
Turing Machines and Computability

Charles E. Baker

July 6, 2010

1 Introduction

Turing machines were invented by Alan Turing in 1936, as an attempt to axioma-
tize what it meant for a function to be “computable.”1 It was a machine designed
to be able to calculate any calculable function. Yet this paper also revealed
startling information about the incomputability of some very basic functions.2 In
this paper, we attempt to demonstrate the power and the limits of computability
through this construct, the (deterministic) Turing machine. To set the scope of
our paper, some definitions are in order.

First, a Turing machine runs simple algorithms. Following S. B. Cooper, we
say that an algorithm is “a finite set of rules, expressed in everyday language,
for performing some general task. What is special about an algorithm is that
its rules can be applied in potentially unlimited instances.”3 Of course, using an
algorithm to calculate on arbitrary input will eventually be too costly in time and
space to carry out.4. Yet the point is that the Turing machines should be able to
run algorithms in arbitrary time, at least those algorithms that are amenable to
computation.

Also, we insist that our algorithms can specifically be used to compute func-
tions. This is particularly troublesome, however, as natural algorithms may not
halt in finite time, which means that they cannot compute function values di-
rectly.5 Also, even if an algorithm stops, it may not stop in a nice way: most

1[3], p. 1, 5, 42
2[3], p. 1
3[3], p. 3
4[1], p. 23-4
5The classic example is the “hailstone” map

f(n) =

{
n
2 if n is even
3n + 1 if n is odd

Repetitions of this map may be computed by a machine, but affirming or refuting the conjecture
that its iterates are eventually attracted to the 3-cycle (1, 4, 2) is difficult, or enter some other
cycle, is difficult ([5]). Therefore, if we define the “first-one function” h(n) to be the first k such
that the kth iteration of the map f , starting with n, gives 1, this function may not be defined
for certain values.

1

Turing Machines 2

modern programming languages intentionally possess “break” commands to stop
computations, so that algorithms do not complete and the output, if it exists,
may not be comprehensible.

To deal with both of these difficulties, the natural solution is not to force an
algorithm to define a function, but a partial function: a partial function from X
to Y , where X and Y are sets, is a function from some subset of X to Y . Note
that by this definition, even the function from the empty domain to Y is a partial
function.

Finally, we must define what a “good” or “computable” function is; therefore,
we follow [1]’s description of the notion of effectively computable. “A function
f from positive integers to positive integers is called effectively computable if a
list of instructions can be given that in principle make it possible to determine
the value f(n) for any argument n . . . [t]he instructions must be completely
definite and explicit . . . the instructions should require no external sources of
information.”6. In particular, by this definition we limit ourselves to deterministic
algorithms: there can be no “oracle” that tells you what to do at a step, unless
you construct it yourself, nor can there be any random choice.7

Therefore, in this paper, we not only define Turing machines, but show the lim-
itations in their computation of functions, and suggest how the class of functions
they compute compares to the “effectively computable” notion given above.

2 Deterministic Turing Machine Setup

A deterministic Turing machine is simply a preprogrammed read-write machine
with a finite number of instructions. The Turing machine can be thought of as
sitting on a bi-infinite tape extending left-to-right, divided into squares. Each
square contains either the blank symbol B or the filled symbol 1.8 The Turing
machine starts in one of a finite number of states: for convenience, we give a
machine N active states, denoted q1, q2, . . . , qN (N ∈ Z+ ∪ {0}), and a halting
state qN+1. By convention we always start the machine in state q1. When the
machine reaches state qN+1, it simply stops. This situation is viewed in Diagram 1.

The Turing machine (call it T for Turing) works step-by-step. At each step,
the machine does the following. It recalls what state qi it is in, and reads the
symbol of the square it is sitting on, either B or 1. Given that input, it responds
with one of the following actions:

1. The machine, T , writes a B over whatever is written on the tape. This
action is denoted B.

6[1], p. 23
7While nondeterministic Turing machines have been studied (see for instance [3], Chapters

10-11), we will not be studying them here.
8This notation is partially inspired by [2], and will generalize well to a greater number of

symbols.

Turing Machines 3

Figure 1: Turing Machine.

2. T writes a 1 over whatever is written on the tape. Denoted 1.

3. T moves one square left on the tape. Denoted L.

4. T moves one square right on the tape. Denoted R.

Finally, it also moves to another state qj (which can be the same state qi, as
happens in recursive procedures). Then this step ends and the next step begins.

Therefore, an instruction to the machine can be encoded by the quadruple

qi, S,A, qj ,

which means “start in state qi, and read in the input. To respond to input symbol
S, complete action A and enter the new state qj .”

We create a Turing machine by giving it a set of instructions. These in-
structions should be complete in the sense that all active states must have their
instructions: for each active state qi, we must have a quadruple to deal with qiB
and qi1. Further, the instructions should be consistent insofar as the machine
should never recieve contradictory assumptions or have to decide what to do.
For example, we cannot give a single Turing machine the instructions q1, B,R, q2
and q1, B, L, q3, for this would either require the machine to move left and right
simultaneously, or to choose one of the instructions over the other.

Definition 2.1 ([3], Definition 2.4.1 (1)) A set X of quadruples is consis-
tent if

qiSAqj , qiSA
′qk ∈ X =⇒ A = A′ and qj = qk.

This definition is precisely the way to avoid a machine that goes left and right
simultaneously. This is all that is really required for a Turing machine. In fact,
[3] defines a Turing machine to be “a finite consistent set of quadruples.”9 Our

9[3], p. 36.

Turing Machines 4

definition is slightly more restrictive, because we add the halting state to control
halting. Yet given a consistent set of quadruples, one can create a Turing machine
in our form by “filling in the blanks” for any state with a partial set of instructions:
we take any combination of state and input that has no instruction and tell it to
respect what is written [B to B, 1 to 1] and to go to the halting state.10

Therefore, we have a set of quadruples that defines the Turing machine. Fur-
ther, this allows us to write the Turing machine as a sequence of instructions: we
write the quadruples in lexicographic order on the state number and the order
number: i.e., we have

q1BA1,Bqj1,B , q11A1,1qj1,1 , q2BA2,B, qj2,B , q21A2,1qj2,1 , . . . , qNBAN,BqjN,B , qN1AN,1qjN,1 ,

where An,S is one of the actions B, 1, L,R and qjn,S is just some other state.
Since we have agreed on this ordering, we can actually simplify by removing the
somewhat redundant initial 2 terms of each quadruple, and get the sequence

A1,B, qj1,B , A1,1, qj1,1, . . . , AN,B, qjN,B , AN,1, qjN,1 ,

Thus, we can encode any N -state Turing machine as a 4N -length sequence of
terms in the finite alphabet {B, 1, L,R, q1, . . . , qN}. Since the set of finite se-
quences in a finite alphabet is finite, and legitimate tuples are only a subset of
these, the set of N -length Turing machines is finite.11 Therefore, we have the first
interesting fact about Turing machines.

Theorem 2.2 The set of Turing machines is enumerable.

Proof. The countable union of countable sets is countable, and the set of
Turing machines is the union of the sets of N -state Turing machines. There are
countably many such sets (indexed by N, in fact) and each one is finite.

�

3 Examples

We now give some basic examples of Turing machines. Before beginning, we note
that to this point, we have not assumed anything about the initial state of the
tape. It could theoretically start with all entries B, or all entries 1, or whatever
combination we wish. It is clear that a Turing machine’s behavior depends on
the initial state of the tape, and where the machine is on the tape; therefore, our

10This convention follows [1], p. 35-6
11Following [1], p. 36, we note that the odd-numbered positions only take the action symbols

and the even-numbered positions only take the state symbols. [1], p. 36, also gives an explicit
enumeration.

Turing Machines 5

examples make assumptions on the tape as well as on the machine. In particular,
we will generally assume that all but finitely many squares are blank (B) at any
given time.12

To display these assumptions and the state of the machine, it is useful to make
a diagrammatic convention. We write the tape’s state by writing the sequence
of 1’s and B’s on the tape, where it is understood that unspecified squares are
blank (B). We write that the machine is in state qi and at a certain position if
we subscript the symbol in that position by the state number.13 For example,

1 1 B3 1 1

denotes that the Turing machine is in state 3, scanning a blank separating 2
two-length blocks of 1’s, on an otherwise blank tape.

Example 1. The simplest Turing machine is simply the one with no active
states, which immediately halts on the state q1, which is both its initial and its
halting state. We denote this T∅.

Example 2. Turing machines do not necessarily halt: the simplest way to
cause this possibility is to never call the halting state. One such machine is the
following machine with one active state (N = 1), so the halting state is q2:14

q1 B 1 q1, q1 1 1 q1.

This machine simply replaces a blank by a 1, preserves a 1 if it reads a 1, and
then stays in state q1. It never goes to the halting state q2, so it just stays in one
place and runs forever.

For the next examples, we will be representing the integer n by a string of n 1’s,
flanked by B symbols to terminate it. This is not precisely our final convention,
but it is easier to see some calculations this way.

Example 3: Parity15 There is a Turing machine which, starting on the
leftmost of a block of n ones on an otherwise blank tape, halts on the leftmost
of a block of 1 or 2 1’s on an otherwise blank tape, depending as to whether n
is odd or even. A flowchart diagram gives more clarity than a list of quadruples
here. Here we write arrows to represent going from state qi to qj , replace qi by
simply i, and write S : A to denote the symbol-action relation. See Figure 2.

The machine starts by simply repetitively erasing a 1 and moving right to the
next square. This could be done in two states if all we wanted was to do was
erase the 1’s, but by including four states, we encode the parity of the function
as to which pair of states the function is in. Therefore, when the machine finally

12This assumption will make sense in light of our conventions in the next section.
13[1], p. 27
14Example based on [1], p. 36-7
15Example from [1], p. 29.

Turing Machines 6

Figure 2: Parity-checker Turing machine.

has removed everything and it reads a B, it knows what the parity is and writes
in the appropriate number of ones, then goes to the leftmost 1 and terminates.
For example, applied to n = 4, the diagrams of the successive states are as follows:

11 1 1 1 B B, B2 1 1 1 B B, B 13 1 1 B B, B B4 1 1 B B,
B B 11 1 B B, B B B2 1 B B, B B B 13 B B, B B B B4 B B,
B B B B B1 B, (breakout),
B B B B 15 B, B B B B 1 B6, B B B B 1 17, B B B B 18 1,
halts

Note that the 1 instructions for states 2 and 4 are never carried out, since these
states are never called except if the square has been overwritten to a B first. Our
definition is strict enough that it must include unnecessary instructions. Also, it
is indeed true that our new string of 1’s starts farther to the right then where we
originally started, but we do not particularly care: our tape is bi-infinite, so there
is no natural “starting point.”

Example 4: Addition16 There is a Turing machine which, if it starts on the
leftmost square of a block of n 1’s, then a blank, then a blank of m 1’s, produces
a block of n + m ones on an otherwise blank slate, leaving the machine on the
leftmost 1.

The procedure is simple: the machine simply erases the first 1, then moves to
the blank, fills it in, then the n and m blocks have been combined. The Turing
machine moves back to the left and halts. It must overshoot when coming back,
however, since the machine does not know where the end of the block of 1’s is

16Example from [1], p. 29.

Turing Machines 7

Figure 3: Addition Turing machine.

until it overshoots it. A flowchart is given in Figure 3.
Example 5: Parity of Sum: A Turing machine exists such that, given two

blocks of n and m ones on an otherwise blank tape, with the Turing machine on
the leftmost 1, the Turing Machine ends up on the leftmost slot of a block of 2 or
1 1’s, depending on whether the sum n+m is odd or even.

This is an illustration of the usefulness of the halting-state convention: we can
easily concatenate two Turing machines T with N active states and U with M
active states as follows: we create the machine TU by starting with the procedure
for T , but replacing T ’s halting state by the initial state of U so that if T halts, we
immediately start U from wherever the Turing machine is now.17 Therefore, to
create the above machine, we simply start with the addition machine, and since
we chose to move the addition machine back to the beginning of the block, it is
in the proper starting position to give the correct answer when we execute the
parity machine.

Example 6: Multiplication: There is a Turing machine which, given n 1’s,
then a blank, then m 1’s, on an otherwise blank tape, and starting at the leftmost
1, produces a string of n×m 1’s, halting on the leftmost 1. While a full writeout
of the multiplication machine is beyond the scope of this text,18 we would like to
suggest how the machine works in terms of the subroutines it must run.

First of all, note that there is no way for a finite Turing machine to store even
in its state code the value of n or m, given that these can be arbitrarily large.
Therefore, we rely on the tape to store this information for us.19 Fortunately, since

17Concatenation is left-to-right here.
18See [1], p. 30-1, for a full machine flowchart.
19Note that this illustrates a general fact of the Turing machine: that it has no external

Turing Machines 8

multiplication is repeated addition, we just need to use n to count the number of
m’s we add together. The first, n-length block will act as a counter.

To start the machine, we erase a 1 in the first slot, and move one to the right.
If we read a B, we only had n = 1, so we just had 1×m = m, and we simply move
until we meet the m block, then terminate. Otherwise, we move to the beginning
of the second block, which can be done in one state.20 Then we begin a “leapfrog”
procedure to move the stack of m 1’s over by its own length, thereby implicitly
adding n. We then traverse back to the leftmost of the remaining n − 1 ones in
the first block. We repeat: therefore, each time we erase a 1 in the first stack of
ones, we move the second stack of m ones over by m, thus really adding m each
time. When we finally erase the last 1, (which we recognize, for moving one to the
right we find a blank), we move to where the original block of m started; then we
fill in all the 1’s as long as we read B, thus making visible the repeated addition
we did. Then, when we read in a 1, we have finally reached our existing m ones
and filled everything in, so the machine walks to the left of the block of 1’s and
terminates.

The point is that this procedure shows one way of how recursion works in a
Turing machine, recursion being an integral part of computability theory. Now,
just as repeated addition is multiplication, repeated multiplication is exponentia-
tion, and should be the next in this sequence21, but directly writing this machine
is horrible. In practice, we simply use theoretical results from equivalent notions
of computability to solve these problems. To do so, however, we must make some
conventions on how these machines are used to compute partial functions.

4 Using Turing Machines to Calculate Partial Func-
tions

To calculate functions, we must make some sort of method to encode input and
output on the tape, and where the machine starts and ends. We mostly follow [1]
in our choice of conventions.

First, take T a Turing machine, and take k a positive integer. We set N to be
the natural numbers, including 0, and we will use T to calculate a partial function
from Nk (k-tuples in N) to N. First of all, to include zero, we encode the integer
n in general as a sequence of n + 1 1’s, flanked on either side by B to terminate
it.22

memory , but rather uses the tape itself and its internal state for memory ([2], p. 5).
20The first state moves right if it reads a one or a zero, but calls the same state again if it

reads a one, to repeat. If it moves to the next state, we just read a zero, but we moved right
anyways, so the Turing machine should now be sitting on the first 1 of the second block.

21[1], p. 33, 51; [3], p. 17
22This is different from the implicit convention above, but it is possible to “endcap” our

procedures to ensure that we can switch between the two forms.

Turing Machines 9

Figure 4: Illustration of 3× 4.

Turing Machines 10

4.1 Standard Initial Configuration

1. To encode the input vector (n1, . . . , nk), we take the initial state of the input
tape to be

1 1 . . . 1︸ ︷︷ ︸
n1+1 ones

B 11 . . . 1︸ ︷︷ ︸
n2+1 ones

B . . . 11 . . . 1︸ ︷︷ ︸
nk+1 ones

,

and all unspecified squares have symbol B.23

2. The machine itself starts at the leftmost 1 in the n1 input vector.

Since the starting state is always q1, the standard initial configuration for
input (n1, . . . , nk) is written in our diagram notation as

. . . B B 11 1 1 . . . 1 B 1 1 . . . 1 B . . . B 1 1 . . . 1 B B . . .

.
This is fairly standard. Perhaps more surprising is the final state convention.

4.2 Standard Final Configuration

1. To output the integer n, the tape must be a string of n + 1 ones on an
otherwise blank tape. The starting position of this string, however, does
not have to be the same starting position as our original input string.

2. The machine T must be in state N + 1 (its halting state).

3. T must be sitting on the leftmost square of the segment of 1’s.

In out diagram representation, the standard final configuration is

. . . B B 1N+1 1 . . . 1︸ ︷︷ ︸
n+1 ones

B B

If the machine halts and any of the above conditions are not satisfied, the ma-
chine is not in standard final configuration. For example, the following examples24

are not in standard final configuration:

BN+1 1 1 1 1 1
(The machine is not in the right posi-
tion.)

B 1 1N+1 1 1
(The machine is not in the right posi-
tion.)

B 1N+1 1 1 B B 1 1
(The tape output is not of the correct
form.)

23Since the tape is bi-infinite, we are deliberately vague about assigning a formal starting
point.

24from [1], p. 32

Turing Machines 11

4.3 The function output

To compute a (partial) function of k integer inputs, therefore, we start the
Turing machine in standard initial configuration with some initial input vector
(n1, . . . , nk), then let it run until it halts, if it halts, and we see whether or not
it is in standard final configuration. In symbols, for k a positive integer and T a
Turing machine, we define the partial function fT,k of k inputs calculated by T as

fT,k(n1, . . . , nk) =


undefined

if T never halts for the given input, or if
T halts in a nonstandard configuration.

n
if T halts in standard final configuration
for some nonnegative integer n.

The fact that Turing functions naturally compute partial functions as opposed
to total functions is quite apparent here: this is the more natural method to give
ourselves a way to handle a nonhalting or irregularly halting Turing machine.

Therefore, we may now define Turing computability.

Definition 4.1 ([1], p. 33) A partial function g : Nk to N is Turing com-
putable if there is a Turing machine T such that g = fT,k, fT,k defined as above.

The remainder of this exposition dedicates itself to understanding the class of
Turing-computable functions.

5 Incomputability

It is apparent from our previous results and some standard procedures that not
all functions are Turing computable. Restricting ourselves to one-argument input
for the moment, we recognize by our earlier observation that the set of Turing
machines is countable the corollary that the set of one-argument functions they
compute is countable. Yet the set of functions f : N→ N is uncountable: indeed,
even deciding on the function’s range is choosing an element of the power set
of N, P(N). More specifically, we can get a diagonalization argument:25 fix an
enumeration T1, T2, . . . of the Turing machines. Then let

d(n) =
{

2 if fTn,1(n) exists and equals 1
1 otherwise

If d were Turing computable, then it would be computable by the Turing machine
Tm for some m: i.e. d = fTm,1. Therefore, we have

d(m) = fTm,1(m) =

=
{

2 if fTm,1(m) exists and equals 1
1 otherwise

=
{

2 if d(m) exists and equals 1
1 otherwise

25[1], p. 37

Turing Machines 12

This is a contradiction, so d is not Turing-computable.
On the one hand, the addition of self-reference makes it possible for this con-

tradiction to occur, so the existence of a contradiction is plausible. On the other
hand, it is possible to argue that this function “should” be computable. Consider
the following method to compute d(n):26

1. Begin by taking an integer n. Take it for granted that we can computably
determine which Turing machine Tn this integer encodes, if we use the ex-
plicit map of [1], p. 36. Then we can consider the one-argument function
fTn,1 that Tn generates.

2. We know that the input is n, so by our encoding conventions, we can start
attempting to define fTn,1(n).

3. Our machine either terminates or it doesn’t.

(a) If the machine never terminates for input n, we get d(n) = 1.

(b) If the machine terminates, we see if it is in standard final configuration
for the output 1. If so, we output d(n) = 2; otherwise (if the function
does not terminate in standard configuration, or if it outputs a different
integer), we output d(n) = 1.

What’s wrong with this argument? Mainly, the fact that we used the fact that the
machine either terminates or it doesn’t: this is an obvious fact, but not necessarily
a computable one. Indeed, a prerequisite for this function to be computable is the
ability to compute whether or not the machine halts, and this is not obviously
computable.27 We can directly show that this process is not Turing computable.

To be precise, define h(m,n) to be the halting function that determines whether
or not the one-argument function derived from machine Tm halts with input n:

h(m,n) =
{

1 if fTm,1 halts for input n
2 otherwise

This halting-problem, however, can be encoded in a way that forces self-reference.

Theorem 5.1 ([1], Theorem 4.2) The halting function h is not Turing com-
putable.

Proof. Following [1], we use two Turing machines. The first is a copying
machine C that sends (n) to (n, n), in our standard encoding, returning the
machine to its appropriate position:

B 11 1 1 B −→ B 1N+1 1 1 B 1 1 1 B.
26Example from [1], p. 37-8
27We can certainly determine whether a machine halts after k steps, but it may be trickier to

determine this for all k.

Turing Machines 13

The second is a “dithering machine” D that halts for input n 6= 1, but moves
back and forth indefinitely for input n = 1. We leave the construction of these
machines to the reader.

The point is to make heavy use of the concatenation properties of Turing
machines, as facilitiated by our convention of the halting state. Suppose that
there exists a Turing machine H such that fH,2(m,n) = h(m,n); i.e., H’s action
on two inputs computes the halting function. The we concatenate and run the
programs T = CHD:28 given input n in standard form, C will convert it to (n, n),
so that H will compute h(n, n) in standard final configuration. Then D will read
H’s output: if H outputs a 1, i.e., if the one-argument function corresponding to
machine Tn terminates for input n, then we get D to dither indefinitely. Yet if
D receives input 2, that is, if the nth Turing machine does not halt for input n,
then D will stop.

Yet this is clearly the beginning of a self-referential contradiction: for if CHD
is some finite-state deterministic Turing machine, it corresponds to some integer
m. Then consider Tm = CHD acting on input m. Either it terminates or it does
not terminate.

1. If CHD terminates for input m, then CH(m) = H(m,m) = 1, because
Tm = CHD terminates with input m. Therefore, CHD(m) will, after the
C and H routines, come to routine D with input 1, so the dithering machine
will never halt, so CHD(m) does not terminate. So by assuming that it does
terminate, it does not terminate.

2. If CHD does not terminate for input m, then CH(m) = H(m,m) = 2, so
D(2) terminates, so CHD(m) = D(2) terminates. So by assuming that it
does not terminate, then it does terminate.

Contradiction.
�

There are other, more practical incomputable problems. For example, a Turing
incomputable problem is the “finite word problem,” to determine for an arbitrary
finitely presented group G with a given presentation, whether or not a given finite
word reduces to the identity.29

Given these negative results, the reader may be wondering if Turing com-
putability is the best that can be done. Surely there is some other method of
computing partial functions that gives a better outcome? For deterministic rou-
tines, however, the answer, thus far, is “no.”

28Concatenation is left-to-right here.
29[4].

Turing Machines 14

6 Computability and Church’s Thesis.

It is now appropriate to consider some history.30. Around the 1930’s, several
attempts to axiomatize the notion of “effectively computable” arose: in addition
to Turing’s papers of 1936, the following other methods were significant.

Recursive functions. These were used by Gödel in his logical work.31. We
create a class of functions, the “primitive recursive” functions, whose domain
for each f is some Nk, k depending on f , and whose codomain is N. These
start with the one-argument zero-function, the successor function n → n + 1,
and the ith-coordinate-vector projection functions on Nk for each k. We close
under the operations of concatenation and recursion. Adding the closure under
minimalization (a technical process related to finding the “first zero” of a function
with respect to its last input) gives the full class of recursive functions.32 Indeed,
it is easy to see that addition and number-theoretic constructs such as division and
remainder functions are recursive, as well as functions as wild as the Ackermann
function.33

Unlimited Register Machines. This was another sort of computer model,
developed in 1950 by Shepherdson and Sturgis.34. It involves an infinite line of
“registers,” each holding an nonnegative integer, where the machine operations are
“increment the amount in a register” and “if a register is not empty, then decre-
ment, else do a different action.”35. This is more clearly related to the modern
notion of computer memory. It is easy to show that this function can handle every
element in the “stacking” sequence of complexity that is addition, then multipli-
cation (repeated addition), then exponentiation (repeated multiplication), then.
. . .36.

The λ-calculus. This model was developed by Alonzo Church and Steven
Kleene from 1934, and now enjoys some use in computer programming.37

These are all distinct notions of computability, each seemingly different, and
possibly more powerful: certainly, the register machines, which effectively replace
our tape with registers capable of holding any nonnegative integer, not just a finite
set of symbols, seem more powerful. What is interesting is that these notions are
all equivalent, insofar as the family of computable functions is the same for each.

Theorem 6.1 ([1], Theorems 5.6, 5.8, 8.2; [3], Theorem 11.2.18) A func-
tion is Turing computable if and only if it is recursive, if and only if it is URM-
computable, if and only if it is lambda-computable.

30This section mostly due to [3], p. 1-8
31[3], p. 7
32[3], p. 18
33[3], p. 12-6.
34[3], p. 8; [1] refers to these machines as “abacus machines” (p. 46)
35[1], p. 47
36[1], p. 49-51
37[3], p. 5, 180

Turing Machines 15

This is not only a powerful theoretical result, but the relationship with re-
cursion allows us to show that some of our conventions about Turing machines
did not significantly affect the universe of computable functions. For example,
having a singly infinite or bi-infinite tape makes no difference, nor does it change
anything to change the tape symbols, as long as there are only finitely many of
them.38. Further, if we can prove a function is computable in one method, then
it is computable in all of them; hence, we have several points of view from which
to find computable functions. Since all of these methods generate the same class
of computable functions, we have the following conjectures about computability:

The Church-Markov-Turing thesis. “A partial function φ : Nn → N is
computable (in any accepted informal sense) if and only if is computable by some
binary Turing machine.”39.

Now, since this is defined in terms of informal notions rather than formal
ones, we cannot prove this thesis,40. Yet may are willing to assume the thesis,
for there are many points in its favor: all current formalizations give the same
class of functions, no clear counterexample exists, and Turing’s exposition “was
so persuasive . . . that it made any non-equivalent model of computability
impossible to envisage.”41 To the best of our understanding, the Turing machines
represent the boundaries of computability, so that the incomputability results
from the previous section have real weight. Therefore, they do indeed represent
(for now) the power and the limitations of computability.

References

[1] G. Boolos, J. P. Burgess, and R. C. Jeffrey, Computability and Logic, 4th ed.,
Cambridge U. Press, New York, 2006.

[2] D. S. Bridges, Computability: A Mathematical Sketchbook, Graduate Texts in
Mathematics, Springer-Verlag, New York, 1994.

[3] S. B. Cooper, Computability Theory, Chapman & Hall/CRC Mathematics,
Boca Raton, 2003.

[4] J. D. Hampkins, et al, “What are the Most Attractive Turing Undecidable
Problems in Mathematics?” MathOverflow. Accessed at mathOverflow.net,
24 Jun 2010 version.
http://mathoverflow.net/questions/11540/what-are-the-most-attractive-
turing-undecidable-problems-in-mathematics.

38[1], p. 94
39[2], p. 32
40[2], p. 32
41[2], p. 32; [3], p. 42

Turing Machines 16

[5] E. W. Weisstein, “Collatz Problem,” Wolfram MathWorld. Accessed at
www.mathworld.wolfram.com, 2 July 2010 version.
http://mathworld.wolfram.com/CollatzProblem.html

