AN INTRODUCTION TO KNOT THEORY AND THE KNOT
GROUP
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ABSTRACT. This paper for the University of Chicago Math REU is an expos-
itory introduction to knot theory. In the first section, definitions are given
for knots and for fundamental concepts and examples in knot theory, and
motivation is given for the second section. The second section applies the fun-
damental group from algebraic topology to knots as a means to approach the
basic problem of knot theory, and several important examples are given as well
as a general method of computation for knot diagrams. This paper assumes
knowledge in basic algebraic and general topology as well as group theory.
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1. KNOTS AND LINKS

We open with a definition:
Definition 1.1. A knot is an embedding of the circle S in R?.

The intuitive meaning behind a knot can be directly discerned from its name,
as can the motivation for the concept. A mathematical knot is just like a knot of
string in the real world, except that it has no thickness, is fixed in space, and most
importantly forms a closed loop, without any loose ends. For mathematical con-
venience, R3 in the definition is often replaced with its one-point compactification
S3.

Of course, knots in the real world are not fixed in space, and there is no interesting
difference between, say, two knots that differ only by a translation. It is also of
interest to us, when presented with a real-world knot, whether it can be “untied,”
since the defining property of a knot in the real world is that it can be moved around
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and warped without losing its knottedness, so long as it isn’t broken. We therefore
want to define an equivalence relation on knots that indicates when two knots can
be smoothly transformed into each other without ever breaking or self-intersecting
(de-knotting) during the process. Knots, taken as equivalence classes, could then
be considered only in terms of their topologically important qualities.

Definition 1.2. Two knots a : S' — $2 and b are equivalent if there is a contin-
uous function F': 3 x [0,1] — S? for which:

(1) Fp is the identity map,
(2) F, is a homeomorphism S3 — 3 for all ¢ € [0, 1], and
(3) Froa=h.

It is a simple check that the following is true:
Proposition 1.3. The above relation is an equivalence relation.

Generally when we speak of “a knot” we are referring to an equivalence class of
knots, rather than just a specific one.

Although many examples of knots exist, we will only consider a certain subclass
consisting of those that are well-behaved. A tame knot, the type we will use, is
any knot equivalent to a polygonal knot, which is a knot whose image is the union
of finitely many line segments. Any tame knot can be represented efficiently by
a knot diagram, which is essentially just a picture of the knot in two-space. It
is obtained by projecting the knot onto a plane in such a way that only finitely
many disjoint pairs of points on the knot map to the same point on the plane. For
these points the diagram indicates which segment crosses “above” the other. The
diagram may also indicate the orientation of the knot.

1.1. Examples of Knots. The simplest example of a knot is the unknot, which
is just any knot equivalent to a simple circle in S3, that is, any knot which is “not
knotted” and thus can be “untied.” Any knot diagram without any crossings is an
unknot. Some unknots are represented below.

FiGURE 1. Examples of unknots, represented by unoriented knot diagrams.

One of the more important types of knot is that of the torus knot, which
is any knot that is embedded onto a standard torus (one which, when solidified,
deformation retracts onto an unknot) in S3. Typical torus knots can be expressed
as follows:
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Definition 1.4. For any ordered pair of coprime integers (a,b), the standard torus
knot K, : S* — S? corresponding to (a,b) is, defined in Euclidean coordinates,

(2 + cosbb) cosab
0 | (2+ cosbf)sinab
—sin b0

This function is an embedding of the circle on the torus 7', where T is the set of
points of distance 1 from the circle of radius 2 around the origin in the zy-plane.
It wraps around a times the long way and b times the short way. If @ or b is %1,
then the resulting knot is trivial (equivalent to the unknot). For the torus knot
Ko, the K_4 5 and K, _p knots are mirror images of the first, and K_, _; is the
same as K, ; but with reversed orientation, and is equivalent by a rotation around
the z-axis. Furthermore, K, ; is always equivalent to Kj ., since the torus can be
turned in S® in such a way that it has the same image as before, but the orientation
is reversed, as are the long and short directions. The simplest nontrivial torus knots
(also the simplest nontrivial knots in general, by minimal number of crossings in
the knot diagram) are the right- and left-handed trefoil knots K» 3 and Ky _3.

N

FIGURE 2. The right- and left-handed trefoil knots.

FIGURE 3. The torus knot K3 _g represented as a knot diagram
and in space with volume.

1.2. Links. When working with knots it is most often convenient to instead con-
sider the more general class of objects called links:

Definition 1.5. A link is an embedding of a disjoint union of finitely many circles
in S3.
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In essence a link is just a bunch of knots that (possibly) link together. It can be
considered to be a knot that is allowed to have multiple components. A link with
only one component is just a knot, and a link that is not a knot can be called a
“strict link.”

Nearly every concept that applies to knots also applies to links. The definitions
for equivalence and tameness are the same, and knot diagrams (“link diagrams”)
can still be drawn. Though it is an abuse of terminology, in this paper we will
usually use the word “knot” to refer to links, and “true knot” to refer to knots.

The simplest nontrivial link that is not a true knot is the Hopf link, which
is just two linked circles. A slightly paradoxical link is the Borromean rings, a
nontrivial link with three components in which no pair of the components is linked.

(D&

FIGURE 4. The Hopf link (left) and Borromean rings (right).

Torus knots can also be generalized to the family of torus links, which also lie
on T. For any pair of nonzero integers (a,b), there is a corresponding torus link,
which is a knot if @ and b are coprime. Otherwise, the number of components is just
the GCD d of a and b, and each component is a copy of K, /43,4, rotated around
the z axis. The whole link, analogously to knots, also wraps around the torus in
total a times the long way and b times the short way in the sense that any circle
going the long way around the torus intersects it a times, and any going the short
way around intersects b times.

1.3. Knot Invariants. One of the fundamental problems in knot theory is deter-
mining when two knots are equivalent. In general, it is much simpler to show that
two knots are equivalent than to show that they are not. All one needs to show
equivalence is to provide an ambient isotopy (the type of function in Definition
1.2). In the case of two knots given explicitly by diagrams, this can be done easily
(though indirectly), through what are called “Reidemeister moves,” which is essen-
tially just manually transitioning between the two step by step. To show that no
such function exists takes more work.

The most common method of distinguishing knots is by finding “knot invari-
ants,” which are properties that are the same for any two knots that are equivalent.
Showing that two knots have different values of a knot invariant then proves that
they are not equivalent. It follows directly from the definition of equivalence that
for any two equivalent knots, the complements of the images of the knots in S3
(their knot complements) are homeomorphic. Many knot invariants, including
the one we will focus on, the knot group, work by using this fact, distinguish-
ing nonequivalent knots by distinguishing their knot complements. Even the knot
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complement itself could be considered a knot invariant, albeit a very useless one on
its own.

2. KNOT GROUPS AND THE WIRTINGER PRESENTATION

Definition 2.1. The knot group of a knot a with base point b € S® — Im(a) is
the fundamental group of the knot complement of a, with b as the base point.

Unlike other knot invariants, it takes no work to show that the knot groups
are isomorphic for any pair of equivalent knots and base points, since equivalent
knots have homeomorphic complements and homeomorphic spaces have isomorphic
fundamental groups. Just like how we use “a knot” to refer to an equivalence class
of knots, we can also use “group” to refer to what are actually equvalence classes of
isomorphic groups. This allows us to talk about the knot group of a knot, without
reference to a base point.

Unfortunately, the knot group is not always enough to show nonequivalence. For
example, the right- and left-handed trefoil knots, as mirror images of each other,
have the same knot group, but are not equivalent. This takes more work to show.
However, for almost all practical cases the knot group can be used to show two
knots are distinct.

2.1. Preliminary Examples. The simplest knot group to calculate is, of course,
that of the unknot. However, its knot group is not trivial.

Proposition 2.2. The knot group of the unknot is the infinite cyclic group C.

Proof. We first construct a deformation retract of the knot complement onto a more
manageable subspace. It is easiest to do this in S3. In this space, which is just
R3 U {0}, the z-axis together with infinity is a circle, and the image of an unknot.
The complement of this space in S* can be expressed with cylindrical coordinates
with 6, r > 0, and z. The following function then defines a deformation retract of
the space onto the unit circle in the xy-plane around the origin:

fe(0,1,2) = (0, r(1=0), (1-1)z2)

It follows that the knot group of the unknot is the fundamental group of the circle,
which is the infinite cyclic group. (]

V

FicURE 5. A Hopf link shown so that one component includes
the point at infinity. The complement of each component in S3
deformation retracts to the other.

A similar example is that of the Hopf link.
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Proposition 2.3. The knot group of the Hopf link is the free abelian group with
two generators, C' x C.

Proof. As the image of the Hopf link we use the vertical line with infinity as before,
together with the unit circle around the origin in the zy-plane. We can again use
cylindrical coordinates for the knot complement, except this time the points with
both » = 1 and z = 0 are excluded. This time the space can be retracted onto a
torus. A family of functions that does this is:

fi(0,r,2) = (0,1 —t)r +t(r—1)/2p+t, (1 —t)z 4+ tz/2p)

Here p = +/(r —1)2 + 22. The function deformation retracts onto the torus with

tube radius % and whose central circle is the unit circle around the origin of the
xy-plane. This shows that the knot group is the same as the fundamental group of

the torus, which is C' x C. O

2.2. The Wirtinger Presentation. A general method for finding the knot group
of any tame knot was given by Wilhelm Wirtinger around the beginning of the 20th
century. It has the advantage of being intuitively simple and easy to compute.

Constructing the Wirtinger presentation starts by considering the (oriented) knot
diagram of a knot k. It is viewed as being entirely in the zy-plane in R3, except
for the lower part of each crossing, which dips down below to avoid intersection
with the above segment. Remember that a knot diagram of a tame knot consists
of finitely many arcs in the plane, with finitely many crossings at the ends where
one arc bridges under another. At each crossing, we consider the arc that passes
over to be unbroken, so each side is part of the same arc. Meanwhile, the piece
that passes under is broken, so the two sides are ends of two different arcs (or in
some cases, the two ends of the same arc). With this disambiguated, we can let n
be the number of arcs in the knot diagram, and we can number the arcs ag, a1, ...,
an—1. If k is a true knot, then we can assign the numbers such that a;y; is the arc
that comes after a; with the given orientation, with addition in Z/nZ. Since the
Wirtinger presentation can be used for strict links as well as true knots (provided
of course that they are tame), we will in general use a; 4+ 1 to refer to the arc that
follows a;. Here “+” is no longer an operation; “+1” is a function mapping the set
of arcs to itself.

a;

ag Qg

FIGURE 6. A trefoil knot with labelled arcs and indicated orientations.

In order to construct the Wirtinger presentation, we also need a way to talk
about the crossings in the knot diagram. To each crossing b there are three (not
necessarily distinct) associated arcs: the “over” arc o(b), which is the one that is
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unbroken by the crossing, and two “under” arcs u(b) and w(b) + 1. The first, u(b),
is the one that is oriented toward the crossing, and u(b) is oriented away. The
crossings can be divided into two categories by “handedness” based on orientation,
and they are treated differently. Right-handed crossings are those in which the
“over” arc points to the right when facing in the direction of the other two, and
left-handed crossings are those in which it points to the left. This gets used in the
formulation of the Wirtinger presentation below.

“—c >

FIGURE 7. A left-handed crossing (left) and a right-handed cross-
ing (right).

Proposition 2.4. Let K be a tame knot expressed by a knot diagram, and let A be
the set of arcs and B the set of crossings. Let W be the free group with generating
set A, and let N be the subgroup of A generated by the elements r(b) for each b € B,
with r refined as follows:

(b) = (u(b) + D)o(b)u(b) to(b) ™ if b is right-handed
o(b)(u(b) + 1)o(b)tu(b)~™* if b is left-handed

Then W/N s the knot group of K.

Proof. The base point used for the knot group is (0,0, 1), or really any point that
lies “above” the knot diagram in space, or is in the same direction from which
the diagram is viewed. For each arc a, the generating element a in the group
presentation above corresponds to the loop that starts at the base point, travels
down to the zy-plane where the diagram is and hooks underneath the arc a before
returning back to the base point. Under this convention the loop descends below
the arc on its left side and rises on its right side, as determined by its orientation.
Of course, the reverse loop corresponds to a!.

Before we start taking any quotients, we need to check that the loops corre-
sponding to each arc generate all possible loops, up to homotopy. Given any loop ¢
starting and ending at the base point, there is a finite sequence of arcs underneath
which ¢ passes and the directions of the passes relative to the orientation. By mov-
ing the path back to the base point after each crossing under and straightening,
we construct a homotopy from ¢ to the composition of generator loops and their
inverses corresponding to each pass-under.

There are two special cases in which a homotopy of the loop ¢ changes the series of
instances in which it crosses under an arc, and any other change is a combination of
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FI1cURE 8. The loops associated to the three arcs in a right-handed
crossing. The base point is apparent at the top of the image.

these. The first is when the loop moves so that it crosses under an arc and then back
in the other direction without any other crossings, which is of course homotopic the
the loop that skips these entirely. This is accounted for in our construction by the
identity aa—! = e. The second case is when a homotopy moves the loop underneath
a crossing. When a loop travels around a crossing and entirely underneath it, it
passes below the “over” arc twice in opposite directions and the “under” arcs once
each in opposite directions, with exactly one of the later two crossings between the
former pair, with the exact directions and orders determined by the starting point
and the handedness of the crossing. This piece of path is homotopic to a piece
with no crossings, so we add the relations in the definition of N to identify these
segments with the identity. This completes the Wirtinger presentation.

N S
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FIGURE 9. The homotopies showing that aa~! = e for any arc a
and o(b)(u(b) + 1)o(b) "tu(b)~! = e for any left-handed knot b.

O

Example 2.5. A standard knot diagram for a trefoil knot consists of three arcs, as
shown in Figure 6, which can be labelled ag, a1, and as. The Wirtinger presentation
is given as:

1 -1 -1 -1 -1 -1
W/N = (ag, a1, a2]arazaq a5 = apaiay aj = G2a06; a; =€)

which can then be simplified. One identity follows from the other two, so it can be
removed. Another can be used to indicate that ay = apaiay . With this knowledge,
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as can be removed as a generator, and substitution can be used in the third relation,
yielding the following presentation for W/N:

W/N = (ao, a1|agaiap = a1apay)

2.3. Knot Groups for Torus Knots. While the Wirtinger presentation can be
used for any reasonable knot, it often fails to provide an intuitive understanding
of the knot itself. For example, the Wirtinger presentation for the knot group of
the trefoil has no immediately apparent connection to the shape of the knot. In
the case of the trefoil and true torus knots in general, a different approach gives a
much more geometrically understandable presentation for the knot group.

Theorem 2.6. The knot group of K, is given by (x1,z2|28 = 2$) for all coprime
positive integers a and b.

Proof. Recall that for coprime positive a and b, the image K of a torus knot K, ;
as given by Definition 1.4 is homeomorphic to a circle and lies completely on a
standard torus 7' with the z axis as its axis of rotation. A rotation of this set
around the z-axis by an angle of 7/b yields a similarly-shaped set that also lies on
T and weaves through the original image. Call this set K’. It can also be obtained
by twisting the torus in its other direction by an angle of 7/a.

FiGURE 10. The torus T, showing a left-handed trefoil knot K
(solid) and K’ (dashed).

Our goal will be to apply Van Kampen’s theorem to the complement of K in
S3. First we just consider the solid torus T} consisting of 7' and its interior. Since
T: deformation retracts to the circle at its center, its fundamental group is C, and
since K exists completely on the boundary, m (T} — K) = m1(T1) = C. The same
is true for the solid torus T5 consisting of T and its exterior, which is identical to
Ty (since we use S? instead of R?) except for the way that K and K’ wraps around
it. Remember that the union of these two pieces is the entire space S® and their
intersection is just T'.

The intersection between T3 — K and Ty — K is just T — K, which is path-
connected and also has fundamental group C, since it deformation retracts to K'.
Since K, like K, wraps a times around T the short way and b times around T the
long way, It is homotopic to xl{ inTy — K and 2§ in T — K, where z1 and z9 are
the generators for the fundamental group in 77 — K and 75 — K, respectively. By
Van Kampen’s theorem, the fundamental group of S® — K and knot group of K,
is then given by the presentation:

(w1, 222} = 2)
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d

For torus knots, this result has the clear advantages over the Wirtinger presenta-
tion of its simplicity and immediate connection to the parameters in its definition,
and of the use of the geometry of the torus.

The two presentations of the trefoil knot ({z1, 22|23 = x3) and (aog, a1|apaiag =
aiagay)) can by reconciled with each other by setting x1 = apa; and z2 = aga;ag,
or ap = ] *xy and a1 = x5 '23. Tt is a simple check that the two are compatible.

Unfortunately, this trick does not apply to torus links that are strict links. The
simplest example is that of the Hopf link, which can be defined as the torus link
K5 5. We have already calculated its knot group to be C x C. Since (z1, za|2? = 3)
is not abelian like C' x C' is, the two are clearly not isomorphic. The reason that it
fails is that for the Hopf link embedded on the torus, T'— K is not path-connected
so K’ cannot be constructed in the same way and Van Kampen’s theorem cannot
be applied.
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