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1 Introduction

Many people have difficulty in doing some counting problems probably because
sometimes, a situation comes wherein distinct objects are often considered equal.
If a teacher for instance is interested in knowing the number of families represented
by her class, then she will consider two children to be “equal” if and only if they
are siblings. Suppose next we consider the problem of counting non-equivalent
bracelets with two beads of three different colors; red (r ), blue (b) and green (g ).
By simple combinational analysis, there will be exactly 32 = 9 possible faces of
the bracelets with the above specified colors. They are illustrated below.

Let us now divide these nine bracelets into groups of bracelets by considering two
bracelets similar if one can be obtained from the other by rotation. Then we see
that b2 is rotationally equivalent to b4 , hence both should belong to the same
group. Likewise, b3 and b7 are equivalent; b5 and b6 are also equivalent. On the
other hand, we see that b1 belongs to a group that contains itself and so does b8 .
Thus, in the sense of grouping these bracelets, we are led to have classified six
different bracelets that are non-equivalent under rotation. They are shown below.
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In this paper, certain enumerative techniques like the one illustrated above will be
developed and used for the solutions of some counting problems specifically those
that call the notion of permutation groups. A thorough exposition of a powerful
tool in the said enumeration will be the central feature of study from a point of
view first developed by George Polya in 1938.

2 The Power Group

Consider two permutation groups G1 , of order m acting on X = {x1, x2, . . . , xd}
and another permutation group G2 of order n acting on Y = {y1, y2, . . . , ye} .
Here, we refer to the sets X and Y as the object set of G1 and G2 respectively.

Definition 2.1. The power group of G1 and G2 , denoted by GG1
2 , is a permu-

tation group which acts on Y X , the set of all functions from X into Y . For
each pair of permutation π ∈ G1 and β ∈ G2 , there is a permutation, denoted
by (π; β) in the power group GG1

2 such that for each f ∈ Y X and each x ∈ X ,
(π; β)f(x) = β(f(π(x))).

Example 2.2. The cyclic group C3 = {π1, π2, π3} which acts on X = {1, 2, 3}
where
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π1 =

(
1 2 3
1 2 3

)
π2 =

(
1 2 3
2 3 1

)
π3 =

(
1 2 3
3 1 2

)

and with S2 = {σ1, σ2} , the symmetric group of degree 2 acting on Y = {a, b} we
have the permutations

σ1 =

(
a b

a b

)
and σ2 =

(
a b

b a

)

Notice that the set of all functions from X intoY , that is Y X = {f1, f2, . . . , f8}
consists of eight different mappings, where in Table 1, the action of these mappings
are described.

f1 f2 f3 f4 f5 f6 f7 f8

1 a a a b b a b b

2 a a b a a b b b

3 a b a a b b a b

Table 1

To obtain the different permutations of SC3
2 , the process requires us to associate

each of the two permutations in S2 with the three permutations in C3 . Hence the
power group SC3

2 consists of the following six permutations,

α1 = (π1 ; σ1) α4 = (π2 ; σ2)

α2 = (π1 ; σ2) α5 = (π3 ; σ1)

α3 = (π2 ; σ1) α6 = (π3 ; σ2)

and going through all f ∈ Y X we have the following

α1 =

(
f1 f2 f3 f4 f5 f6 f7 f8

f1 f2 f3 f4 f5 f6 f7 f8

)

α2 =

(
f1 f2 f3 f4 f5 f6 f7 f8

f8 f7 f5 f6 f3 f4 f2 f1

)

α3 =

(
f1 f2 f3 f4 f5 f6 f7 f8

f1 f3 f4 f2 f6 f7 f5 f8

)

α4 =

(
f1 f2 f3 f4 f5 f6 f7 f8

f8 f5 f6 f7 f4 f2 f3 f1

)
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α5 =

(
f1 f2 f3 f4 f5 f6 f7 f8

f1 f4 f2 f3 f7 f5 f6 f8

)

α6 =

(
f1 f2 f3 f4 f5 f6 f7 f8

f8f6 f7 f5 f2 f3 f4 f1

)
.

In Table 2, we describe the action of these permutations by applying these to each
xi ∈ X .

f1 f2 f3 f4 f5 f6 f7 f8

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
α1 a a a a a b a b a b a a b a b a b b b b a b b b

α2 b b b b b a b a b a b b a b a b a a a a b a a a

α3 a a a a b a b a a a a b a b b b b a b a b b b b

α4 b b b b a b a b b b b a b a a a a b a b a a a a

α5 a a a b a a a a b a b a b b a b a b a b b b b b

α6 b b b a b b b b a b a b a a b a b a b a a a a a

Table 2

The power group has order and degree (mn) and ed respectively.

3 The Cycle Index Polynomial

Let us begin this section by considering the disjoint cycles of a particular length
on every permutation π ∈ G .

Definition 3.1. Let G be a permutation group which acts on X with n elements.
Suppose further π ∈ G . If π can be written as a product of k1 disjoint cycles of
length 1, k2 disjoint cycles of length 2, . . . , kn disjoint cycles of length n , then
π is said to be of type (k1, k2, . . . , kn).

Example 3.2. Consider Example 2.2 with X = {1, 2, 3} , G = C3 = {π1, π2, π3}
where
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π1 =

(
1 2 3
1 2 3

)
= (1) (2) (3)

π2 =

(
1 2 3
2 3 1

)
= (1 2 3)

π3 =

(
1 2 3
3 1 2

)
= (1 3 2).

Then π1 is of type (3, 0, 0) and π2 is of type (0, 0, 1). Similarly, π3 is of type
(0, 0, 1).

Note that k1+2k2+· · ·+nkn = n since the sum of the length of the cycle is the
total number of elements in S . Now, since each π ∈ G can be written uniquely
as a product of disjoint cycles, let us denote by jk(π), the number of cycles of
length k in the disjoint cycle decomposition of π for each k = 1, 2, . . . , n . We are
now ready to define the cycle index of G .

Definition 3.3. Let G be a permutation group on a set X of n elements. If
π ∈ G is of type (j1(π), j2(π), . . . , jn(π)) form the product s

j1(π)
1 s

j2(π)
2 · · · sjn(π)

n

where the si are indeterminates. Then the cycle index of G is the polynomial
defined by

Z(G; s1, s2, . . . , sn) =
1

| G |

{∑

π∈G

s
j1(π)
1 s

j2(π)
2 · · · sjn(π)

n

}
.

Example 3.4. Consider G = S3 {π1, π2, . . . , π6} where

π1 =

(
1 2 3
1 2 3

)
= (1) (2) (3)

π2 =

(
1 2 3
1 3 2

)
= (1) (2 3)

π3 =

(
1 2 3
2 1 3

)
= (1 2) (3)
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π4 =

(
1 2 3
2 3 1

)
= (1 2 3)

π5 =

(
1 2 3
3 1 2

)
= (1 3 2)

π6 =

(
1 2 3
3 2 1

)
= (1 3) (2).

Observe that π1 is of type (3, 0, 0) since it has 3 cycles of length 1. This results
to a term s3

1 . The permutations π2 , π3 and π6 each have one cycle of length 1
and one cycle of length 2. Hence these are of type (1, 1, 0) which results to a
term 3s1s2 . Finally, the permutations π4 and π5 each have one cycle of length 3.
These are of type (0, 0, 1) which contribute 2s3 . Hence, the cycle index of S3 is
given by

Z(S3; s1, s2, s3) =
1
6

(
s3
1 + 3s1s2 + 2s3

)
.

4 The Cycle Index of Special Permutation Groups

Let Sn be the symmetric group of degree n . Without loss of generality, let us
assume that an element of Sn is of type(k1, k2, . . . , kn). Our aim first is to find p

– the number of elements of Sn having the above type. Then one of the terms
of Z(Sn) is

1
n!

p (sk1
1 sk2

2 · · · skn
n ).

Claim: p =
n!

(1k1k1!)(2k2k2!) · · · (nknkn!)

Consider a permutation in Sn say

π = (z1 z2 . . . zr), r ≤ n

with cycle structure sk1
1 sk2

2 · · · skn
n . We know that each permutation of n objects

is associated with a partition of n , that is

1k1 + 2k2 + · · ·+ nkn = n.
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Since π is a permutation of n objects, then the number of ways of rearranging
the elements in π is n! . But among these the ki cycles of length i contribute
a rearrangement which can be done by interchanging cycles of the same length.
They make a contribution of k1!k2! · · · kn! arrangement by the product rule.

Now a cycle of length r such as in the above can be represented by r different
ways by cyclically permuting the zi that is

(z1 z2 · · · zr) = (zr z1 · · · zr−1) = · · · = (zr−1 zr · · · z1).

Hence, we have to consider the contribution they make to the n! rearrange-
ments. But there are 1k12k2 · · ·nkn of them because there are ki cycles of length i

for each i . Thus,

p =
n!

(1k1k1!)(2k2k2!) · · · (nknkn!)

and so,

Z(Sn) =
1
n!

(
n!

1k1k1!2k2k2! · · ·nknkn!

)
sk1
1 sk2

2 · · · skn
n .

Going through all π ∈ Sn , we have the following result.

Theorem 4.1. The cycle index of the symmetric group Z(Sn) is given by

Z(Sn) =
1
n!

∑
p(sk1

1k1
sk2
2 · · · skn

n )

where

p =
n!

(1k1k1!)(2k2k2!) · · · (nknkn!)

and the summation is over all n-tuple (k1, k2, . . . , kn) of non-negative integers ki

satisfying
1k1 + 2k2 + · · ·+ nkn = n.

Now let π ∈ Sn and suppose π is of type (k1, k2, . . . , kn). Notice that whenever
the sum k2 + k4 + k6 + · · · is even, then π ∈ An since this sum totals all disjoint
cycles having lengths 2, 4, 6, . . . . Thus, we have come up with the following result
which gives the cycle index of the alternating group An .
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Corollary 4.2. The cycle index of the alternating group is given by

Z(An) = Z(Sn) + Z(Sn; s1,−s2, s3,−s4, . . . ).

Example 4.3. From Example 3.4, we know that

Z(S3) =
1
6

(
s3
1 + 3s1s2 + 2s3

)
.

Solving for Z(A3), we obtain

Z(A3) = Z(S3) + Z(S3; s1,−s2, s3)

=
(

1
3

)
(s3

1 + 2s3).

In order to derive the cycle index of the cyclic group, we are going to need the
following lemma.

Lemma 4.4. Let G be a cyclic group of order n generated by x . Suppose that
the greatest common divisor of the positive integer k (k ≤ n) and n is d . Then
xk and xd generate the same cyclic subgroup G , its order is n/d .

Now, suppose Cn is the cyclic group of permutations of order n generated by π

acting on a set of S of n elements, where

π = (1 2 3 . . . n).

Also, let gk = πk (k = 0, 1, 2, . . . , n − 1). By the above lemma, gk and g(k,n)

generate the same cyclic subgroup. In fact, if (k, n) = (j, n) = d , then gj , gk and
gd will generate the same cyclic subgroup, and in addition, they are of the same
type since if s ∈ S , then s belongs to the cycle obtained from

s → gd(s) → g2
d(s) → · · · → g

n/d
d (s) = s.

This means that gd is the product of d cycles of length n/d .
Now, to obtain the cycle index of Cn , we shall first find the number of solutions

of (k, n) = d or equivalently
(

k
d , n

d

)
= 1, since for all such k , the corresponding gk

are having the same type. By definition of the Euler -φ function, the number of
solutions of (k/d, n/d) = 1 is φ(n/d). Hence, we have the following result.
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Theorem 4.5. The cycle index of the cyclic group Cn is given by

Z(Cn) =
1
n

∑

d|n
φ(n|d)sd

n|d.

Example 4.6. To compute Z(C6), let us first find the possible candidates for
the number d , satisfying d | 6. By inspection, we know that d = 1, 2, 3, 6. Now,
computing for φ(6/d), we have

φ(6/1) = φ(6) = 2 φ(6/2) = φ(3) = 2
φ(6/3) = φ(2) = 1 φ(6/6) = φ(1) = 1

and hence,

Z(C6) =
(

1
6

)
(s6

1 + s3
2 + 2s2

3 + s6).

Similarly, if we compute for Z(C4), we have d = 1, 2, 4 with

φ(4/1) = φ(4) = 2 φ(4/2) = φ(2) = 1 φ(4/4) = φ(1) = 1.

Thus,

Z(C4) =
(

1
4

)
(1.s4

1 + 1.s2
2 + 2.s1

4) =
(

1
4

)
(s4

1 + s2
2 + 2s4).

The following corollary gives the cycle index of the dihedral group Dn .

Corollary 4.7. The cycle index of the dihedral group Dn is given by

Z(Dn) =
(

1
2

)
Z(Cn) +

(
1
4

)
(sn/2

2 + s2
1s

(n−2)/2
2 ).

Let us now characterize the cycle index of the identity permutation group.
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Theorem 4.8. Z(En; s1, s2, . . . , sn) = sn
1 .

Proof. Since the identity permutation group is of type (n, 0, 0, . . . , 0) then the
result is immediate. Here, the cycle index is dependent on the values of n . And
so, for n = 1, Z(E1) = s1 ; for n = 2, Z(E2) = s2

1 . . . and so on. This fact shows
that the cycle index depends not only in the structure of G as an abstract group
but also on the way in which its elements as permutations are interpreted.

5 The Burnside’s Lemma

It makes sense to begin this section by studying what it means to say two objects
are the same.

Definition 5.1. Let G be a permutation group on a set X . For a, b ∈ X , define
a relation a ∼ b to mean that for some π ∈ G ; π(a) = b . This relation is called
the binary relation on X induced by the permutation group G .

Theorem 5.2. If G is a permutation group, then ∼ defines an equivalence rela-
tion.

Definition 5.3. Let G be a permutation group on a set X . Suppose that ∼
defines an equivalence relation on X . Then the equivalence class containing the
element x , denoted by Orb(x) is called the G-orbit of x and is defined by

Orb(x) = {π(x) : π ∈ G}.

Lemma 5.4. Orb(x) = Orb(y) if and only if x ∼ y .

The problem of determining the number of equivalent objects in X reduces to
the problem of counting the number of distinct G -orbits established by ∼ on X

induced by G . One way of doing this is simply to count, that is to compute all
G -orbits and enumerate them. However, this method seems impractical and even
more tedious for complex situations. Fortunately, the Burnside’s Lemma which we
are going to develop next gives an analytical formula for such counting of G -orbits.

The Burnside’s Lemma is a powerful technique in the counting of G-orbits
induced by a permutation group. This technique which is particularly efficient
when the order of the group is small is considered one of the essential parts in the
development of the Polya Theory.
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Definition 5.5. Let G be a permutation group on X . An element x in X is
said to be invariant under a permutation π ∈ G if and only if π(x) = x . To each
x ∈ X , the stabilizer of x , denoted by Stab(x) is defined to be the set

Stab(x) = {π ∈ G : π(x) = x}.

Also, for each π ∈ G , let φ(π) denote the number of elements of X that are
invariant under π that is

φ(π) =
∣∣ {x ∈ X : π(x) = x} ∣∣ .

Lemma 5.6. ∀x ∈ X , Stab(x) ≤ G .

Proof. Let π1, π2 ∈ Stab(x). Then π1π2 ∈ Stab(x) since π1π2(x) = π1(x) = x .
Also, if π1 ∈ Stab(x), then π−1

1
∈ Stab(x) since π1(x) = x and by multiplying π−1

1

to both sides of the equation, we obtain x = π−1
1

(x). Hence, Stab(x) ≤ G ∀ x .

The following lemma is immediate.

Lemma 5.7. ∀x ∈ X ,
∣∣ Stab(x)

∣∣∣∣ Orb(x)
∣∣=

∣∣ G
∣∣ .

We are now prepared to state the Burnside’s Lemma which provides a formula
for the number of G-orbits in terms of the average number of fixed points of the
permutation in G .

Theorem 5.8. (Burnside’s Lemma) Let G be a permutation group acting on
the set X and suppose ∼ is an equivalence relation on X induced by G . If θ is
the number of G-orbits in X , then,

θ =
1
|G|

(∑

π∈G

φ(π)

)
.

Proof. Suppose G = {π1, π2, . . . , } and X = {1, 2, . . .} . Then notice that
∑

π∈X

φ(π) =
∑

x∈X

|Stab(x)|

because both sides of the equation count the number of pairs satisfying π(x) = x .
Using Lemma 5.7,

∑

x∈X

|Stab(x)| = |G|
(∑

x∈X

1
|Orb(x)|

)
.
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By assumption, the sum in the right hand side of the above equation is just θ

since this sum counts the number of distinct G -orbits ∀x . Hence,
∑

π∈G

φ(π) =
∑

x∈X

Stab(x) = |G|(θ)

and the proof is completed on division by |G| .

6 The Polya Counting Theory

In many instances, the direct application of the Burnside’s Lemma is not prac-
tically efficient to permit us to enumerate the distinct G -orbits induced by a
permutation group. The difficulty perfectly stems from the computation of the
number of invariances for a large ordered group.

The Polya’s Theorem provides a tool necessary to facilitate this computation.
To formulate and prove Polya’s Theorem in an abstract and more concise manner,
it is somehow convenient to require the notion of functions and patterns as its
enumerations are basically performed over sets whose elements are functions.

In the rest of the discussion, we consider X be a set of elements called “places”;
and let Y be a set of elements called “figures”. Also, we consider the usual
permutation group G acting on X , which we call the configuration group.
Moreover, an element f in Y X will be called configuration.

Definition 6.1. On Y X , the set of all configurations from X to Y , define the
relation f1 ∼ f2 to mean that for some π ∈ G; f1(π(x)) = f2(x) ∀x ∈ X .

Example 6.2. Suppose X = {1, 2}, Y = {a, b} and G = {π1, π2} where

π1 =

(
1 2
1 2

)
and π2 =

(
1 2
2 1

)
.

There will be 22 = 4 configurations from X into Y , namely

f1 : 1 → a

2 → a

f3 : 1 → b

2 → a

f2 : 1 → a

2 → b

f4 : 1 → b

2 → b
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Observe that f2(π2(1)) = f2(2) = b = f3(1) and f2(π2(2)) = f2(1) = a =
f3(2). Hence, f2 ∼ f3 since π2 ∈ G implies that f2(π2(x)) = f3(x) for all x .

With the identity permutation

(
1 2
1 2

)
obviously, we have f1 ∼ f1 and f4 ∼ f4 .

The relation ∼ is an equivalence relation by virtue of which the set Y X splits
into distinct G -orbits. These G -orbits are called patterns.

Example 6.3. In Example 6.2, the set Y X splits into three distinct patterns,
namely P1 = {f1}, P2 = {f2, f3} and P3 = {f4} .

In order to lead to the classical Polya Theory, we consider the identity group E

on Y , the power group EG acting on Y X as well as the weight assignment to
each y ∈ Y .

Definition 6.4. Let w : Y → {0, 1, 2, . . .} called the weight function whose
range is the set of non-negative integers. For each k = 0, 1, 2, . . . let ck = |w−1(k)|
be the number of figures with weight k . Further, the series in the indeterminate x ,

c(x) =
∞∑

k=0

ckxk

which enumerates the elements of Y by weight is called the figure counting
series.

Example 6.5. Consider Example 6.2 with Y = {a, b} . Suppose we have w(a) = 0
and w(b) = 1. Then, c0 = 1, c1 = 1 and the figure counting series is

c(x) =
1∑

k=0

ckxk = c0x
0 + c1x

1 = 1 + x.

Definition 6.6. For each f ∈ Y X , the weight of f , denoted by w(f) is defined
by

w(f) =
∑

x∈X

= w(f(x)).
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Example 6.7. With reference to Example 6.2, we obtain

w(f1) = w(f1(1)) + w(f1(2)) = w(a) + w(a) = 0

w(f2) = w(f2(1)) + w(f2(2)) = w(a) + w(b) = 1

w(f3) = w(f3(1)) + w(f3(2)) = w(b) + w(a) = 1

w(f4) = w(f4(1)) + w(f4(2)) = w(b) + w(b) = 2.

In particular, notice that the weight of a function is obtained only once the
weights have been chosen and assigned. As illustrated in the above example,
w(f2) = w(f3) and as was in Example 6.3, these configurations belong to the
same pattern. We shall formally contain this result in the following lemma.

Lemma 6.8. On the power group EG , if f1 and f2 are equivalent then w(f1) =
w(f2) .

Proof. f1 and f2 are equivalent means that ∃ π ∈ G such that f1(π(x)) =
f2(x) ∀ x ∈ X . Now,

w(f1) =
∑

x∈X

w(f1(x)) =
∑

x∈X

w(f1(π(x)) =
∑

x∈X

w(f2(x)) = w(f2)

because the second and the third sum have the same terms the order of which is
immaterial.

Lemma 6.8 gives rise to the following definition.

Definition 6.9. The weight of a pattern P , denoted by w(P ) is the weight of
any f ∈ P .

Example 6.10. Using Example 6.3, we have w(P1) = 0; w(P2) = 1 and w(P3) = 2.

Definition 6.11. Let Ck be the number of patterns of weight k . Then the series
in the inderterminate x ,

C(x) =
∞∑

k=0

Ckxk

is called the configuration counting series.
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Example 6.12. Again, using Example 6.3, we have C0 = 1, C1 = 1 and C2 = 1.
Then the configuration counting series is given by

C(x) =
2∑

k=0

Ckxk = C0x
0 + C1x

1 + C2x
2

C(x) =
∞∑

k=0

Ckxkxk = 1 + x + x2.

The main thrust of Polya’s Theorem is to seek a devise of computing C(x)
without determining Ck . This is done by expressing C(x) in terms of c(x) and G .
Let us denote by X(G, c(x)) to mean Z(G; c(x), c(x2), c(x3), . . . , c(xn)).

Theorem 6.13. (Polya’s Theorem) The configuration counting series C(x)
is obtained by substituting the figure counting series c(xk) for each indetermi-
nate sk into the cycle index Z(G) of the configuration group. In symbols, C(x) =
Z(G; c(x)) .

Let us illustrate the theorem by means of an example.

Example 6.14. We wish to verify C(x) = 1 + x + x2 obtained in Example 6.12.
Now, G = S2 = {(1)(2), (1 2)} and

Z(S2; s1, s2) =
1
2

(
s2
1 + s2

)
.

But in Example 6.5, c(x) = 1 + x → c(x2) = 1 + x2 . Using Polya’s Theorem, we
obtain

c(x) = Z(G; c(x), c(x2))

=
1
2
((1 + x)2 + (1 + x2))

=
1
2
(1 + 2x + x2 + 1 + x2)

=
1
2
(2 + 2x + 2x2)

= 1 + x + x2

as desired.

Below, we illustrate Polya’s Theorem in a coloring problem.
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Example 6.15. Let X = {1, 2, 3} be the set of vertices of an equilateral triangle
and suppose Y = {red(r), blue(b)} be the set of colors to be painted in each
of the vertices of the triangle. The total number of ways in which we color the
three vertices by red and blue is 23 = 8. Our aim is to determine the number of
distinct triangles which are different from another by rotation of the vertices. The
group G , appropriate to this problem is S3 since any rotation of the vertices gives
an equivalent triangle. For example, the triangles

are equivalent by a clockwise rotation of the vertices. Now, each f ∈ Y X corre-
sponds to a colored vertex in which vertex k ∈ X has a color f(k). Hence, it can
be said that the triangle represented by f has |f−1(red)| vertex of red color and
|f−1(blue)| vertex of blue color.

Let E2 be the identity permutation group acting on Y . If we assign w(red) = 0
and w(blue) = 1, then c0 = 1 and c1 = 1. Hence,

c(x) =
1∑

k=0

ckxk = cox
0 + c1x

1 = 1 + x

is the counting series for Y . Let f be a function of weight k represents a triangle
with (3−k) red vertex and k blue vertex. With in this condition, the configuration
counting series C(x) will enumerate the distinct triangles and the coefficient of the
term xk is the number of such triangles with k blue vertex. Now, c(x) = 1 + x ,
then c(x2) = 1 + x2 and c(x3) = 1 + x3 . Recall that the cycle index polynomial
for S3 is

Z(S3; s1, s2, s3) =
1
6

(
s3
1 + 3s1s2 + 2s3

)
.

Thus, using Polya’s Theorem, we obtain:

C(x) = Z(S3; c(x)) =
1
6

(
(1 + x)3 + 3(1 + x)(1 + x2) + 2(1 + x3)

)

= 1 + x + x2 + x3.
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Now, in the polynomial 1 + x + x2 + x3 , the term: 1 = x0 with coefficient 1
and exponent 0 (k = 0) means that there is one triangle with zero blue vertex
and 3− k = 3− 0 = 3 red vertices.

x with coefficient 1 and exponent 1 (k = 1) means that there is one triangle
which contains one blue vertex and 3− k = 3− 1 = 2 red vertices.

x2 with coefficient 1 and exponent 2 (k = 2) means that there is one triangle
with two blue vertices and 3− k = 3− 2 = 1 red vertex.

x3 with coefficient 1 and exponent 3 (k = 3) means that there is one triangle
with three blue vertices and k − 3 = 3− 3 = 0 red vertices.
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Thus, we have four distinct triangles with blue and red vertices. They are shown
below:

7 Some Corollaries

Corollary 7.1. The number of patterns of configurations determined by the power
group EG

m is obtained by substituting the integer m for each variable in the cycle
index of G , where m = |Y | .
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Example 7.2. The cycle index associated with G in Example 6.2 is

Z(G; s1, s2) =
1
2
(s2

1 + s2).

Hence, with m = |Y | = 2, the number of patterns of configuration determined by
EG

2 is

Z(G; 2, 2) =
1
2
(22 + 2) =

1
2
(4 + 2) = 3.

This result is in conformity with Example 6.3 in which we exhibited the 3 distinct
patterns.

Corollary 7.3. The coefficient of xr in Z(G; 1 + x) is the number of G-orbits
of r -subsets of X .

Now on setting r = 1, the above corollary suggests that the coefficient of x in
Z(G; 1+x) is the number of G -orbits of the singleton sets of X . But we can think
of these sets just like individual elements of X . Thus, in the sense of Burnside’s
Lemma, the following corollary is immediate.

Corollary 7.4. The number of orbits determined by G is the coefficient of x in
Z(G; 1 + x) .

Definition 7.5. Let G be a permutation group which acts on the set X . G is
called transitive if it determines only one orbit, namely X itself. Otherwise, G

is called intransitive.

The following corollary results with the above definition.

Corollary 7.6. A permutation group G is transitive if and only if the coefficient
of x in Z(G; 1 + x) is 1 .

8 The Transitivity of Special Permutation Groups

This section extends the application of Polya’s Theorem to a situation in which
we characterize the permutation groups: symmetric, alternating, cyclic, dihedral
and identity permutation groups by means of substituting the figure series c(x) =
1 + x into their respective cycle indexes. In effect, the resulting polynomial will
determine the transitivity of these permutation groups.
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Example 8.1. In Example 3.4 and Example 4.3, we have shown that

Z(S3; s1, s2, s3) =
1
6

(
s3
1 + 3s1s2 + 2s3

)
and

Z(A3) =
1
3
(s3

1 + 2s3).

Then using c(x) = 1 + x , notice that

Z(S3; 1 + x) = 1 + x + x2 + x3 and

Z(A3; 1 + x) = 1 + x + x2 + x3.

These computations show that the permutation groups S3 and A3 are transi-
tive in view of Corollary 7.6. In fact, for any n it can be verified that

Z(Sn; 1 + x) = 1 + x + x2 + · · ·+ xn and

Z(An; 1 + x) = 1 + x + x2 + · · ·+ xn.

Hence, using Polya’s Theorem, Sn and An are transitive groups. Moreover, it
can be verified that

Z(C4; 1 + x) = 1 + x + 2x2 + x3 + x4

Z(D4; 1 + x) = 1 + x + 2x2 + x3 + x4

Z(C6; 1 + x) = 1 + x + 3x2 + 4x3 + 3x4 + x5 + x6

and

Z(D6; 1 + x) = 1 + x + 3x2 + 3x3 + 3x4 + x5 + x6.

Thus, C4, D4, C6 and D6 are transitive. In general, Cn and Dn are both transi-
tive.

Finally, since Z(En) = sn
1 , then

Z(En; 1 + x) = (1 + x)n

= 1 + nx +
n(n− 1)

2!
x2 + · · ·+ xn.

Notice that En is transitive only if n = 1. For n = 2, En is not transitive.
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