o) &= Q(X\,,\,Y) \end{split}$$

Thus s_o is an isometry and since $(ds_o)_o = -I$, it reverses the geodesics through o. The geodesic symmetry with respect to p = gK is given by

$$s_p = \tau(g) \circ s_o \circ \tau(g^{-1})$$

which is an isometry, so the proposition follows.

Proposition 3.7. The geodesics through the origin in G/K are the curves $t \to \exp tX \cdot o$ $(X \in \mathfrak{p})$.

Although the proof is not difficult we shall omit it. Instead let us take a second look at the example G = SU(1, 1). The decomposition

$$\begin{pmatrix} i\alpha & \beta \\ \overline{\beta} & -i\alpha \end{pmatrix} = \begin{pmatrix} i\alpha & 0 \\ 0 & -i\alpha \end{pmatrix} + \begin{pmatrix} 0 & \beta \\ \overline{\beta} & 0 \end{pmatrix} \tag{6}$$

gives a Cartan decomposition of su(1, 1). We have also if

$$\begin{split} X_{\beta} &= \begin{pmatrix} 0 & \beta \\ \overline{\beta} & 0 \end{pmatrix} \\ \exp\left(tX_{\beta}\right) &= \cosh\left(t\left|\beta\right|\right)I + \frac{1}{\left|\beta\right|}\sinh\left(t\left|\beta\right|\right)X_{\beta} \end{split}$$

SO

$$\exp(tX_{\beta}) \cdot o = (\tanh t |\beta|) \frac{\beta}{|\beta|}$$

verifying the proposition in this case.

3-4 Discussion of Symmetric Spaces

We shall now summarize some basic results in the general theory of symmetric spaces and indicate how the coset spaces G/K from the last section fit into this general theory.

Let M be a symmetric space as defined in Ch. 1. The group I(M) of all isometries of M is transitive on M. (In fact, if $p, q \in M$ they can be joined by a broken geodesic and the product of the symmetries in the midpoints of these geodesics gives the desired isometry.) One can now parametrize the group I(M) in a natural way turning it into a Lie group. The identity component $G = I_o(M)$ is still transitive on M. Fix a point $o \in M$ and let K be the group of elements in G which leaves o fixed. Then the mapping $qK \rightarrow q \cdot o$ is a diffeomorphism of G/K onto M. If s_0 is the geodesic symmetry with respect to o the mapping $\sigma: g \to s_o gs_o$ is an involutive automorphism of G and $(K_{\sigma})_{\sigma} \subset K \subset K_{\sigma}$, where K_{σ} is the set of fixed points of σ and $(K_{\sigma})_{\sigma}$ its identity component. In order to verify these inclusions let $k \in K$. Then the maps k and $s_o k s_o$ are isometries leaving o fixed and inducing the same linear map of the tangent space M_o . Considering the geodesics starting at o we see that k and $s_o k s_o$ must coincide so $K \subset K_\sigma$. On the other hand, suppose X in the Lie algebra g of G is fixed under the differential $(d\sigma)_e$. Then s_e $\exp tX s_o = \exp tX$ for all $t \in R$, so applying both sides to the point o we see that exp $tX \cdot o$ is fixed under s_o . But o is an isolated fixed point of s_o so $\exp tX \cdot o = o$ for all sufficiently small t. But then $X \in \mathfrak{k}$, the Lie algebra of K, whence $(K_{\sigma})_{\sigma} \subset K$. Note finally that the group $Ad_{G}(K)$ is compact, being a continuous image of the compact group K.

Conversely, let G be a connected Lie group, K a closed subgroup, $\operatorname{Ad}_G(K)$ compact. Suppose there exists an involutive automorphism σ of G such that $(K_\sigma)_\sigma \subset K \subset K_\sigma$. Then there exists a Riemannian structure on G/K invariant under G, and for every such Riemannian structure, G/K is a symmetric space.

Consider now M as above and $G = I_o(M)$; M is said to be of the non-compact type if G is noncompact, semisimple without a compact normal subgroup $\neq \{e\}$, and of the compact type if G is compact and semisimple.

Proposition 4.1. Let M be a symmetric space, which is simply connected. Then M is a product

$$M = M_o \times M_c \times M_n$$

where M_0 is a Euclidean space and M_c and M_n are symmetric spaces of the compact type and the noncompact type, respectively.

Proposition 4.2. A symmetric space of the compact type (noncompact type) has sectional curvature everywhere ≥ 0 (respectively ≤ 0).

There is a very interesting duality between the compact type and the noncompact type. Let M = G/K be a symmetric space of the noncompact type where $G = I_o(M)$. Let g and f denote the Lie algebras of G and K, respectively. Let g = f + p be the corresponding Cartan decomposition of g and $g_c = g + ig$ the complexification of g. Since $[p, p] \subset f$, the subspace u = f + ip of g_c is actually a Lie algebra and another real form of g_c . Since the Killing form of g_c is < 0 on f, and > 0 on p, it is < 0 on u, so u is a compact real form. If U is a connected Lie group with Lie algebra u and K' is the connected Lie subgroup with Lie algebra f, the space U/K' is a symmetric space of the compact type. This process can be reversed, that is, G/K can be constructed with U/K as a starting point.

Examples

(i) Consider the symmetric space G/K, where G = SU(1, 1) and K the subgroup of matrices $\begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix}$, |t| = 1. In this case the Cartan decomposition (6) in §3-3 shows that $\mathfrak u$ is the set of all matrices of the form

$$\begin{pmatrix} i\alpha & 0 \\ 0 & -i\alpha \end{pmatrix} + \begin{pmatrix} 0 & i\beta \\ i\overline{\beta} & 0 \end{pmatrix}$$

so $u = \mathfrak{su}(2)$, the algebra of all 2×2 skew symmetric matrices of trace 0. For the space U/K' we can therefore take the space SU(2)/K. [SU(n) denotes the special unitary group.] It is not hard to show that when the unit sphere S^2 is projected stereographically onto the complex plane the rotations of the sphere correspond to the transformations

$$z \rightarrow \frac{az + \overline{b}}{-bz + \overline{a}}$$
 $|a|^2 + |b|^2 = 1$

that is, to the members of SU(2). In this manner SU(2) acts transitively on

 S^2 and the subgroup leaving the point z=0 fixed is K. Thus $U/K=S^2$ so the non-Euclidean disk D (Ch. 1) and the sphere S^2 correspond under the general duality indicated. The formulas $g=\mathfrak{k}+\mathfrak{p}$ and $\mathfrak{u}=\mathfrak{k}+i\mathfrak{p}$ can be regarded as an explanation of the phenomenon that the triangle formulas in non-Euclidean trigonometry are obtained from the triangle formulas in spherical trigonometry by replacing the sides a,b,c by ia,ib,ic and using the relations $\sinh{(ia)}=i\sin{a},\cosh{(ia)}=\cos{a}$. Lobatschevsky did indeed speak of his non-Euclidean trigonometry as spherical trigonometry on a sphere of imaginary radius.

(ii) Let U be a connected, compact Lie group with Lie algebra u. If Q is any positive definite quadratic form on u, we obtain by left translations such quadratic forms on each tangent space to U and therefore a Riemannian metric on U which is invariant under all left translations. If Q is chosen invariant under Ad (U) then the Riemannian metric is invariant under right translations as well. One can prove that the geodesics through e are the one-parameter subgroups and the symmetry $s_e: x \to x^{-1}$ is an isometry so U is a symmetric space. If U^* denotes the diagonal in $U \times U$ one has a diffeomorphism $(u_1, u_2)U^* \to u_1u_2^{-1}$ of $(U \times U)/U^*$ onto U. The group involution $(u_1, u_2) \to (u_2, u_1)$ of $U \times U$ leaves U^* pointwise fixed and induces the symmetry s_e of U, via the diffeomorphism indicated.

If U is in addition semisimple, the symmetric space $(U \times U)/U^*$ has in the above sense a noncompact dual G/U', where U' has Lie algebra $\mathfrak u$ and the Lie algebra $\mathfrak g$ of G is a certain real form of the complexification of the product algebra $\mathfrak u \times \mathfrak u$. One can prove that as $\mathfrak u$ runs through the compact semisimple Lie algebras, $\mathfrak g$ runs through the *complex* semisimple Lie algebras (regarded as Lie algebras over R).

3-5 The Iwasawa Decomposition

Let g be a semisimple Lie algebra, g = f + p a Cartan decomposition. The operators ad X ($X \in p$) are all symmetric with respect to the positive definite form B_{θ} and each of them can therefore be diagonalized, and a commutative family can be simultaneously diagonalized. Hence let a denote a maximal Abelian subspace of p and if α is a real-valued linear function on a put

$$g_{\alpha} = \{ X \in \mathfrak{g} \mid [H, X] = \alpha(H)X \text{ for all } H \in \mathfrak{a} \}$$
 (1)

If $g_{\alpha} \neq \{0\}$, $\alpha \neq 0$, α is called a *restricted root*. Clearly, if Σ denotes the set of restricted roots,

$$g = \sum_{\alpha \in \Sigma} g_{\alpha} + g_{\alpha} \tag{2}$$

The dimension dim (g_{α}) is called the *multiplicity* of α . Let α' denote the set of elements in α , where all roots are $\neq 0$. The connected components of α'

are intersections of half spaces; hence they are convex open sets. They are called *Weyl chambers*. Fix any Weyl chamber a^+ and call a restricted root positive if its values on a^+ are positive.

Let Σ^+ denote the set of positive restricted roots and put

$$\mathfrak{n} = \sum_{\alpha > 0} \mathfrak{g}_{\alpha} \qquad \rho = \frac{1}{2} \sum_{\alpha > 0} (\dim \mathfrak{g}_{\alpha}) \alpha \tag{3}$$

Then $\mathfrak n$ is a nilpotent Lie algebra. The following result is called the Iwasawa decomposition.

Theorem 5.1. $g = f + \alpha + n$ (direct vector space sum). Let G be any connected Lie group with Lie algebra g, and let K, A, N denote the analytic subgroups corresponding to f, α , and n, respectively. Then the mapping

$$(k, a, n) \rightarrow kan$$

is a diffeomorphism of $K \times A \times N$ onto G.

Rather than give the proof we consider some examples. Consider the Cartan decomposition (1) §3-3,

$$\mathfrak{sl}(n,\mathbf{R}) = \mathfrak{so}(n) + \mathfrak{p}$$
 (4)

The diagonal matrices of trace 0 form a maximal Abelian subspace \mathfrak{a} of \mathfrak{p} and as in §3-2 we find that the corresponding restricted roots are the linear forms $\alpha_{ij}(H) = e_i(H) - e_j(H)$ ($H \in \mathfrak{a}$), $e_i(H)$ being the *i*th diagonal element in H. Hence \mathfrak{a}' consists of those H for which all $e_i(H)$ are different. The set

$$\{H \in \mathfrak{a} \mid e_1(H) > e_2(H) > \dots > e_n(H)\}\$$
 (5)

is clearly a connected component of \mathfrak{a}' and we take this as the Weyl chamber \mathfrak{a}^+ . Then Σ^+ consists of the roots α_{ij} (i < j) and \mathfrak{n} is easily found to be the set of upper triangular matrices with 0 in the diagonal. An Iwasawa decomposition of the group SL(n, R) is therefore g = oan, where $o \in SO(n)$, a is a diagonal matrix of determinant 1 and diagonal > 0, and n is an upper triangular matrix with all diagonal elements 1.

For another example consider the Cartan decomposition of su(1, 1) given by

$$\begin{pmatrix} ix & y \\ \bar{y} & -ix \end{pmatrix} = \begin{pmatrix} ix & 0 \\ 0 & -ix \end{pmatrix} + \begin{pmatrix} 0 & y \\ \bar{y} & 0 \end{pmatrix}$$

where $x \in \mathbb{R}$, $y \in \mathbb{C}$. As the space a we can take

$$R\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

and since

$$\begin{bmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, & \begin{pmatrix} ix & y \\ \bar{y} & -ix \end{pmatrix} \end{bmatrix} = \begin{pmatrix} \bar{y} - y & -2ix \\ 2ix & y - \bar{y} \end{pmatrix}$$

we see that the decomposition (2) equals

$$g = R\begin{pmatrix} i & -i \\ i & -i \end{pmatrix} + R\begin{pmatrix} i & i \\ -i & -i \end{pmatrix} + R\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

and the restricted roots are α and $-\alpha$, where

$$\alpha \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = 2$$

Thus a' consists of the nonzero elements in a and for a^+ we take for example

$$R^+\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

SO

$$\mathfrak{n} = R \begin{pmatrix} i & -i \\ i & -i \end{pmatrix}$$

and $N = \exp n$ equals the group of matrices

$$\begin{pmatrix} 1+in & -in \\ in & 1-in \end{pmatrix} \in SU(1,1)$$

The Iwasawa decomposition of a semisimple Lie algebra g involves some free choices, namely, that of \mathfrak{t} , \mathfrak{a} , and \mathfrak{a}^+ . We have seen that \mathfrak{t} is unique up to conjugacy, and now we shall see that \mathfrak{a} and \mathfrak{a}^+ are uniquely determined up to conjugacy by elements of K. We begin with a result which goes back to Weyl and Cartan with a proof given by Hunt [41].

Theorem 5.2. Let \mathfrak{a} and \mathfrak{a}' be two maximal Abelian subspaces of \mathfrak{p} . Then there exists an element $k \in K$ such that Ad $\mathfrak{a}(k)$ $\mathfrak{a} = \mathfrak{a}'$. Also

$$\mathfrak{p} = \bigcup_{k \in K} \operatorname{Ad}_{G}(k) \, \mathfrak{a}$$

PROOF. Select $H \in \mathfrak{a}$ such that its centralizer in \mathfrak{p} equals \mathfrak{a} . (It suffices to take H such that $\alpha(H) \neq 0$ for all restricted roots α .) Put $K^* = \operatorname{Ad}_G(K)$ and let $K \in \mathfrak{p}$ be arbitrary. The function

$$k^* \to B(H, k^* \cdot X) \qquad (k^* \in K^*)$$

has a minimum, say, for $k^* = k_0$. If $T \in \mathbb{I}$ we have therefore

$$\left\{\frac{d}{dt}B(H, \text{Ad } (\exp tT)k_0 \cdot X)\right\}_{t=0} = 0$$

SO

$$B(H, \lceil T, k_a \cdot X \rceil) = 0$$
 $T \in \mathfrak{f}$

Thus

$$B(T, [H, k_o \cdot X]) = 0$$
 for all $T \in \mathfrak{k}$

and since $[H, k_0 \cdot X] \in \mathbb{I}$ we deduce $[H, k_0 \cdot X] = 0$ so by the choice of $H, k_0 \cdot X \in \mathfrak{a}$.

In particular, there exists a $k_1 \in K$ such that $H \in \operatorname{Ad}(k_1)\mathfrak{a}'$. Thus each element in $\operatorname{Ad}(k_1)\mathfrak{a}'$ commutes with H so $\operatorname{Ad}(k_1)\mathfrak{a}' \subset \mathfrak{a}$. This proves the theorem.

3-6 The Weyl Group

Let g be a semisimple Lie algebra, g = f + p a Cartan decomposition, G any connected Lie group with Lie algebra g, K the analytic subgroup with Lie algebra $f \subset g$. Consider as before a maximal Abelian subspace $g \subset p$ and let G and G denote, respectively, the *normalizer* and *centralizer* of g in G; that is,

$$M' = \{k \in K \mid Ad(k)\mathfrak{a} \subset \mathfrak{a}\}$$

$$M = \{k \in K \mid Ad(k)H = H \text{ for all } H \in \mathfrak{a}\}$$

Clearly M is a normal subgroup of M' and the factor group M'/M can obviously be viewed as a group of linear transformations of \mathfrak{a} . It is called the *Weyl group* and denoted W. In view of Theorem 5.2 it is (up to isomorphism) independent of the choice of \mathfrak{a} .

Now M and M' are Lie subgroups of K and their Lie algebras m and m' are given by $(cf. (8) \S 2-2, (7) \S 3-1)$,

$$\mathfrak{m} = \{ T \in \mathfrak{k} | [H, T] = 0 \text{ for all } H \in \mathfrak{a} \}$$

$$\mathfrak{m}' = \{ T \in \mathfrak{k} | [H, T] \subset \mathfrak{a} \text{ for all } H \in \mathfrak{a} \}$$

Note, however, that if $T \in \mathfrak{m}'$ then for $H \in \mathfrak{a}$,

$$B([H, T], [H, T]) = -B([H, [H, T]], T) = 0$$

so $T \in \mathfrak{m}$, whence $\mathfrak{m} = \mathfrak{m}'$. Thus M'/M is a discrete group and being also compact, must be finite.

If λ is a complex-valued linear function on α let H_{λ} denote the vector in $\alpha + i\alpha$ determined by $B(H, H_{\lambda}) = \lambda(H)$ for all $H \in \alpha$. For $\alpha \in \Sigma$ let s_{α} denote the symmetry in the hyperplane $\alpha(H) = 0$:

$$s_{\alpha}(H) = H - 2 \frac{\alpha(H)}{\alpha(H_{\alpha})} H_{\alpha} \qquad H \in \mathfrak{a},$$
 (1)

(Remember p and hence a have a Euclidean metric given by B.)

Theorem 6.1. $s_{\alpha} \in W$ for each $\alpha \in \Sigma$.

PROOF. Pick $Z_{\alpha} \in \mathfrak{g}$ such that $[H, Z_{\alpha}] = \alpha(H)Z_{\alpha}$. Decomposing $Z_{\alpha} = T_{\alpha} + X_{\alpha}$ $(T_{\alpha} \in \mathfrak{k}, X_{\alpha} \in \mathfrak{p})$ the relations $[\mathfrak{k}, \mathfrak{p}] \subset \mathfrak{p}$, $[\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{k}$ imply that $(\operatorname{ad} H)^2 T_{\alpha} = T_{\alpha}$. Multiplying Z_{α} by a real factor if necessary we may assume $B(T_{\alpha}, T_{\alpha}) = -1$. Now if $\alpha(H) = 0$ we have $[H, T_{\alpha}] = 0$ so

Ad
$$(\exp tT_{\alpha})H = e^{\operatorname{ad}(tT_{\alpha})}(H) = H$$
 if $\alpha(H) = 0$

A simple computation shows that

$$e^{\operatorname{ad}(t_o T_\alpha)} H_\alpha = -H_\alpha$$

provided $t_o(\alpha(H_\alpha))^{1/2} = \pi$. Thus s_α coincides with the restriction of Ad (exp $t_o T_\alpha$) to α .

If $s \in W$ and $\alpha \in \Sigma$ it is clear from the definitions that the linear function $\alpha^s : H \to \alpha(s^{-1}H)$ on α is a restricted root. Consequently, s permutes the Weyl chambers. Now let C_1 and C_2 be two Weyl chambers and let $H_1 \in C_1$, $H_2 \in C_2$. If the segment H_1H_2 intersects a hyperplane $\alpha(H) = 0$ ($\alpha \in \Sigma$) then clearly the norm $|\cdot|$ in α satisfies

$$|H_1 - H_2| > |H_1 - s_\alpha H_2| \tag{2}$$

As s runs through the finite group W the function $|H_1 - sH_2|$ takes a minimum, say for $s = s_0$. By (2) the segment from H_1 to $s_0 H_2$ intersects no hyperplane $\alpha(H) = 0$ ($\alpha \in \Sigma$) so H_1 and $s_0 H_2$ lie in the same Weyl chamber and thus $C_1 = s_0 C_2$. This proves:

Corollary 6.2. Any two Weyl chambers in \mathfrak{a} are conjugate under some element of Ad $\mathfrak{g}(K)$ which leaves \mathfrak{a} invariant.

For orientation we state without proof a somewhat deeper result on the Weyl group.

Theorem 6.3. The Weyl group W is generated by the symmetries s_{α} ($\alpha \in \Sigma$) and it is simply transitive on the set of Weyl chambers in α .

3.7 Boundary and Polar Coordinates on the Symmetric Space G/K

For the non-Euclidean disk D we have a natural notion of boundary, namely, the unit circle |z|=1. However, this boundary notion refers to the position of D in \mathbb{R}^2 . In order to make this definition more intrinsic we can define the boundary of D as the set of all rays (half-lines) from the origin in D. This motivates the following definition of the boundary of the symmetric space G/K. First, we recall the isomorphism $d\pi: \mathfrak{p} \to (G/K)_o$ from §3-3, which permits us to think of \mathfrak{p} as the tangent space to G/K at o. Then we understand by a Weyl chamber in \mathfrak{p} a Weyl chamber in some maximal Abelian

subspace pf p. The boundary of G/K is now defined as the set of all Weyl chambers in p. Now fix $a \subset p$ and a^+ a Weyl chamber in a. Then according to Theorem 5.2 and Cor. 6.2, $Ad(k)a^+$ ($k \in K$) runs through the boundary and if $Ad(k)a^+ = a^+$, then $k \in M'$ so Ad(k) on a is a member of the Weyl group. Using Theorem 6.3 we see that $k \in M$. Thus the mapping

$$kM \to \mathrm{Ad}(k)\mathfrak{a}^+$$

identifies K/M with the boundary of G/K. In view of the Iwasawa decomposition G = KAN and the fact that M normalizes AN we have a diffeomorphism

$kM \rightarrow kMAN$

of K/M onto G/MAN. In his paper [19], Furstenberg defines a boundary of G to be a compact coset space G/H of G such that for each probability measure μ on G/H there exists a sequence $(g_n) \subset G$ such that the transformed measures $g_n \cdot \mu$ converge weakly to the delta function on G/H. It was proved by Furstenberg [19] and Moore [53] that a "maximal" boundary of this sort is given by G/MAN which, as we saw, coincides with the geometrically defined boundary above. The relation K/M = G/MAN shows in particular that G acts as a transformation group on the boundary; in an explicit manner

$$g(kM) = k(gk)M$$

if for $x \in G$, $k(x) \in K$ is given by $x \in k(x)AN$.

Now let $A^+ = \exp \alpha^+$. Then we have the following "polar coordinate representation" of the symmetric space G/K.

Theorem 7.1. The mapping $(kM, a) \rightarrow kaK$ is a diffeomorphism of $K/M \times A^+$ onto an open submanifold of G/K whose complement in G/K has lower dimension.

Without spelling out the proof in detail we remark that it is a fairly direct consequence of Theorems 3.4, 5.2, and 6.3.

CHAPTER 4: FUNCTIONS ON SYMMETRIC SPACES

4-1 Invariant Differential Operators

Let M be a manifold and D a differential operator on M, that is, a linear mapping of $C_c^\infty(M)$ into itself which in an arbitrary coordinate system is expressed by partial derivatives in the coordinates. Let $\phi: M \to M$ be a diffeomorphism, and if f is a function on M put $f^\phi = f \circ \phi^{-1}$ and let D^ϕ denote the operator

$$D^{\phi}f = (Df^{\phi^{-1}})^{\phi}$$

Then D^{ϕ} is another differential operator, and we say D is invariant under ϕ if $D^{\phi} = D$.

Examples

Let us find all differential operators D on \mathbb{R}^n which are invariant under all rigid motions. Since D is invariant under all translations it has constant coefficients so $D = P(\partial/\partial x_1, \ldots, \partial/\partial x_n)$, where P is a polynomial. But D is also invariant under all rotations around 0 so P is rotation-invariant, and since the rotations are transitive on each sphere |x| = r, we find P is constant on each such sphere so $P(x_1, \ldots, x_n)$ is a function of $x_1^2 + \cdots + x_n^2$, hence a polynomial in $x_1^2 + \cdots + x_n^2$.

Proposition 1.1. The differential operators on \mathbb{R}^n which are invariant under all isometries are the operators $\sum a_n \Delta^n$ ($a_n \in \mathbb{C}$), where Δ is the Laplacian.

This result holds also if \mathbb{R}^n is replaced by a symmetric space of rank 1 (and Δ by the Laplace–Beltrami operator) and also if we replace the isometries of \mathbb{R}^n by the inhomogeneous Lorentz group, in which case the Laplacian is replaced (cf. [29], p. 271) by the operator

$$\frac{\partial^2}{\partial x_1^2} - \frac{\partial^2}{\partial x_2^2} - \dots - \frac{\partial^2}{\partial x_n^2}$$

Now if M is a Riemannian manifold the Laplace-Beltrami operator Δ on M is invariant under all isometries of M. The examples above have a high degree of mobility, that is, a large group of isometries, so essentially only Δ is invariant. The following interesting generalization is essentially a combination of results of Harish-Chandra and Chevalley (see [31] p. 432). It expresses in a precise way how higher rank of the space, that is, lower degree of mobility, leads to more invariant operators.

Theorem 1.2. Let G/K be a symmetric space of rank l. Then the algebra of all G-invariant differential operators on G/K is a commutative algebra with l algebraically independent generators.

It will now be convenient to assume that G has finite center so K is compact. As pointed out in §3-3, this is no restriction on the symmetric space G/K. Let L(g) and R(g) denote left and right translations on G by the group element g and let D(G) denote the set of all differential operators on G invariant under all L(g). If $X \in \mathfrak{g}$ the operator

$$\widetilde{X}: F(g) \to \{(d/dt)F(g \exp tX)\}_{t=0}$$

belongs to D(G). Let $D_K(G)$ denote the set of elements in D(G) which are invariant under all R(k) $(k \in K)$. For $D \in D(G)$ we put

$$D^{\natural} = \int_{K} D^{R(k)} dk \tag{1}$$

where dk denotes the normalized Haar measure on K. The integral makes sense since all the operators $D^{R(k)}$ $(k \in K)$ belong to a fixed finite-dimensional vector space, so D^{\natural} is a differential operator on G. Clearly $D^{\natural} \in \mathcal{D}_K(G)$, and we have

$$(D^{\natural}F)(e) = (DF)(e) \tag{2}$$

for every $F \in C^{\infty}(G)$ which is bi-invariant under K (that is, $F(k_1gk_2) = F(g)$, $g \in G$, k_1 , $k_2 \in K$). In fact,

$$(D^{\sharp}F)(e) = \int_{K} (D^{R(k)}F)(e) \ dk = \int_{K} ((DF^{R(k^{-1})})^{R(k)})(e) \ dk$$
$$= \int_{K} (DF)(k^{-1}) \ dk = \int_{K} (DF)^{L(k)}(e) \ dk$$
$$= \int_{K} (DF)(e) \ dk = (DF)(e)$$

Let π denote the natural projection $g \to gK$ of G onto G/K; if f is a function on G/K we put $\tilde{f} = f \circ \pi$. Then the mapping $f \to \tilde{f}$ is an isomorphism of $C^{\infty}(G/K)$ onto the space $C_K^{\infty}(G)$ of functions $F \in C^{\infty}(G)$ satisfying $F(gk) \equiv F(g)$. Similarly, we would like to "lift" the operators in D(G/K) to the group G. If $D \in D_K(G)$ let $\pi(D)$ denote the operator on $C^{\infty}(G/K)$ determined by $(\pi(D)f)^{\sim} = D\tilde{f}$ $(f \in C^{\infty}(G/K))$. It is easy to see (cf. [31], p. 390) that the map $D \to \pi(D)$ maps $D_K(G)$ onto D(G/K).

As before let $\tau(g)$ denote the diffeomorphism $hK \to ghK$ of G/K onto itself. We shall often denote the symmetric space G/K by X.

4-2 Harmonic Functions on Symmetric Spaces

In view of Prop. 1.1 it is natural to make the following definition.

Definition. A function $u \in C^{\infty}(G/K)$ is called *harmonic* if Du = 0 for all $D \in D(G/K)$ which annihilate the constants (that is, "without constant term").

Godement made this definition in [22] (even for nonsymmetric spaces G/K), where he proved also the mean value theorem below.

Theorem 2.1. A function $u \in C^{\infty}(G/K)$ is harmonic if and only if

$$\int_{K} u(gkh \cdot o) dk = u(g \cdot o) \quad \text{for all } g, h \in G$$
 (1)

This result is most easily interpreted if rank (G/K) = 1. Then the orbit $K \cdot (h \cdot o)$ is a sphere and $gK \cdot (h \cdot o)$ is a sphere with center $g \cdot o$. Thus the theorem states in this case that u is harmonic if and only if the mean value

of u over an arbitrary sphere is equal to the value of u in the center (cf. Gauss' mean value theorem for harmonic functions in \mathbb{R}^n).

PROOF. Suppose first that u is harmonic and for a fixed $g \in G$ consider the function

$$F: h \to \int_K \tilde{u}(gkh) dk \qquad (h \in G)$$

Let D be an operator in D(G) annihilating the constants. Then using (2) in §4-1,

$$(DF)(e) = (D^{\natural}F)(e) = \left\{ (D^{\natural})_h \left(\int_K \tilde{u}(gkh) \ dk \right) \right\}_{h=e}$$

which by the left invariance of D^{\natural} equals

$$\int_K (D^{\natural} \tilde{u})(gk) \, dk = (D^{\natural} \tilde{u})(g)$$

(the last relation coming from the right invariance of $D^{\natural}\tilde{u}$ under K). However, $(D^{\natural}\tilde{u}) = (\pi(D^{\natural})u)^{\sim} = 0$ since $\pi(D^{\natural})$ annihilates the constants. Thus (DF)(e) = 0 for all $D \in D(G)$ which annihilate the constants.

Since u satisfies the elliptic equation $\Delta u = 0$ and since Δ has analytic coefficients, it follows from a theorem of Bernstein (John [44], p. 142) that u is also analytic. Hence \tilde{u} and F are also analytic so from Taylor's formula (§2-2) we can conclude that F is constant. But the relation F(h) = F(e) is (1).

On the other hand, suppose (1) holds. Let $D \in D(G/K)$ annihilate the constants. Writing (1) as

$$\int_{K} u^{\tau(k^{-1}g^{-1})}(x) dk = u(g \cdot o) \qquad g \in G, x \in X$$

we deduce by applying D to both sides (considered as functions of x),

$$\int_{K} (Du)(gk \cdot x) \, dk = 0$$

Taking x = 0 we conclude $Du \equiv 0$, so u is harmonic.

Now we intend to study bounded harmonic functions u on the symmetric space G/K and prove a Poisson integral representation formula due to Furstenberg [19]. Let Q_u denote the set of all functions $\psi \in L^{\infty}(G)$ (the space of bounded measurable functions on G) such that the sup norm $\|\psi\|_{\infty} = \sup_{h \in G} |\psi(h)|$ satisfies $\|\psi\|_{\infty} \leq \|u\|_{\infty}$ and such that

$$u(g \cdot o) = \int_{K} \psi(gkh) dk$$
 for all $g, h \in G$

According to Godement's theorem $\tilde{u} \in Q_u$, so Q_u is not empty. In addition * modely * notes

it is a convex set and closed in the weak* topology of $L^{\infty}(G)$ (the weakest topology for which all the maps $\psi \to \int f(g)\psi(g)\,dg$ of $L^{\infty}(G)$ into C are continuous, f being an integrable function on G and dg being a Haar measure). Since the unit ball in $L^{\infty}(G)$ is compact in the weak* topology (see, for example, [50]) it follows that Q_u is compact. Now if $\psi \in Q_u$ we have $\psi^{R(g)} \in Q_u$ for all $g \in G$ so G acts as a transformation group of Q_u by right translations. We would like to find a fixed point under the sugbroup MAN, which then would give us a function on the boundary G/MAN.

Definition. A group has the *fixed point property* if whenever it acts continuously on a locally convex topological vector space by linear transformations leaving a compact convex set $Q \neq \emptyset$ invariant it has a fixed point in the set.

Lemma 2.2. Connected solvable Lie groups have the fixed point property (cf. [6], p. 115).

PROOF. Let V be a locally convex topological vector space and G any Abelian group of linear transformations of V. For each $g \in G$ let $g_n = (1/n)(I+g+\cdots+g^{n-1})$; let \widetilde{G} denote the set of all products $g_{n_1} \dots g_{n_k}$ $(n_i \in \mathbb{Z}^+, g \in G)$. All elements of \widetilde{G} commute. Let $Q \subset V$ be a nonempty compact convex subset of V. By convexity, $hQ \subset Q$ for $h \in \widetilde{G}$. Let $h_1, \dots, h_r \in \widetilde{G}$. Then for each $i, 1 \leq i \leq r$,

$$h_1 \dots h_r Q = h_i h_1 \dots h_{i-1} h_{i+1} \dots h_r Q \subset h_i Q$$

whence

$$h_1 \ldots h_r Q \subset \bigcap_{i=1}^r h_i Q$$

so this intersection is $\neq \emptyset$. By compactness of Q (expressed by the finite intersection property), we have

$$\bigcap_{h\in \widetilde{G}}hQ\neq\emptyset$$

Let x an element in this intersection and let $g \in G$. Then $x \in g_n Q$, so for a suitable element $y \in Q$,

$$x = \frac{1}{n} \left(y + gy + \dots + g^{n-1} y \right)$$

so

$$gx - x = \frac{1}{n}(g^n y - y) \subset \frac{1}{n}(Q + (-Q))$$

for each n. Using again the compactness of Q we conclude $g \cdot x = x$.

Now assume G is a connected solvable Lie group of linear transformations of V. Let \mathfrak{g} be its Lie algebra and let

$$g = g_0 \supset g_1 \supset \cdots \supset g_m = \{0\}$$
 $g_{m-1} \neq \{0\}$

be the sequence of derived algebras, $g_i = \mathfrak{D}^i g$. Let $G = G_0 \supset G_1 \supset \cdots \supset G_m = \{e\}$ be the corresponding series of analytic subgroups of G. Suppose now the lemma holds for all connected solvable Lie groups whose series (as defined above) has length < m. Let A denote the set of points in G fixed under all $G \in G_1$. By the induction assumption, $G = G_1$ then $G = G_1$ then $G = G_1$ so if $G = G_1$ then $G = G_1$ then $G = G_1$ so if $G = G_1$ the induction in $G = G_1$ the induction $G = G_1$ the induction in $G = G_1$ is fixed by all elements in $G = G_1$ the induction in $G = G_1$ into itself. The closed subspace $G = G_1$ is generated by $G = G_1$ is locally convex and since $G = G_1$ acts trivially on it, $G = G_1$ acts on $G = G_1$ and $G = G_2$ is the first part of the proof there exists a $G = G_1$ fixed under all $G = G_1$. Q.E.D.

Lemma 2.3. The group MAN has the fixed point property.

PROOF. Let MAN act on a locally convex space V and let $Q \subset V$ be a compact convex subset $\neq \emptyset$ invariant under MAN. Since AN is solvable and connected there exists a point $q \in Q$ fixed under AN. If dm denotes the normalized Haar measure on the compact group M the integral

$$\int_{M} m \cdot q \ dm$$

(defined by means of approximating sums) represents, because of the compactness and convexity, a point q^* in Q. Since $m(AN)m^{-1} \subset AN$ we have for $s \in AN$

$$sq^* = \int_M sm \cdot q \ dm = \int_M m(m^{-1}sm)q \ dm = \int_M m \cdot q \ dm$$

so q^* is fixed under MAN.

We recall now that the boundary B of the symmetric space is given by the coset space representations B = K/M, B = G/MAN. The latter shows that G acts on B; this action will be denoted $(g, b) \rightarrow g(b)$ in order to distinguish it from the action $(g, x) \rightarrow g \cdot x$ of G on X = G/K, which we have already used. Let db denote the unique K-invariant measure on B satisfying

$$\int_{B} db = 1$$

Theorem 2.4. If u is a bounded harmonic function on X then there exists a bounded measurable function \hat{u} on B such that

$$u(g \cdot o) = \int_{R} \hat{u}(g(b)) db \tag{2}$$

On the other hand, if \hat{u} is a bounded measurable function on B then u as defined by (2) is a bounded harmonic function on X.

PROOF. As shown above (Lemma 2.3) the set Q_u has a fixed point under MAN, say u_1 . Define \hat{u} on G/MAN by $\hat{u}(gMAN) = u_1(g)$. Then by the definition of Q_u , we have

$$u(g \cdot o) = \int_{K} \hat{u}(gkhMAN) dk$$

Take h = e and recall that gkMAN is g(b) if b = kM. Then (2) follows because if F is any continuous function on B,

$$\int_{B} F(b) db = \int_{K} F(kM) dk$$

On the other hand, if \hat{u} is a function in $L^{\infty}(B)$, define u by (2). Then

$$u(gkh \cdot o) = \int_{B} \hat{u}(gkh(b)) db \tag{3}$$

Now let b=k'MAN; then $gkh(b)=gkhk'MAN=gkk_1MAN$ if $hk'=k_1a_1n_1$ (Theorem 5.1, Ch. 3). Hence,

$$\begin{split} \int_{K} &u(gkh \cdot o) \; dk = \int_{K} \left(\int_{K} \hat{u}(gkhk'MAN) \; dk' \right) \; dk \\ &= \int_{K} \left(\int_{K} \hat{u}(gkhk'MAN) \; dk \right) \; dk' = \int_{K} \left(\int_{K} \hat{u}(gkk_{1}MAN) \; dk \right) \; dk' \\ &= \int_{K} \left(\int_{K} \hat{u}(gkMAN) \; dk \right) \; dk' = \int_{K} \hat{u}(gkMAN) \; dk = u(g \cdot o). \end{split}$$

By Theorem 2.1, u is harmonic, so the theorem is proved.

Now define the *Poisson kernel* P(x, b) on the product space $X \times B$ by the Jacobian

$$P(g \cdot o, b) = \frac{d(g^{-1}(b))}{db} \tag{4}$$

As we saw in Ch. 1. (11) §1-3 this does indeed give the classical Poisson kernel in the case when G/K is the non-Euclidean disk. We shall give the general formula for (4) later. But at any rate formula (2) can be written

$$u(x) = \int_{B} P(x, b)\hat{u}(b) db$$
 (5)

giving a Poisson integral representation of an arbitrary bounded harmonic function on X. Furstenberg showed in [19], p. 366, that in the weak topology of measures the values of \hat{u} can be regarded as boundary values of u. We

no. 3 almost very formal shall now see that this is also the case, when we approach the boundary in a more geometric fashion.

Let n denote the subalgebra of g given by

$$\overline{\mathfrak{n}} = \sum_{\alpha < 0} \mathfrak{g}_{\alpha}$$

where the g_{α} are given by (2) §3-5. Let \overline{N} denote the corresponding analytic subgroup of G. As an immediate consequence of the Bruhat lemma (see Harish-Chandra [26]) we have that the subset $\overline{N}MAN \subset G$ is an open subset whose complement has lower dimension. As a result the mapping $T: \overline{n} \to k(\overline{n})M$ maps \overline{N} onto a subset of K/M whose complement has lower dimension [Here $k(\overline{n})$ is the K-component of \overline{n} according to the decomposition G = KAN.] One can also prove that the mapping T is one-to-one.

Lemma 2.5. For a certain positive integrable function ψ on \overline{N} , we have

$$\int_{K/M} f(kM) dk_M = \int_{\overline{N}} f(k(\overline{n})M) \psi(\overline{n}) d\overline{n} \qquad f \in C^{\infty}(K/M)$$

Here dk_M is the normalized K-invariant measure on K/M and $d\bar{n}$ is a Haar measure on \bar{N} .

PROOF. Let $dk_M \circ T$ denote the measure on \overline{N} given by

$$(dk_M \circ T)(C) = \int_{T(C)} dk_M \qquad C \text{ compact in } \overline{N}$$

Let $\psi(\bar{n})$ denote the Radon-Nikodym derivative (see, for example, [24], p. 128). Then the lemma follows at once from the properties of T given above.

REMARK. This lemma is given in Harish-Chandra [27], p. 287, with an explicit formula for $\psi(\bar{n})$ which will be derived later (Proposition 2.10).

The mapping T is particularly useful for studying the action of A on the boundary. In fact, if $a \in A$, $\bar{n} \in \overline{N}$ we have

$$a(k(\bar{n})M) = ak(\bar{n})MAN = k(a\bar{n})MAN = k(a\bar{n}a^{-1})MAN$$

$$\bar{n} = k/\bar{n}|\mathcal{M}|n|$$

that is,

$$a(k(\bar{n})M) = k(\bar{n}^a)M \tag{6}$$

the superscript denoting conjugation.

Theorem 2.6. Let F be a continuous function on B and u its Poisson integral

$$u(x) = \int_{B} P(x, b)F(b) db$$
 $x \in X$