Lecture $\# 4$

Warmups: 1) Simplify the expression in such a manner that there are no radials/fractional exponents in the denominator

$$
\begin{aligned}
& \frac{a}{c}+\frac{b}{d} \\
& =\frac{a d}{c d}+\frac{b c}{d c} \\
& \frac{x}{\left(x^{1 / 4}-\sqrt[4]{3}\right)}-\frac{3}{\left(x^{1 / 4}+\sqrt[4]{3}\right)} \\
& \frac{x\left(x^{1 / 4}+4 \sqrt{7}\right)}{\left(x^{1 / 4}-4 \sqrt{3}\right)\left(x^{1 / 4}+\sqrt[4]{3}\right)}-\frac{3\left(x^{1 / 4}-4 \sqrt{3}\right)}{\left(x^{1 / 4}-4 \sqrt{3}\right)\left(x^{1 / 4}+\sqrt[4]{3}\right)} \\
& \begin{array}{l}
(\sqrt{a}-\sqrt{b}) \\
\cdot(\sqrt{a}+\sqrt{b})
\end{array}=\frac{x\left(x^{1 / 4}+4 \sqrt{7}\right)-3\left(x^{1 / 4}-4 \sqrt{3}\right)}{x^{1 / 2}+x^{1 / 4} 3^{1 / 4}-x^{1 / 4} 3^{1 / 4}-3^{1 / 2}} \\
& =a-b \\
& =\frac{x\left(x^{1 / 4}+3^{1 / 4}\right)-3\left(x^{1 / 4}-3^{1 / 4}\right)}{\sqrt{x}-\sqrt{3}} \cdot \frac{\sqrt{x}+\sqrt{3}}{\sqrt{x}+\sqrt{3}} \\
& =\frac{\left[x\left(x^{1 / 4}+3^{1 / 4}\right)-3\left(x^{1 / 4}-3^{1 / 4}\right)\right] \cdot(\sqrt{x}+\sqrt{3})}{x-3}
\end{aligned}
$$

2) Find all solutions to the equation

$$
\left(x^{2}-1\right)^{1 / 4} \pm 2\left(x^{2}-1\right)^{1 / 8}+1=0
$$

Try to reduce to solving a quadratic.

Substitute $y=\left(x^{2}-1\right)$

$$
y^{1 / 4} \pm 2 y^{1 / 8}+1=0
$$

Sub $z=y^{1 / 8}$,

$$
z^{2} \pm 2 z+1=0
$$

$$
(z \pm 1)(z \pm 1)=0
$$

$$
\Rightarrow \quad z=-1, z=1
$$

$$
\Rightarrow 8 \sqrt{y}=-1, \quad l=y^{1 / 8} \Rightarrow y=1
$$

\Rightarrow No such y exists
\Rightarrow there are no solutions.

$$
\begin{aligned}
& \Rightarrow \quad 1=x^{2}-1 \\
& \Rightarrow \quad 2=x^{2} \\
& \Rightarrow \quad x= \pm \sqrt{2}
\end{aligned}
$$

3) Find all solutions by completing the square

$$
x^{2}-82 x+7=0
$$

Dream: Find real \# a st

$$
x^{2}-82 x+7+a=(x+b)^{2}
$$

If the dream is real, then we con easily solve Add a to both sides

$$
x^{2}-82 x+7+a=a
$$

We use (x), LHS is $(x+b)^{2}$

$$
\Rightarrow(x+b)^{2}=a
$$

$\sqrt{ }$ both sides

$$
\begin{gathered}
x+b= \pm \sqrt{a} \\
\Rightarrow x=-b \pm \sqrt{a}
\end{gathered}
$$

Solve for a and b.
First expand RHS,

$$
\begin{aligned}
& x^{2}-82 x+7+a=x^{2}+2 b x+b^{2} \\
\Rightarrow & -82=2 b, 7+a=b^{2} \\
\Rightarrow & b=-41, a=(41)^{2}-7
\end{aligned}
$$

Solutions are $\quad x=+42 \pm \sqrt{41^{2}-7}$

Ex: $\quad x^{2}-2 x=-1$
Want $\quad(x+b)^{2}=x^{2}-2 x+a=-1+a$
Expand $\quad x^{2}+2 b x+b^{2}=x^{2}-2 x+a=-1+a$

$$
\Rightarrow \quad b=-1, a=1
$$

Plug in: $(x-1)^{2}=x^{2}-2 x+1=0$

$$
\Rightarrow \quad x=1
$$

The: (Quadratic Equ): The solutions of the quad. equ

$$
\begin{equation*}
a x^{2}+b x+c=0 \tag{x}
\end{equation*}
$$

are

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
x= \pm 1
$$

c if we plug this into ((t), we get zero.

Ex: $\quad x^{2}-2 x+1=0$

$$
a=1, b=-2, c=1
$$

Plug into equ.

$$
\frac{2 \pm \sqrt{4-4 \cdot 1.1}}{2 \cdot 1}=\frac{2}{2}=1
$$

Ex: $\quad 0=81 x^{2}+7 x-31$

Deft: The discriminant D of the $a x^{2}+b x+c=0$ is

$$
D=b^{2}-4 a c
$$

$\triangle D>0 \Rightarrow \sqrt{b^{2}-4 a c}=\sqrt{D}$ makes sense and so there exists 2 unique real solutions.
$\rightarrow x^{2}+4 x+3=0$

$$
(x+3)(x+1)
$$

\rightarrow Soln $x=-3, x=-1 \Rightarrow 2$ unique sold.

$$
\begin{aligned}
& D=16-12=4>0 \\
& \rightarrow D=0 \Rightarrow \sqrt{b^{2}-4 a c}=-\sqrt{D}=0
\end{aligned}
$$

So quad formula \Rightarrow there is one sole.
4

$$
\begin{aligned}
& x^{2}-2 x+1=0 \\
& (x-1)(x-1)
\end{aligned}
$$

$\rightarrow x=1$ is only sold

$$
\begin{aligned}
D & =4-4=0 \\
\Leftrightarrow D<0 & \Rightarrow \sqrt{b^{2}-4 a c}=\sqrt{\text { neg }} \nRightarrow \Rightarrow \text { undefined }
\end{aligned}
$$

So there are no soln

$$
\begin{aligned}
\Leftrightarrow & x^{2}+1=0 \\
\Rightarrow x^{2} & =-1
\end{aligned}
$$

Squares are pos \Rightarrow no such x exists, ie, uso sold.

$$
D=0^{2}-4 \cdot 1 \cdot 1=-4 \quad \text { out. }
$$

Rok: Quad eqn have at most 2 real solutions.

Rink: Solve fractional equs
\rightarrow solutions when plugged in need to make sense us solutions to eqn must be in the dom. of the equ

Ex: $\quad \frac{1}{x}-\frac{22}{x-3}=\frac{-12}{x+3}$
$d \cdot \frac{a}{c}=\frac{b}{d} \cdot d$

$$
\begin{aligned}
& \frac{a}{c}=\frac{b}{c} \\
& \Rightarrow a=b
\end{aligned} \begin{array}{r}
\text { Step I: make common denom. } \\
\Rightarrow a(x-3)(x+3)-22 x(x+3)
\end{array} \quad \Rightarrow \frac{a d}{c}=b
$$

$a c=b c \quad$ Ste 2 2: Simplify
Cancel like

$$
(x-3)(x+3)-22 x(x+3)=-12 x(x-3)
$$

denominator
terms that Ste, 3: Multiply out appear on
op. sitar of

$$
x^{2}-9-22 x^{2}-66 x=-12 x^{2}+36 x
$$

$$
\text { the }=" \text { sign. } \quad \Rightarrow 11 x^{2}-102 x-9=0
$$

Step 4: Quad form

$$
x=\frac{102 \pm \sqrt{102^{2}+4 \cdot 99}}{22}
$$

Step 5: Check the solu lie in the dom.
What is domain of
\longrightarrow values of x st when we lug g then in we get some thus defied

$$
\begin{array}{r}
\frac{1}{x}-\frac{22}{x-3}+\frac{12}{x+3}=0 \\
\operatorname{dom}_{0}=\{x 1 x \neq 0, x \neq 3, x \neq-3\}
\end{array}
$$

Ex: $\frac{x-1}{x-1}=x$; What are solutions.
Simplify, $1=x$
But is 1 a som
A: NO! 1 is not a solus blc plugging it in makes the
equ undefined!
Ex: $\quad(3 x+7)^{2}=(\sqrt{x-2})^{2}$
Step: Square both sides to kill radical

$$
\begin{aligned}
& 9 x^{2}+42 x+49=x-2 \\
& 9 x^{2}+41 x+51=0
\end{aligned}
$$

Step: Solve the quad. It will have some sols.
Sase $x=-1$ is soln to the quadratic, then would be som to the original eqn?

Ex: Absolute value equs.

$$
\left|x^{2}-6\right|=9
$$

Step 1: Spae $x^{2}-6$ is positive

$$
\begin{aligned}
& \Rightarrow x^{2}-6=9 \\
& \Rightarrow x^{2}=15 \\
& \Rightarrow x= \pm \sqrt{15}
\end{aligned}
$$

We need to check that $x^{2}-6$ is pos or not for $x= \pm \sqrt{15}$

$$
(\pm \sqrt{15})^{2}-6=15-6>0
$$

Step 2: Spae $x^{2}-6$ is neg.

$$
\begin{aligned}
& \Rightarrow-x^{2}+6=9 \\
& \Rightarrow x^{2}=-3
\end{aligned}
$$

Squares ore poi, so wo such x satisfies this. Step 3: We plug in our answers to double \checkmark that they work.

Section 1.8: Soluing inequalities

Pimk: An ineq. is an equ but instead of having" " " it involves

$$
\begin{aligned}
& " \leq ", " c^{\prime \prime}, \cdots \geqslant, ">" \\
& \text { " } 3 x>1 \\
& \text { cs } 3 x+7 \leq 19 \\
& \text { cs } x^{1 / 4} /(x-1) \leq x^{2}-3 x+\pi
\end{aligned}
$$

Soln are values of x that matee the ineq hold.

$$
\text { cs } \begin{aligned}
3 x>1 & \Rightarrow x>\frac{1}{3} \\
& \Rightarrow \text { soln. }\left(\frac{1}{3},+\infty\right)=\left\{x \left\lvert\, x>\frac{1}{3}\right.\right\} . \\
\Leftrightarrow 3 x+7 \leq 19 & \Rightarrow 3 x \leq 12 \\
& \Rightarrow x \leq 4, \\
& \Rightarrow \text { soln }(-\infty, 4],\{x \mid x \leq 4\} .
\end{aligned}
$$

